Merge tag 'usb-4.8-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usb
[deliverable/linux.git] / drivers / media / rc / rc-main.c
1 /* rc-main.c - Remote Controller core module
2 *
3 * Copyright (C) 2009-2010 by Mauro Carvalho Chehab
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation version 2 of the License.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 */
14
15 #include <media/rc-core.h>
16 #include <linux/atomic.h>
17 #include <linux/spinlock.h>
18 #include <linux/delay.h>
19 #include <linux/input.h>
20 #include <linux/leds.h>
21 #include <linux/slab.h>
22 #include <linux/idr.h>
23 #include <linux/device.h>
24 #include <linux/module.h>
25 #include "rc-core-priv.h"
26
27 /* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
28 #define IR_TAB_MIN_SIZE 256
29 #define IR_TAB_MAX_SIZE 8192
30 #define RC_DEV_MAX 256
31
32 /* FIXME: IR_KEYPRESS_TIMEOUT should be protocol specific */
33 #define IR_KEYPRESS_TIMEOUT 250
34
35 /* Used to keep track of known keymaps */
36 static LIST_HEAD(rc_map_list);
37 static DEFINE_SPINLOCK(rc_map_lock);
38 static struct led_trigger *led_feedback;
39
40 /* Used to keep track of rc devices */
41 static DEFINE_IDA(rc_ida);
42
43 static struct rc_map_list *seek_rc_map(const char *name)
44 {
45 struct rc_map_list *map = NULL;
46
47 spin_lock(&rc_map_lock);
48 list_for_each_entry(map, &rc_map_list, list) {
49 if (!strcmp(name, map->map.name)) {
50 spin_unlock(&rc_map_lock);
51 return map;
52 }
53 }
54 spin_unlock(&rc_map_lock);
55
56 return NULL;
57 }
58
59 struct rc_map *rc_map_get(const char *name)
60 {
61
62 struct rc_map_list *map;
63
64 map = seek_rc_map(name);
65 #ifdef CONFIG_MODULES
66 if (!map) {
67 int rc = request_module("%s", name);
68 if (rc < 0) {
69 printk(KERN_ERR "Couldn't load IR keymap %s\n", name);
70 return NULL;
71 }
72 msleep(20); /* Give some time for IR to register */
73
74 map = seek_rc_map(name);
75 }
76 #endif
77 if (!map) {
78 printk(KERN_ERR "IR keymap %s not found\n", name);
79 return NULL;
80 }
81
82 printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);
83
84 return &map->map;
85 }
86 EXPORT_SYMBOL_GPL(rc_map_get);
87
88 int rc_map_register(struct rc_map_list *map)
89 {
90 spin_lock(&rc_map_lock);
91 list_add_tail(&map->list, &rc_map_list);
92 spin_unlock(&rc_map_lock);
93 return 0;
94 }
95 EXPORT_SYMBOL_GPL(rc_map_register);
96
97 void rc_map_unregister(struct rc_map_list *map)
98 {
99 spin_lock(&rc_map_lock);
100 list_del(&map->list);
101 spin_unlock(&rc_map_lock);
102 }
103 EXPORT_SYMBOL_GPL(rc_map_unregister);
104
105
106 static struct rc_map_table empty[] = {
107 { 0x2a, KEY_COFFEE },
108 };
109
110 static struct rc_map_list empty_map = {
111 .map = {
112 .scan = empty,
113 .size = ARRAY_SIZE(empty),
114 .rc_type = RC_TYPE_UNKNOWN, /* Legacy IR type */
115 .name = RC_MAP_EMPTY,
116 }
117 };
118
119 /**
120 * ir_create_table() - initializes a scancode table
121 * @rc_map: the rc_map to initialize
122 * @name: name to assign to the table
123 * @rc_type: ir type to assign to the new table
124 * @size: initial size of the table
125 * @return: zero on success or a negative error code
126 *
127 * This routine will initialize the rc_map and will allocate
128 * memory to hold at least the specified number of elements.
129 */
130 static int ir_create_table(struct rc_map *rc_map,
131 const char *name, u64 rc_type, size_t size)
132 {
133 rc_map->name = kstrdup(name, GFP_KERNEL);
134 if (!rc_map->name)
135 return -ENOMEM;
136 rc_map->rc_type = rc_type;
137 rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
138 rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
139 rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
140 if (!rc_map->scan) {
141 kfree(rc_map->name);
142 rc_map->name = NULL;
143 return -ENOMEM;
144 }
145
146 IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
147 rc_map->size, rc_map->alloc);
148 return 0;
149 }
150
151 /**
152 * ir_free_table() - frees memory allocated by a scancode table
153 * @rc_map: the table whose mappings need to be freed
154 *
155 * This routine will free memory alloctaed for key mappings used by given
156 * scancode table.
157 */
158 static void ir_free_table(struct rc_map *rc_map)
159 {
160 rc_map->size = 0;
161 kfree(rc_map->name);
162 kfree(rc_map->scan);
163 rc_map->scan = NULL;
164 }
165
166 /**
167 * ir_resize_table() - resizes a scancode table if necessary
168 * @rc_map: the rc_map to resize
169 * @gfp_flags: gfp flags to use when allocating memory
170 * @return: zero on success or a negative error code
171 *
172 * This routine will shrink the rc_map if it has lots of
173 * unused entries and grow it if it is full.
174 */
175 static int ir_resize_table(struct rc_map *rc_map, gfp_t gfp_flags)
176 {
177 unsigned int oldalloc = rc_map->alloc;
178 unsigned int newalloc = oldalloc;
179 struct rc_map_table *oldscan = rc_map->scan;
180 struct rc_map_table *newscan;
181
182 if (rc_map->size == rc_map->len) {
183 /* All entries in use -> grow keytable */
184 if (rc_map->alloc >= IR_TAB_MAX_SIZE)
185 return -ENOMEM;
186
187 newalloc *= 2;
188 IR_dprintk(1, "Growing table to %u bytes\n", newalloc);
189 }
190
191 if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
192 /* Less than 1/3 of entries in use -> shrink keytable */
193 newalloc /= 2;
194 IR_dprintk(1, "Shrinking table to %u bytes\n", newalloc);
195 }
196
197 if (newalloc == oldalloc)
198 return 0;
199
200 newscan = kmalloc(newalloc, gfp_flags);
201 if (!newscan) {
202 IR_dprintk(1, "Failed to kmalloc %u bytes\n", newalloc);
203 return -ENOMEM;
204 }
205
206 memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
207 rc_map->scan = newscan;
208 rc_map->alloc = newalloc;
209 rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
210 kfree(oldscan);
211 return 0;
212 }
213
214 /**
215 * ir_update_mapping() - set a keycode in the scancode->keycode table
216 * @dev: the struct rc_dev device descriptor
217 * @rc_map: scancode table to be adjusted
218 * @index: index of the mapping that needs to be updated
219 * @keycode: the desired keycode
220 * @return: previous keycode assigned to the mapping
221 *
222 * This routine is used to update scancode->keycode mapping at given
223 * position.
224 */
225 static unsigned int ir_update_mapping(struct rc_dev *dev,
226 struct rc_map *rc_map,
227 unsigned int index,
228 unsigned int new_keycode)
229 {
230 int old_keycode = rc_map->scan[index].keycode;
231 int i;
232
233 /* Did the user wish to remove the mapping? */
234 if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
235 IR_dprintk(1, "#%d: Deleting scan 0x%04x\n",
236 index, rc_map->scan[index].scancode);
237 rc_map->len--;
238 memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
239 (rc_map->len - index) * sizeof(struct rc_map_table));
240 } else {
241 IR_dprintk(1, "#%d: %s scan 0x%04x with key 0x%04x\n",
242 index,
243 old_keycode == KEY_RESERVED ? "New" : "Replacing",
244 rc_map->scan[index].scancode, new_keycode);
245 rc_map->scan[index].keycode = new_keycode;
246 __set_bit(new_keycode, dev->input_dev->keybit);
247 }
248
249 if (old_keycode != KEY_RESERVED) {
250 /* A previous mapping was updated... */
251 __clear_bit(old_keycode, dev->input_dev->keybit);
252 /* ... but another scancode might use the same keycode */
253 for (i = 0; i < rc_map->len; i++) {
254 if (rc_map->scan[i].keycode == old_keycode) {
255 __set_bit(old_keycode, dev->input_dev->keybit);
256 break;
257 }
258 }
259
260 /* Possibly shrink the keytable, failure is not a problem */
261 ir_resize_table(rc_map, GFP_ATOMIC);
262 }
263
264 return old_keycode;
265 }
266
267 /**
268 * ir_establish_scancode() - set a keycode in the scancode->keycode table
269 * @dev: the struct rc_dev device descriptor
270 * @rc_map: scancode table to be searched
271 * @scancode: the desired scancode
272 * @resize: controls whether we allowed to resize the table to
273 * accommodate not yet present scancodes
274 * @return: index of the mapping containing scancode in question
275 * or -1U in case of failure.
276 *
277 * This routine is used to locate given scancode in rc_map.
278 * If scancode is not yet present the routine will allocate a new slot
279 * for it.
280 */
281 static unsigned int ir_establish_scancode(struct rc_dev *dev,
282 struct rc_map *rc_map,
283 unsigned int scancode,
284 bool resize)
285 {
286 unsigned int i;
287
288 /*
289 * Unfortunately, some hardware-based IR decoders don't provide
290 * all bits for the complete IR code. In general, they provide only
291 * the command part of the IR code. Yet, as it is possible to replace
292 * the provided IR with another one, it is needed to allow loading
293 * IR tables from other remotes. So, we support specifying a mask to
294 * indicate the valid bits of the scancodes.
295 */
296 if (dev->scancode_mask)
297 scancode &= dev->scancode_mask;
298
299 /* First check if we already have a mapping for this ir command */
300 for (i = 0; i < rc_map->len; i++) {
301 if (rc_map->scan[i].scancode == scancode)
302 return i;
303
304 /* Keytable is sorted from lowest to highest scancode */
305 if (rc_map->scan[i].scancode >= scancode)
306 break;
307 }
308
309 /* No previous mapping found, we might need to grow the table */
310 if (rc_map->size == rc_map->len) {
311 if (!resize || ir_resize_table(rc_map, GFP_ATOMIC))
312 return -1U;
313 }
314
315 /* i is the proper index to insert our new keycode */
316 if (i < rc_map->len)
317 memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
318 (rc_map->len - i) * sizeof(struct rc_map_table));
319 rc_map->scan[i].scancode = scancode;
320 rc_map->scan[i].keycode = KEY_RESERVED;
321 rc_map->len++;
322
323 return i;
324 }
325
326 /**
327 * ir_setkeycode() - set a keycode in the scancode->keycode table
328 * @idev: the struct input_dev device descriptor
329 * @scancode: the desired scancode
330 * @keycode: result
331 * @return: -EINVAL if the keycode could not be inserted, otherwise zero.
332 *
333 * This routine is used to handle evdev EVIOCSKEY ioctl.
334 */
335 static int ir_setkeycode(struct input_dev *idev,
336 const struct input_keymap_entry *ke,
337 unsigned int *old_keycode)
338 {
339 struct rc_dev *rdev = input_get_drvdata(idev);
340 struct rc_map *rc_map = &rdev->rc_map;
341 unsigned int index;
342 unsigned int scancode;
343 int retval = 0;
344 unsigned long flags;
345
346 spin_lock_irqsave(&rc_map->lock, flags);
347
348 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
349 index = ke->index;
350 if (index >= rc_map->len) {
351 retval = -EINVAL;
352 goto out;
353 }
354 } else {
355 retval = input_scancode_to_scalar(ke, &scancode);
356 if (retval)
357 goto out;
358
359 index = ir_establish_scancode(rdev, rc_map, scancode, true);
360 if (index >= rc_map->len) {
361 retval = -ENOMEM;
362 goto out;
363 }
364 }
365
366 *old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
367
368 out:
369 spin_unlock_irqrestore(&rc_map->lock, flags);
370 return retval;
371 }
372
373 /**
374 * ir_setkeytable() - sets several entries in the scancode->keycode table
375 * @dev: the struct rc_dev device descriptor
376 * @to: the struct rc_map to copy entries to
377 * @from: the struct rc_map to copy entries from
378 * @return: -ENOMEM if all keycodes could not be inserted, otherwise zero.
379 *
380 * This routine is used to handle table initialization.
381 */
382 static int ir_setkeytable(struct rc_dev *dev,
383 const struct rc_map *from)
384 {
385 struct rc_map *rc_map = &dev->rc_map;
386 unsigned int i, index;
387 int rc;
388
389 rc = ir_create_table(rc_map, from->name,
390 from->rc_type, from->size);
391 if (rc)
392 return rc;
393
394 IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
395 rc_map->size, rc_map->alloc);
396
397 for (i = 0; i < from->size; i++) {
398 index = ir_establish_scancode(dev, rc_map,
399 from->scan[i].scancode, false);
400 if (index >= rc_map->len) {
401 rc = -ENOMEM;
402 break;
403 }
404
405 ir_update_mapping(dev, rc_map, index,
406 from->scan[i].keycode);
407 }
408
409 if (rc)
410 ir_free_table(rc_map);
411
412 return rc;
413 }
414
415 /**
416 * ir_lookup_by_scancode() - locate mapping by scancode
417 * @rc_map: the struct rc_map to search
418 * @scancode: scancode to look for in the table
419 * @return: index in the table, -1U if not found
420 *
421 * This routine performs binary search in RC keykeymap table for
422 * given scancode.
423 */
424 static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
425 unsigned int scancode)
426 {
427 int start = 0;
428 int end = rc_map->len - 1;
429 int mid;
430
431 while (start <= end) {
432 mid = (start + end) / 2;
433 if (rc_map->scan[mid].scancode < scancode)
434 start = mid + 1;
435 else if (rc_map->scan[mid].scancode > scancode)
436 end = mid - 1;
437 else
438 return mid;
439 }
440
441 return -1U;
442 }
443
444 /**
445 * ir_getkeycode() - get a keycode from the scancode->keycode table
446 * @idev: the struct input_dev device descriptor
447 * @scancode: the desired scancode
448 * @keycode: used to return the keycode, if found, or KEY_RESERVED
449 * @return: always returns zero.
450 *
451 * This routine is used to handle evdev EVIOCGKEY ioctl.
452 */
453 static int ir_getkeycode(struct input_dev *idev,
454 struct input_keymap_entry *ke)
455 {
456 struct rc_dev *rdev = input_get_drvdata(idev);
457 struct rc_map *rc_map = &rdev->rc_map;
458 struct rc_map_table *entry;
459 unsigned long flags;
460 unsigned int index;
461 unsigned int scancode;
462 int retval;
463
464 spin_lock_irqsave(&rc_map->lock, flags);
465
466 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
467 index = ke->index;
468 } else {
469 retval = input_scancode_to_scalar(ke, &scancode);
470 if (retval)
471 goto out;
472
473 index = ir_lookup_by_scancode(rc_map, scancode);
474 }
475
476 if (index < rc_map->len) {
477 entry = &rc_map->scan[index];
478
479 ke->index = index;
480 ke->keycode = entry->keycode;
481 ke->len = sizeof(entry->scancode);
482 memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));
483
484 } else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
485 /*
486 * We do not really know the valid range of scancodes
487 * so let's respond with KEY_RESERVED to anything we
488 * do not have mapping for [yet].
489 */
490 ke->index = index;
491 ke->keycode = KEY_RESERVED;
492 } else {
493 retval = -EINVAL;
494 goto out;
495 }
496
497 retval = 0;
498
499 out:
500 spin_unlock_irqrestore(&rc_map->lock, flags);
501 return retval;
502 }
503
504 /**
505 * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
506 * @dev: the struct rc_dev descriptor of the device
507 * @scancode: the scancode to look for
508 * @return: the corresponding keycode, or KEY_RESERVED
509 *
510 * This routine is used by drivers which need to convert a scancode to a
511 * keycode. Normally it should not be used since drivers should have no
512 * interest in keycodes.
513 */
514 u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode)
515 {
516 struct rc_map *rc_map = &dev->rc_map;
517 unsigned int keycode;
518 unsigned int index;
519 unsigned long flags;
520
521 spin_lock_irqsave(&rc_map->lock, flags);
522
523 index = ir_lookup_by_scancode(rc_map, scancode);
524 keycode = index < rc_map->len ?
525 rc_map->scan[index].keycode : KEY_RESERVED;
526
527 spin_unlock_irqrestore(&rc_map->lock, flags);
528
529 if (keycode != KEY_RESERVED)
530 IR_dprintk(1, "%s: scancode 0x%04x keycode 0x%02x\n",
531 dev->input_name, scancode, keycode);
532
533 return keycode;
534 }
535 EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
536
537 /**
538 * ir_do_keyup() - internal function to signal the release of a keypress
539 * @dev: the struct rc_dev descriptor of the device
540 * @sync: whether or not to call input_sync
541 *
542 * This function is used internally to release a keypress, it must be
543 * called with keylock held.
544 */
545 static void ir_do_keyup(struct rc_dev *dev, bool sync)
546 {
547 if (!dev->keypressed)
548 return;
549
550 IR_dprintk(1, "keyup key 0x%04x\n", dev->last_keycode);
551 input_report_key(dev->input_dev, dev->last_keycode, 0);
552 led_trigger_event(led_feedback, LED_OFF);
553 if (sync)
554 input_sync(dev->input_dev);
555 dev->keypressed = false;
556 }
557
558 /**
559 * rc_keyup() - signals the release of a keypress
560 * @dev: the struct rc_dev descriptor of the device
561 *
562 * This routine is used to signal that a key has been released on the
563 * remote control.
564 */
565 void rc_keyup(struct rc_dev *dev)
566 {
567 unsigned long flags;
568
569 spin_lock_irqsave(&dev->keylock, flags);
570 ir_do_keyup(dev, true);
571 spin_unlock_irqrestore(&dev->keylock, flags);
572 }
573 EXPORT_SYMBOL_GPL(rc_keyup);
574
575 /**
576 * ir_timer_keyup() - generates a keyup event after a timeout
577 * @cookie: a pointer to the struct rc_dev for the device
578 *
579 * This routine will generate a keyup event some time after a keydown event
580 * is generated when no further activity has been detected.
581 */
582 static void ir_timer_keyup(unsigned long cookie)
583 {
584 struct rc_dev *dev = (struct rc_dev *)cookie;
585 unsigned long flags;
586
587 /*
588 * ir->keyup_jiffies is used to prevent a race condition if a
589 * hardware interrupt occurs at this point and the keyup timer
590 * event is moved further into the future as a result.
591 *
592 * The timer will then be reactivated and this function called
593 * again in the future. We need to exit gracefully in that case
594 * to allow the input subsystem to do its auto-repeat magic or
595 * a keyup event might follow immediately after the keydown.
596 */
597 spin_lock_irqsave(&dev->keylock, flags);
598 if (time_is_before_eq_jiffies(dev->keyup_jiffies))
599 ir_do_keyup(dev, true);
600 spin_unlock_irqrestore(&dev->keylock, flags);
601 }
602
603 /**
604 * rc_repeat() - signals that a key is still pressed
605 * @dev: the struct rc_dev descriptor of the device
606 *
607 * This routine is used by IR decoders when a repeat message which does
608 * not include the necessary bits to reproduce the scancode has been
609 * received.
610 */
611 void rc_repeat(struct rc_dev *dev)
612 {
613 unsigned long flags;
614
615 spin_lock_irqsave(&dev->keylock, flags);
616
617 input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode);
618 input_sync(dev->input_dev);
619
620 if (!dev->keypressed)
621 goto out;
622
623 dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
624 mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
625
626 out:
627 spin_unlock_irqrestore(&dev->keylock, flags);
628 }
629 EXPORT_SYMBOL_GPL(rc_repeat);
630
631 /**
632 * ir_do_keydown() - internal function to process a keypress
633 * @dev: the struct rc_dev descriptor of the device
634 * @protocol: the protocol of the keypress
635 * @scancode: the scancode of the keypress
636 * @keycode: the keycode of the keypress
637 * @toggle: the toggle value of the keypress
638 *
639 * This function is used internally to register a keypress, it must be
640 * called with keylock held.
641 */
642 static void ir_do_keydown(struct rc_dev *dev, enum rc_type protocol,
643 u32 scancode, u32 keycode, u8 toggle)
644 {
645 bool new_event = (!dev->keypressed ||
646 dev->last_protocol != protocol ||
647 dev->last_scancode != scancode ||
648 dev->last_toggle != toggle);
649
650 if (new_event && dev->keypressed)
651 ir_do_keyup(dev, false);
652
653 input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
654
655 if (new_event && keycode != KEY_RESERVED) {
656 /* Register a keypress */
657 dev->keypressed = true;
658 dev->last_protocol = protocol;
659 dev->last_scancode = scancode;
660 dev->last_toggle = toggle;
661 dev->last_keycode = keycode;
662
663 IR_dprintk(1, "%s: key down event, "
664 "key 0x%04x, protocol 0x%04x, scancode 0x%08x\n",
665 dev->input_name, keycode, protocol, scancode);
666 input_report_key(dev->input_dev, keycode, 1);
667
668 led_trigger_event(led_feedback, LED_FULL);
669 }
670
671 input_sync(dev->input_dev);
672 }
673
674 /**
675 * rc_keydown() - generates input event for a key press
676 * @dev: the struct rc_dev descriptor of the device
677 * @protocol: the protocol for the keypress
678 * @scancode: the scancode for the keypress
679 * @toggle: the toggle value (protocol dependent, if the protocol doesn't
680 * support toggle values, this should be set to zero)
681 *
682 * This routine is used to signal that a key has been pressed on the
683 * remote control.
684 */
685 void rc_keydown(struct rc_dev *dev, enum rc_type protocol, u32 scancode, u8 toggle)
686 {
687 unsigned long flags;
688 u32 keycode = rc_g_keycode_from_table(dev, scancode);
689
690 spin_lock_irqsave(&dev->keylock, flags);
691 ir_do_keydown(dev, protocol, scancode, keycode, toggle);
692
693 if (dev->keypressed) {
694 dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
695 mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
696 }
697 spin_unlock_irqrestore(&dev->keylock, flags);
698 }
699 EXPORT_SYMBOL_GPL(rc_keydown);
700
701 /**
702 * rc_keydown_notimeout() - generates input event for a key press without
703 * an automatic keyup event at a later time
704 * @dev: the struct rc_dev descriptor of the device
705 * @protocol: the protocol for the keypress
706 * @scancode: the scancode for the keypress
707 * @toggle: the toggle value (protocol dependent, if the protocol doesn't
708 * support toggle values, this should be set to zero)
709 *
710 * This routine is used to signal that a key has been pressed on the
711 * remote control. The driver must manually call rc_keyup() at a later stage.
712 */
713 void rc_keydown_notimeout(struct rc_dev *dev, enum rc_type protocol,
714 u32 scancode, u8 toggle)
715 {
716 unsigned long flags;
717 u32 keycode = rc_g_keycode_from_table(dev, scancode);
718
719 spin_lock_irqsave(&dev->keylock, flags);
720 ir_do_keydown(dev, protocol, scancode, keycode, toggle);
721 spin_unlock_irqrestore(&dev->keylock, flags);
722 }
723 EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
724
725 int rc_open(struct rc_dev *rdev)
726 {
727 int rval = 0;
728
729 if (!rdev)
730 return -EINVAL;
731
732 mutex_lock(&rdev->lock);
733
734 if (!rdev->users++ && rdev->open != NULL)
735 rval = rdev->open(rdev);
736
737 if (rval)
738 rdev->users--;
739
740 mutex_unlock(&rdev->lock);
741
742 return rval;
743 }
744 EXPORT_SYMBOL_GPL(rc_open);
745
746 static int ir_open(struct input_dev *idev)
747 {
748 struct rc_dev *rdev = input_get_drvdata(idev);
749
750 return rc_open(rdev);
751 }
752
753 void rc_close(struct rc_dev *rdev)
754 {
755 if (rdev) {
756 mutex_lock(&rdev->lock);
757
758 if (!--rdev->users && rdev->close != NULL)
759 rdev->close(rdev);
760
761 mutex_unlock(&rdev->lock);
762 }
763 }
764 EXPORT_SYMBOL_GPL(rc_close);
765
766 static void ir_close(struct input_dev *idev)
767 {
768 struct rc_dev *rdev = input_get_drvdata(idev);
769 rc_close(rdev);
770 }
771
772 /* class for /sys/class/rc */
773 static char *rc_devnode(struct device *dev, umode_t *mode)
774 {
775 return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
776 }
777
778 static struct class rc_class = {
779 .name = "rc",
780 .devnode = rc_devnode,
781 };
782
783 /*
784 * These are the protocol textual descriptions that are
785 * used by the sysfs protocols file. Note that the order
786 * of the entries is relevant.
787 */
788 static const struct {
789 u64 type;
790 const char *name;
791 const char *module_name;
792 } proto_names[] = {
793 { RC_BIT_NONE, "none", NULL },
794 { RC_BIT_OTHER, "other", NULL },
795 { RC_BIT_UNKNOWN, "unknown", NULL },
796 { RC_BIT_RC5 |
797 RC_BIT_RC5X, "rc-5", "ir-rc5-decoder" },
798 { RC_BIT_NEC, "nec", "ir-nec-decoder" },
799 { RC_BIT_RC6_0 |
800 RC_BIT_RC6_6A_20 |
801 RC_BIT_RC6_6A_24 |
802 RC_BIT_RC6_6A_32 |
803 RC_BIT_RC6_MCE, "rc-6", "ir-rc6-decoder" },
804 { RC_BIT_JVC, "jvc", "ir-jvc-decoder" },
805 { RC_BIT_SONY12 |
806 RC_BIT_SONY15 |
807 RC_BIT_SONY20, "sony", "ir-sony-decoder" },
808 { RC_BIT_RC5_SZ, "rc-5-sz", "ir-rc5-decoder" },
809 { RC_BIT_SANYO, "sanyo", "ir-sanyo-decoder" },
810 { RC_BIT_SHARP, "sharp", "ir-sharp-decoder" },
811 { RC_BIT_MCE_KBD, "mce_kbd", "ir-mce_kbd-decoder" },
812 { RC_BIT_XMP, "xmp", "ir-xmp-decoder" },
813 { RC_BIT_CEC, "cec", NULL },
814 };
815
816 /**
817 * struct rc_filter_attribute - Device attribute relating to a filter type.
818 * @attr: Device attribute.
819 * @type: Filter type.
820 * @mask: false for filter value, true for filter mask.
821 */
822 struct rc_filter_attribute {
823 struct device_attribute attr;
824 enum rc_filter_type type;
825 bool mask;
826 };
827 #define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr)
828
829 #define RC_PROTO_ATTR(_name, _mode, _show, _store, _type) \
830 struct rc_filter_attribute dev_attr_##_name = { \
831 .attr = __ATTR(_name, _mode, _show, _store), \
832 .type = (_type), \
833 }
834 #define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask) \
835 struct rc_filter_attribute dev_attr_##_name = { \
836 .attr = __ATTR(_name, _mode, _show, _store), \
837 .type = (_type), \
838 .mask = (_mask), \
839 }
840
841 static bool lirc_is_present(void)
842 {
843 #if defined(CONFIG_LIRC_MODULE)
844 struct module *lirc;
845
846 mutex_lock(&module_mutex);
847 lirc = find_module("lirc_dev");
848 mutex_unlock(&module_mutex);
849
850 return lirc ? true : false;
851 #elif defined(CONFIG_LIRC)
852 return true;
853 #else
854 return false;
855 #endif
856 }
857
858 /**
859 * show_protocols() - shows the current/wakeup IR protocol(s)
860 * @device: the device descriptor
861 * @mattr: the device attribute struct
862 * @buf: a pointer to the output buffer
863 *
864 * This routine is a callback routine for input read the IR protocol type(s).
865 * it is trigged by reading /sys/class/rc/rc?/[wakeup_]protocols.
866 * It returns the protocol names of supported protocols.
867 * Enabled protocols are printed in brackets.
868 *
869 * dev->lock is taken to guard against races between device
870 * registration, store_protocols and show_protocols.
871 */
872 static ssize_t show_protocols(struct device *device,
873 struct device_attribute *mattr, char *buf)
874 {
875 struct rc_dev *dev = to_rc_dev(device);
876 struct rc_filter_attribute *fattr = to_rc_filter_attr(mattr);
877 u64 allowed, enabled;
878 char *tmp = buf;
879 int i;
880
881 /* Device is being removed */
882 if (!dev)
883 return -EINVAL;
884
885 if (!atomic_read(&dev->initialized))
886 return -ERESTARTSYS;
887
888 mutex_lock(&dev->lock);
889
890 if (fattr->type == RC_FILTER_NORMAL) {
891 enabled = dev->enabled_protocols;
892 allowed = dev->allowed_protocols;
893 if (dev->raw && !allowed)
894 allowed = ir_raw_get_allowed_protocols();
895 } else {
896 enabled = dev->enabled_wakeup_protocols;
897 allowed = dev->allowed_wakeup_protocols;
898 }
899
900 mutex_unlock(&dev->lock);
901
902 IR_dprintk(1, "%s: allowed - 0x%llx, enabled - 0x%llx\n",
903 __func__, (long long)allowed, (long long)enabled);
904
905 for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
906 if (allowed & enabled & proto_names[i].type)
907 tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
908 else if (allowed & proto_names[i].type)
909 tmp += sprintf(tmp, "%s ", proto_names[i].name);
910
911 if (allowed & proto_names[i].type)
912 allowed &= ~proto_names[i].type;
913 }
914
915 if (dev->driver_type == RC_DRIVER_IR_RAW && lirc_is_present())
916 tmp += sprintf(tmp, "[lirc] ");
917
918 if (tmp != buf)
919 tmp--;
920 *tmp = '\n';
921
922 return tmp + 1 - buf;
923 }
924
925 /**
926 * parse_protocol_change() - parses a protocol change request
927 * @protocols: pointer to the bitmask of current protocols
928 * @buf: pointer to the buffer with a list of changes
929 *
930 * Writing "+proto" will add a protocol to the protocol mask.
931 * Writing "-proto" will remove a protocol from protocol mask.
932 * Writing "proto" will enable only "proto".
933 * Writing "none" will disable all protocols.
934 * Returns the number of changes performed or a negative error code.
935 */
936 static int parse_protocol_change(u64 *protocols, const char *buf)
937 {
938 const char *tmp;
939 unsigned count = 0;
940 bool enable, disable;
941 u64 mask;
942 int i;
943
944 while ((tmp = strsep((char **)&buf, " \n")) != NULL) {
945 if (!*tmp)
946 break;
947
948 if (*tmp == '+') {
949 enable = true;
950 disable = false;
951 tmp++;
952 } else if (*tmp == '-') {
953 enable = false;
954 disable = true;
955 tmp++;
956 } else {
957 enable = false;
958 disable = false;
959 }
960
961 for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
962 if (!strcasecmp(tmp, proto_names[i].name)) {
963 mask = proto_names[i].type;
964 break;
965 }
966 }
967
968 if (i == ARRAY_SIZE(proto_names)) {
969 if (!strcasecmp(tmp, "lirc"))
970 mask = 0;
971 else {
972 IR_dprintk(1, "Unknown protocol: '%s'\n", tmp);
973 return -EINVAL;
974 }
975 }
976
977 count++;
978
979 if (enable)
980 *protocols |= mask;
981 else if (disable)
982 *protocols &= ~mask;
983 else
984 *protocols = mask;
985 }
986
987 if (!count) {
988 IR_dprintk(1, "Protocol not specified\n");
989 return -EINVAL;
990 }
991
992 return count;
993 }
994
995 static void ir_raw_load_modules(u64 *protocols)
996
997 {
998 u64 available;
999 int i, ret;
1000
1001 for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1002 if (proto_names[i].type == RC_BIT_NONE ||
1003 proto_names[i].type & (RC_BIT_OTHER | RC_BIT_UNKNOWN))
1004 continue;
1005
1006 available = ir_raw_get_allowed_protocols();
1007 if (!(*protocols & proto_names[i].type & ~available))
1008 continue;
1009
1010 if (!proto_names[i].module_name) {
1011 pr_err("Can't enable IR protocol %s\n",
1012 proto_names[i].name);
1013 *protocols &= ~proto_names[i].type;
1014 continue;
1015 }
1016
1017 ret = request_module("%s", proto_names[i].module_name);
1018 if (ret < 0) {
1019 pr_err("Couldn't load IR protocol module %s\n",
1020 proto_names[i].module_name);
1021 *protocols &= ~proto_names[i].type;
1022 continue;
1023 }
1024 msleep(20);
1025 available = ir_raw_get_allowed_protocols();
1026 if (!(*protocols & proto_names[i].type & ~available))
1027 continue;
1028
1029 pr_err("Loaded IR protocol module %s, \
1030 but protocol %s still not available\n",
1031 proto_names[i].module_name,
1032 proto_names[i].name);
1033 *protocols &= ~proto_names[i].type;
1034 }
1035 }
1036
1037 /**
1038 * store_protocols() - changes the current/wakeup IR protocol(s)
1039 * @device: the device descriptor
1040 * @mattr: the device attribute struct
1041 * @buf: a pointer to the input buffer
1042 * @len: length of the input buffer
1043 *
1044 * This routine is for changing the IR protocol type.
1045 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]protocols.
1046 * See parse_protocol_change() for the valid commands.
1047 * Returns @len on success or a negative error code.
1048 *
1049 * dev->lock is taken to guard against races between device
1050 * registration, store_protocols and show_protocols.
1051 */
1052 static ssize_t store_protocols(struct device *device,
1053 struct device_attribute *mattr,
1054 const char *buf, size_t len)
1055 {
1056 struct rc_dev *dev = to_rc_dev(device);
1057 struct rc_filter_attribute *fattr = to_rc_filter_attr(mattr);
1058 u64 *current_protocols;
1059 int (*change_protocol)(struct rc_dev *dev, u64 *rc_type);
1060 struct rc_scancode_filter *filter;
1061 int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
1062 u64 old_protocols, new_protocols;
1063 ssize_t rc;
1064
1065 /* Device is being removed */
1066 if (!dev)
1067 return -EINVAL;
1068
1069 if (!atomic_read(&dev->initialized))
1070 return -ERESTARTSYS;
1071
1072 if (fattr->type == RC_FILTER_NORMAL) {
1073 IR_dprintk(1, "Normal protocol change requested\n");
1074 current_protocols = &dev->enabled_protocols;
1075 change_protocol = dev->change_protocol;
1076 filter = &dev->scancode_filter;
1077 set_filter = dev->s_filter;
1078 } else {
1079 IR_dprintk(1, "Wakeup protocol change requested\n");
1080 current_protocols = &dev->enabled_wakeup_protocols;
1081 change_protocol = dev->change_wakeup_protocol;
1082 filter = &dev->scancode_wakeup_filter;
1083 set_filter = dev->s_wakeup_filter;
1084 }
1085
1086 if (!change_protocol) {
1087 IR_dprintk(1, "Protocol switching not supported\n");
1088 return -EINVAL;
1089 }
1090
1091 mutex_lock(&dev->lock);
1092
1093 old_protocols = *current_protocols;
1094 new_protocols = old_protocols;
1095 rc = parse_protocol_change(&new_protocols, buf);
1096 if (rc < 0)
1097 goto out;
1098
1099 rc = change_protocol(dev, &new_protocols);
1100 if (rc < 0) {
1101 IR_dprintk(1, "Error setting protocols to 0x%llx\n",
1102 (long long)new_protocols);
1103 goto out;
1104 }
1105
1106 if (dev->driver_type == RC_DRIVER_IR_RAW)
1107 ir_raw_load_modules(&new_protocols);
1108
1109 if (new_protocols != old_protocols) {
1110 *current_protocols = new_protocols;
1111 IR_dprintk(1, "Protocols changed to 0x%llx\n",
1112 (long long)new_protocols);
1113 }
1114
1115 /*
1116 * If a protocol change was attempted the filter may need updating, even
1117 * if the actual protocol mask hasn't changed (since the driver may have
1118 * cleared the filter).
1119 * Try setting the same filter with the new protocol (if any).
1120 * Fall back to clearing the filter.
1121 */
1122 if (set_filter && filter->mask) {
1123 if (new_protocols)
1124 rc = set_filter(dev, filter);
1125 else
1126 rc = -1;
1127
1128 if (rc < 0) {
1129 filter->data = 0;
1130 filter->mask = 0;
1131 set_filter(dev, filter);
1132 }
1133 }
1134
1135 rc = len;
1136
1137 out:
1138 mutex_unlock(&dev->lock);
1139 return rc;
1140 }
1141
1142 /**
1143 * show_filter() - shows the current scancode filter value or mask
1144 * @device: the device descriptor
1145 * @attr: the device attribute struct
1146 * @buf: a pointer to the output buffer
1147 *
1148 * This routine is a callback routine to read a scancode filter value or mask.
1149 * It is trigged by reading /sys/class/rc/rc?/[wakeup_]filter[_mask].
1150 * It prints the current scancode filter value or mask of the appropriate filter
1151 * type in hexadecimal into @buf and returns the size of the buffer.
1152 *
1153 * Bits of the filter value corresponding to set bits in the filter mask are
1154 * compared against input scancodes and non-matching scancodes are discarded.
1155 *
1156 * dev->lock is taken to guard against races between device registration,
1157 * store_filter and show_filter.
1158 */
1159 static ssize_t show_filter(struct device *device,
1160 struct device_attribute *attr,
1161 char *buf)
1162 {
1163 struct rc_dev *dev = to_rc_dev(device);
1164 struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1165 struct rc_scancode_filter *filter;
1166 u32 val;
1167
1168 /* Device is being removed */
1169 if (!dev)
1170 return -EINVAL;
1171
1172 if (!atomic_read(&dev->initialized))
1173 return -ERESTARTSYS;
1174
1175 mutex_lock(&dev->lock);
1176
1177 if (fattr->type == RC_FILTER_NORMAL)
1178 filter = &dev->scancode_filter;
1179 else
1180 filter = &dev->scancode_wakeup_filter;
1181
1182 if (fattr->mask)
1183 val = filter->mask;
1184 else
1185 val = filter->data;
1186 mutex_unlock(&dev->lock);
1187
1188 return sprintf(buf, "%#x\n", val);
1189 }
1190
1191 /**
1192 * store_filter() - changes the scancode filter value
1193 * @device: the device descriptor
1194 * @attr: the device attribute struct
1195 * @buf: a pointer to the input buffer
1196 * @len: length of the input buffer
1197 *
1198 * This routine is for changing a scancode filter value or mask.
1199 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask].
1200 * Returns -EINVAL if an invalid filter value for the current protocol was
1201 * specified or if scancode filtering is not supported by the driver, otherwise
1202 * returns @len.
1203 *
1204 * Bits of the filter value corresponding to set bits in the filter mask are
1205 * compared against input scancodes and non-matching scancodes are discarded.
1206 *
1207 * dev->lock is taken to guard against races between device registration,
1208 * store_filter and show_filter.
1209 */
1210 static ssize_t store_filter(struct device *device,
1211 struct device_attribute *attr,
1212 const char *buf, size_t len)
1213 {
1214 struct rc_dev *dev = to_rc_dev(device);
1215 struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1216 struct rc_scancode_filter new_filter, *filter;
1217 int ret;
1218 unsigned long val;
1219 int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
1220 u64 *enabled_protocols;
1221
1222 /* Device is being removed */
1223 if (!dev)
1224 return -EINVAL;
1225
1226 if (!atomic_read(&dev->initialized))
1227 return -ERESTARTSYS;
1228
1229 ret = kstrtoul(buf, 0, &val);
1230 if (ret < 0)
1231 return ret;
1232
1233 if (fattr->type == RC_FILTER_NORMAL) {
1234 set_filter = dev->s_filter;
1235 enabled_protocols = &dev->enabled_protocols;
1236 filter = &dev->scancode_filter;
1237 } else {
1238 set_filter = dev->s_wakeup_filter;
1239 enabled_protocols = &dev->enabled_wakeup_protocols;
1240 filter = &dev->scancode_wakeup_filter;
1241 }
1242
1243 if (!set_filter)
1244 return -EINVAL;
1245
1246 mutex_lock(&dev->lock);
1247
1248 new_filter = *filter;
1249 if (fattr->mask)
1250 new_filter.mask = val;
1251 else
1252 new_filter.data = val;
1253
1254 if (!*enabled_protocols && val) {
1255 /* refuse to set a filter unless a protocol is enabled */
1256 ret = -EINVAL;
1257 goto unlock;
1258 }
1259
1260 ret = set_filter(dev, &new_filter);
1261 if (ret < 0)
1262 goto unlock;
1263
1264 *filter = new_filter;
1265
1266 unlock:
1267 mutex_unlock(&dev->lock);
1268 return (ret < 0) ? ret : len;
1269 }
1270
1271 static void rc_dev_release(struct device *device)
1272 {
1273 struct rc_dev *dev = to_rc_dev(device);
1274
1275 kfree(dev);
1276 }
1277
1278 #define ADD_HOTPLUG_VAR(fmt, val...) \
1279 do { \
1280 int err = add_uevent_var(env, fmt, val); \
1281 if (err) \
1282 return err; \
1283 } while (0)
1284
1285 static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1286 {
1287 struct rc_dev *dev = to_rc_dev(device);
1288
1289 if (dev->rc_map.name)
1290 ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name);
1291 if (dev->driver_name)
1292 ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name);
1293
1294 return 0;
1295 }
1296
1297 /*
1298 * Static device attribute struct with the sysfs attributes for IR's
1299 */
1300 static RC_PROTO_ATTR(protocols, S_IRUGO | S_IWUSR,
1301 show_protocols, store_protocols, RC_FILTER_NORMAL);
1302 static RC_PROTO_ATTR(wakeup_protocols, S_IRUGO | S_IWUSR,
1303 show_protocols, store_protocols, RC_FILTER_WAKEUP);
1304 static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR,
1305 show_filter, store_filter, RC_FILTER_NORMAL, false);
1306 static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR,
1307 show_filter, store_filter, RC_FILTER_NORMAL, true);
1308 static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR,
1309 show_filter, store_filter, RC_FILTER_WAKEUP, false);
1310 static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR,
1311 show_filter, store_filter, RC_FILTER_WAKEUP, true);
1312
1313 static struct attribute *rc_dev_protocol_attrs[] = {
1314 &dev_attr_protocols.attr.attr,
1315 NULL,
1316 };
1317
1318 static struct attribute_group rc_dev_protocol_attr_grp = {
1319 .attrs = rc_dev_protocol_attrs,
1320 };
1321
1322 static struct attribute *rc_dev_wakeup_protocol_attrs[] = {
1323 &dev_attr_wakeup_protocols.attr.attr,
1324 NULL,
1325 };
1326
1327 static struct attribute_group rc_dev_wakeup_protocol_attr_grp = {
1328 .attrs = rc_dev_wakeup_protocol_attrs,
1329 };
1330
1331 static struct attribute *rc_dev_filter_attrs[] = {
1332 &dev_attr_filter.attr.attr,
1333 &dev_attr_filter_mask.attr.attr,
1334 NULL,
1335 };
1336
1337 static struct attribute_group rc_dev_filter_attr_grp = {
1338 .attrs = rc_dev_filter_attrs,
1339 };
1340
1341 static struct attribute *rc_dev_wakeup_filter_attrs[] = {
1342 &dev_attr_wakeup_filter.attr.attr,
1343 &dev_attr_wakeup_filter_mask.attr.attr,
1344 NULL,
1345 };
1346
1347 static struct attribute_group rc_dev_wakeup_filter_attr_grp = {
1348 .attrs = rc_dev_wakeup_filter_attrs,
1349 };
1350
1351 static struct device_type rc_dev_type = {
1352 .release = rc_dev_release,
1353 .uevent = rc_dev_uevent,
1354 };
1355
1356 struct rc_dev *rc_allocate_device(void)
1357 {
1358 struct rc_dev *dev;
1359
1360 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1361 if (!dev)
1362 return NULL;
1363
1364 dev->input_dev = input_allocate_device();
1365 if (!dev->input_dev) {
1366 kfree(dev);
1367 return NULL;
1368 }
1369
1370 dev->input_dev->getkeycode = ir_getkeycode;
1371 dev->input_dev->setkeycode = ir_setkeycode;
1372 input_set_drvdata(dev->input_dev, dev);
1373
1374 spin_lock_init(&dev->rc_map.lock);
1375 spin_lock_init(&dev->keylock);
1376 mutex_init(&dev->lock);
1377 setup_timer(&dev->timer_keyup, ir_timer_keyup, (unsigned long)dev);
1378
1379 dev->dev.type = &rc_dev_type;
1380 dev->dev.class = &rc_class;
1381 device_initialize(&dev->dev);
1382
1383 __module_get(THIS_MODULE);
1384 return dev;
1385 }
1386 EXPORT_SYMBOL_GPL(rc_allocate_device);
1387
1388 void rc_free_device(struct rc_dev *dev)
1389 {
1390 if (!dev)
1391 return;
1392
1393 input_free_device(dev->input_dev);
1394
1395 put_device(&dev->dev);
1396
1397 /* kfree(dev) will be called by the callback function
1398 rc_dev_release() */
1399
1400 module_put(THIS_MODULE);
1401 }
1402 EXPORT_SYMBOL_GPL(rc_free_device);
1403
1404 int rc_register_device(struct rc_dev *dev)
1405 {
1406 static bool raw_init = false; /* raw decoders loaded? */
1407 struct rc_map *rc_map;
1408 const char *path;
1409 int attr = 0;
1410 int minor;
1411 int rc;
1412
1413 if (!dev || !dev->map_name)
1414 return -EINVAL;
1415
1416 rc_map = rc_map_get(dev->map_name);
1417 if (!rc_map)
1418 rc_map = rc_map_get(RC_MAP_EMPTY);
1419 if (!rc_map || !rc_map->scan || rc_map->size == 0)
1420 return -EINVAL;
1421
1422 set_bit(EV_KEY, dev->input_dev->evbit);
1423 set_bit(EV_REP, dev->input_dev->evbit);
1424 set_bit(EV_MSC, dev->input_dev->evbit);
1425 set_bit(MSC_SCAN, dev->input_dev->mscbit);
1426 if (dev->open)
1427 dev->input_dev->open = ir_open;
1428 if (dev->close)
1429 dev->input_dev->close = ir_close;
1430
1431 minor = ida_simple_get(&rc_ida, 0, RC_DEV_MAX, GFP_KERNEL);
1432 if (minor < 0)
1433 return minor;
1434
1435 dev->minor = minor;
1436 dev_set_name(&dev->dev, "rc%u", dev->minor);
1437 dev_set_drvdata(&dev->dev, dev);
1438 atomic_set(&dev->initialized, 0);
1439
1440 dev->dev.groups = dev->sysfs_groups;
1441 dev->sysfs_groups[attr++] = &rc_dev_protocol_attr_grp;
1442 if (dev->s_filter)
1443 dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp;
1444 if (dev->s_wakeup_filter)
1445 dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp;
1446 if (dev->change_wakeup_protocol)
1447 dev->sysfs_groups[attr++] = &rc_dev_wakeup_protocol_attr_grp;
1448 dev->sysfs_groups[attr++] = NULL;
1449
1450 rc = device_add(&dev->dev);
1451 if (rc)
1452 goto out_unlock;
1453
1454 rc = ir_setkeytable(dev, rc_map);
1455 if (rc)
1456 goto out_dev;
1457
1458 dev->input_dev->dev.parent = &dev->dev;
1459 memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
1460 dev->input_dev->phys = dev->input_phys;
1461 dev->input_dev->name = dev->input_name;
1462
1463 /*
1464 * Default delay of 250ms is too short for some protocols, especially
1465 * since the timeout is currently set to 250ms. Increase it to 500ms,
1466 * to avoid wrong repetition of the keycodes. Note that this must be
1467 * set after the call to input_register_device().
1468 */
1469 dev->input_dev->rep[REP_DELAY] = 500;
1470
1471 /*
1472 * As a repeat event on protocols like RC-5 and NEC take as long as
1473 * 110/114ms, using 33ms as a repeat period is not the right thing
1474 * to do.
1475 */
1476 dev->input_dev->rep[REP_PERIOD] = 125;
1477
1478 /* rc_open will be called here */
1479 rc = input_register_device(dev->input_dev);
1480 if (rc)
1481 goto out_table;
1482
1483 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1484 dev_info(&dev->dev, "%s as %s\n",
1485 dev->input_name ?: "Unspecified device", path ?: "N/A");
1486 kfree(path);
1487
1488 if (dev->driver_type == RC_DRIVER_IR_RAW) {
1489 if (!raw_init) {
1490 request_module_nowait("ir-lirc-codec");
1491 raw_init = true;
1492 }
1493 rc = ir_raw_event_register(dev);
1494 if (rc < 0)
1495 goto out_input;
1496 }
1497
1498 if (dev->change_protocol) {
1499 u64 rc_type = (1ll << rc_map->rc_type);
1500 rc = dev->change_protocol(dev, &rc_type);
1501 if (rc < 0)
1502 goto out_raw;
1503 dev->enabled_protocols = rc_type;
1504 }
1505
1506 /* Allow the RC sysfs nodes to be accessible */
1507 atomic_set(&dev->initialized, 1);
1508
1509 IR_dprintk(1, "Registered rc%u (driver: %s, remote: %s, mode %s)\n",
1510 dev->minor,
1511 dev->driver_name ? dev->driver_name : "unknown",
1512 rc_map->name ? rc_map->name : "unknown",
1513 dev->driver_type == RC_DRIVER_IR_RAW ? "raw" : "cooked");
1514
1515 return 0;
1516
1517 out_raw:
1518 if (dev->driver_type == RC_DRIVER_IR_RAW)
1519 ir_raw_event_unregister(dev);
1520 out_input:
1521 input_unregister_device(dev->input_dev);
1522 dev->input_dev = NULL;
1523 out_table:
1524 ir_free_table(&dev->rc_map);
1525 out_dev:
1526 device_del(&dev->dev);
1527 out_unlock:
1528 ida_simple_remove(&rc_ida, minor);
1529 return rc;
1530 }
1531 EXPORT_SYMBOL_GPL(rc_register_device);
1532
1533 void rc_unregister_device(struct rc_dev *dev)
1534 {
1535 if (!dev)
1536 return;
1537
1538 del_timer_sync(&dev->timer_keyup);
1539
1540 if (dev->driver_type == RC_DRIVER_IR_RAW)
1541 ir_raw_event_unregister(dev);
1542
1543 /* Freeing the table should also call the stop callback */
1544 ir_free_table(&dev->rc_map);
1545 IR_dprintk(1, "Freed keycode table\n");
1546
1547 input_unregister_device(dev->input_dev);
1548 dev->input_dev = NULL;
1549
1550 device_del(&dev->dev);
1551
1552 ida_simple_remove(&rc_ida, dev->minor);
1553
1554 rc_free_device(dev);
1555 }
1556
1557 EXPORT_SYMBOL_GPL(rc_unregister_device);
1558
1559 /*
1560 * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1561 */
1562
1563 static int __init rc_core_init(void)
1564 {
1565 int rc = class_register(&rc_class);
1566 if (rc) {
1567 printk(KERN_ERR "rc_core: unable to register rc class\n");
1568 return rc;
1569 }
1570
1571 led_trigger_register_simple("rc-feedback", &led_feedback);
1572 rc_map_register(&empty_map);
1573
1574 return 0;
1575 }
1576
1577 static void __exit rc_core_exit(void)
1578 {
1579 class_unregister(&rc_class);
1580 led_trigger_unregister_simple(led_feedback);
1581 rc_map_unregister(&empty_map);
1582 }
1583
1584 subsys_initcall(rc_core_init);
1585 module_exit(rc_core_exit);
1586
1587 int rc_core_debug; /* ir_debug level (0,1,2) */
1588 EXPORT_SYMBOL_GPL(rc_core_debug);
1589 module_param_named(debug, rc_core_debug, int, 0644);
1590
1591 MODULE_AUTHOR("Mauro Carvalho Chehab");
1592 MODULE_LICENSE("GPL");
This page took 0.063105 seconds and 6 git commands to generate.