[media] v4l2-dv-timing: avoid rounding twice in gtf hblank calc
[deliverable/linux.git] / drivers / media / v4l2-core / videobuf2-core.c
1 /*
2 * videobuf2-core.c - V4L2 driver helper framework
3 *
4 * Copyright (C) 2010 Samsung Electronics
5 *
6 * Author: Pawel Osciak <pawel@osciak.com>
7 * Marek Szyprowski <m.szyprowski@samsung.com>
8 *
9 * The vb2_thread implementation was based on code from videobuf-dvb.c:
10 * (c) 2004 Gerd Knorr <kraxel@bytesex.org> [SUSE Labs]
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation.
15 */
16
17 #include <linux/err.h>
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/mm.h>
21 #include <linux/poll.h>
22 #include <linux/slab.h>
23 #include <linux/sched.h>
24 #include <linux/freezer.h>
25 #include <linux/kthread.h>
26
27 #include <media/v4l2-dev.h>
28 #include <media/v4l2-fh.h>
29 #include <media/v4l2-event.h>
30 #include <media/v4l2-common.h>
31 #include <media/videobuf2-core.h>
32
33 static int debug;
34 module_param(debug, int, 0644);
35
36 #define dprintk(level, fmt, arg...) \
37 do { \
38 if (debug >= level) \
39 pr_info("vb2: %s: " fmt, __func__, ## arg); \
40 } while (0)
41
42 #ifdef CONFIG_VIDEO_ADV_DEBUG
43
44 /*
45 * If advanced debugging is on, then count how often each op is called
46 * successfully, which can either be per-buffer or per-queue.
47 *
48 * This makes it easy to check that the 'init' and 'cleanup'
49 * (and variations thereof) stay balanced.
50 */
51
52 #define log_memop(vb, op) \
53 dprintk(2, "call_memop(%p, %d, %s)%s\n", \
54 (vb)->vb2_queue, (vb)->v4l2_buf.index, #op, \
55 (vb)->vb2_queue->mem_ops->op ? "" : " (nop)")
56
57 #define call_memop(vb, op, args...) \
58 ({ \
59 struct vb2_queue *_q = (vb)->vb2_queue; \
60 int err; \
61 \
62 log_memop(vb, op); \
63 err = _q->mem_ops->op ? _q->mem_ops->op(args) : 0; \
64 if (!err) \
65 (vb)->cnt_mem_ ## op++; \
66 err; \
67 })
68
69 #define call_ptr_memop(vb, op, args...) \
70 ({ \
71 struct vb2_queue *_q = (vb)->vb2_queue; \
72 void *ptr; \
73 \
74 log_memop(vb, op); \
75 ptr = _q->mem_ops->op ? _q->mem_ops->op(args) : NULL; \
76 if (!IS_ERR_OR_NULL(ptr)) \
77 (vb)->cnt_mem_ ## op++; \
78 ptr; \
79 })
80
81 #define call_void_memop(vb, op, args...) \
82 ({ \
83 struct vb2_queue *_q = (vb)->vb2_queue; \
84 \
85 log_memop(vb, op); \
86 if (_q->mem_ops->op) \
87 _q->mem_ops->op(args); \
88 (vb)->cnt_mem_ ## op++; \
89 })
90
91 #define log_qop(q, op) \
92 dprintk(2, "call_qop(%p, %s)%s\n", q, #op, \
93 (q)->ops->op ? "" : " (nop)")
94
95 #define call_qop(q, op, args...) \
96 ({ \
97 int err; \
98 \
99 log_qop(q, op); \
100 err = (q)->ops->op ? (q)->ops->op(args) : 0; \
101 if (!err) \
102 (q)->cnt_ ## op++; \
103 err; \
104 })
105
106 #define call_void_qop(q, op, args...) \
107 ({ \
108 log_qop(q, op); \
109 if ((q)->ops->op) \
110 (q)->ops->op(args); \
111 (q)->cnt_ ## op++; \
112 })
113
114 #define log_vb_qop(vb, op, args...) \
115 dprintk(2, "call_vb_qop(%p, %d, %s)%s\n", \
116 (vb)->vb2_queue, (vb)->v4l2_buf.index, #op, \
117 (vb)->vb2_queue->ops->op ? "" : " (nop)")
118
119 #define call_vb_qop(vb, op, args...) \
120 ({ \
121 int err; \
122 \
123 log_vb_qop(vb, op); \
124 err = (vb)->vb2_queue->ops->op ? \
125 (vb)->vb2_queue->ops->op(args) : 0; \
126 if (!err) \
127 (vb)->cnt_ ## op++; \
128 err; \
129 })
130
131 #define call_void_vb_qop(vb, op, args...) \
132 ({ \
133 log_vb_qop(vb, op); \
134 if ((vb)->vb2_queue->ops->op) \
135 (vb)->vb2_queue->ops->op(args); \
136 (vb)->cnt_ ## op++; \
137 })
138
139 #else
140
141 #define call_memop(vb, op, args...) \
142 ((vb)->vb2_queue->mem_ops->op ? \
143 (vb)->vb2_queue->mem_ops->op(args) : 0)
144
145 #define call_ptr_memop(vb, op, args...) \
146 ((vb)->vb2_queue->mem_ops->op ? \
147 (vb)->vb2_queue->mem_ops->op(args) : NULL)
148
149 #define call_void_memop(vb, op, args...) \
150 do { \
151 if ((vb)->vb2_queue->mem_ops->op) \
152 (vb)->vb2_queue->mem_ops->op(args); \
153 } while (0)
154
155 #define call_qop(q, op, args...) \
156 ((q)->ops->op ? (q)->ops->op(args) : 0)
157
158 #define call_void_qop(q, op, args...) \
159 do { \
160 if ((q)->ops->op) \
161 (q)->ops->op(args); \
162 } while (0)
163
164 #define call_vb_qop(vb, op, args...) \
165 ((vb)->vb2_queue->ops->op ? (vb)->vb2_queue->ops->op(args) : 0)
166
167 #define call_void_vb_qop(vb, op, args...) \
168 do { \
169 if ((vb)->vb2_queue->ops->op) \
170 (vb)->vb2_queue->ops->op(args); \
171 } while (0)
172
173 #endif
174
175 /* Flags that are set by the vb2 core */
176 #define V4L2_BUFFER_MASK_FLAGS (V4L2_BUF_FLAG_MAPPED | V4L2_BUF_FLAG_QUEUED | \
177 V4L2_BUF_FLAG_DONE | V4L2_BUF_FLAG_ERROR | \
178 V4L2_BUF_FLAG_PREPARED | \
179 V4L2_BUF_FLAG_TIMESTAMP_MASK)
180 /* Output buffer flags that should be passed on to the driver */
181 #define V4L2_BUFFER_OUT_FLAGS (V4L2_BUF_FLAG_PFRAME | V4L2_BUF_FLAG_BFRAME | \
182 V4L2_BUF_FLAG_KEYFRAME | V4L2_BUF_FLAG_TIMECODE)
183
184 static void __vb2_queue_cancel(struct vb2_queue *q);
185 static void __enqueue_in_driver(struct vb2_buffer *vb);
186
187 /**
188 * __vb2_buf_mem_alloc() - allocate video memory for the given buffer
189 */
190 static int __vb2_buf_mem_alloc(struct vb2_buffer *vb)
191 {
192 struct vb2_queue *q = vb->vb2_queue;
193 enum dma_data_direction dma_dir =
194 V4L2_TYPE_IS_OUTPUT(q->type) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
195 void *mem_priv;
196 int plane;
197
198 /*
199 * Allocate memory for all planes in this buffer
200 * NOTE: mmapped areas should be page aligned
201 */
202 for (plane = 0; plane < vb->num_planes; ++plane) {
203 unsigned long size = PAGE_ALIGN(q->plane_sizes[plane]);
204
205 mem_priv = call_ptr_memop(vb, alloc, q->alloc_ctx[plane],
206 size, dma_dir, q->gfp_flags);
207 if (IS_ERR_OR_NULL(mem_priv))
208 goto free;
209
210 /* Associate allocator private data with this plane */
211 vb->planes[plane].mem_priv = mem_priv;
212 vb->v4l2_planes[plane].length = q->plane_sizes[plane];
213 }
214
215 return 0;
216 free:
217 /* Free already allocated memory if one of the allocations failed */
218 for (; plane > 0; --plane) {
219 call_void_memop(vb, put, vb->planes[plane - 1].mem_priv);
220 vb->planes[plane - 1].mem_priv = NULL;
221 }
222
223 return -ENOMEM;
224 }
225
226 /**
227 * __vb2_buf_mem_free() - free memory of the given buffer
228 */
229 static void __vb2_buf_mem_free(struct vb2_buffer *vb)
230 {
231 unsigned int plane;
232
233 for (plane = 0; plane < vb->num_planes; ++plane) {
234 call_void_memop(vb, put, vb->planes[plane].mem_priv);
235 vb->planes[plane].mem_priv = NULL;
236 dprintk(3, "freed plane %d of buffer %d\n", plane,
237 vb->v4l2_buf.index);
238 }
239 }
240
241 /**
242 * __vb2_buf_userptr_put() - release userspace memory associated with
243 * a USERPTR buffer
244 */
245 static void __vb2_buf_userptr_put(struct vb2_buffer *vb)
246 {
247 unsigned int plane;
248
249 for (plane = 0; plane < vb->num_planes; ++plane) {
250 if (vb->planes[plane].mem_priv)
251 call_void_memop(vb, put_userptr, vb->planes[plane].mem_priv);
252 vb->planes[plane].mem_priv = NULL;
253 }
254 }
255
256 /**
257 * __vb2_plane_dmabuf_put() - release memory associated with
258 * a DMABUF shared plane
259 */
260 static void __vb2_plane_dmabuf_put(struct vb2_buffer *vb, struct vb2_plane *p)
261 {
262 if (!p->mem_priv)
263 return;
264
265 if (p->dbuf_mapped)
266 call_void_memop(vb, unmap_dmabuf, p->mem_priv);
267
268 call_void_memop(vb, detach_dmabuf, p->mem_priv);
269 dma_buf_put(p->dbuf);
270 memset(p, 0, sizeof(*p));
271 }
272
273 /**
274 * __vb2_buf_dmabuf_put() - release memory associated with
275 * a DMABUF shared buffer
276 */
277 static void __vb2_buf_dmabuf_put(struct vb2_buffer *vb)
278 {
279 unsigned int plane;
280
281 for (plane = 0; plane < vb->num_planes; ++plane)
282 __vb2_plane_dmabuf_put(vb, &vb->planes[plane]);
283 }
284
285 /**
286 * __setup_lengths() - setup initial lengths for every plane in
287 * every buffer on the queue
288 */
289 static void __setup_lengths(struct vb2_queue *q, unsigned int n)
290 {
291 unsigned int buffer, plane;
292 struct vb2_buffer *vb;
293
294 for (buffer = q->num_buffers; buffer < q->num_buffers + n; ++buffer) {
295 vb = q->bufs[buffer];
296 if (!vb)
297 continue;
298
299 for (plane = 0; plane < vb->num_planes; ++plane)
300 vb->v4l2_planes[plane].length = q->plane_sizes[plane];
301 }
302 }
303
304 /**
305 * __setup_offsets() - setup unique offsets ("cookies") for every plane in
306 * every buffer on the queue
307 */
308 static void __setup_offsets(struct vb2_queue *q, unsigned int n)
309 {
310 unsigned int buffer, plane;
311 struct vb2_buffer *vb;
312 unsigned long off;
313
314 if (q->num_buffers) {
315 struct v4l2_plane *p;
316 vb = q->bufs[q->num_buffers - 1];
317 p = &vb->v4l2_planes[vb->num_planes - 1];
318 off = PAGE_ALIGN(p->m.mem_offset + p->length);
319 } else {
320 off = 0;
321 }
322
323 for (buffer = q->num_buffers; buffer < q->num_buffers + n; ++buffer) {
324 vb = q->bufs[buffer];
325 if (!vb)
326 continue;
327
328 for (plane = 0; plane < vb->num_planes; ++plane) {
329 vb->v4l2_planes[plane].m.mem_offset = off;
330
331 dprintk(3, "buffer %d, plane %d offset 0x%08lx\n",
332 buffer, plane, off);
333
334 off += vb->v4l2_planes[plane].length;
335 off = PAGE_ALIGN(off);
336 }
337 }
338 }
339
340 /**
341 * __vb2_queue_alloc() - allocate videobuf buffer structures and (for MMAP type)
342 * video buffer memory for all buffers/planes on the queue and initializes the
343 * queue
344 *
345 * Returns the number of buffers successfully allocated.
346 */
347 static int __vb2_queue_alloc(struct vb2_queue *q, enum v4l2_memory memory,
348 unsigned int num_buffers, unsigned int num_planes)
349 {
350 unsigned int buffer;
351 struct vb2_buffer *vb;
352 int ret;
353
354 for (buffer = 0; buffer < num_buffers; ++buffer) {
355 /* Allocate videobuf buffer structures */
356 vb = kzalloc(q->buf_struct_size, GFP_KERNEL);
357 if (!vb) {
358 dprintk(1, "memory alloc for buffer struct failed\n");
359 break;
360 }
361
362 /* Length stores number of planes for multiplanar buffers */
363 if (V4L2_TYPE_IS_MULTIPLANAR(q->type))
364 vb->v4l2_buf.length = num_planes;
365
366 vb->state = VB2_BUF_STATE_DEQUEUED;
367 vb->vb2_queue = q;
368 vb->num_planes = num_planes;
369 vb->v4l2_buf.index = q->num_buffers + buffer;
370 vb->v4l2_buf.type = q->type;
371 vb->v4l2_buf.memory = memory;
372
373 /* Allocate video buffer memory for the MMAP type */
374 if (memory == V4L2_MEMORY_MMAP) {
375 ret = __vb2_buf_mem_alloc(vb);
376 if (ret) {
377 dprintk(1, "failed allocating memory for "
378 "buffer %d\n", buffer);
379 kfree(vb);
380 break;
381 }
382 /*
383 * Call the driver-provided buffer initialization
384 * callback, if given. An error in initialization
385 * results in queue setup failure.
386 */
387 ret = call_vb_qop(vb, buf_init, vb);
388 if (ret) {
389 dprintk(1, "buffer %d %p initialization"
390 " failed\n", buffer, vb);
391 __vb2_buf_mem_free(vb);
392 kfree(vb);
393 break;
394 }
395 }
396
397 q->bufs[q->num_buffers + buffer] = vb;
398 }
399
400 __setup_lengths(q, buffer);
401 if (memory == V4L2_MEMORY_MMAP)
402 __setup_offsets(q, buffer);
403
404 dprintk(1, "allocated %d buffers, %d plane(s) each\n",
405 buffer, num_planes);
406
407 return buffer;
408 }
409
410 /**
411 * __vb2_free_mem() - release all video buffer memory for a given queue
412 */
413 static void __vb2_free_mem(struct vb2_queue *q, unsigned int buffers)
414 {
415 unsigned int buffer;
416 struct vb2_buffer *vb;
417
418 for (buffer = q->num_buffers - buffers; buffer < q->num_buffers;
419 ++buffer) {
420 vb = q->bufs[buffer];
421 if (!vb)
422 continue;
423
424 /* Free MMAP buffers or release USERPTR buffers */
425 if (q->memory == V4L2_MEMORY_MMAP)
426 __vb2_buf_mem_free(vb);
427 else if (q->memory == V4L2_MEMORY_DMABUF)
428 __vb2_buf_dmabuf_put(vb);
429 else
430 __vb2_buf_userptr_put(vb);
431 }
432 }
433
434 /**
435 * __vb2_queue_free() - free buffers at the end of the queue - video memory and
436 * related information, if no buffers are left return the queue to an
437 * uninitialized state. Might be called even if the queue has already been freed.
438 */
439 static int __vb2_queue_free(struct vb2_queue *q, unsigned int buffers)
440 {
441 unsigned int buffer;
442
443 /*
444 * Sanity check: when preparing a buffer the queue lock is released for
445 * a short while (see __buf_prepare for the details), which would allow
446 * a race with a reqbufs which can call this function. Removing the
447 * buffers from underneath __buf_prepare is obviously a bad idea, so we
448 * check if any of the buffers is in the state PREPARING, and if so we
449 * just return -EAGAIN.
450 */
451 for (buffer = q->num_buffers - buffers; buffer < q->num_buffers;
452 ++buffer) {
453 if (q->bufs[buffer] == NULL)
454 continue;
455 if (q->bufs[buffer]->state == VB2_BUF_STATE_PREPARING) {
456 dprintk(1, "preparing buffers, cannot free\n");
457 return -EAGAIN;
458 }
459 }
460
461 /* Call driver-provided cleanup function for each buffer, if provided */
462 for (buffer = q->num_buffers - buffers; buffer < q->num_buffers;
463 ++buffer) {
464 struct vb2_buffer *vb = q->bufs[buffer];
465
466 if (vb && vb->planes[0].mem_priv)
467 call_void_vb_qop(vb, buf_cleanup, vb);
468 }
469
470 /* Release video buffer memory */
471 __vb2_free_mem(q, buffers);
472
473 #ifdef CONFIG_VIDEO_ADV_DEBUG
474 /*
475 * Check that all the calls were balances during the life-time of this
476 * queue. If not (or if the debug level is 1 or up), then dump the
477 * counters to the kernel log.
478 */
479 if (q->num_buffers) {
480 bool unbalanced = q->cnt_start_streaming != q->cnt_stop_streaming ||
481 q->cnt_wait_prepare != q->cnt_wait_finish;
482
483 if (unbalanced || debug) {
484 pr_info("vb2: counters for queue %p:%s\n", q,
485 unbalanced ? " UNBALANCED!" : "");
486 pr_info("vb2: setup: %u start_streaming: %u stop_streaming: %u\n",
487 q->cnt_queue_setup, q->cnt_start_streaming,
488 q->cnt_stop_streaming);
489 pr_info("vb2: wait_prepare: %u wait_finish: %u\n",
490 q->cnt_wait_prepare, q->cnt_wait_finish);
491 }
492 q->cnt_queue_setup = 0;
493 q->cnt_wait_prepare = 0;
494 q->cnt_wait_finish = 0;
495 q->cnt_start_streaming = 0;
496 q->cnt_stop_streaming = 0;
497 }
498 for (buffer = 0; buffer < q->num_buffers; ++buffer) {
499 struct vb2_buffer *vb = q->bufs[buffer];
500 bool unbalanced = vb->cnt_mem_alloc != vb->cnt_mem_put ||
501 vb->cnt_mem_prepare != vb->cnt_mem_finish ||
502 vb->cnt_mem_get_userptr != vb->cnt_mem_put_userptr ||
503 vb->cnt_mem_attach_dmabuf != vb->cnt_mem_detach_dmabuf ||
504 vb->cnt_mem_map_dmabuf != vb->cnt_mem_unmap_dmabuf ||
505 vb->cnt_buf_queue != vb->cnt_buf_done ||
506 vb->cnt_buf_prepare != vb->cnt_buf_finish ||
507 vb->cnt_buf_init != vb->cnt_buf_cleanup;
508
509 if (unbalanced || debug) {
510 pr_info("vb2: counters for queue %p, buffer %d:%s\n",
511 q, buffer, unbalanced ? " UNBALANCED!" : "");
512 pr_info("vb2: buf_init: %u buf_cleanup: %u buf_prepare: %u buf_finish: %u\n",
513 vb->cnt_buf_init, vb->cnt_buf_cleanup,
514 vb->cnt_buf_prepare, vb->cnt_buf_finish);
515 pr_info("vb2: buf_queue: %u buf_done: %u\n",
516 vb->cnt_buf_queue, vb->cnt_buf_done);
517 pr_info("vb2: alloc: %u put: %u prepare: %u finish: %u mmap: %u\n",
518 vb->cnt_mem_alloc, vb->cnt_mem_put,
519 vb->cnt_mem_prepare, vb->cnt_mem_finish,
520 vb->cnt_mem_mmap);
521 pr_info("vb2: get_userptr: %u put_userptr: %u\n",
522 vb->cnt_mem_get_userptr, vb->cnt_mem_put_userptr);
523 pr_info("vb2: attach_dmabuf: %u detach_dmabuf: %u map_dmabuf: %u unmap_dmabuf: %u\n",
524 vb->cnt_mem_attach_dmabuf, vb->cnt_mem_detach_dmabuf,
525 vb->cnt_mem_map_dmabuf, vb->cnt_mem_unmap_dmabuf);
526 pr_info("vb2: get_dmabuf: %u num_users: %u vaddr: %u cookie: %u\n",
527 vb->cnt_mem_get_dmabuf,
528 vb->cnt_mem_num_users,
529 vb->cnt_mem_vaddr,
530 vb->cnt_mem_cookie);
531 }
532 }
533 #endif
534
535 /* Free videobuf buffers */
536 for (buffer = q->num_buffers - buffers; buffer < q->num_buffers;
537 ++buffer) {
538 kfree(q->bufs[buffer]);
539 q->bufs[buffer] = NULL;
540 }
541
542 q->num_buffers -= buffers;
543 if (!q->num_buffers) {
544 q->memory = 0;
545 INIT_LIST_HEAD(&q->queued_list);
546 }
547 return 0;
548 }
549
550 /**
551 * __verify_planes_array() - verify that the planes array passed in struct
552 * v4l2_buffer from userspace can be safely used
553 */
554 static int __verify_planes_array(struct vb2_buffer *vb, const struct v4l2_buffer *b)
555 {
556 if (!V4L2_TYPE_IS_MULTIPLANAR(b->type))
557 return 0;
558
559 /* Is memory for copying plane information present? */
560 if (NULL == b->m.planes) {
561 dprintk(1, "multi-planar buffer passed but "
562 "planes array not provided\n");
563 return -EINVAL;
564 }
565
566 if (b->length < vb->num_planes || b->length > VIDEO_MAX_PLANES) {
567 dprintk(1, "incorrect planes array length, "
568 "expected %d, got %d\n", vb->num_planes, b->length);
569 return -EINVAL;
570 }
571
572 return 0;
573 }
574
575 /**
576 * __verify_length() - Verify that the bytesused value for each plane fits in
577 * the plane length and that the data offset doesn't exceed the bytesused value.
578 */
579 static int __verify_length(struct vb2_buffer *vb, const struct v4l2_buffer *b)
580 {
581 unsigned int length;
582 unsigned int bytesused;
583 unsigned int plane;
584
585 if (!V4L2_TYPE_IS_OUTPUT(b->type))
586 return 0;
587
588 if (V4L2_TYPE_IS_MULTIPLANAR(b->type)) {
589 for (plane = 0; plane < vb->num_planes; ++plane) {
590 length = (b->memory == V4L2_MEMORY_USERPTR ||
591 b->memory == V4L2_MEMORY_DMABUF)
592 ? b->m.planes[plane].length
593 : vb->v4l2_planes[plane].length;
594 bytesused = b->m.planes[plane].bytesused
595 ? b->m.planes[plane].bytesused : length;
596
597 if (b->m.planes[plane].bytesused > length)
598 return -EINVAL;
599
600 if (b->m.planes[plane].data_offset > 0 &&
601 b->m.planes[plane].data_offset >= bytesused)
602 return -EINVAL;
603 }
604 } else {
605 length = (b->memory == V4L2_MEMORY_USERPTR)
606 ? b->length : vb->v4l2_planes[0].length;
607 bytesused = b->bytesused ? b->bytesused : length;
608
609 if (b->bytesused > length)
610 return -EINVAL;
611 }
612
613 return 0;
614 }
615
616 /**
617 * __buffer_in_use() - return true if the buffer is in use and
618 * the queue cannot be freed (by the means of REQBUFS(0)) call
619 */
620 static bool __buffer_in_use(struct vb2_queue *q, struct vb2_buffer *vb)
621 {
622 unsigned int plane;
623 for (plane = 0; plane < vb->num_planes; ++plane) {
624 void *mem_priv = vb->planes[plane].mem_priv;
625 /*
626 * If num_users() has not been provided, call_memop
627 * will return 0, apparently nobody cares about this
628 * case anyway. If num_users() returns more than 1,
629 * we are not the only user of the plane's memory.
630 */
631 if (mem_priv && call_memop(vb, num_users, mem_priv) > 1)
632 return true;
633 }
634 return false;
635 }
636
637 /**
638 * __buffers_in_use() - return true if any buffers on the queue are in use and
639 * the queue cannot be freed (by the means of REQBUFS(0)) call
640 */
641 static bool __buffers_in_use(struct vb2_queue *q)
642 {
643 unsigned int buffer;
644 for (buffer = 0; buffer < q->num_buffers; ++buffer) {
645 if (__buffer_in_use(q, q->bufs[buffer]))
646 return true;
647 }
648 return false;
649 }
650
651 /**
652 * __fill_v4l2_buffer() - fill in a struct v4l2_buffer with information to be
653 * returned to userspace
654 */
655 static void __fill_v4l2_buffer(struct vb2_buffer *vb, struct v4l2_buffer *b)
656 {
657 struct vb2_queue *q = vb->vb2_queue;
658
659 /* Copy back data such as timestamp, flags, etc. */
660 memcpy(b, &vb->v4l2_buf, offsetof(struct v4l2_buffer, m));
661 b->reserved2 = vb->v4l2_buf.reserved2;
662 b->reserved = vb->v4l2_buf.reserved;
663
664 if (V4L2_TYPE_IS_MULTIPLANAR(q->type)) {
665 /*
666 * Fill in plane-related data if userspace provided an array
667 * for it. The caller has already verified memory and size.
668 */
669 b->length = vb->num_planes;
670 memcpy(b->m.planes, vb->v4l2_planes,
671 b->length * sizeof(struct v4l2_plane));
672 } else {
673 /*
674 * We use length and offset in v4l2_planes array even for
675 * single-planar buffers, but userspace does not.
676 */
677 b->length = vb->v4l2_planes[0].length;
678 b->bytesused = vb->v4l2_planes[0].bytesused;
679 if (q->memory == V4L2_MEMORY_MMAP)
680 b->m.offset = vb->v4l2_planes[0].m.mem_offset;
681 else if (q->memory == V4L2_MEMORY_USERPTR)
682 b->m.userptr = vb->v4l2_planes[0].m.userptr;
683 else if (q->memory == V4L2_MEMORY_DMABUF)
684 b->m.fd = vb->v4l2_planes[0].m.fd;
685 }
686
687 /*
688 * Clear any buffer state related flags.
689 */
690 b->flags &= ~V4L2_BUFFER_MASK_FLAGS;
691 b->flags |= q->timestamp_flags & V4L2_BUF_FLAG_TIMESTAMP_MASK;
692 if ((q->timestamp_flags & V4L2_BUF_FLAG_TIMESTAMP_MASK) !=
693 V4L2_BUF_FLAG_TIMESTAMP_COPY) {
694 /*
695 * For non-COPY timestamps, drop timestamp source bits
696 * and obtain the timestamp source from the queue.
697 */
698 b->flags &= ~V4L2_BUF_FLAG_TSTAMP_SRC_MASK;
699 b->flags |= q->timestamp_flags & V4L2_BUF_FLAG_TSTAMP_SRC_MASK;
700 }
701
702 switch (vb->state) {
703 case VB2_BUF_STATE_QUEUED:
704 case VB2_BUF_STATE_ACTIVE:
705 b->flags |= V4L2_BUF_FLAG_QUEUED;
706 break;
707 case VB2_BUF_STATE_ERROR:
708 b->flags |= V4L2_BUF_FLAG_ERROR;
709 /* fall through */
710 case VB2_BUF_STATE_DONE:
711 b->flags |= V4L2_BUF_FLAG_DONE;
712 break;
713 case VB2_BUF_STATE_PREPARED:
714 b->flags |= V4L2_BUF_FLAG_PREPARED;
715 break;
716 case VB2_BUF_STATE_PREPARING:
717 case VB2_BUF_STATE_DEQUEUED:
718 /* nothing */
719 break;
720 }
721
722 if (__buffer_in_use(q, vb))
723 b->flags |= V4L2_BUF_FLAG_MAPPED;
724 }
725
726 /**
727 * vb2_querybuf() - query video buffer information
728 * @q: videobuf queue
729 * @b: buffer struct passed from userspace to vidioc_querybuf handler
730 * in driver
731 *
732 * Should be called from vidioc_querybuf ioctl handler in driver.
733 * This function will verify the passed v4l2_buffer structure and fill the
734 * relevant information for the userspace.
735 *
736 * The return values from this function are intended to be directly returned
737 * from vidioc_querybuf handler in driver.
738 */
739 int vb2_querybuf(struct vb2_queue *q, struct v4l2_buffer *b)
740 {
741 struct vb2_buffer *vb;
742 int ret;
743
744 if (b->type != q->type) {
745 dprintk(1, "wrong buffer type\n");
746 return -EINVAL;
747 }
748
749 if (b->index >= q->num_buffers) {
750 dprintk(1, "buffer index out of range\n");
751 return -EINVAL;
752 }
753 vb = q->bufs[b->index];
754 ret = __verify_planes_array(vb, b);
755 if (!ret)
756 __fill_v4l2_buffer(vb, b);
757 return ret;
758 }
759 EXPORT_SYMBOL(vb2_querybuf);
760
761 /**
762 * __verify_userptr_ops() - verify that all memory operations required for
763 * USERPTR queue type have been provided
764 */
765 static int __verify_userptr_ops(struct vb2_queue *q)
766 {
767 if (!(q->io_modes & VB2_USERPTR) || !q->mem_ops->get_userptr ||
768 !q->mem_ops->put_userptr)
769 return -EINVAL;
770
771 return 0;
772 }
773
774 /**
775 * __verify_mmap_ops() - verify that all memory operations required for
776 * MMAP queue type have been provided
777 */
778 static int __verify_mmap_ops(struct vb2_queue *q)
779 {
780 if (!(q->io_modes & VB2_MMAP) || !q->mem_ops->alloc ||
781 !q->mem_ops->put || !q->mem_ops->mmap)
782 return -EINVAL;
783
784 return 0;
785 }
786
787 /**
788 * __verify_dmabuf_ops() - verify that all memory operations required for
789 * DMABUF queue type have been provided
790 */
791 static int __verify_dmabuf_ops(struct vb2_queue *q)
792 {
793 if (!(q->io_modes & VB2_DMABUF) || !q->mem_ops->attach_dmabuf ||
794 !q->mem_ops->detach_dmabuf || !q->mem_ops->map_dmabuf ||
795 !q->mem_ops->unmap_dmabuf)
796 return -EINVAL;
797
798 return 0;
799 }
800
801 /**
802 * __verify_memory_type() - Check whether the memory type and buffer type
803 * passed to a buffer operation are compatible with the queue.
804 */
805 static int __verify_memory_type(struct vb2_queue *q,
806 enum v4l2_memory memory, enum v4l2_buf_type type)
807 {
808 if (memory != V4L2_MEMORY_MMAP && memory != V4L2_MEMORY_USERPTR &&
809 memory != V4L2_MEMORY_DMABUF) {
810 dprintk(1, "unsupported memory type\n");
811 return -EINVAL;
812 }
813
814 if (type != q->type) {
815 dprintk(1, "requested type is incorrect\n");
816 return -EINVAL;
817 }
818
819 /*
820 * Make sure all the required memory ops for given memory type
821 * are available.
822 */
823 if (memory == V4L2_MEMORY_MMAP && __verify_mmap_ops(q)) {
824 dprintk(1, "MMAP for current setup unsupported\n");
825 return -EINVAL;
826 }
827
828 if (memory == V4L2_MEMORY_USERPTR && __verify_userptr_ops(q)) {
829 dprintk(1, "USERPTR for current setup unsupported\n");
830 return -EINVAL;
831 }
832
833 if (memory == V4L2_MEMORY_DMABUF && __verify_dmabuf_ops(q)) {
834 dprintk(1, "DMABUF for current setup unsupported\n");
835 return -EINVAL;
836 }
837
838 /*
839 * Place the busy tests at the end: -EBUSY can be ignored when
840 * create_bufs is called with count == 0, but count == 0 should still
841 * do the memory and type validation.
842 */
843 if (vb2_fileio_is_active(q)) {
844 dprintk(1, "file io in progress\n");
845 return -EBUSY;
846 }
847 return 0;
848 }
849
850 /**
851 * __reqbufs() - Initiate streaming
852 * @q: videobuf2 queue
853 * @req: struct passed from userspace to vidioc_reqbufs handler in driver
854 *
855 * Should be called from vidioc_reqbufs ioctl handler of a driver.
856 * This function:
857 * 1) verifies streaming parameters passed from the userspace,
858 * 2) sets up the queue,
859 * 3) negotiates number of buffers and planes per buffer with the driver
860 * to be used during streaming,
861 * 4) allocates internal buffer structures (struct vb2_buffer), according to
862 * the agreed parameters,
863 * 5) for MMAP memory type, allocates actual video memory, using the
864 * memory handling/allocation routines provided during queue initialization
865 *
866 * If req->count is 0, all the memory will be freed instead.
867 * If the queue has been allocated previously (by a previous vb2_reqbufs) call
868 * and the queue is not busy, memory will be reallocated.
869 *
870 * The return values from this function are intended to be directly returned
871 * from vidioc_reqbufs handler in driver.
872 */
873 static int __reqbufs(struct vb2_queue *q, struct v4l2_requestbuffers *req)
874 {
875 unsigned int num_buffers, allocated_buffers, num_planes = 0;
876 int ret;
877
878 if (q->streaming) {
879 dprintk(1, "streaming active\n");
880 return -EBUSY;
881 }
882
883 if (req->count == 0 || q->num_buffers != 0 || q->memory != req->memory) {
884 /*
885 * We already have buffers allocated, so first check if they
886 * are not in use and can be freed.
887 */
888 mutex_lock(&q->mmap_lock);
889 if (q->memory == V4L2_MEMORY_MMAP && __buffers_in_use(q)) {
890 mutex_unlock(&q->mmap_lock);
891 dprintk(1, "memory in use, cannot free\n");
892 return -EBUSY;
893 }
894
895 /*
896 * Call queue_cancel to clean up any buffers in the PREPARED or
897 * QUEUED state which is possible if buffers were prepared or
898 * queued without ever calling STREAMON.
899 */
900 __vb2_queue_cancel(q);
901 ret = __vb2_queue_free(q, q->num_buffers);
902 mutex_unlock(&q->mmap_lock);
903 if (ret)
904 return ret;
905
906 /*
907 * In case of REQBUFS(0) return immediately without calling
908 * driver's queue_setup() callback and allocating resources.
909 */
910 if (req->count == 0)
911 return 0;
912 }
913
914 /*
915 * Make sure the requested values and current defaults are sane.
916 */
917 num_buffers = min_t(unsigned int, req->count, VIDEO_MAX_FRAME);
918 num_buffers = max_t(unsigned int, num_buffers, q->min_buffers_needed);
919 memset(q->plane_sizes, 0, sizeof(q->plane_sizes));
920 memset(q->alloc_ctx, 0, sizeof(q->alloc_ctx));
921 q->memory = req->memory;
922
923 /*
924 * Ask the driver how many buffers and planes per buffer it requires.
925 * Driver also sets the size and allocator context for each plane.
926 */
927 ret = call_qop(q, queue_setup, q, NULL, &num_buffers, &num_planes,
928 q->plane_sizes, q->alloc_ctx);
929 if (ret)
930 return ret;
931
932 /* Finally, allocate buffers and video memory */
933 allocated_buffers = __vb2_queue_alloc(q, req->memory, num_buffers, num_planes);
934 if (allocated_buffers == 0) {
935 dprintk(1, "memory allocation failed\n");
936 return -ENOMEM;
937 }
938
939 /*
940 * There is no point in continuing if we can't allocate the minimum
941 * number of buffers needed by this vb2_queue.
942 */
943 if (allocated_buffers < q->min_buffers_needed)
944 ret = -ENOMEM;
945
946 /*
947 * Check if driver can handle the allocated number of buffers.
948 */
949 if (!ret && allocated_buffers < num_buffers) {
950 num_buffers = allocated_buffers;
951
952 ret = call_qop(q, queue_setup, q, NULL, &num_buffers,
953 &num_planes, q->plane_sizes, q->alloc_ctx);
954
955 if (!ret && allocated_buffers < num_buffers)
956 ret = -ENOMEM;
957
958 /*
959 * Either the driver has accepted a smaller number of buffers,
960 * or .queue_setup() returned an error
961 */
962 }
963
964 mutex_lock(&q->mmap_lock);
965 q->num_buffers = allocated_buffers;
966
967 if (ret < 0) {
968 /*
969 * Note: __vb2_queue_free() will subtract 'allocated_buffers'
970 * from q->num_buffers.
971 */
972 __vb2_queue_free(q, allocated_buffers);
973 mutex_unlock(&q->mmap_lock);
974 return ret;
975 }
976 mutex_unlock(&q->mmap_lock);
977
978 /*
979 * Return the number of successfully allocated buffers
980 * to the userspace.
981 */
982 req->count = allocated_buffers;
983 q->waiting_for_buffers = !V4L2_TYPE_IS_OUTPUT(q->type);
984
985 return 0;
986 }
987
988 /**
989 * vb2_reqbufs() - Wrapper for __reqbufs() that also verifies the memory and
990 * type values.
991 * @q: videobuf2 queue
992 * @req: struct passed from userspace to vidioc_reqbufs handler in driver
993 */
994 int vb2_reqbufs(struct vb2_queue *q, struct v4l2_requestbuffers *req)
995 {
996 int ret = __verify_memory_type(q, req->memory, req->type);
997
998 return ret ? ret : __reqbufs(q, req);
999 }
1000 EXPORT_SYMBOL_GPL(vb2_reqbufs);
1001
1002 /**
1003 * __create_bufs() - Allocate buffers and any required auxiliary structs
1004 * @q: videobuf2 queue
1005 * @create: creation parameters, passed from userspace to vidioc_create_bufs
1006 * handler in driver
1007 *
1008 * Should be called from vidioc_create_bufs ioctl handler of a driver.
1009 * This function:
1010 * 1) verifies parameter sanity
1011 * 2) calls the .queue_setup() queue operation
1012 * 3) performs any necessary memory allocations
1013 *
1014 * The return values from this function are intended to be directly returned
1015 * from vidioc_create_bufs handler in driver.
1016 */
1017 static int __create_bufs(struct vb2_queue *q, struct v4l2_create_buffers *create)
1018 {
1019 unsigned int num_planes = 0, num_buffers, allocated_buffers;
1020 int ret;
1021
1022 if (q->num_buffers == VIDEO_MAX_FRAME) {
1023 dprintk(1, "maximum number of buffers already allocated\n");
1024 return -ENOBUFS;
1025 }
1026
1027 if (!q->num_buffers) {
1028 memset(q->plane_sizes, 0, sizeof(q->plane_sizes));
1029 memset(q->alloc_ctx, 0, sizeof(q->alloc_ctx));
1030 q->memory = create->memory;
1031 q->waiting_for_buffers = !V4L2_TYPE_IS_OUTPUT(q->type);
1032 }
1033
1034 num_buffers = min(create->count, VIDEO_MAX_FRAME - q->num_buffers);
1035
1036 /*
1037 * Ask the driver, whether the requested number of buffers, planes per
1038 * buffer and their sizes are acceptable
1039 */
1040 ret = call_qop(q, queue_setup, q, &create->format, &num_buffers,
1041 &num_planes, q->plane_sizes, q->alloc_ctx);
1042 if (ret)
1043 return ret;
1044
1045 /* Finally, allocate buffers and video memory */
1046 allocated_buffers = __vb2_queue_alloc(q, create->memory, num_buffers,
1047 num_planes);
1048 if (allocated_buffers == 0) {
1049 dprintk(1, "memory allocation failed\n");
1050 return -ENOMEM;
1051 }
1052
1053 /*
1054 * Check if driver can handle the so far allocated number of buffers.
1055 */
1056 if (allocated_buffers < num_buffers) {
1057 num_buffers = allocated_buffers;
1058
1059 /*
1060 * q->num_buffers contains the total number of buffers, that the
1061 * queue driver has set up
1062 */
1063 ret = call_qop(q, queue_setup, q, &create->format, &num_buffers,
1064 &num_planes, q->plane_sizes, q->alloc_ctx);
1065
1066 if (!ret && allocated_buffers < num_buffers)
1067 ret = -ENOMEM;
1068
1069 /*
1070 * Either the driver has accepted a smaller number of buffers,
1071 * or .queue_setup() returned an error
1072 */
1073 }
1074
1075 mutex_lock(&q->mmap_lock);
1076 q->num_buffers += allocated_buffers;
1077
1078 if (ret < 0) {
1079 /*
1080 * Note: __vb2_queue_free() will subtract 'allocated_buffers'
1081 * from q->num_buffers.
1082 */
1083 __vb2_queue_free(q, allocated_buffers);
1084 mutex_unlock(&q->mmap_lock);
1085 return -ENOMEM;
1086 }
1087 mutex_unlock(&q->mmap_lock);
1088
1089 /*
1090 * Return the number of successfully allocated buffers
1091 * to the userspace.
1092 */
1093 create->count = allocated_buffers;
1094
1095 return 0;
1096 }
1097
1098 /**
1099 * vb2_create_bufs() - Wrapper for __create_bufs() that also verifies the
1100 * memory and type values.
1101 * @q: videobuf2 queue
1102 * @create: creation parameters, passed from userspace to vidioc_create_bufs
1103 * handler in driver
1104 */
1105 int vb2_create_bufs(struct vb2_queue *q, struct v4l2_create_buffers *create)
1106 {
1107 int ret = __verify_memory_type(q, create->memory, create->format.type);
1108
1109 create->index = q->num_buffers;
1110 if (create->count == 0)
1111 return ret != -EBUSY ? ret : 0;
1112 return ret ? ret : __create_bufs(q, create);
1113 }
1114 EXPORT_SYMBOL_GPL(vb2_create_bufs);
1115
1116 /**
1117 * vb2_plane_vaddr() - Return a kernel virtual address of a given plane
1118 * @vb: vb2_buffer to which the plane in question belongs to
1119 * @plane_no: plane number for which the address is to be returned
1120 *
1121 * This function returns a kernel virtual address of a given plane if
1122 * such a mapping exist, NULL otherwise.
1123 */
1124 void *vb2_plane_vaddr(struct vb2_buffer *vb, unsigned int plane_no)
1125 {
1126 if (plane_no > vb->num_planes || !vb->planes[plane_no].mem_priv)
1127 return NULL;
1128
1129 return call_ptr_memop(vb, vaddr, vb->planes[plane_no].mem_priv);
1130
1131 }
1132 EXPORT_SYMBOL_GPL(vb2_plane_vaddr);
1133
1134 /**
1135 * vb2_plane_cookie() - Return allocator specific cookie for the given plane
1136 * @vb: vb2_buffer to which the plane in question belongs to
1137 * @plane_no: plane number for which the cookie is to be returned
1138 *
1139 * This function returns an allocator specific cookie for a given plane if
1140 * available, NULL otherwise. The allocator should provide some simple static
1141 * inline function, which would convert this cookie to the allocator specific
1142 * type that can be used directly by the driver to access the buffer. This can
1143 * be for example physical address, pointer to scatter list or IOMMU mapping.
1144 */
1145 void *vb2_plane_cookie(struct vb2_buffer *vb, unsigned int plane_no)
1146 {
1147 if (plane_no >= vb->num_planes || !vb->planes[plane_no].mem_priv)
1148 return NULL;
1149
1150 return call_ptr_memop(vb, cookie, vb->planes[plane_no].mem_priv);
1151 }
1152 EXPORT_SYMBOL_GPL(vb2_plane_cookie);
1153
1154 /**
1155 * vb2_buffer_done() - inform videobuf that an operation on a buffer is finished
1156 * @vb: vb2_buffer returned from the driver
1157 * @state: either VB2_BUF_STATE_DONE if the operation finished successfully,
1158 * VB2_BUF_STATE_ERROR if the operation finished with an error or
1159 * VB2_BUF_STATE_QUEUED if the driver wants to requeue buffers.
1160 * If start_streaming fails then it should return buffers with state
1161 * VB2_BUF_STATE_QUEUED to put them back into the queue.
1162 *
1163 * This function should be called by the driver after a hardware operation on
1164 * a buffer is finished and the buffer may be returned to userspace. The driver
1165 * cannot use this buffer anymore until it is queued back to it by videobuf
1166 * by the means of buf_queue callback. Only buffers previously queued to the
1167 * driver by buf_queue can be passed to this function.
1168 *
1169 * While streaming a buffer can only be returned in state DONE or ERROR.
1170 * The start_streaming op can also return them in case the DMA engine cannot
1171 * be started for some reason. In that case the buffers should be returned with
1172 * state QUEUED.
1173 */
1174 void vb2_buffer_done(struct vb2_buffer *vb, enum vb2_buffer_state state)
1175 {
1176 struct vb2_queue *q = vb->vb2_queue;
1177 unsigned long flags;
1178 unsigned int plane;
1179
1180 if (WARN_ON(vb->state != VB2_BUF_STATE_ACTIVE))
1181 return;
1182
1183 if (WARN_ON(state != VB2_BUF_STATE_DONE &&
1184 state != VB2_BUF_STATE_ERROR &&
1185 state != VB2_BUF_STATE_QUEUED))
1186 state = VB2_BUF_STATE_ERROR;
1187
1188 #ifdef CONFIG_VIDEO_ADV_DEBUG
1189 /*
1190 * Although this is not a callback, it still does have to balance
1191 * with the buf_queue op. So update this counter manually.
1192 */
1193 vb->cnt_buf_done++;
1194 #endif
1195 dprintk(4, "done processing on buffer %d, state: %d\n",
1196 vb->v4l2_buf.index, state);
1197
1198 /* sync buffers */
1199 for (plane = 0; plane < vb->num_planes; ++plane)
1200 call_void_memop(vb, finish, vb->planes[plane].mem_priv);
1201
1202 /* Add the buffer to the done buffers list */
1203 spin_lock_irqsave(&q->done_lock, flags);
1204 vb->state = state;
1205 if (state != VB2_BUF_STATE_QUEUED)
1206 list_add_tail(&vb->done_entry, &q->done_list);
1207 atomic_dec(&q->owned_by_drv_count);
1208 spin_unlock_irqrestore(&q->done_lock, flags);
1209
1210 if (state == VB2_BUF_STATE_QUEUED) {
1211 if (q->start_streaming_called)
1212 __enqueue_in_driver(vb);
1213 return;
1214 }
1215
1216 /* Inform any processes that may be waiting for buffers */
1217 wake_up(&q->done_wq);
1218 }
1219 EXPORT_SYMBOL_GPL(vb2_buffer_done);
1220
1221 /**
1222 * vb2_discard_done() - discard all buffers marked as DONE
1223 * @q: videobuf2 queue
1224 *
1225 * This function is intended to be used with suspend/resume operations. It
1226 * discards all 'done' buffers as they would be too old to be requested after
1227 * resume.
1228 *
1229 * Drivers must stop the hardware and synchronize with interrupt handlers and/or
1230 * delayed works before calling this function to make sure no buffer will be
1231 * touched by the driver and/or hardware.
1232 */
1233 void vb2_discard_done(struct vb2_queue *q)
1234 {
1235 struct vb2_buffer *vb;
1236 unsigned long flags;
1237
1238 spin_lock_irqsave(&q->done_lock, flags);
1239 list_for_each_entry(vb, &q->done_list, done_entry)
1240 vb->state = VB2_BUF_STATE_ERROR;
1241 spin_unlock_irqrestore(&q->done_lock, flags);
1242 }
1243 EXPORT_SYMBOL_GPL(vb2_discard_done);
1244
1245 /**
1246 * __fill_vb2_buffer() - fill a vb2_buffer with information provided in a
1247 * v4l2_buffer by the userspace. The caller has already verified that struct
1248 * v4l2_buffer has a valid number of planes.
1249 */
1250 static void __fill_vb2_buffer(struct vb2_buffer *vb, const struct v4l2_buffer *b,
1251 struct v4l2_plane *v4l2_planes)
1252 {
1253 unsigned int plane;
1254
1255 if (V4L2_TYPE_IS_OUTPUT(b->type)) {
1256 if (WARN_ON_ONCE(b->bytesused == 0)) {
1257 pr_warn_once("use of bytesused == 0 is deprecated and will be removed in the future,\n");
1258 if (vb->vb2_queue->allow_zero_bytesused)
1259 pr_warn_once("use VIDIOC_DECODER_CMD(V4L2_DEC_CMD_STOP) instead.\n");
1260 else
1261 pr_warn_once("use the actual size instead.\n");
1262 }
1263 }
1264
1265 if (V4L2_TYPE_IS_MULTIPLANAR(b->type)) {
1266 if (b->memory == V4L2_MEMORY_USERPTR) {
1267 for (plane = 0; plane < vb->num_planes; ++plane) {
1268 v4l2_planes[plane].m.userptr =
1269 b->m.planes[plane].m.userptr;
1270 v4l2_planes[plane].length =
1271 b->m.planes[plane].length;
1272 }
1273 }
1274 if (b->memory == V4L2_MEMORY_DMABUF) {
1275 for (plane = 0; plane < vb->num_planes; ++plane) {
1276 v4l2_planes[plane].m.fd =
1277 b->m.planes[plane].m.fd;
1278 v4l2_planes[plane].length =
1279 b->m.planes[plane].length;
1280 }
1281 }
1282
1283 /* Fill in driver-provided information for OUTPUT types */
1284 if (V4L2_TYPE_IS_OUTPUT(b->type)) {
1285 /*
1286 * Will have to go up to b->length when API starts
1287 * accepting variable number of planes.
1288 *
1289 * If bytesused == 0 for the output buffer, then fall
1290 * back to the full buffer size. In that case
1291 * userspace clearly never bothered to set it and
1292 * it's a safe assumption that they really meant to
1293 * use the full plane sizes.
1294 *
1295 * Some drivers, e.g. old codec drivers, use bytesused == 0
1296 * as a way to indicate that streaming is finished.
1297 * In that case, the driver should use the
1298 * allow_zero_bytesused flag to keep old userspace
1299 * applications working.
1300 */
1301 for (plane = 0; plane < vb->num_planes; ++plane) {
1302 struct v4l2_plane *pdst = &v4l2_planes[plane];
1303 struct v4l2_plane *psrc = &b->m.planes[plane];
1304
1305 if (vb->vb2_queue->allow_zero_bytesused)
1306 pdst->bytesused = psrc->bytesused;
1307 else
1308 pdst->bytesused = psrc->bytesused ?
1309 psrc->bytesused : pdst->length;
1310 pdst->data_offset = psrc->data_offset;
1311 }
1312 }
1313 } else {
1314 /*
1315 * Single-planar buffers do not use planes array,
1316 * so fill in relevant v4l2_buffer struct fields instead.
1317 * In videobuf we use our internal V4l2_planes struct for
1318 * single-planar buffers as well, for simplicity.
1319 *
1320 * If bytesused == 0 for the output buffer, then fall back
1321 * to the full buffer size as that's a sensible default.
1322 *
1323 * Some drivers, e.g. old codec drivers, use bytesused == 0 as
1324 * a way to indicate that streaming is finished. In that case,
1325 * the driver should use the allow_zero_bytesused flag to keep
1326 * old userspace applications working.
1327 */
1328 if (b->memory == V4L2_MEMORY_USERPTR) {
1329 v4l2_planes[0].m.userptr = b->m.userptr;
1330 v4l2_planes[0].length = b->length;
1331 }
1332
1333 if (b->memory == V4L2_MEMORY_DMABUF) {
1334 v4l2_planes[0].m.fd = b->m.fd;
1335 v4l2_planes[0].length = b->length;
1336 }
1337
1338 if (V4L2_TYPE_IS_OUTPUT(b->type)) {
1339 if (vb->vb2_queue->allow_zero_bytesused)
1340 v4l2_planes[0].bytesused = b->bytesused;
1341 else
1342 v4l2_planes[0].bytesused = b->bytesused ?
1343 b->bytesused : v4l2_planes[0].length;
1344 } else
1345 v4l2_planes[0].bytesused = 0;
1346
1347 }
1348
1349 /* Zero flags that the vb2 core handles */
1350 vb->v4l2_buf.flags = b->flags & ~V4L2_BUFFER_MASK_FLAGS;
1351 if ((vb->vb2_queue->timestamp_flags & V4L2_BUF_FLAG_TIMESTAMP_MASK) !=
1352 V4L2_BUF_FLAG_TIMESTAMP_COPY || !V4L2_TYPE_IS_OUTPUT(b->type)) {
1353 /*
1354 * Non-COPY timestamps and non-OUTPUT queues will get
1355 * their timestamp and timestamp source flags from the
1356 * queue.
1357 */
1358 vb->v4l2_buf.flags &= ~V4L2_BUF_FLAG_TSTAMP_SRC_MASK;
1359 }
1360
1361 if (V4L2_TYPE_IS_OUTPUT(b->type)) {
1362 /*
1363 * For output buffers mask out the timecode flag:
1364 * this will be handled later in vb2_internal_qbuf().
1365 * The 'field' is valid metadata for this output buffer
1366 * and so that needs to be copied here.
1367 */
1368 vb->v4l2_buf.flags &= ~V4L2_BUF_FLAG_TIMECODE;
1369 vb->v4l2_buf.field = b->field;
1370 } else {
1371 /* Zero any output buffer flags as this is a capture buffer */
1372 vb->v4l2_buf.flags &= ~V4L2_BUFFER_OUT_FLAGS;
1373 }
1374 }
1375
1376 /**
1377 * __qbuf_mmap() - handle qbuf of an MMAP buffer
1378 */
1379 static int __qbuf_mmap(struct vb2_buffer *vb, const struct v4l2_buffer *b)
1380 {
1381 __fill_vb2_buffer(vb, b, vb->v4l2_planes);
1382 return call_vb_qop(vb, buf_prepare, vb);
1383 }
1384
1385 /**
1386 * __qbuf_userptr() - handle qbuf of a USERPTR buffer
1387 */
1388 static int __qbuf_userptr(struct vb2_buffer *vb, const struct v4l2_buffer *b)
1389 {
1390 struct v4l2_plane planes[VIDEO_MAX_PLANES];
1391 struct vb2_queue *q = vb->vb2_queue;
1392 void *mem_priv;
1393 unsigned int plane;
1394 int ret;
1395 enum dma_data_direction dma_dir =
1396 V4L2_TYPE_IS_OUTPUT(q->type) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
1397 bool reacquired = vb->planes[0].mem_priv == NULL;
1398
1399 memset(planes, 0, sizeof(planes[0]) * vb->num_planes);
1400 /* Copy relevant information provided by the userspace */
1401 __fill_vb2_buffer(vb, b, planes);
1402
1403 for (plane = 0; plane < vb->num_planes; ++plane) {
1404 /* Skip the plane if already verified */
1405 if (vb->v4l2_planes[plane].m.userptr &&
1406 vb->v4l2_planes[plane].m.userptr == planes[plane].m.userptr
1407 && vb->v4l2_planes[plane].length == planes[plane].length)
1408 continue;
1409
1410 dprintk(3, "userspace address for plane %d changed, "
1411 "reacquiring memory\n", plane);
1412
1413 /* Check if the provided plane buffer is large enough */
1414 if (planes[plane].length < q->plane_sizes[plane]) {
1415 dprintk(1, "provided buffer size %u is less than "
1416 "setup size %u for plane %d\n",
1417 planes[plane].length,
1418 q->plane_sizes[plane], plane);
1419 ret = -EINVAL;
1420 goto err;
1421 }
1422
1423 /* Release previously acquired memory if present */
1424 if (vb->planes[plane].mem_priv) {
1425 if (!reacquired) {
1426 reacquired = true;
1427 call_void_vb_qop(vb, buf_cleanup, vb);
1428 }
1429 call_void_memop(vb, put_userptr, vb->planes[plane].mem_priv);
1430 }
1431
1432 vb->planes[plane].mem_priv = NULL;
1433 memset(&vb->v4l2_planes[plane], 0, sizeof(struct v4l2_plane));
1434
1435 /* Acquire each plane's memory */
1436 mem_priv = call_ptr_memop(vb, get_userptr, q->alloc_ctx[plane],
1437 planes[plane].m.userptr,
1438 planes[plane].length, dma_dir);
1439 if (IS_ERR_OR_NULL(mem_priv)) {
1440 dprintk(1, "failed acquiring userspace "
1441 "memory for plane %d\n", plane);
1442 ret = mem_priv ? PTR_ERR(mem_priv) : -EINVAL;
1443 goto err;
1444 }
1445 vb->planes[plane].mem_priv = mem_priv;
1446 }
1447
1448 /*
1449 * Now that everything is in order, copy relevant information
1450 * provided by userspace.
1451 */
1452 for (plane = 0; plane < vb->num_planes; ++plane)
1453 vb->v4l2_planes[plane] = planes[plane];
1454
1455 if (reacquired) {
1456 /*
1457 * One or more planes changed, so we must call buf_init to do
1458 * the driver-specific initialization on the newly acquired
1459 * buffer, if provided.
1460 */
1461 ret = call_vb_qop(vb, buf_init, vb);
1462 if (ret) {
1463 dprintk(1, "buffer initialization failed\n");
1464 goto err;
1465 }
1466 }
1467
1468 ret = call_vb_qop(vb, buf_prepare, vb);
1469 if (ret) {
1470 dprintk(1, "buffer preparation failed\n");
1471 call_void_vb_qop(vb, buf_cleanup, vb);
1472 goto err;
1473 }
1474
1475 return 0;
1476 err:
1477 /* In case of errors, release planes that were already acquired */
1478 for (plane = 0; plane < vb->num_planes; ++plane) {
1479 if (vb->planes[plane].mem_priv)
1480 call_void_memop(vb, put_userptr, vb->planes[plane].mem_priv);
1481 vb->planes[plane].mem_priv = NULL;
1482 vb->v4l2_planes[plane].m.userptr = 0;
1483 vb->v4l2_planes[plane].length = 0;
1484 }
1485
1486 return ret;
1487 }
1488
1489 /**
1490 * __qbuf_dmabuf() - handle qbuf of a DMABUF buffer
1491 */
1492 static int __qbuf_dmabuf(struct vb2_buffer *vb, const struct v4l2_buffer *b)
1493 {
1494 struct v4l2_plane planes[VIDEO_MAX_PLANES];
1495 struct vb2_queue *q = vb->vb2_queue;
1496 void *mem_priv;
1497 unsigned int plane;
1498 int ret;
1499 enum dma_data_direction dma_dir =
1500 V4L2_TYPE_IS_OUTPUT(q->type) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
1501 bool reacquired = vb->planes[0].mem_priv == NULL;
1502
1503 memset(planes, 0, sizeof(planes[0]) * vb->num_planes);
1504 /* Copy relevant information provided by the userspace */
1505 __fill_vb2_buffer(vb, b, planes);
1506
1507 for (plane = 0; plane < vb->num_planes; ++plane) {
1508 struct dma_buf *dbuf = dma_buf_get(planes[plane].m.fd);
1509
1510 if (IS_ERR_OR_NULL(dbuf)) {
1511 dprintk(1, "invalid dmabuf fd for plane %d\n",
1512 plane);
1513 ret = -EINVAL;
1514 goto err;
1515 }
1516
1517 /* use DMABUF size if length is not provided */
1518 if (planes[plane].length == 0)
1519 planes[plane].length = dbuf->size;
1520
1521 if (planes[plane].length < q->plane_sizes[plane]) {
1522 dprintk(1, "invalid dmabuf length for plane %d\n",
1523 plane);
1524 ret = -EINVAL;
1525 goto err;
1526 }
1527
1528 /* Skip the plane if already verified */
1529 if (dbuf == vb->planes[plane].dbuf &&
1530 vb->v4l2_planes[plane].length == planes[plane].length) {
1531 dma_buf_put(dbuf);
1532 continue;
1533 }
1534
1535 dprintk(1, "buffer for plane %d changed\n", plane);
1536
1537 if (!reacquired) {
1538 reacquired = true;
1539 call_void_vb_qop(vb, buf_cleanup, vb);
1540 }
1541
1542 /* Release previously acquired memory if present */
1543 __vb2_plane_dmabuf_put(vb, &vb->planes[plane]);
1544 memset(&vb->v4l2_planes[plane], 0, sizeof(struct v4l2_plane));
1545
1546 /* Acquire each plane's memory */
1547 mem_priv = call_ptr_memop(vb, attach_dmabuf, q->alloc_ctx[plane],
1548 dbuf, planes[plane].length, dma_dir);
1549 if (IS_ERR(mem_priv)) {
1550 dprintk(1, "failed to attach dmabuf\n");
1551 ret = PTR_ERR(mem_priv);
1552 dma_buf_put(dbuf);
1553 goto err;
1554 }
1555
1556 vb->planes[plane].dbuf = dbuf;
1557 vb->planes[plane].mem_priv = mem_priv;
1558 }
1559
1560 /* TODO: This pins the buffer(s) with dma_buf_map_attachment()).. but
1561 * really we want to do this just before the DMA, not while queueing
1562 * the buffer(s)..
1563 */
1564 for (plane = 0; plane < vb->num_planes; ++plane) {
1565 ret = call_memop(vb, map_dmabuf, vb->planes[plane].mem_priv);
1566 if (ret) {
1567 dprintk(1, "failed to map dmabuf for plane %d\n",
1568 plane);
1569 goto err;
1570 }
1571 vb->planes[plane].dbuf_mapped = 1;
1572 }
1573
1574 /*
1575 * Now that everything is in order, copy relevant information
1576 * provided by userspace.
1577 */
1578 for (plane = 0; plane < vb->num_planes; ++plane)
1579 vb->v4l2_planes[plane] = planes[plane];
1580
1581 if (reacquired) {
1582 /*
1583 * Call driver-specific initialization on the newly acquired buffer,
1584 * if provided.
1585 */
1586 ret = call_vb_qop(vb, buf_init, vb);
1587 if (ret) {
1588 dprintk(1, "buffer initialization failed\n");
1589 goto err;
1590 }
1591 }
1592
1593 ret = call_vb_qop(vb, buf_prepare, vb);
1594 if (ret) {
1595 dprintk(1, "buffer preparation failed\n");
1596 call_void_vb_qop(vb, buf_cleanup, vb);
1597 goto err;
1598 }
1599
1600 return 0;
1601 err:
1602 /* In case of errors, release planes that were already acquired */
1603 __vb2_buf_dmabuf_put(vb);
1604
1605 return ret;
1606 }
1607
1608 /**
1609 * __enqueue_in_driver() - enqueue a vb2_buffer in driver for processing
1610 */
1611 static void __enqueue_in_driver(struct vb2_buffer *vb)
1612 {
1613 struct vb2_queue *q = vb->vb2_queue;
1614 unsigned int plane;
1615
1616 vb->state = VB2_BUF_STATE_ACTIVE;
1617 atomic_inc(&q->owned_by_drv_count);
1618
1619 /* sync buffers */
1620 for (plane = 0; plane < vb->num_planes; ++plane)
1621 call_void_memop(vb, prepare, vb->planes[plane].mem_priv);
1622
1623 call_void_vb_qop(vb, buf_queue, vb);
1624 }
1625
1626 static int __buf_prepare(struct vb2_buffer *vb, const struct v4l2_buffer *b)
1627 {
1628 struct vb2_queue *q = vb->vb2_queue;
1629 int ret;
1630
1631 ret = __verify_length(vb, b);
1632 if (ret < 0) {
1633 dprintk(1, "plane parameters verification failed: %d\n", ret);
1634 return ret;
1635 }
1636 if (b->field == V4L2_FIELD_ALTERNATE && V4L2_TYPE_IS_OUTPUT(q->type)) {
1637 /*
1638 * If the format's field is ALTERNATE, then the buffer's field
1639 * should be either TOP or BOTTOM, not ALTERNATE since that
1640 * makes no sense. The driver has to know whether the
1641 * buffer represents a top or a bottom field in order to
1642 * program any DMA correctly. Using ALTERNATE is wrong, since
1643 * that just says that it is either a top or a bottom field,
1644 * but not which of the two it is.
1645 */
1646 dprintk(1, "the field is incorrectly set to ALTERNATE for an output buffer\n");
1647 return -EINVAL;
1648 }
1649
1650 if (q->error) {
1651 dprintk(1, "fatal error occurred on queue\n");
1652 return -EIO;
1653 }
1654
1655 vb->state = VB2_BUF_STATE_PREPARING;
1656 vb->v4l2_buf.timestamp.tv_sec = 0;
1657 vb->v4l2_buf.timestamp.tv_usec = 0;
1658 vb->v4l2_buf.sequence = 0;
1659
1660 switch (q->memory) {
1661 case V4L2_MEMORY_MMAP:
1662 ret = __qbuf_mmap(vb, b);
1663 break;
1664 case V4L2_MEMORY_USERPTR:
1665 ret = __qbuf_userptr(vb, b);
1666 break;
1667 case V4L2_MEMORY_DMABUF:
1668 ret = __qbuf_dmabuf(vb, b);
1669 break;
1670 default:
1671 WARN(1, "Invalid queue type\n");
1672 ret = -EINVAL;
1673 }
1674
1675 if (ret)
1676 dprintk(1, "buffer preparation failed: %d\n", ret);
1677 vb->state = ret ? VB2_BUF_STATE_DEQUEUED : VB2_BUF_STATE_PREPARED;
1678
1679 return ret;
1680 }
1681
1682 static int vb2_queue_or_prepare_buf(struct vb2_queue *q, struct v4l2_buffer *b,
1683 const char *opname)
1684 {
1685 if (b->type != q->type) {
1686 dprintk(1, "%s: invalid buffer type\n", opname);
1687 return -EINVAL;
1688 }
1689
1690 if (b->index >= q->num_buffers) {
1691 dprintk(1, "%s: buffer index out of range\n", opname);
1692 return -EINVAL;
1693 }
1694
1695 if (q->bufs[b->index] == NULL) {
1696 /* Should never happen */
1697 dprintk(1, "%s: buffer is NULL\n", opname);
1698 return -EINVAL;
1699 }
1700
1701 if (b->memory != q->memory) {
1702 dprintk(1, "%s: invalid memory type\n", opname);
1703 return -EINVAL;
1704 }
1705
1706 return __verify_planes_array(q->bufs[b->index], b);
1707 }
1708
1709 /**
1710 * vb2_prepare_buf() - Pass ownership of a buffer from userspace to the kernel
1711 * @q: videobuf2 queue
1712 * @b: buffer structure passed from userspace to vidioc_prepare_buf
1713 * handler in driver
1714 *
1715 * Should be called from vidioc_prepare_buf ioctl handler of a driver.
1716 * This function:
1717 * 1) verifies the passed buffer,
1718 * 2) calls buf_prepare callback in the driver (if provided), in which
1719 * driver-specific buffer initialization can be performed,
1720 *
1721 * The return values from this function are intended to be directly returned
1722 * from vidioc_prepare_buf handler in driver.
1723 */
1724 int vb2_prepare_buf(struct vb2_queue *q, struct v4l2_buffer *b)
1725 {
1726 struct vb2_buffer *vb;
1727 int ret;
1728
1729 if (vb2_fileio_is_active(q)) {
1730 dprintk(1, "file io in progress\n");
1731 return -EBUSY;
1732 }
1733
1734 ret = vb2_queue_or_prepare_buf(q, b, "prepare_buf");
1735 if (ret)
1736 return ret;
1737
1738 vb = q->bufs[b->index];
1739 if (vb->state != VB2_BUF_STATE_DEQUEUED) {
1740 dprintk(1, "invalid buffer state %d\n",
1741 vb->state);
1742 return -EINVAL;
1743 }
1744
1745 ret = __buf_prepare(vb, b);
1746 if (!ret) {
1747 /* Fill buffer information for the userspace */
1748 __fill_v4l2_buffer(vb, b);
1749
1750 dprintk(1, "prepare of buffer %d succeeded\n", vb->v4l2_buf.index);
1751 }
1752 return ret;
1753 }
1754 EXPORT_SYMBOL_GPL(vb2_prepare_buf);
1755
1756 /**
1757 * vb2_start_streaming() - Attempt to start streaming.
1758 * @q: videobuf2 queue
1759 *
1760 * Attempt to start streaming. When this function is called there must be
1761 * at least q->min_buffers_needed buffers queued up (i.e. the minimum
1762 * number of buffers required for the DMA engine to function). If the
1763 * @start_streaming op fails it is supposed to return all the driver-owned
1764 * buffers back to vb2 in state QUEUED. Check if that happened and if
1765 * not warn and reclaim them forcefully.
1766 */
1767 static int vb2_start_streaming(struct vb2_queue *q)
1768 {
1769 struct vb2_buffer *vb;
1770 int ret;
1771
1772 /*
1773 * If any buffers were queued before streamon,
1774 * we can now pass them to driver for processing.
1775 */
1776 list_for_each_entry(vb, &q->queued_list, queued_entry)
1777 __enqueue_in_driver(vb);
1778
1779 /* Tell the driver to start streaming */
1780 q->start_streaming_called = 1;
1781 ret = call_qop(q, start_streaming, q,
1782 atomic_read(&q->owned_by_drv_count));
1783 if (!ret)
1784 return 0;
1785
1786 q->start_streaming_called = 0;
1787
1788 dprintk(1, "driver refused to start streaming\n");
1789 /*
1790 * If you see this warning, then the driver isn't cleaning up properly
1791 * after a failed start_streaming(). See the start_streaming()
1792 * documentation in videobuf2-core.h for more information how buffers
1793 * should be returned to vb2 in start_streaming().
1794 */
1795 if (WARN_ON(atomic_read(&q->owned_by_drv_count))) {
1796 unsigned i;
1797
1798 /*
1799 * Forcefully reclaim buffers if the driver did not
1800 * correctly return them to vb2.
1801 */
1802 for (i = 0; i < q->num_buffers; ++i) {
1803 vb = q->bufs[i];
1804 if (vb->state == VB2_BUF_STATE_ACTIVE)
1805 vb2_buffer_done(vb, VB2_BUF_STATE_QUEUED);
1806 }
1807 /* Must be zero now */
1808 WARN_ON(atomic_read(&q->owned_by_drv_count));
1809 }
1810 /*
1811 * If done_list is not empty, then start_streaming() didn't call
1812 * vb2_buffer_done(vb, VB2_BUF_STATE_QUEUED) but STATE_ERROR or
1813 * STATE_DONE.
1814 */
1815 WARN_ON(!list_empty(&q->done_list));
1816 return ret;
1817 }
1818
1819 static int vb2_internal_qbuf(struct vb2_queue *q, struct v4l2_buffer *b)
1820 {
1821 int ret = vb2_queue_or_prepare_buf(q, b, "qbuf");
1822 struct vb2_buffer *vb;
1823
1824 if (ret)
1825 return ret;
1826
1827 vb = q->bufs[b->index];
1828
1829 switch (vb->state) {
1830 case VB2_BUF_STATE_DEQUEUED:
1831 ret = __buf_prepare(vb, b);
1832 if (ret)
1833 return ret;
1834 break;
1835 case VB2_BUF_STATE_PREPARED:
1836 break;
1837 case VB2_BUF_STATE_PREPARING:
1838 dprintk(1, "buffer still being prepared\n");
1839 return -EINVAL;
1840 default:
1841 dprintk(1, "invalid buffer state %d\n", vb->state);
1842 return -EINVAL;
1843 }
1844
1845 /*
1846 * Add to the queued buffers list, a buffer will stay on it until
1847 * dequeued in dqbuf.
1848 */
1849 list_add_tail(&vb->queued_entry, &q->queued_list);
1850 q->queued_count++;
1851 q->waiting_for_buffers = false;
1852 vb->state = VB2_BUF_STATE_QUEUED;
1853 if (V4L2_TYPE_IS_OUTPUT(q->type)) {
1854 /*
1855 * For output buffers copy the timestamp if needed,
1856 * and the timecode field and flag if needed.
1857 */
1858 if ((q->timestamp_flags & V4L2_BUF_FLAG_TIMESTAMP_MASK) ==
1859 V4L2_BUF_FLAG_TIMESTAMP_COPY)
1860 vb->v4l2_buf.timestamp = b->timestamp;
1861 vb->v4l2_buf.flags |= b->flags & V4L2_BUF_FLAG_TIMECODE;
1862 if (b->flags & V4L2_BUF_FLAG_TIMECODE)
1863 vb->v4l2_buf.timecode = b->timecode;
1864 }
1865
1866 /*
1867 * If already streaming, give the buffer to driver for processing.
1868 * If not, the buffer will be given to driver on next streamon.
1869 */
1870 if (q->start_streaming_called)
1871 __enqueue_in_driver(vb);
1872
1873 /* Fill buffer information for the userspace */
1874 __fill_v4l2_buffer(vb, b);
1875
1876 /*
1877 * If streamon has been called, and we haven't yet called
1878 * start_streaming() since not enough buffers were queued, and
1879 * we now have reached the minimum number of queued buffers,
1880 * then we can finally call start_streaming().
1881 */
1882 if (q->streaming && !q->start_streaming_called &&
1883 q->queued_count >= q->min_buffers_needed) {
1884 ret = vb2_start_streaming(q);
1885 if (ret)
1886 return ret;
1887 }
1888
1889 dprintk(1, "qbuf of buffer %d succeeded\n", vb->v4l2_buf.index);
1890 return 0;
1891 }
1892
1893 /**
1894 * vb2_qbuf() - Queue a buffer from userspace
1895 * @q: videobuf2 queue
1896 * @b: buffer structure passed from userspace to vidioc_qbuf handler
1897 * in driver
1898 *
1899 * Should be called from vidioc_qbuf ioctl handler of a driver.
1900 * This function:
1901 * 1) verifies the passed buffer,
1902 * 2) if necessary, calls buf_prepare callback in the driver (if provided), in
1903 * which driver-specific buffer initialization can be performed,
1904 * 3) if streaming is on, queues the buffer in driver by the means of buf_queue
1905 * callback for processing.
1906 *
1907 * The return values from this function are intended to be directly returned
1908 * from vidioc_qbuf handler in driver.
1909 */
1910 int vb2_qbuf(struct vb2_queue *q, struct v4l2_buffer *b)
1911 {
1912 if (vb2_fileio_is_active(q)) {
1913 dprintk(1, "file io in progress\n");
1914 return -EBUSY;
1915 }
1916
1917 return vb2_internal_qbuf(q, b);
1918 }
1919 EXPORT_SYMBOL_GPL(vb2_qbuf);
1920
1921 /**
1922 * __vb2_wait_for_done_vb() - wait for a buffer to become available
1923 * for dequeuing
1924 *
1925 * Will sleep if required for nonblocking == false.
1926 */
1927 static int __vb2_wait_for_done_vb(struct vb2_queue *q, int nonblocking)
1928 {
1929 /*
1930 * All operations on vb_done_list are performed under done_lock
1931 * spinlock protection. However, buffers may be removed from
1932 * it and returned to userspace only while holding both driver's
1933 * lock and the done_lock spinlock. Thus we can be sure that as
1934 * long as we hold the driver's lock, the list will remain not
1935 * empty if list_empty() check succeeds.
1936 */
1937
1938 for (;;) {
1939 int ret;
1940
1941 if (!q->streaming) {
1942 dprintk(1, "streaming off, will not wait for buffers\n");
1943 return -EINVAL;
1944 }
1945
1946 if (q->error) {
1947 dprintk(1, "Queue in error state, will not wait for buffers\n");
1948 return -EIO;
1949 }
1950
1951 if (q->last_buffer_dequeued) {
1952 dprintk(3, "last buffer dequeued already, will not wait for buffers\n");
1953 return -EPIPE;
1954 }
1955
1956 if (!list_empty(&q->done_list)) {
1957 /*
1958 * Found a buffer that we were waiting for.
1959 */
1960 break;
1961 }
1962
1963 if (nonblocking) {
1964 dprintk(1, "nonblocking and no buffers to dequeue, "
1965 "will not wait\n");
1966 return -EAGAIN;
1967 }
1968
1969 /*
1970 * We are streaming and blocking, wait for another buffer to
1971 * become ready or for streamoff. Driver's lock is released to
1972 * allow streamoff or qbuf to be called while waiting.
1973 */
1974 call_void_qop(q, wait_prepare, q);
1975
1976 /*
1977 * All locks have been released, it is safe to sleep now.
1978 */
1979 dprintk(3, "will sleep waiting for buffers\n");
1980 ret = wait_event_interruptible(q->done_wq,
1981 !list_empty(&q->done_list) || !q->streaming ||
1982 q->error);
1983
1984 /*
1985 * We need to reevaluate both conditions again after reacquiring
1986 * the locks or return an error if one occurred.
1987 */
1988 call_void_qop(q, wait_finish, q);
1989 if (ret) {
1990 dprintk(1, "sleep was interrupted\n");
1991 return ret;
1992 }
1993 }
1994 return 0;
1995 }
1996
1997 /**
1998 * __vb2_get_done_vb() - get a buffer ready for dequeuing
1999 *
2000 * Will sleep if required for nonblocking == false.
2001 */
2002 static int __vb2_get_done_vb(struct vb2_queue *q, struct vb2_buffer **vb,
2003 struct v4l2_buffer *b, int nonblocking)
2004 {
2005 unsigned long flags;
2006 int ret;
2007
2008 /*
2009 * Wait for at least one buffer to become available on the done_list.
2010 */
2011 ret = __vb2_wait_for_done_vb(q, nonblocking);
2012 if (ret)
2013 return ret;
2014
2015 /*
2016 * Driver's lock has been held since we last verified that done_list
2017 * is not empty, so no need for another list_empty(done_list) check.
2018 */
2019 spin_lock_irqsave(&q->done_lock, flags);
2020 *vb = list_first_entry(&q->done_list, struct vb2_buffer, done_entry);
2021 /*
2022 * Only remove the buffer from done_list if v4l2_buffer can handle all
2023 * the planes.
2024 */
2025 ret = __verify_planes_array(*vb, b);
2026 if (!ret)
2027 list_del(&(*vb)->done_entry);
2028 spin_unlock_irqrestore(&q->done_lock, flags);
2029
2030 return ret;
2031 }
2032
2033 /**
2034 * vb2_wait_for_all_buffers() - wait until all buffers are given back to vb2
2035 * @q: videobuf2 queue
2036 *
2037 * This function will wait until all buffers that have been given to the driver
2038 * by buf_queue() are given back to vb2 with vb2_buffer_done(). It doesn't call
2039 * wait_prepare, wait_finish pair. It is intended to be called with all locks
2040 * taken, for example from stop_streaming() callback.
2041 */
2042 int vb2_wait_for_all_buffers(struct vb2_queue *q)
2043 {
2044 if (!q->streaming) {
2045 dprintk(1, "streaming off, will not wait for buffers\n");
2046 return -EINVAL;
2047 }
2048
2049 if (q->start_streaming_called)
2050 wait_event(q->done_wq, !atomic_read(&q->owned_by_drv_count));
2051 return 0;
2052 }
2053 EXPORT_SYMBOL_GPL(vb2_wait_for_all_buffers);
2054
2055 /**
2056 * __vb2_dqbuf() - bring back the buffer to the DEQUEUED state
2057 */
2058 static void __vb2_dqbuf(struct vb2_buffer *vb)
2059 {
2060 struct vb2_queue *q = vb->vb2_queue;
2061 unsigned int i;
2062
2063 /* nothing to do if the buffer is already dequeued */
2064 if (vb->state == VB2_BUF_STATE_DEQUEUED)
2065 return;
2066
2067 vb->state = VB2_BUF_STATE_DEQUEUED;
2068
2069 /* unmap DMABUF buffer */
2070 if (q->memory == V4L2_MEMORY_DMABUF)
2071 for (i = 0; i < vb->num_planes; ++i) {
2072 if (!vb->planes[i].dbuf_mapped)
2073 continue;
2074 call_void_memop(vb, unmap_dmabuf, vb->planes[i].mem_priv);
2075 vb->planes[i].dbuf_mapped = 0;
2076 }
2077 }
2078
2079 static int vb2_internal_dqbuf(struct vb2_queue *q, struct v4l2_buffer *b, bool nonblocking)
2080 {
2081 struct vb2_buffer *vb = NULL;
2082 int ret;
2083
2084 if (b->type != q->type) {
2085 dprintk(1, "invalid buffer type\n");
2086 return -EINVAL;
2087 }
2088 ret = __vb2_get_done_vb(q, &vb, b, nonblocking);
2089 if (ret < 0)
2090 return ret;
2091
2092 switch (vb->state) {
2093 case VB2_BUF_STATE_DONE:
2094 dprintk(3, "returning done buffer\n");
2095 break;
2096 case VB2_BUF_STATE_ERROR:
2097 dprintk(3, "returning done buffer with errors\n");
2098 break;
2099 default:
2100 dprintk(1, "invalid buffer state\n");
2101 return -EINVAL;
2102 }
2103
2104 call_void_vb_qop(vb, buf_finish, vb);
2105
2106 /* Fill buffer information for the userspace */
2107 __fill_v4l2_buffer(vb, b);
2108 /* Remove from videobuf queue */
2109 list_del(&vb->queued_entry);
2110 q->queued_count--;
2111 if (!V4L2_TYPE_IS_OUTPUT(q->type) &&
2112 vb->v4l2_buf.flags & V4L2_BUF_FLAG_LAST)
2113 q->last_buffer_dequeued = true;
2114 /* go back to dequeued state */
2115 __vb2_dqbuf(vb);
2116
2117 dprintk(1, "dqbuf of buffer %d, with state %d\n",
2118 vb->v4l2_buf.index, vb->state);
2119
2120 return 0;
2121 }
2122
2123 /**
2124 * vb2_dqbuf() - Dequeue a buffer to the userspace
2125 * @q: videobuf2 queue
2126 * @b: buffer structure passed from userspace to vidioc_dqbuf handler
2127 * in driver
2128 * @nonblocking: if true, this call will not sleep waiting for a buffer if no
2129 * buffers ready for dequeuing are present. Normally the driver
2130 * would be passing (file->f_flags & O_NONBLOCK) here
2131 *
2132 * Should be called from vidioc_dqbuf ioctl handler of a driver.
2133 * This function:
2134 * 1) verifies the passed buffer,
2135 * 2) calls buf_finish callback in the driver (if provided), in which
2136 * driver can perform any additional operations that may be required before
2137 * returning the buffer to userspace, such as cache sync,
2138 * 3) the buffer struct members are filled with relevant information for
2139 * the userspace.
2140 *
2141 * The return values from this function are intended to be directly returned
2142 * from vidioc_dqbuf handler in driver.
2143 */
2144 int vb2_dqbuf(struct vb2_queue *q, struct v4l2_buffer *b, bool nonblocking)
2145 {
2146 if (vb2_fileio_is_active(q)) {
2147 dprintk(1, "file io in progress\n");
2148 return -EBUSY;
2149 }
2150 return vb2_internal_dqbuf(q, b, nonblocking);
2151 }
2152 EXPORT_SYMBOL_GPL(vb2_dqbuf);
2153
2154 /**
2155 * __vb2_queue_cancel() - cancel and stop (pause) streaming
2156 *
2157 * Removes all queued buffers from driver's queue and all buffers queued by
2158 * userspace from videobuf's queue. Returns to state after reqbufs.
2159 */
2160 static void __vb2_queue_cancel(struct vb2_queue *q)
2161 {
2162 unsigned int i;
2163
2164 /*
2165 * Tell driver to stop all transactions and release all queued
2166 * buffers.
2167 */
2168 if (q->start_streaming_called)
2169 call_void_qop(q, stop_streaming, q);
2170
2171 /*
2172 * If you see this warning, then the driver isn't cleaning up properly
2173 * in stop_streaming(). See the stop_streaming() documentation in
2174 * videobuf2-core.h for more information how buffers should be returned
2175 * to vb2 in stop_streaming().
2176 */
2177 if (WARN_ON(atomic_read(&q->owned_by_drv_count))) {
2178 for (i = 0; i < q->num_buffers; ++i)
2179 if (q->bufs[i]->state == VB2_BUF_STATE_ACTIVE)
2180 vb2_buffer_done(q->bufs[i], VB2_BUF_STATE_ERROR);
2181 /* Must be zero now */
2182 WARN_ON(atomic_read(&q->owned_by_drv_count));
2183 }
2184
2185 q->streaming = 0;
2186 q->start_streaming_called = 0;
2187 q->queued_count = 0;
2188 q->error = 0;
2189
2190 /*
2191 * Remove all buffers from videobuf's list...
2192 */
2193 INIT_LIST_HEAD(&q->queued_list);
2194 /*
2195 * ...and done list; userspace will not receive any buffers it
2196 * has not already dequeued before initiating cancel.
2197 */
2198 INIT_LIST_HEAD(&q->done_list);
2199 atomic_set(&q->owned_by_drv_count, 0);
2200 wake_up_all(&q->done_wq);
2201
2202 /*
2203 * Reinitialize all buffers for next use.
2204 * Make sure to call buf_finish for any queued buffers. Normally
2205 * that's done in dqbuf, but that's not going to happen when we
2206 * cancel the whole queue. Note: this code belongs here, not in
2207 * __vb2_dqbuf() since in vb2_internal_dqbuf() there is a critical
2208 * call to __fill_v4l2_buffer() after buf_finish(). That order can't
2209 * be changed, so we can't move the buf_finish() to __vb2_dqbuf().
2210 */
2211 for (i = 0; i < q->num_buffers; ++i) {
2212 struct vb2_buffer *vb = q->bufs[i];
2213
2214 if (vb->state != VB2_BUF_STATE_DEQUEUED) {
2215 vb->state = VB2_BUF_STATE_PREPARED;
2216 call_void_vb_qop(vb, buf_finish, vb);
2217 }
2218 __vb2_dqbuf(vb);
2219 }
2220 }
2221
2222 static int vb2_internal_streamon(struct vb2_queue *q, enum v4l2_buf_type type)
2223 {
2224 int ret;
2225
2226 if (type != q->type) {
2227 dprintk(1, "invalid stream type\n");
2228 return -EINVAL;
2229 }
2230
2231 if (q->streaming) {
2232 dprintk(3, "already streaming\n");
2233 return 0;
2234 }
2235
2236 if (!q->num_buffers) {
2237 dprintk(1, "no buffers have been allocated\n");
2238 return -EINVAL;
2239 }
2240
2241 if (q->num_buffers < q->min_buffers_needed) {
2242 dprintk(1, "need at least %u allocated buffers\n",
2243 q->min_buffers_needed);
2244 return -EINVAL;
2245 }
2246
2247 /*
2248 * Tell driver to start streaming provided sufficient buffers
2249 * are available.
2250 */
2251 if (q->queued_count >= q->min_buffers_needed) {
2252 ret = vb2_start_streaming(q);
2253 if (ret) {
2254 __vb2_queue_cancel(q);
2255 return ret;
2256 }
2257 }
2258
2259 q->streaming = 1;
2260
2261 dprintk(3, "successful\n");
2262 return 0;
2263 }
2264
2265 /**
2266 * vb2_queue_error() - signal a fatal error on the queue
2267 * @q: videobuf2 queue
2268 *
2269 * Flag that a fatal unrecoverable error has occurred and wake up all processes
2270 * waiting on the queue. Polling will now set POLLERR and queuing and dequeuing
2271 * buffers will return -EIO.
2272 *
2273 * The error flag will be cleared when cancelling the queue, either from
2274 * vb2_streamoff or vb2_queue_release. Drivers should thus not call this
2275 * function before starting the stream, otherwise the error flag will remain set
2276 * until the queue is released when closing the device node.
2277 */
2278 void vb2_queue_error(struct vb2_queue *q)
2279 {
2280 q->error = 1;
2281
2282 wake_up_all(&q->done_wq);
2283 }
2284 EXPORT_SYMBOL_GPL(vb2_queue_error);
2285
2286 /**
2287 * vb2_streamon - start streaming
2288 * @q: videobuf2 queue
2289 * @type: type argument passed from userspace to vidioc_streamon handler
2290 *
2291 * Should be called from vidioc_streamon handler of a driver.
2292 * This function:
2293 * 1) verifies current state
2294 * 2) passes any previously queued buffers to the driver and starts streaming
2295 *
2296 * The return values from this function are intended to be directly returned
2297 * from vidioc_streamon handler in the driver.
2298 */
2299 int vb2_streamon(struct vb2_queue *q, enum v4l2_buf_type type)
2300 {
2301 if (vb2_fileio_is_active(q)) {
2302 dprintk(1, "file io in progress\n");
2303 return -EBUSY;
2304 }
2305 return vb2_internal_streamon(q, type);
2306 }
2307 EXPORT_SYMBOL_GPL(vb2_streamon);
2308
2309 static int vb2_internal_streamoff(struct vb2_queue *q, enum v4l2_buf_type type)
2310 {
2311 if (type != q->type) {
2312 dprintk(1, "invalid stream type\n");
2313 return -EINVAL;
2314 }
2315
2316 /*
2317 * Cancel will pause streaming and remove all buffers from the driver
2318 * and videobuf, effectively returning control over them to userspace.
2319 *
2320 * Note that we do this even if q->streaming == 0: if you prepare or
2321 * queue buffers, and then call streamoff without ever having called
2322 * streamon, you would still expect those buffers to be returned to
2323 * their normal dequeued state.
2324 */
2325 __vb2_queue_cancel(q);
2326 q->waiting_for_buffers = !V4L2_TYPE_IS_OUTPUT(q->type);
2327 q->last_buffer_dequeued = false;
2328
2329 dprintk(3, "successful\n");
2330 return 0;
2331 }
2332
2333 /**
2334 * vb2_streamoff - stop streaming
2335 * @q: videobuf2 queue
2336 * @type: type argument passed from userspace to vidioc_streamoff handler
2337 *
2338 * Should be called from vidioc_streamoff handler of a driver.
2339 * This function:
2340 * 1) verifies current state,
2341 * 2) stop streaming and dequeues any queued buffers, including those previously
2342 * passed to the driver (after waiting for the driver to finish).
2343 *
2344 * This call can be used for pausing playback.
2345 * The return values from this function are intended to be directly returned
2346 * from vidioc_streamoff handler in the driver
2347 */
2348 int vb2_streamoff(struct vb2_queue *q, enum v4l2_buf_type type)
2349 {
2350 if (vb2_fileio_is_active(q)) {
2351 dprintk(1, "file io in progress\n");
2352 return -EBUSY;
2353 }
2354 return vb2_internal_streamoff(q, type);
2355 }
2356 EXPORT_SYMBOL_GPL(vb2_streamoff);
2357
2358 /**
2359 * __find_plane_by_offset() - find plane associated with the given offset off
2360 */
2361 static int __find_plane_by_offset(struct vb2_queue *q, unsigned long off,
2362 unsigned int *_buffer, unsigned int *_plane)
2363 {
2364 struct vb2_buffer *vb;
2365 unsigned int buffer, plane;
2366
2367 /*
2368 * Go over all buffers and their planes, comparing the given offset
2369 * with an offset assigned to each plane. If a match is found,
2370 * return its buffer and plane numbers.
2371 */
2372 for (buffer = 0; buffer < q->num_buffers; ++buffer) {
2373 vb = q->bufs[buffer];
2374
2375 for (plane = 0; plane < vb->num_planes; ++plane) {
2376 if (vb->v4l2_planes[plane].m.mem_offset == off) {
2377 *_buffer = buffer;
2378 *_plane = plane;
2379 return 0;
2380 }
2381 }
2382 }
2383
2384 return -EINVAL;
2385 }
2386
2387 /**
2388 * vb2_expbuf() - Export a buffer as a file descriptor
2389 * @q: videobuf2 queue
2390 * @eb: export buffer structure passed from userspace to vidioc_expbuf
2391 * handler in driver
2392 *
2393 * The return values from this function are intended to be directly returned
2394 * from vidioc_expbuf handler in driver.
2395 */
2396 int vb2_expbuf(struct vb2_queue *q, struct v4l2_exportbuffer *eb)
2397 {
2398 struct vb2_buffer *vb = NULL;
2399 struct vb2_plane *vb_plane;
2400 int ret;
2401 struct dma_buf *dbuf;
2402
2403 if (q->memory != V4L2_MEMORY_MMAP) {
2404 dprintk(1, "queue is not currently set up for mmap\n");
2405 return -EINVAL;
2406 }
2407
2408 if (!q->mem_ops->get_dmabuf) {
2409 dprintk(1, "queue does not support DMA buffer exporting\n");
2410 return -EINVAL;
2411 }
2412
2413 if (eb->flags & ~(O_CLOEXEC | O_ACCMODE)) {
2414 dprintk(1, "queue does support only O_CLOEXEC and access mode flags\n");
2415 return -EINVAL;
2416 }
2417
2418 if (eb->type != q->type) {
2419 dprintk(1, "invalid buffer type\n");
2420 return -EINVAL;
2421 }
2422
2423 if (eb->index >= q->num_buffers) {
2424 dprintk(1, "buffer index out of range\n");
2425 return -EINVAL;
2426 }
2427
2428 vb = q->bufs[eb->index];
2429
2430 if (eb->plane >= vb->num_planes) {
2431 dprintk(1, "buffer plane out of range\n");
2432 return -EINVAL;
2433 }
2434
2435 if (vb2_fileio_is_active(q)) {
2436 dprintk(1, "expbuf: file io in progress\n");
2437 return -EBUSY;
2438 }
2439
2440 vb_plane = &vb->planes[eb->plane];
2441
2442 dbuf = call_ptr_memop(vb, get_dmabuf, vb_plane->mem_priv, eb->flags & O_ACCMODE);
2443 if (IS_ERR_OR_NULL(dbuf)) {
2444 dprintk(1, "failed to export buffer %d, plane %d\n",
2445 eb->index, eb->plane);
2446 return -EINVAL;
2447 }
2448
2449 ret = dma_buf_fd(dbuf, eb->flags & ~O_ACCMODE);
2450 if (ret < 0) {
2451 dprintk(3, "buffer %d, plane %d failed to export (%d)\n",
2452 eb->index, eb->plane, ret);
2453 dma_buf_put(dbuf);
2454 return ret;
2455 }
2456
2457 dprintk(3, "buffer %d, plane %d exported as %d descriptor\n",
2458 eb->index, eb->plane, ret);
2459 eb->fd = ret;
2460
2461 return 0;
2462 }
2463 EXPORT_SYMBOL_GPL(vb2_expbuf);
2464
2465 /**
2466 * vb2_mmap() - map video buffers into application address space
2467 * @q: videobuf2 queue
2468 * @vma: vma passed to the mmap file operation handler in the driver
2469 *
2470 * Should be called from mmap file operation handler of a driver.
2471 * This function maps one plane of one of the available video buffers to
2472 * userspace. To map whole video memory allocated on reqbufs, this function
2473 * has to be called once per each plane per each buffer previously allocated.
2474 *
2475 * When the userspace application calls mmap, it passes to it an offset returned
2476 * to it earlier by the means of vidioc_querybuf handler. That offset acts as
2477 * a "cookie", which is then used to identify the plane to be mapped.
2478 * This function finds a plane with a matching offset and a mapping is performed
2479 * by the means of a provided memory operation.
2480 *
2481 * The return values from this function are intended to be directly returned
2482 * from the mmap handler in driver.
2483 */
2484 int vb2_mmap(struct vb2_queue *q, struct vm_area_struct *vma)
2485 {
2486 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
2487 struct vb2_buffer *vb;
2488 unsigned int buffer = 0, plane = 0;
2489 int ret;
2490 unsigned long length;
2491
2492 if (q->memory != V4L2_MEMORY_MMAP) {
2493 dprintk(1, "queue is not currently set up for mmap\n");
2494 return -EINVAL;
2495 }
2496
2497 /*
2498 * Check memory area access mode.
2499 */
2500 if (!(vma->vm_flags & VM_SHARED)) {
2501 dprintk(1, "invalid vma flags, VM_SHARED needed\n");
2502 return -EINVAL;
2503 }
2504 if (V4L2_TYPE_IS_OUTPUT(q->type)) {
2505 if (!(vma->vm_flags & VM_WRITE)) {
2506 dprintk(1, "invalid vma flags, VM_WRITE needed\n");
2507 return -EINVAL;
2508 }
2509 } else {
2510 if (!(vma->vm_flags & VM_READ)) {
2511 dprintk(1, "invalid vma flags, VM_READ needed\n");
2512 return -EINVAL;
2513 }
2514 }
2515 if (vb2_fileio_is_active(q)) {
2516 dprintk(1, "mmap: file io in progress\n");
2517 return -EBUSY;
2518 }
2519
2520 /*
2521 * Find the plane corresponding to the offset passed by userspace.
2522 */
2523 ret = __find_plane_by_offset(q, off, &buffer, &plane);
2524 if (ret)
2525 return ret;
2526
2527 vb = q->bufs[buffer];
2528
2529 /*
2530 * MMAP requires page_aligned buffers.
2531 * The buffer length was page_aligned at __vb2_buf_mem_alloc(),
2532 * so, we need to do the same here.
2533 */
2534 length = PAGE_ALIGN(vb->v4l2_planes[plane].length);
2535 if (length < (vma->vm_end - vma->vm_start)) {
2536 dprintk(1,
2537 "MMAP invalid, as it would overflow buffer length\n");
2538 return -EINVAL;
2539 }
2540
2541 mutex_lock(&q->mmap_lock);
2542 ret = call_memop(vb, mmap, vb->planes[plane].mem_priv, vma);
2543 mutex_unlock(&q->mmap_lock);
2544 if (ret)
2545 return ret;
2546
2547 dprintk(3, "buffer %d, plane %d successfully mapped\n", buffer, plane);
2548 return 0;
2549 }
2550 EXPORT_SYMBOL_GPL(vb2_mmap);
2551
2552 #ifndef CONFIG_MMU
2553 unsigned long vb2_get_unmapped_area(struct vb2_queue *q,
2554 unsigned long addr,
2555 unsigned long len,
2556 unsigned long pgoff,
2557 unsigned long flags)
2558 {
2559 unsigned long off = pgoff << PAGE_SHIFT;
2560 struct vb2_buffer *vb;
2561 unsigned int buffer, plane;
2562 void *vaddr;
2563 int ret;
2564
2565 if (q->memory != V4L2_MEMORY_MMAP) {
2566 dprintk(1, "queue is not currently set up for mmap\n");
2567 return -EINVAL;
2568 }
2569
2570 /*
2571 * Find the plane corresponding to the offset passed by userspace.
2572 */
2573 ret = __find_plane_by_offset(q, off, &buffer, &plane);
2574 if (ret)
2575 return ret;
2576
2577 vb = q->bufs[buffer];
2578
2579 vaddr = vb2_plane_vaddr(vb, plane);
2580 return vaddr ? (unsigned long)vaddr : -EINVAL;
2581 }
2582 EXPORT_SYMBOL_GPL(vb2_get_unmapped_area);
2583 #endif
2584
2585 static int __vb2_init_fileio(struct vb2_queue *q, int read);
2586 static int __vb2_cleanup_fileio(struct vb2_queue *q);
2587
2588 /**
2589 * vb2_poll() - implements poll userspace operation
2590 * @q: videobuf2 queue
2591 * @file: file argument passed to the poll file operation handler
2592 * @wait: wait argument passed to the poll file operation handler
2593 *
2594 * This function implements poll file operation handler for a driver.
2595 * For CAPTURE queues, if a buffer is ready to be dequeued, the userspace will
2596 * be informed that the file descriptor of a video device is available for
2597 * reading.
2598 * For OUTPUT queues, if a buffer is ready to be dequeued, the file descriptor
2599 * will be reported as available for writing.
2600 *
2601 * If the driver uses struct v4l2_fh, then vb2_poll() will also check for any
2602 * pending events.
2603 *
2604 * The return values from this function are intended to be directly returned
2605 * from poll handler in driver.
2606 */
2607 unsigned int vb2_poll(struct vb2_queue *q, struct file *file, poll_table *wait)
2608 {
2609 struct video_device *vfd = video_devdata(file);
2610 unsigned long req_events = poll_requested_events(wait);
2611 struct vb2_buffer *vb = NULL;
2612 unsigned int res = 0;
2613 unsigned long flags;
2614
2615 if (test_bit(V4L2_FL_USES_V4L2_FH, &vfd->flags)) {
2616 struct v4l2_fh *fh = file->private_data;
2617
2618 if (v4l2_event_pending(fh))
2619 res = POLLPRI;
2620 else if (req_events & POLLPRI)
2621 poll_wait(file, &fh->wait, wait);
2622 }
2623
2624 if (!V4L2_TYPE_IS_OUTPUT(q->type) && !(req_events & (POLLIN | POLLRDNORM)))
2625 return res;
2626 if (V4L2_TYPE_IS_OUTPUT(q->type) && !(req_events & (POLLOUT | POLLWRNORM)))
2627 return res;
2628
2629 /*
2630 * Start file I/O emulator only if streaming API has not been used yet.
2631 */
2632 if (q->num_buffers == 0 && !vb2_fileio_is_active(q)) {
2633 if (!V4L2_TYPE_IS_OUTPUT(q->type) && (q->io_modes & VB2_READ) &&
2634 (req_events & (POLLIN | POLLRDNORM))) {
2635 if (__vb2_init_fileio(q, 1))
2636 return res | POLLERR;
2637 }
2638 if (V4L2_TYPE_IS_OUTPUT(q->type) && (q->io_modes & VB2_WRITE) &&
2639 (req_events & (POLLOUT | POLLWRNORM))) {
2640 if (__vb2_init_fileio(q, 0))
2641 return res | POLLERR;
2642 /*
2643 * Write to OUTPUT queue can be done immediately.
2644 */
2645 return res | POLLOUT | POLLWRNORM;
2646 }
2647 }
2648
2649 /*
2650 * There is nothing to wait for if the queue isn't streaming, or if the
2651 * error flag is set.
2652 */
2653 if (!vb2_is_streaming(q) || q->error)
2654 return res | POLLERR;
2655 /*
2656 * For compatibility with vb1: if QBUF hasn't been called yet, then
2657 * return POLLERR as well. This only affects capture queues, output
2658 * queues will always initialize waiting_for_buffers to false.
2659 */
2660 if (q->waiting_for_buffers)
2661 return res | POLLERR;
2662
2663 /*
2664 * For output streams you can write as long as there are fewer buffers
2665 * queued than there are buffers available.
2666 */
2667 if (V4L2_TYPE_IS_OUTPUT(q->type) && q->queued_count < q->num_buffers)
2668 return res | POLLOUT | POLLWRNORM;
2669
2670 if (list_empty(&q->done_list)) {
2671 /*
2672 * If the last buffer was dequeued from a capture queue,
2673 * return immediately. DQBUF will return -EPIPE.
2674 */
2675 if (q->last_buffer_dequeued)
2676 return res | POLLIN | POLLRDNORM;
2677
2678 poll_wait(file, &q->done_wq, wait);
2679 }
2680
2681 /*
2682 * Take first buffer available for dequeuing.
2683 */
2684 spin_lock_irqsave(&q->done_lock, flags);
2685 if (!list_empty(&q->done_list))
2686 vb = list_first_entry(&q->done_list, struct vb2_buffer,
2687 done_entry);
2688 spin_unlock_irqrestore(&q->done_lock, flags);
2689
2690 if (vb && (vb->state == VB2_BUF_STATE_DONE
2691 || vb->state == VB2_BUF_STATE_ERROR)) {
2692 return (V4L2_TYPE_IS_OUTPUT(q->type)) ?
2693 res | POLLOUT | POLLWRNORM :
2694 res | POLLIN | POLLRDNORM;
2695 }
2696 return res;
2697 }
2698 EXPORT_SYMBOL_GPL(vb2_poll);
2699
2700 /**
2701 * vb2_queue_init() - initialize a videobuf2 queue
2702 * @q: videobuf2 queue; this structure should be allocated in driver
2703 *
2704 * The vb2_queue structure should be allocated by the driver. The driver is
2705 * responsible of clearing it's content and setting initial values for some
2706 * required entries before calling this function.
2707 * q->ops, q->mem_ops, q->type and q->io_modes are mandatory. Please refer
2708 * to the struct vb2_queue description in include/media/videobuf2-core.h
2709 * for more information.
2710 */
2711 int vb2_queue_init(struct vb2_queue *q)
2712 {
2713 /*
2714 * Sanity check
2715 */
2716 if (WARN_ON(!q) ||
2717 WARN_ON(!q->ops) ||
2718 WARN_ON(!q->mem_ops) ||
2719 WARN_ON(!q->type) ||
2720 WARN_ON(!q->io_modes) ||
2721 WARN_ON(!q->ops->queue_setup) ||
2722 WARN_ON(!q->ops->buf_queue) ||
2723 WARN_ON(q->timestamp_flags &
2724 ~(V4L2_BUF_FLAG_TIMESTAMP_MASK |
2725 V4L2_BUF_FLAG_TSTAMP_SRC_MASK)))
2726 return -EINVAL;
2727
2728 /* Warn that the driver should choose an appropriate timestamp type */
2729 WARN_ON((q->timestamp_flags & V4L2_BUF_FLAG_TIMESTAMP_MASK) ==
2730 V4L2_BUF_FLAG_TIMESTAMP_UNKNOWN);
2731
2732 INIT_LIST_HEAD(&q->queued_list);
2733 INIT_LIST_HEAD(&q->done_list);
2734 spin_lock_init(&q->done_lock);
2735 mutex_init(&q->mmap_lock);
2736 init_waitqueue_head(&q->done_wq);
2737
2738 if (q->buf_struct_size == 0)
2739 q->buf_struct_size = sizeof(struct vb2_buffer);
2740
2741 return 0;
2742 }
2743 EXPORT_SYMBOL_GPL(vb2_queue_init);
2744
2745 /**
2746 * vb2_queue_release() - stop streaming, release the queue and free memory
2747 * @q: videobuf2 queue
2748 *
2749 * This function stops streaming and performs necessary clean ups, including
2750 * freeing video buffer memory. The driver is responsible for freeing
2751 * the vb2_queue structure itself.
2752 */
2753 void vb2_queue_release(struct vb2_queue *q)
2754 {
2755 __vb2_cleanup_fileio(q);
2756 __vb2_queue_cancel(q);
2757 mutex_lock(&q->mmap_lock);
2758 __vb2_queue_free(q, q->num_buffers);
2759 mutex_unlock(&q->mmap_lock);
2760 }
2761 EXPORT_SYMBOL_GPL(vb2_queue_release);
2762
2763 /**
2764 * struct vb2_fileio_buf - buffer context used by file io emulator
2765 *
2766 * vb2 provides a compatibility layer and emulator of file io (read and
2767 * write) calls on top of streaming API. This structure is used for
2768 * tracking context related to the buffers.
2769 */
2770 struct vb2_fileio_buf {
2771 void *vaddr;
2772 unsigned int size;
2773 unsigned int pos;
2774 unsigned int queued:1;
2775 };
2776
2777 /**
2778 * struct vb2_fileio_data - queue context used by file io emulator
2779 *
2780 * @cur_index: the index of the buffer currently being read from or
2781 * written to. If equal to q->num_buffers then a new buffer
2782 * must be dequeued.
2783 * @initial_index: in the read() case all buffers are queued up immediately
2784 * in __vb2_init_fileio() and __vb2_perform_fileio() just cycles
2785 * buffers. However, in the write() case no buffers are initially
2786 * queued, instead whenever a buffer is full it is queued up by
2787 * __vb2_perform_fileio(). Only once all available buffers have
2788 * been queued up will __vb2_perform_fileio() start to dequeue
2789 * buffers. This means that initially __vb2_perform_fileio()
2790 * needs to know what buffer index to use when it is queuing up
2791 * the buffers for the first time. That initial index is stored
2792 * in this field. Once it is equal to q->num_buffers all
2793 * available buffers have been queued and __vb2_perform_fileio()
2794 * should start the normal dequeue/queue cycle.
2795 *
2796 * vb2 provides a compatibility layer and emulator of file io (read and
2797 * write) calls on top of streaming API. For proper operation it required
2798 * this structure to save the driver state between each call of the read
2799 * or write function.
2800 */
2801 struct vb2_fileio_data {
2802 struct v4l2_requestbuffers req;
2803 struct v4l2_plane p;
2804 struct v4l2_buffer b;
2805 struct vb2_fileio_buf bufs[VIDEO_MAX_FRAME];
2806 unsigned int cur_index;
2807 unsigned int initial_index;
2808 unsigned int q_count;
2809 unsigned int dq_count;
2810 unsigned read_once:1;
2811 unsigned write_immediately:1;
2812 };
2813
2814 /**
2815 * __vb2_init_fileio() - initialize file io emulator
2816 * @q: videobuf2 queue
2817 * @read: mode selector (1 means read, 0 means write)
2818 */
2819 static int __vb2_init_fileio(struct vb2_queue *q, int read)
2820 {
2821 struct vb2_fileio_data *fileio;
2822 int i, ret;
2823 unsigned int count = 0;
2824
2825 /*
2826 * Sanity check
2827 */
2828 if (WARN_ON((read && !(q->io_modes & VB2_READ)) ||
2829 (!read && !(q->io_modes & VB2_WRITE))))
2830 return -EINVAL;
2831
2832 /*
2833 * Check if device supports mapping buffers to kernel virtual space.
2834 */
2835 if (!q->mem_ops->vaddr)
2836 return -EBUSY;
2837
2838 /*
2839 * Check if streaming api has not been already activated.
2840 */
2841 if (q->streaming || q->num_buffers > 0)
2842 return -EBUSY;
2843
2844 /*
2845 * Start with count 1, driver can increase it in queue_setup()
2846 */
2847 count = 1;
2848
2849 dprintk(3, "setting up file io: mode %s, count %d, read_once %d, write_immediately %d\n",
2850 (read) ? "read" : "write", count, q->fileio_read_once,
2851 q->fileio_write_immediately);
2852
2853 fileio = kzalloc(sizeof(struct vb2_fileio_data), GFP_KERNEL);
2854 if (fileio == NULL)
2855 return -ENOMEM;
2856
2857 fileio->read_once = q->fileio_read_once;
2858 fileio->write_immediately = q->fileio_write_immediately;
2859
2860 /*
2861 * Request buffers and use MMAP type to force driver
2862 * to allocate buffers by itself.
2863 */
2864 fileio->req.count = count;
2865 fileio->req.memory = V4L2_MEMORY_MMAP;
2866 fileio->req.type = q->type;
2867 q->fileio = fileio;
2868 ret = __reqbufs(q, &fileio->req);
2869 if (ret)
2870 goto err_kfree;
2871
2872 /*
2873 * Check if plane_count is correct
2874 * (multiplane buffers are not supported).
2875 */
2876 if (q->bufs[0]->num_planes != 1) {
2877 ret = -EBUSY;
2878 goto err_reqbufs;
2879 }
2880
2881 /*
2882 * Get kernel address of each buffer.
2883 */
2884 for (i = 0; i < q->num_buffers; i++) {
2885 fileio->bufs[i].vaddr = vb2_plane_vaddr(q->bufs[i], 0);
2886 if (fileio->bufs[i].vaddr == NULL) {
2887 ret = -EINVAL;
2888 goto err_reqbufs;
2889 }
2890 fileio->bufs[i].size = vb2_plane_size(q->bufs[i], 0);
2891 }
2892
2893 /*
2894 * Read mode requires pre queuing of all buffers.
2895 */
2896 if (read) {
2897 bool is_multiplanar = V4L2_TYPE_IS_MULTIPLANAR(q->type);
2898
2899 /*
2900 * Queue all buffers.
2901 */
2902 for (i = 0; i < q->num_buffers; i++) {
2903 struct v4l2_buffer *b = &fileio->b;
2904
2905 memset(b, 0, sizeof(*b));
2906 b->type = q->type;
2907 if (is_multiplanar) {
2908 memset(&fileio->p, 0, sizeof(fileio->p));
2909 b->m.planes = &fileio->p;
2910 b->length = 1;
2911 }
2912 b->memory = q->memory;
2913 b->index = i;
2914 ret = vb2_internal_qbuf(q, b);
2915 if (ret)
2916 goto err_reqbufs;
2917 fileio->bufs[i].queued = 1;
2918 }
2919 /*
2920 * All buffers have been queued, so mark that by setting
2921 * initial_index to q->num_buffers
2922 */
2923 fileio->initial_index = q->num_buffers;
2924 fileio->cur_index = q->num_buffers;
2925 }
2926
2927 /*
2928 * Start streaming.
2929 */
2930 ret = vb2_internal_streamon(q, q->type);
2931 if (ret)
2932 goto err_reqbufs;
2933
2934 return ret;
2935
2936 err_reqbufs:
2937 fileio->req.count = 0;
2938 __reqbufs(q, &fileio->req);
2939
2940 err_kfree:
2941 q->fileio = NULL;
2942 kfree(fileio);
2943 return ret;
2944 }
2945
2946 /**
2947 * __vb2_cleanup_fileio() - free resourced used by file io emulator
2948 * @q: videobuf2 queue
2949 */
2950 static int __vb2_cleanup_fileio(struct vb2_queue *q)
2951 {
2952 struct vb2_fileio_data *fileio = q->fileio;
2953
2954 if (fileio) {
2955 vb2_internal_streamoff(q, q->type);
2956 q->fileio = NULL;
2957 fileio->req.count = 0;
2958 vb2_reqbufs(q, &fileio->req);
2959 kfree(fileio);
2960 dprintk(3, "file io emulator closed\n");
2961 }
2962 return 0;
2963 }
2964
2965 /**
2966 * __vb2_perform_fileio() - perform a single file io (read or write) operation
2967 * @q: videobuf2 queue
2968 * @data: pointed to target userspace buffer
2969 * @count: number of bytes to read or write
2970 * @ppos: file handle position tracking pointer
2971 * @nonblock: mode selector (1 means blocking calls, 0 means nonblocking)
2972 * @read: access mode selector (1 means read, 0 means write)
2973 */
2974 static size_t __vb2_perform_fileio(struct vb2_queue *q, char __user *data, size_t count,
2975 loff_t *ppos, int nonblock, int read)
2976 {
2977 struct vb2_fileio_data *fileio;
2978 struct vb2_fileio_buf *buf;
2979 bool is_multiplanar = V4L2_TYPE_IS_MULTIPLANAR(q->type);
2980 /*
2981 * When using write() to write data to an output video node the vb2 core
2982 * should set timestamps if V4L2_BUF_FLAG_TIMESTAMP_COPY is set. Nobody
2983 * else is able to provide this information with the write() operation.
2984 */
2985 bool set_timestamp = !read &&
2986 (q->timestamp_flags & V4L2_BUF_FLAG_TIMESTAMP_MASK) ==
2987 V4L2_BUF_FLAG_TIMESTAMP_COPY;
2988 int ret, index;
2989
2990 dprintk(3, "mode %s, offset %ld, count %zd, %sblocking\n",
2991 read ? "read" : "write", (long)*ppos, count,
2992 nonblock ? "non" : "");
2993
2994 if (!data)
2995 return -EINVAL;
2996
2997 /*
2998 * Initialize emulator on first call.
2999 */
3000 if (!vb2_fileio_is_active(q)) {
3001 ret = __vb2_init_fileio(q, read);
3002 dprintk(3, "vb2_init_fileio result: %d\n", ret);
3003 if (ret)
3004 return ret;
3005 }
3006 fileio = q->fileio;
3007
3008 /*
3009 * Check if we need to dequeue the buffer.
3010 */
3011 index = fileio->cur_index;
3012 if (index >= q->num_buffers) {
3013 /*
3014 * Call vb2_dqbuf to get buffer back.
3015 */
3016 memset(&fileio->b, 0, sizeof(fileio->b));
3017 fileio->b.type = q->type;
3018 fileio->b.memory = q->memory;
3019 if (is_multiplanar) {
3020 memset(&fileio->p, 0, sizeof(fileio->p));
3021 fileio->b.m.planes = &fileio->p;
3022 fileio->b.length = 1;
3023 }
3024 ret = vb2_internal_dqbuf(q, &fileio->b, nonblock);
3025 dprintk(5, "vb2_dqbuf result: %d\n", ret);
3026 if (ret)
3027 return ret;
3028 fileio->dq_count += 1;
3029
3030 fileio->cur_index = index = fileio->b.index;
3031 buf = &fileio->bufs[index];
3032
3033 /*
3034 * Get number of bytes filled by the driver
3035 */
3036 buf->pos = 0;
3037 buf->queued = 0;
3038 buf->size = read ? vb2_get_plane_payload(q->bufs[index], 0)
3039 : vb2_plane_size(q->bufs[index], 0);
3040 /* Compensate for data_offset on read in the multiplanar case. */
3041 if (is_multiplanar && read &&
3042 fileio->b.m.planes[0].data_offset < buf->size) {
3043 buf->pos = fileio->b.m.planes[0].data_offset;
3044 buf->size -= buf->pos;
3045 }
3046 } else {
3047 buf = &fileio->bufs[index];
3048 }
3049
3050 /*
3051 * Limit count on last few bytes of the buffer.
3052 */
3053 if (buf->pos + count > buf->size) {
3054 count = buf->size - buf->pos;
3055 dprintk(5, "reducing read count: %zd\n", count);
3056 }
3057
3058 /*
3059 * Transfer data to userspace.
3060 */
3061 dprintk(3, "copying %zd bytes - buffer %d, offset %u\n",
3062 count, index, buf->pos);
3063 if (read)
3064 ret = copy_to_user(data, buf->vaddr + buf->pos, count);
3065 else
3066 ret = copy_from_user(buf->vaddr + buf->pos, data, count);
3067 if (ret) {
3068 dprintk(3, "error copying data\n");
3069 return -EFAULT;
3070 }
3071
3072 /*
3073 * Update counters.
3074 */
3075 buf->pos += count;
3076 *ppos += count;
3077
3078 /*
3079 * Queue next buffer if required.
3080 */
3081 if (buf->pos == buf->size || (!read && fileio->write_immediately)) {
3082 /*
3083 * Check if this is the last buffer to read.
3084 */
3085 if (read && fileio->read_once && fileio->dq_count == 1) {
3086 dprintk(3, "read limit reached\n");
3087 return __vb2_cleanup_fileio(q);
3088 }
3089
3090 /*
3091 * Call vb2_qbuf and give buffer to the driver.
3092 */
3093 memset(&fileio->b, 0, sizeof(fileio->b));
3094 fileio->b.type = q->type;
3095 fileio->b.memory = q->memory;
3096 fileio->b.index = index;
3097 fileio->b.bytesused = buf->pos;
3098 if (is_multiplanar) {
3099 memset(&fileio->p, 0, sizeof(fileio->p));
3100 fileio->p.bytesused = buf->pos;
3101 fileio->b.m.planes = &fileio->p;
3102 fileio->b.length = 1;
3103 }
3104 if (set_timestamp)
3105 v4l2_get_timestamp(&fileio->b.timestamp);
3106 ret = vb2_internal_qbuf(q, &fileio->b);
3107 dprintk(5, "vb2_dbuf result: %d\n", ret);
3108 if (ret)
3109 return ret;
3110
3111 /*
3112 * Buffer has been queued, update the status
3113 */
3114 buf->pos = 0;
3115 buf->queued = 1;
3116 buf->size = vb2_plane_size(q->bufs[index], 0);
3117 fileio->q_count += 1;
3118 /*
3119 * If we are queuing up buffers for the first time, then
3120 * increase initial_index by one.
3121 */
3122 if (fileio->initial_index < q->num_buffers)
3123 fileio->initial_index++;
3124 /*
3125 * The next buffer to use is either a buffer that's going to be
3126 * queued for the first time (initial_index < q->num_buffers)
3127 * or it is equal to q->num_buffers, meaning that the next
3128 * time we need to dequeue a buffer since we've now queued up
3129 * all the 'first time' buffers.
3130 */
3131 fileio->cur_index = fileio->initial_index;
3132 }
3133
3134 /*
3135 * Return proper number of bytes processed.
3136 */
3137 if (ret == 0)
3138 ret = count;
3139 return ret;
3140 }
3141
3142 size_t vb2_read(struct vb2_queue *q, char __user *data, size_t count,
3143 loff_t *ppos, int nonblocking)
3144 {
3145 return __vb2_perform_fileio(q, data, count, ppos, nonblocking, 1);
3146 }
3147 EXPORT_SYMBOL_GPL(vb2_read);
3148
3149 size_t vb2_write(struct vb2_queue *q, const char __user *data, size_t count,
3150 loff_t *ppos, int nonblocking)
3151 {
3152 return __vb2_perform_fileio(q, (char __user *) data, count,
3153 ppos, nonblocking, 0);
3154 }
3155 EXPORT_SYMBOL_GPL(vb2_write);
3156
3157 struct vb2_threadio_data {
3158 struct task_struct *thread;
3159 vb2_thread_fnc fnc;
3160 void *priv;
3161 bool stop;
3162 };
3163
3164 static int vb2_thread(void *data)
3165 {
3166 struct vb2_queue *q = data;
3167 struct vb2_threadio_data *threadio = q->threadio;
3168 struct vb2_fileio_data *fileio = q->fileio;
3169 bool set_timestamp = false;
3170 int prequeue = 0;
3171 int index = 0;
3172 int ret = 0;
3173
3174 if (V4L2_TYPE_IS_OUTPUT(q->type)) {
3175 prequeue = q->num_buffers;
3176 set_timestamp =
3177 (q->timestamp_flags & V4L2_BUF_FLAG_TIMESTAMP_MASK) ==
3178 V4L2_BUF_FLAG_TIMESTAMP_COPY;
3179 }
3180
3181 set_freezable();
3182
3183 for (;;) {
3184 struct vb2_buffer *vb;
3185
3186 /*
3187 * Call vb2_dqbuf to get buffer back.
3188 */
3189 memset(&fileio->b, 0, sizeof(fileio->b));
3190 fileio->b.type = q->type;
3191 fileio->b.memory = q->memory;
3192 if (prequeue) {
3193 fileio->b.index = index++;
3194 prequeue--;
3195 } else {
3196 call_void_qop(q, wait_finish, q);
3197 if (!threadio->stop)
3198 ret = vb2_internal_dqbuf(q, &fileio->b, 0);
3199 call_void_qop(q, wait_prepare, q);
3200 dprintk(5, "file io: vb2_dqbuf result: %d\n", ret);
3201 }
3202 if (ret || threadio->stop)
3203 break;
3204 try_to_freeze();
3205
3206 vb = q->bufs[fileio->b.index];
3207 if (!(fileio->b.flags & V4L2_BUF_FLAG_ERROR))
3208 if (threadio->fnc(vb, threadio->priv))
3209 break;
3210 call_void_qop(q, wait_finish, q);
3211 if (set_timestamp)
3212 v4l2_get_timestamp(&fileio->b.timestamp);
3213 if (!threadio->stop)
3214 ret = vb2_internal_qbuf(q, &fileio->b);
3215 call_void_qop(q, wait_prepare, q);
3216 if (ret || threadio->stop)
3217 break;
3218 }
3219
3220 /* Hmm, linux becomes *very* unhappy without this ... */
3221 while (!kthread_should_stop()) {
3222 set_current_state(TASK_INTERRUPTIBLE);
3223 schedule();
3224 }
3225 return 0;
3226 }
3227
3228 /*
3229 * This function should not be used for anything else but the videobuf2-dvb
3230 * support. If you think you have another good use-case for this, then please
3231 * contact the linux-media mailinglist first.
3232 */
3233 int vb2_thread_start(struct vb2_queue *q, vb2_thread_fnc fnc, void *priv,
3234 const char *thread_name)
3235 {
3236 struct vb2_threadio_data *threadio;
3237 int ret = 0;
3238
3239 if (q->threadio)
3240 return -EBUSY;
3241 if (vb2_is_busy(q))
3242 return -EBUSY;
3243 if (WARN_ON(q->fileio))
3244 return -EBUSY;
3245
3246 threadio = kzalloc(sizeof(*threadio), GFP_KERNEL);
3247 if (threadio == NULL)
3248 return -ENOMEM;
3249 threadio->fnc = fnc;
3250 threadio->priv = priv;
3251
3252 ret = __vb2_init_fileio(q, !V4L2_TYPE_IS_OUTPUT(q->type));
3253 dprintk(3, "file io: vb2_init_fileio result: %d\n", ret);
3254 if (ret)
3255 goto nomem;
3256 q->threadio = threadio;
3257 threadio->thread = kthread_run(vb2_thread, q, "vb2-%s", thread_name);
3258 if (IS_ERR(threadio->thread)) {
3259 ret = PTR_ERR(threadio->thread);
3260 threadio->thread = NULL;
3261 goto nothread;
3262 }
3263 return 0;
3264
3265 nothread:
3266 __vb2_cleanup_fileio(q);
3267 nomem:
3268 kfree(threadio);
3269 return ret;
3270 }
3271 EXPORT_SYMBOL_GPL(vb2_thread_start);
3272
3273 int vb2_thread_stop(struct vb2_queue *q)
3274 {
3275 struct vb2_threadio_data *threadio = q->threadio;
3276 int err;
3277
3278 if (threadio == NULL)
3279 return 0;
3280 threadio->stop = true;
3281 /* Wake up all pending sleeps in the thread */
3282 vb2_queue_error(q);
3283 err = kthread_stop(threadio->thread);
3284 __vb2_cleanup_fileio(q);
3285 threadio->thread = NULL;
3286 kfree(threadio);
3287 q->threadio = NULL;
3288 return err;
3289 }
3290 EXPORT_SYMBOL_GPL(vb2_thread_stop);
3291
3292 /*
3293 * The following functions are not part of the vb2 core API, but are helper
3294 * functions that plug into struct v4l2_ioctl_ops, struct v4l2_file_operations
3295 * and struct vb2_ops.
3296 * They contain boilerplate code that most if not all drivers have to do
3297 * and so they simplify the driver code.
3298 */
3299
3300 /* The queue is busy if there is a owner and you are not that owner. */
3301 static inline bool vb2_queue_is_busy(struct video_device *vdev, struct file *file)
3302 {
3303 return vdev->queue->owner && vdev->queue->owner != file->private_data;
3304 }
3305
3306 /* vb2 ioctl helpers */
3307
3308 int vb2_ioctl_reqbufs(struct file *file, void *priv,
3309 struct v4l2_requestbuffers *p)
3310 {
3311 struct video_device *vdev = video_devdata(file);
3312 int res = __verify_memory_type(vdev->queue, p->memory, p->type);
3313
3314 if (res)
3315 return res;
3316 if (vb2_queue_is_busy(vdev, file))
3317 return -EBUSY;
3318 res = __reqbufs(vdev->queue, p);
3319 /* If count == 0, then the owner has released all buffers and he
3320 is no longer owner of the queue. Otherwise we have a new owner. */
3321 if (res == 0)
3322 vdev->queue->owner = p->count ? file->private_data : NULL;
3323 return res;
3324 }
3325 EXPORT_SYMBOL_GPL(vb2_ioctl_reqbufs);
3326
3327 int vb2_ioctl_create_bufs(struct file *file, void *priv,
3328 struct v4l2_create_buffers *p)
3329 {
3330 struct video_device *vdev = video_devdata(file);
3331 int res = __verify_memory_type(vdev->queue, p->memory, p->format.type);
3332
3333 p->index = vdev->queue->num_buffers;
3334 /* If count == 0, then just check if memory and type are valid.
3335 Any -EBUSY result from __verify_memory_type can be mapped to 0. */
3336 if (p->count == 0)
3337 return res != -EBUSY ? res : 0;
3338 if (res)
3339 return res;
3340 if (vb2_queue_is_busy(vdev, file))
3341 return -EBUSY;
3342 res = __create_bufs(vdev->queue, p);
3343 if (res == 0)
3344 vdev->queue->owner = file->private_data;
3345 return res;
3346 }
3347 EXPORT_SYMBOL_GPL(vb2_ioctl_create_bufs);
3348
3349 int vb2_ioctl_prepare_buf(struct file *file, void *priv,
3350 struct v4l2_buffer *p)
3351 {
3352 struct video_device *vdev = video_devdata(file);
3353
3354 if (vb2_queue_is_busy(vdev, file))
3355 return -EBUSY;
3356 return vb2_prepare_buf(vdev->queue, p);
3357 }
3358 EXPORT_SYMBOL_GPL(vb2_ioctl_prepare_buf);
3359
3360 int vb2_ioctl_querybuf(struct file *file, void *priv, struct v4l2_buffer *p)
3361 {
3362 struct video_device *vdev = video_devdata(file);
3363
3364 /* No need to call vb2_queue_is_busy(), anyone can query buffers. */
3365 return vb2_querybuf(vdev->queue, p);
3366 }
3367 EXPORT_SYMBOL_GPL(vb2_ioctl_querybuf);
3368
3369 int vb2_ioctl_qbuf(struct file *file, void *priv, struct v4l2_buffer *p)
3370 {
3371 struct video_device *vdev = video_devdata(file);
3372
3373 if (vb2_queue_is_busy(vdev, file))
3374 return -EBUSY;
3375 return vb2_qbuf(vdev->queue, p);
3376 }
3377 EXPORT_SYMBOL_GPL(vb2_ioctl_qbuf);
3378
3379 int vb2_ioctl_dqbuf(struct file *file, void *priv, struct v4l2_buffer *p)
3380 {
3381 struct video_device *vdev = video_devdata(file);
3382
3383 if (vb2_queue_is_busy(vdev, file))
3384 return -EBUSY;
3385 return vb2_dqbuf(vdev->queue, p, file->f_flags & O_NONBLOCK);
3386 }
3387 EXPORT_SYMBOL_GPL(vb2_ioctl_dqbuf);
3388
3389 int vb2_ioctl_streamon(struct file *file, void *priv, enum v4l2_buf_type i)
3390 {
3391 struct video_device *vdev = video_devdata(file);
3392
3393 if (vb2_queue_is_busy(vdev, file))
3394 return -EBUSY;
3395 return vb2_streamon(vdev->queue, i);
3396 }
3397 EXPORT_SYMBOL_GPL(vb2_ioctl_streamon);
3398
3399 int vb2_ioctl_streamoff(struct file *file, void *priv, enum v4l2_buf_type i)
3400 {
3401 struct video_device *vdev = video_devdata(file);
3402
3403 if (vb2_queue_is_busy(vdev, file))
3404 return -EBUSY;
3405 return vb2_streamoff(vdev->queue, i);
3406 }
3407 EXPORT_SYMBOL_GPL(vb2_ioctl_streamoff);
3408
3409 int vb2_ioctl_expbuf(struct file *file, void *priv, struct v4l2_exportbuffer *p)
3410 {
3411 struct video_device *vdev = video_devdata(file);
3412
3413 if (vb2_queue_is_busy(vdev, file))
3414 return -EBUSY;
3415 return vb2_expbuf(vdev->queue, p);
3416 }
3417 EXPORT_SYMBOL_GPL(vb2_ioctl_expbuf);
3418
3419 /* v4l2_file_operations helpers */
3420
3421 int vb2_fop_mmap(struct file *file, struct vm_area_struct *vma)
3422 {
3423 struct video_device *vdev = video_devdata(file);
3424
3425 return vb2_mmap(vdev->queue, vma);
3426 }
3427 EXPORT_SYMBOL_GPL(vb2_fop_mmap);
3428
3429 int _vb2_fop_release(struct file *file, struct mutex *lock)
3430 {
3431 struct video_device *vdev = video_devdata(file);
3432
3433 if (lock)
3434 mutex_lock(lock);
3435 if (file->private_data == vdev->queue->owner) {
3436 vb2_queue_release(vdev->queue);
3437 vdev->queue->owner = NULL;
3438 }
3439 if (lock)
3440 mutex_unlock(lock);
3441 return v4l2_fh_release(file);
3442 }
3443 EXPORT_SYMBOL_GPL(_vb2_fop_release);
3444
3445 int vb2_fop_release(struct file *file)
3446 {
3447 struct video_device *vdev = video_devdata(file);
3448 struct mutex *lock = vdev->queue->lock ? vdev->queue->lock : vdev->lock;
3449
3450 return _vb2_fop_release(file, lock);
3451 }
3452 EXPORT_SYMBOL_GPL(vb2_fop_release);
3453
3454 ssize_t vb2_fop_write(struct file *file, const char __user *buf,
3455 size_t count, loff_t *ppos)
3456 {
3457 struct video_device *vdev = video_devdata(file);
3458 struct mutex *lock = vdev->queue->lock ? vdev->queue->lock : vdev->lock;
3459 int err = -EBUSY;
3460
3461 if (!(vdev->queue->io_modes & VB2_WRITE))
3462 return -EINVAL;
3463 if (lock && mutex_lock_interruptible(lock))
3464 return -ERESTARTSYS;
3465 if (vb2_queue_is_busy(vdev, file))
3466 goto exit;
3467 err = vb2_write(vdev->queue, buf, count, ppos,
3468 file->f_flags & O_NONBLOCK);
3469 if (vdev->queue->fileio)
3470 vdev->queue->owner = file->private_data;
3471 exit:
3472 if (lock)
3473 mutex_unlock(lock);
3474 return err;
3475 }
3476 EXPORT_SYMBOL_GPL(vb2_fop_write);
3477
3478 ssize_t vb2_fop_read(struct file *file, char __user *buf,
3479 size_t count, loff_t *ppos)
3480 {
3481 struct video_device *vdev = video_devdata(file);
3482 struct mutex *lock = vdev->queue->lock ? vdev->queue->lock : vdev->lock;
3483 int err = -EBUSY;
3484
3485 if (!(vdev->queue->io_modes & VB2_READ))
3486 return -EINVAL;
3487 if (lock && mutex_lock_interruptible(lock))
3488 return -ERESTARTSYS;
3489 if (vb2_queue_is_busy(vdev, file))
3490 goto exit;
3491 err = vb2_read(vdev->queue, buf, count, ppos,
3492 file->f_flags & O_NONBLOCK);
3493 if (vdev->queue->fileio)
3494 vdev->queue->owner = file->private_data;
3495 exit:
3496 if (lock)
3497 mutex_unlock(lock);
3498 return err;
3499 }
3500 EXPORT_SYMBOL_GPL(vb2_fop_read);
3501
3502 unsigned int vb2_fop_poll(struct file *file, poll_table *wait)
3503 {
3504 struct video_device *vdev = video_devdata(file);
3505 struct vb2_queue *q = vdev->queue;
3506 struct mutex *lock = q->lock ? q->lock : vdev->lock;
3507 unsigned res;
3508 void *fileio;
3509
3510 /*
3511 * If this helper doesn't know how to lock, then you shouldn't be using
3512 * it but you should write your own.
3513 */
3514 WARN_ON(!lock);
3515
3516 if (lock && mutex_lock_interruptible(lock))
3517 return POLLERR;
3518
3519 fileio = q->fileio;
3520
3521 res = vb2_poll(vdev->queue, file, wait);
3522
3523 /* If fileio was started, then we have a new queue owner. */
3524 if (!fileio && q->fileio)
3525 q->owner = file->private_data;
3526 if (lock)
3527 mutex_unlock(lock);
3528 return res;
3529 }
3530 EXPORT_SYMBOL_GPL(vb2_fop_poll);
3531
3532 #ifndef CONFIG_MMU
3533 unsigned long vb2_fop_get_unmapped_area(struct file *file, unsigned long addr,
3534 unsigned long len, unsigned long pgoff, unsigned long flags)
3535 {
3536 struct video_device *vdev = video_devdata(file);
3537
3538 return vb2_get_unmapped_area(vdev->queue, addr, len, pgoff, flags);
3539 }
3540 EXPORT_SYMBOL_GPL(vb2_fop_get_unmapped_area);
3541 #endif
3542
3543 /* vb2_ops helpers. Only use if vq->lock is non-NULL. */
3544
3545 void vb2_ops_wait_prepare(struct vb2_queue *vq)
3546 {
3547 mutex_unlock(vq->lock);
3548 }
3549 EXPORT_SYMBOL_GPL(vb2_ops_wait_prepare);
3550
3551 void vb2_ops_wait_finish(struct vb2_queue *vq)
3552 {
3553 mutex_lock(vq->lock);
3554 }
3555 EXPORT_SYMBOL_GPL(vb2_ops_wait_finish);
3556
3557 MODULE_DESCRIPTION("Driver helper framework for Video for Linux 2");
3558 MODULE_AUTHOR("Pawel Osciak <pawel@osciak.com>, Marek Szyprowski");
3559 MODULE_LICENSE("GPL");
This page took 0.110706 seconds and 5 git commands to generate.