[media] e4000: implement PLL lock v4l control
[deliverable/linux.git] / drivers / media / tuners / e4000.c
1 /*
2 * Elonics E4000 silicon tuner driver
3 *
4 * Copyright (C) 2012 Antti Palosaari <crope@iki.fi>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License along
17 * with this program; if not, write to the Free Software Foundation, Inc.,
18 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
19 */
20
21 #include "e4000_priv.h"
22 #include <linux/math64.h>
23
24 /* Max transfer size done by I2C transfer functions */
25 #define MAX_XFER_SIZE 64
26
27 /* write multiple registers */
28 static int e4000_wr_regs(struct e4000_priv *priv, u8 reg, u8 *val, int len)
29 {
30 int ret;
31 u8 buf[MAX_XFER_SIZE];
32 struct i2c_msg msg[1] = {
33 {
34 .addr = priv->client->addr,
35 .flags = 0,
36 .len = 1 + len,
37 .buf = buf,
38 }
39 };
40
41 if (1 + len > sizeof(buf)) {
42 dev_warn(&priv->client->dev,
43 "%s: i2c wr reg=%04x: len=%d is too big!\n",
44 KBUILD_MODNAME, reg, len);
45 return -EINVAL;
46 }
47
48 buf[0] = reg;
49 memcpy(&buf[1], val, len);
50
51 ret = i2c_transfer(priv->client->adapter, msg, 1);
52 if (ret == 1) {
53 ret = 0;
54 } else {
55 dev_warn(&priv->client->dev,
56 "%s: i2c wr failed=%d reg=%02x len=%d\n",
57 KBUILD_MODNAME, ret, reg, len);
58 ret = -EREMOTEIO;
59 }
60 return ret;
61 }
62
63 /* read multiple registers */
64 static int e4000_rd_regs(struct e4000_priv *priv, u8 reg, u8 *val, int len)
65 {
66 int ret;
67 u8 buf[MAX_XFER_SIZE];
68 struct i2c_msg msg[2] = {
69 {
70 .addr = priv->client->addr,
71 .flags = 0,
72 .len = 1,
73 .buf = &reg,
74 }, {
75 .addr = priv->client->addr,
76 .flags = I2C_M_RD,
77 .len = len,
78 .buf = buf,
79 }
80 };
81
82 if (len > sizeof(buf)) {
83 dev_warn(&priv->client->dev,
84 "%s: i2c rd reg=%04x: len=%d is too big!\n",
85 KBUILD_MODNAME, reg, len);
86 return -EINVAL;
87 }
88
89 ret = i2c_transfer(priv->client->adapter, msg, 2);
90 if (ret == 2) {
91 memcpy(val, buf, len);
92 ret = 0;
93 } else {
94 dev_warn(&priv->client->dev,
95 "%s: i2c rd failed=%d reg=%02x len=%d\n",
96 KBUILD_MODNAME, ret, reg, len);
97 ret = -EREMOTEIO;
98 }
99
100 return ret;
101 }
102
103 /* write single register */
104 static int e4000_wr_reg(struct e4000_priv *priv, u8 reg, u8 val)
105 {
106 return e4000_wr_regs(priv, reg, &val, 1);
107 }
108
109 /* read single register */
110 static int e4000_rd_reg(struct e4000_priv *priv, u8 reg, u8 *val)
111 {
112 return e4000_rd_regs(priv, reg, val, 1);
113 }
114
115 static int e4000_init(struct dvb_frontend *fe)
116 {
117 struct e4000_priv *priv = fe->tuner_priv;
118 int ret;
119
120 dev_dbg(&priv->client->dev, "%s:\n", __func__);
121
122 if (fe->ops.i2c_gate_ctrl)
123 fe->ops.i2c_gate_ctrl(fe, 1);
124
125 /* dummy I2C to ensure I2C wakes up */
126 ret = e4000_wr_reg(priv, 0x02, 0x40);
127
128 /* reset */
129 ret = e4000_wr_reg(priv, 0x00, 0x01);
130 if (ret < 0)
131 goto err;
132
133 /* disable output clock */
134 ret = e4000_wr_reg(priv, 0x06, 0x00);
135 if (ret < 0)
136 goto err;
137
138 ret = e4000_wr_reg(priv, 0x7a, 0x96);
139 if (ret < 0)
140 goto err;
141
142 /* configure gains */
143 ret = e4000_wr_regs(priv, 0x7e, "\x01\xfe", 2);
144 if (ret < 0)
145 goto err;
146
147 ret = e4000_wr_reg(priv, 0x82, 0x00);
148 if (ret < 0)
149 goto err;
150
151 ret = e4000_wr_reg(priv, 0x24, 0x05);
152 if (ret < 0)
153 goto err;
154
155 ret = e4000_wr_regs(priv, 0x87, "\x20\x01", 2);
156 if (ret < 0)
157 goto err;
158
159 ret = e4000_wr_regs(priv, 0x9f, "\x7f\x07", 2);
160 if (ret < 0)
161 goto err;
162
163 /* DC offset control */
164 ret = e4000_wr_reg(priv, 0x2d, 0x1f);
165 if (ret < 0)
166 goto err;
167
168 ret = e4000_wr_regs(priv, 0x70, "\x01\x01", 2);
169 if (ret < 0)
170 goto err;
171
172 /* gain control */
173 ret = e4000_wr_reg(priv, 0x1a, 0x17);
174 if (ret < 0)
175 goto err;
176
177 ret = e4000_wr_reg(priv, 0x1f, 0x1a);
178 if (ret < 0)
179 goto err;
180
181 if (fe->ops.i2c_gate_ctrl)
182 fe->ops.i2c_gate_ctrl(fe, 0);
183
184 priv->active = true;
185
186 return 0;
187 err:
188 if (fe->ops.i2c_gate_ctrl)
189 fe->ops.i2c_gate_ctrl(fe, 0);
190
191 dev_dbg(&priv->client->dev, "%s: failed=%d\n", __func__, ret);
192 return ret;
193 }
194
195 static int e4000_sleep(struct dvb_frontend *fe)
196 {
197 struct e4000_priv *priv = fe->tuner_priv;
198 int ret;
199
200 dev_dbg(&priv->client->dev, "%s:\n", __func__);
201
202 priv->active = false;
203
204 if (fe->ops.i2c_gate_ctrl)
205 fe->ops.i2c_gate_ctrl(fe, 1);
206
207 ret = e4000_wr_reg(priv, 0x00, 0x00);
208 if (ret < 0)
209 goto err;
210
211 if (fe->ops.i2c_gate_ctrl)
212 fe->ops.i2c_gate_ctrl(fe, 0);
213
214 return 0;
215 err:
216 if (fe->ops.i2c_gate_ctrl)
217 fe->ops.i2c_gate_ctrl(fe, 0);
218
219 dev_dbg(&priv->client->dev, "%s: failed=%d\n", __func__, ret);
220 return ret;
221 }
222
223 static int e4000_set_params(struct dvb_frontend *fe)
224 {
225 struct e4000_priv *priv = fe->tuner_priv;
226 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
227 int ret, i, sigma_delta;
228 u64 f_vco;
229 u8 buf[5], i_data[4], q_data[4];
230
231 dev_dbg(&priv->client->dev,
232 "%s: delivery_system=%d frequency=%u bandwidth_hz=%u\n",
233 __func__, c->delivery_system, c->frequency,
234 c->bandwidth_hz);
235
236 if (fe->ops.i2c_gate_ctrl)
237 fe->ops.i2c_gate_ctrl(fe, 1);
238
239 /* gain control manual */
240 ret = e4000_wr_reg(priv, 0x1a, 0x00);
241 if (ret < 0)
242 goto err;
243
244 /* PLL */
245 for (i = 0; i < ARRAY_SIZE(e4000_pll_lut); i++) {
246 if (c->frequency <= e4000_pll_lut[i].freq)
247 break;
248 }
249
250 if (i == ARRAY_SIZE(e4000_pll_lut)) {
251 ret = -EINVAL;
252 goto err;
253 }
254
255 f_vco = 1ull * c->frequency * e4000_pll_lut[i].mul;
256 sigma_delta = div_u64(0x10000ULL * (f_vco % priv->clock), priv->clock);
257 buf[0] = div_u64(f_vco, priv->clock);
258 buf[1] = (sigma_delta >> 0) & 0xff;
259 buf[2] = (sigma_delta >> 8) & 0xff;
260 buf[3] = 0x00;
261 buf[4] = e4000_pll_lut[i].div;
262
263 dev_dbg(&priv->client->dev,
264 "%s: f_vco=%llu pll div=%d sigma_delta=%04x\n",
265 __func__, f_vco, buf[0], sigma_delta);
266
267 ret = e4000_wr_regs(priv, 0x09, buf, 5);
268 if (ret < 0)
269 goto err;
270
271 /* LNA filter (RF filter) */
272 for (i = 0; i < ARRAY_SIZE(e400_lna_filter_lut); i++) {
273 if (c->frequency <= e400_lna_filter_lut[i].freq)
274 break;
275 }
276
277 if (i == ARRAY_SIZE(e400_lna_filter_lut)) {
278 ret = -EINVAL;
279 goto err;
280 }
281
282 ret = e4000_wr_reg(priv, 0x10, e400_lna_filter_lut[i].val);
283 if (ret < 0)
284 goto err;
285
286 /* IF filters */
287 for (i = 0; i < ARRAY_SIZE(e4000_if_filter_lut); i++) {
288 if (c->bandwidth_hz <= e4000_if_filter_lut[i].freq)
289 break;
290 }
291
292 if (i == ARRAY_SIZE(e4000_if_filter_lut)) {
293 ret = -EINVAL;
294 goto err;
295 }
296
297 buf[0] = e4000_if_filter_lut[i].reg11_val;
298 buf[1] = e4000_if_filter_lut[i].reg12_val;
299
300 ret = e4000_wr_regs(priv, 0x11, buf, 2);
301 if (ret < 0)
302 goto err;
303
304 /* frequency band */
305 for (i = 0; i < ARRAY_SIZE(e4000_band_lut); i++) {
306 if (c->frequency <= e4000_band_lut[i].freq)
307 break;
308 }
309
310 if (i == ARRAY_SIZE(e4000_band_lut)) {
311 ret = -EINVAL;
312 goto err;
313 }
314
315 ret = e4000_wr_reg(priv, 0x07, e4000_band_lut[i].reg07_val);
316 if (ret < 0)
317 goto err;
318
319 ret = e4000_wr_reg(priv, 0x78, e4000_band_lut[i].reg78_val);
320 if (ret < 0)
321 goto err;
322
323 /* DC offset */
324 for (i = 0; i < 4; i++) {
325 if (i == 0)
326 ret = e4000_wr_regs(priv, 0x15, "\x00\x7e\x24", 3);
327 else if (i == 1)
328 ret = e4000_wr_regs(priv, 0x15, "\x00\x7f", 2);
329 else if (i == 2)
330 ret = e4000_wr_regs(priv, 0x15, "\x01", 1);
331 else
332 ret = e4000_wr_regs(priv, 0x16, "\x7e", 1);
333
334 if (ret < 0)
335 goto err;
336
337 ret = e4000_wr_reg(priv, 0x29, 0x01);
338 if (ret < 0)
339 goto err;
340
341 ret = e4000_rd_regs(priv, 0x2a, buf, 3);
342 if (ret < 0)
343 goto err;
344
345 i_data[i] = (((buf[2] >> 0) & 0x3) << 6) | (buf[0] & 0x3f);
346 q_data[i] = (((buf[2] >> 4) & 0x3) << 6) | (buf[1] & 0x3f);
347 }
348
349 swap(q_data[2], q_data[3]);
350 swap(i_data[2], i_data[3]);
351
352 ret = e4000_wr_regs(priv, 0x50, q_data, 4);
353 if (ret < 0)
354 goto err;
355
356 ret = e4000_wr_regs(priv, 0x60, i_data, 4);
357 if (ret < 0)
358 goto err;
359
360 /* gain control auto */
361 ret = e4000_wr_reg(priv, 0x1a, 0x17);
362 if (ret < 0)
363 goto err;
364
365 if (fe->ops.i2c_gate_ctrl)
366 fe->ops.i2c_gate_ctrl(fe, 0);
367
368 return 0;
369 err:
370 if (fe->ops.i2c_gate_ctrl)
371 fe->ops.i2c_gate_ctrl(fe, 0);
372
373 dev_dbg(&priv->client->dev, "%s: failed=%d\n", __func__, ret);
374 return ret;
375 }
376
377 static int e4000_get_if_frequency(struct dvb_frontend *fe, u32 *frequency)
378 {
379 struct e4000_priv *priv = fe->tuner_priv;
380
381 dev_dbg(&priv->client->dev, "%s:\n", __func__);
382
383 *frequency = 0; /* Zero-IF */
384
385 return 0;
386 }
387
388 static int e4000_set_lna_gain(struct dvb_frontend *fe)
389 {
390 struct e4000_priv *priv = fe->tuner_priv;
391 int ret;
392 u8 u8tmp;
393 dev_dbg(&priv->client->dev, "%s: lna auto=%d->%d val=%d->%d\n",
394 __func__, priv->lna_gain_auto->cur.val,
395 priv->lna_gain_auto->val, priv->lna_gain->cur.val,
396 priv->lna_gain->val);
397
398 if (fe->ops.i2c_gate_ctrl)
399 fe->ops.i2c_gate_ctrl(fe, 1);
400
401 if (priv->lna_gain_auto->val && priv->if_gain_auto->cur.val)
402 u8tmp = 0x17;
403 else if (priv->lna_gain_auto->val)
404 u8tmp = 0x19;
405 else if (priv->if_gain_auto->cur.val)
406 u8tmp = 0x16;
407 else
408 u8tmp = 0x10;
409
410 ret = e4000_wr_reg(priv, 0x1a, u8tmp);
411 if (ret)
412 goto err;
413
414 if (priv->lna_gain_auto->val == false) {
415 ret = e4000_wr_reg(priv, 0x14, priv->lna_gain->val);
416 if (ret)
417 goto err;
418 }
419
420 if (fe->ops.i2c_gate_ctrl)
421 fe->ops.i2c_gate_ctrl(fe, 0);
422
423 return 0;
424 err:
425 if (fe->ops.i2c_gate_ctrl)
426 fe->ops.i2c_gate_ctrl(fe, 0);
427
428 dev_dbg(&priv->client->dev, "%s: failed=%d\n", __func__, ret);
429 return ret;
430 }
431
432 static int e4000_set_mixer_gain(struct dvb_frontend *fe)
433 {
434 struct e4000_priv *priv = fe->tuner_priv;
435 int ret;
436 u8 u8tmp;
437 dev_dbg(&priv->client->dev, "%s: mixer auto=%d->%d val=%d->%d\n",
438 __func__, priv->mixer_gain_auto->cur.val,
439 priv->mixer_gain_auto->val, priv->mixer_gain->cur.val,
440 priv->mixer_gain->val);
441
442 if (fe->ops.i2c_gate_ctrl)
443 fe->ops.i2c_gate_ctrl(fe, 1);
444
445 if (priv->mixer_gain_auto->val)
446 u8tmp = 0x15;
447 else
448 u8tmp = 0x14;
449
450 ret = e4000_wr_reg(priv, 0x20, u8tmp);
451 if (ret)
452 goto err;
453
454 if (priv->mixer_gain_auto->val == false) {
455 ret = e4000_wr_reg(priv, 0x15, priv->mixer_gain->val);
456 if (ret)
457 goto err;
458 }
459
460 if (fe->ops.i2c_gate_ctrl)
461 fe->ops.i2c_gate_ctrl(fe, 0);
462
463 return 0;
464 err:
465 if (fe->ops.i2c_gate_ctrl)
466 fe->ops.i2c_gate_ctrl(fe, 0);
467
468 dev_dbg(&priv->client->dev, "%s: failed=%d\n", __func__, ret);
469 return ret;
470 }
471
472 static int e4000_set_if_gain(struct dvb_frontend *fe)
473 {
474 struct e4000_priv *priv = fe->tuner_priv;
475 int ret;
476 u8 buf[2];
477 u8 u8tmp;
478 dev_dbg(&priv->client->dev, "%s: if auto=%d->%d val=%d->%d\n",
479 __func__, priv->if_gain_auto->cur.val,
480 priv->if_gain_auto->val, priv->if_gain->cur.val,
481 priv->if_gain->val);
482
483 if (fe->ops.i2c_gate_ctrl)
484 fe->ops.i2c_gate_ctrl(fe, 1);
485
486 if (priv->if_gain_auto->val && priv->lna_gain_auto->cur.val)
487 u8tmp = 0x17;
488 else if (priv->lna_gain_auto->cur.val)
489 u8tmp = 0x19;
490 else if (priv->if_gain_auto->val)
491 u8tmp = 0x16;
492 else
493 u8tmp = 0x10;
494
495 ret = e4000_wr_reg(priv, 0x1a, u8tmp);
496 if (ret)
497 goto err;
498
499 if (priv->if_gain_auto->val == false) {
500 buf[0] = e4000_if_gain_lut[priv->if_gain->val].reg16_val;
501 buf[1] = e4000_if_gain_lut[priv->if_gain->val].reg17_val;
502 ret = e4000_wr_regs(priv, 0x16, buf, 2);
503 if (ret)
504 goto err;
505 }
506
507 if (fe->ops.i2c_gate_ctrl)
508 fe->ops.i2c_gate_ctrl(fe, 0);
509
510 return 0;
511 err:
512 if (fe->ops.i2c_gate_ctrl)
513 fe->ops.i2c_gate_ctrl(fe, 0);
514
515 dev_dbg(&priv->client->dev, "%s: failed=%d\n", __func__, ret);
516 return ret;
517 }
518
519 static int e4000_pll_lock(struct dvb_frontend *fe)
520 {
521 struct e4000_priv *priv = fe->tuner_priv;
522 int ret;
523 u8 u8tmp;
524
525 if (priv->active == false)
526 return 0;
527
528 if (fe->ops.i2c_gate_ctrl)
529 fe->ops.i2c_gate_ctrl(fe, 1);
530
531 ret = e4000_rd_reg(priv, 0x07, &u8tmp);
532 if (ret)
533 goto err;
534
535 priv->pll_lock->val = (u8tmp & 0x01);
536 err:
537 if (fe->ops.i2c_gate_ctrl)
538 fe->ops.i2c_gate_ctrl(fe, 0);
539
540 if (ret)
541 dev_dbg(&priv->client->dev, "%s: failed=%d\n", __func__, ret);
542
543 return ret;
544 }
545
546 static int e4000_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
547 {
548 struct e4000_priv *priv =
549 container_of(ctrl->handler, struct e4000_priv, hdl);
550 int ret;
551
552 switch (ctrl->id) {
553 case V4L2_CID_RF_TUNER_PLL_LOCK:
554 ret = e4000_pll_lock(priv->fe);
555 break;
556 default:
557 ret = -EINVAL;
558 }
559
560 return ret;
561 }
562
563 static int e4000_s_ctrl(struct v4l2_ctrl *ctrl)
564 {
565 struct e4000_priv *priv =
566 container_of(ctrl->handler, struct e4000_priv, hdl);
567 struct dvb_frontend *fe = priv->fe;
568 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
569 int ret;
570 dev_dbg(&priv->client->dev,
571 "%s: id=%d name=%s val=%d min=%d max=%d step=%d\n",
572 __func__, ctrl->id, ctrl->name, ctrl->val,
573 ctrl->minimum, ctrl->maximum, ctrl->step);
574
575 switch (ctrl->id) {
576 case V4L2_CID_RF_TUNER_BANDWIDTH_AUTO:
577 case V4L2_CID_RF_TUNER_BANDWIDTH:
578 c->bandwidth_hz = priv->bandwidth->val;
579 ret = e4000_set_params(priv->fe);
580 break;
581 case V4L2_CID_RF_TUNER_LNA_GAIN_AUTO:
582 case V4L2_CID_RF_TUNER_LNA_GAIN:
583 ret = e4000_set_lna_gain(priv->fe);
584 break;
585 case V4L2_CID_RF_TUNER_MIXER_GAIN_AUTO:
586 case V4L2_CID_RF_TUNER_MIXER_GAIN:
587 ret = e4000_set_mixer_gain(priv->fe);
588 break;
589 case V4L2_CID_RF_TUNER_IF_GAIN_AUTO:
590 case V4L2_CID_RF_TUNER_IF_GAIN:
591 ret = e4000_set_if_gain(priv->fe);
592 break;
593 default:
594 ret = -EINVAL;
595 }
596
597 return ret;
598 }
599
600 static const struct v4l2_ctrl_ops e4000_ctrl_ops = {
601 .g_volatile_ctrl = e4000_g_volatile_ctrl,
602 .s_ctrl = e4000_s_ctrl,
603 };
604
605 static const struct dvb_tuner_ops e4000_tuner_ops = {
606 .info = {
607 .name = "Elonics E4000",
608 .frequency_min = 174000000,
609 .frequency_max = 862000000,
610 },
611
612 .init = e4000_init,
613 .sleep = e4000_sleep,
614 .set_params = e4000_set_params,
615
616 .get_if_frequency = e4000_get_if_frequency,
617 };
618
619 /*
620 * Use V4L2 subdev to carry V4L2 control handler, even we don't implement
621 * subdev itself, just to avoid reinventing the wheel.
622 */
623 static int e4000_probe(struct i2c_client *client,
624 const struct i2c_device_id *id)
625 {
626 struct e4000_config *cfg = client->dev.platform_data;
627 struct dvb_frontend *fe = cfg->fe;
628 struct e4000_priv *priv;
629 int ret;
630 u8 chip_id;
631
632 if (fe->ops.i2c_gate_ctrl)
633 fe->ops.i2c_gate_ctrl(fe, 1);
634
635 priv = kzalloc(sizeof(struct e4000_priv), GFP_KERNEL);
636 if (!priv) {
637 ret = -ENOMEM;
638 dev_err(&client->dev, "%s: kzalloc() failed\n", KBUILD_MODNAME);
639 goto err;
640 }
641
642 priv->clock = cfg->clock;
643 priv->client = client;
644 priv->fe = cfg->fe;
645
646 /* check if the tuner is there */
647 ret = e4000_rd_reg(priv, 0x02, &chip_id);
648 if (ret < 0)
649 goto err;
650
651 dev_dbg(&priv->client->dev,
652 "%s: chip_id=%02x\n", __func__, chip_id);
653
654 if (chip_id != 0x40) {
655 ret = -ENODEV;
656 goto err;
657 }
658
659 /* put sleep as chip seems to be in normal mode by default */
660 ret = e4000_wr_reg(priv, 0x00, 0x00);
661 if (ret < 0)
662 goto err;
663
664 /* Register controls */
665 v4l2_ctrl_handler_init(&priv->hdl, 9);
666 priv->bandwidth_auto = v4l2_ctrl_new_std(&priv->hdl, &e4000_ctrl_ops,
667 V4L2_CID_RF_TUNER_BANDWIDTH_AUTO, 0, 1, 1, 1);
668 priv->bandwidth = v4l2_ctrl_new_std(&priv->hdl, &e4000_ctrl_ops,
669 V4L2_CID_RF_TUNER_BANDWIDTH, 4300000, 11000000, 100000, 4300000);
670 v4l2_ctrl_auto_cluster(2, &priv->bandwidth_auto, 0, false);
671 priv->lna_gain_auto = v4l2_ctrl_new_std(&priv->hdl, &e4000_ctrl_ops,
672 V4L2_CID_RF_TUNER_LNA_GAIN_AUTO, 0, 1, 1, 1);
673 priv->lna_gain = v4l2_ctrl_new_std(&priv->hdl, &e4000_ctrl_ops,
674 V4L2_CID_RF_TUNER_LNA_GAIN, 0, 15, 1, 10);
675 v4l2_ctrl_auto_cluster(2, &priv->lna_gain_auto, 0, false);
676 priv->mixer_gain_auto = v4l2_ctrl_new_std(&priv->hdl, &e4000_ctrl_ops,
677 V4L2_CID_RF_TUNER_MIXER_GAIN_AUTO, 0, 1, 1, 1);
678 priv->mixer_gain = v4l2_ctrl_new_std(&priv->hdl, &e4000_ctrl_ops,
679 V4L2_CID_RF_TUNER_MIXER_GAIN, 0, 1, 1, 1);
680 v4l2_ctrl_auto_cluster(2, &priv->mixer_gain_auto, 0, false);
681 priv->if_gain_auto = v4l2_ctrl_new_std(&priv->hdl, &e4000_ctrl_ops,
682 V4L2_CID_RF_TUNER_IF_GAIN_AUTO, 0, 1, 1, 1);
683 priv->if_gain = v4l2_ctrl_new_std(&priv->hdl, &e4000_ctrl_ops,
684 V4L2_CID_RF_TUNER_IF_GAIN, 0, 54, 1, 0);
685 v4l2_ctrl_auto_cluster(2, &priv->if_gain_auto, 0, false);
686 priv->pll_lock = v4l2_ctrl_new_std(&priv->hdl, &e4000_ctrl_ops,
687 V4L2_CID_RF_TUNER_PLL_LOCK, 0, 1, 1, 0);
688 if (priv->hdl.error) {
689 ret = priv->hdl.error;
690 dev_err(&priv->client->dev, "Could not initialize controls\n");
691 v4l2_ctrl_handler_free(&priv->hdl);
692 goto err;
693 }
694
695 priv->sd.ctrl_handler = &priv->hdl;
696
697 dev_info(&priv->client->dev,
698 "%s: Elonics E4000 successfully identified\n",
699 KBUILD_MODNAME);
700
701 fe->tuner_priv = priv;
702 memcpy(&fe->ops.tuner_ops, &e4000_tuner_ops,
703 sizeof(struct dvb_tuner_ops));
704
705 v4l2_set_subdevdata(&priv->sd, client);
706 i2c_set_clientdata(client, &priv->sd);
707
708 if (fe->ops.i2c_gate_ctrl)
709 fe->ops.i2c_gate_ctrl(fe, 0);
710
711 return 0;
712 err:
713 if (fe->ops.i2c_gate_ctrl)
714 fe->ops.i2c_gate_ctrl(fe, 0);
715
716 dev_dbg(&client->dev, "%s: failed=%d\n", __func__, ret);
717 kfree(priv);
718 return ret;
719 }
720
721 static int e4000_remove(struct i2c_client *client)
722 {
723 struct v4l2_subdev *sd = i2c_get_clientdata(client);
724 struct e4000_priv *priv = container_of(sd, struct e4000_priv, sd);
725 struct dvb_frontend *fe = priv->fe;
726
727 dev_dbg(&client->dev, "%s:\n", __func__);
728 v4l2_ctrl_handler_free(&priv->hdl);
729 memset(&fe->ops.tuner_ops, 0, sizeof(struct dvb_tuner_ops));
730 fe->tuner_priv = NULL;
731 kfree(priv);
732
733 return 0;
734 }
735
736 static const struct i2c_device_id e4000_id[] = {
737 {"e4000", 0},
738 {}
739 };
740 MODULE_DEVICE_TABLE(i2c, e4000_id);
741
742 static struct i2c_driver e4000_driver = {
743 .driver = {
744 .owner = THIS_MODULE,
745 .name = "e4000",
746 },
747 .probe = e4000_probe,
748 .remove = e4000_remove,
749 .id_table = e4000_id,
750 };
751
752 module_i2c_driver(e4000_driver);
753
754 MODULE_DESCRIPTION("Elonics E4000 silicon tuner driver");
755 MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
756 MODULE_LICENSE("GPL");
This page took 0.090937 seconds and 5 git commands to generate.