Merge tag 'iommu-fixes-v4.2' of git://git.kernel.org/pub/scm/linux/kernel/git/joro...
[deliverable/linux.git] / drivers / media / v4l2-core / videobuf2-core.c
1 /*
2 * videobuf2-core.c - V4L2 driver helper framework
3 *
4 * Copyright (C) 2010 Samsung Electronics
5 *
6 * Author: Pawel Osciak <pawel@osciak.com>
7 * Marek Szyprowski <m.szyprowski@samsung.com>
8 *
9 * The vb2_thread implementation was based on code from videobuf-dvb.c:
10 * (c) 2004 Gerd Knorr <kraxel@bytesex.org> [SUSE Labs]
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation.
15 */
16
17 #include <linux/err.h>
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/mm.h>
21 #include <linux/poll.h>
22 #include <linux/slab.h>
23 #include <linux/sched.h>
24 #include <linux/freezer.h>
25 #include <linux/kthread.h>
26
27 #include <media/v4l2-dev.h>
28 #include <media/v4l2-fh.h>
29 #include <media/v4l2-event.h>
30 #include <media/v4l2-common.h>
31 #include <media/videobuf2-core.h>
32
33 static int debug;
34 module_param(debug, int, 0644);
35
36 #define dprintk(level, fmt, arg...) \
37 do { \
38 if (debug >= level) \
39 pr_info("vb2: %s: " fmt, __func__, ## arg); \
40 } while (0)
41
42 #ifdef CONFIG_VIDEO_ADV_DEBUG
43
44 /*
45 * If advanced debugging is on, then count how often each op is called
46 * successfully, which can either be per-buffer or per-queue.
47 *
48 * This makes it easy to check that the 'init' and 'cleanup'
49 * (and variations thereof) stay balanced.
50 */
51
52 #define log_memop(vb, op) \
53 dprintk(2, "call_memop(%p, %d, %s)%s\n", \
54 (vb)->vb2_queue, (vb)->v4l2_buf.index, #op, \
55 (vb)->vb2_queue->mem_ops->op ? "" : " (nop)")
56
57 #define call_memop(vb, op, args...) \
58 ({ \
59 struct vb2_queue *_q = (vb)->vb2_queue; \
60 int err; \
61 \
62 log_memop(vb, op); \
63 err = _q->mem_ops->op ? _q->mem_ops->op(args) : 0; \
64 if (!err) \
65 (vb)->cnt_mem_ ## op++; \
66 err; \
67 })
68
69 #define call_ptr_memop(vb, op, args...) \
70 ({ \
71 struct vb2_queue *_q = (vb)->vb2_queue; \
72 void *ptr; \
73 \
74 log_memop(vb, op); \
75 ptr = _q->mem_ops->op ? _q->mem_ops->op(args) : NULL; \
76 if (!IS_ERR_OR_NULL(ptr)) \
77 (vb)->cnt_mem_ ## op++; \
78 ptr; \
79 })
80
81 #define call_void_memop(vb, op, args...) \
82 ({ \
83 struct vb2_queue *_q = (vb)->vb2_queue; \
84 \
85 log_memop(vb, op); \
86 if (_q->mem_ops->op) \
87 _q->mem_ops->op(args); \
88 (vb)->cnt_mem_ ## op++; \
89 })
90
91 #define log_qop(q, op) \
92 dprintk(2, "call_qop(%p, %s)%s\n", q, #op, \
93 (q)->ops->op ? "" : " (nop)")
94
95 #define call_qop(q, op, args...) \
96 ({ \
97 int err; \
98 \
99 log_qop(q, op); \
100 err = (q)->ops->op ? (q)->ops->op(args) : 0; \
101 if (!err) \
102 (q)->cnt_ ## op++; \
103 err; \
104 })
105
106 #define call_void_qop(q, op, args...) \
107 ({ \
108 log_qop(q, op); \
109 if ((q)->ops->op) \
110 (q)->ops->op(args); \
111 (q)->cnt_ ## op++; \
112 })
113
114 #define log_vb_qop(vb, op, args...) \
115 dprintk(2, "call_vb_qop(%p, %d, %s)%s\n", \
116 (vb)->vb2_queue, (vb)->v4l2_buf.index, #op, \
117 (vb)->vb2_queue->ops->op ? "" : " (nop)")
118
119 #define call_vb_qop(vb, op, args...) \
120 ({ \
121 int err; \
122 \
123 log_vb_qop(vb, op); \
124 err = (vb)->vb2_queue->ops->op ? \
125 (vb)->vb2_queue->ops->op(args) : 0; \
126 if (!err) \
127 (vb)->cnt_ ## op++; \
128 err; \
129 })
130
131 #define call_void_vb_qop(vb, op, args...) \
132 ({ \
133 log_vb_qop(vb, op); \
134 if ((vb)->vb2_queue->ops->op) \
135 (vb)->vb2_queue->ops->op(args); \
136 (vb)->cnt_ ## op++; \
137 })
138
139 #else
140
141 #define call_memop(vb, op, args...) \
142 ((vb)->vb2_queue->mem_ops->op ? \
143 (vb)->vb2_queue->mem_ops->op(args) : 0)
144
145 #define call_ptr_memop(vb, op, args...) \
146 ((vb)->vb2_queue->mem_ops->op ? \
147 (vb)->vb2_queue->mem_ops->op(args) : NULL)
148
149 #define call_void_memop(vb, op, args...) \
150 do { \
151 if ((vb)->vb2_queue->mem_ops->op) \
152 (vb)->vb2_queue->mem_ops->op(args); \
153 } while (0)
154
155 #define call_qop(q, op, args...) \
156 ((q)->ops->op ? (q)->ops->op(args) : 0)
157
158 #define call_void_qop(q, op, args...) \
159 do { \
160 if ((q)->ops->op) \
161 (q)->ops->op(args); \
162 } while (0)
163
164 #define call_vb_qop(vb, op, args...) \
165 ((vb)->vb2_queue->ops->op ? (vb)->vb2_queue->ops->op(args) : 0)
166
167 #define call_void_vb_qop(vb, op, args...) \
168 do { \
169 if ((vb)->vb2_queue->ops->op) \
170 (vb)->vb2_queue->ops->op(args); \
171 } while (0)
172
173 #endif
174
175 /* Flags that are set by the vb2 core */
176 #define V4L2_BUFFER_MASK_FLAGS (V4L2_BUF_FLAG_MAPPED | V4L2_BUF_FLAG_QUEUED | \
177 V4L2_BUF_FLAG_DONE | V4L2_BUF_FLAG_ERROR | \
178 V4L2_BUF_FLAG_PREPARED | \
179 V4L2_BUF_FLAG_TIMESTAMP_MASK)
180 /* Output buffer flags that should be passed on to the driver */
181 #define V4L2_BUFFER_OUT_FLAGS (V4L2_BUF_FLAG_PFRAME | V4L2_BUF_FLAG_BFRAME | \
182 V4L2_BUF_FLAG_KEYFRAME | V4L2_BUF_FLAG_TIMECODE)
183
184 static void __vb2_queue_cancel(struct vb2_queue *q);
185 static void __enqueue_in_driver(struct vb2_buffer *vb);
186
187 /**
188 * __vb2_buf_mem_alloc() - allocate video memory for the given buffer
189 */
190 static int __vb2_buf_mem_alloc(struct vb2_buffer *vb)
191 {
192 struct vb2_queue *q = vb->vb2_queue;
193 enum dma_data_direction dma_dir =
194 V4L2_TYPE_IS_OUTPUT(q->type) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
195 void *mem_priv;
196 int plane;
197
198 /*
199 * Allocate memory for all planes in this buffer
200 * NOTE: mmapped areas should be page aligned
201 */
202 for (plane = 0; plane < vb->num_planes; ++plane) {
203 unsigned long size = PAGE_ALIGN(q->plane_sizes[plane]);
204
205 mem_priv = call_ptr_memop(vb, alloc, q->alloc_ctx[plane],
206 size, dma_dir, q->gfp_flags);
207 if (IS_ERR_OR_NULL(mem_priv))
208 goto free;
209
210 /* Associate allocator private data with this plane */
211 vb->planes[plane].mem_priv = mem_priv;
212 vb->v4l2_planes[plane].length = q->plane_sizes[plane];
213 }
214
215 return 0;
216 free:
217 /* Free already allocated memory if one of the allocations failed */
218 for (; plane > 0; --plane) {
219 call_void_memop(vb, put, vb->planes[plane - 1].mem_priv);
220 vb->planes[plane - 1].mem_priv = NULL;
221 }
222
223 return -ENOMEM;
224 }
225
226 /**
227 * __vb2_buf_mem_free() - free memory of the given buffer
228 */
229 static void __vb2_buf_mem_free(struct vb2_buffer *vb)
230 {
231 unsigned int plane;
232
233 for (plane = 0; plane < vb->num_planes; ++plane) {
234 call_void_memop(vb, put, vb->planes[plane].mem_priv);
235 vb->planes[plane].mem_priv = NULL;
236 dprintk(3, "freed plane %d of buffer %d\n", plane,
237 vb->v4l2_buf.index);
238 }
239 }
240
241 /**
242 * __vb2_buf_userptr_put() - release userspace memory associated with
243 * a USERPTR buffer
244 */
245 static void __vb2_buf_userptr_put(struct vb2_buffer *vb)
246 {
247 unsigned int plane;
248
249 for (plane = 0; plane < vb->num_planes; ++plane) {
250 if (vb->planes[plane].mem_priv)
251 call_void_memop(vb, put_userptr, vb->planes[plane].mem_priv);
252 vb->planes[plane].mem_priv = NULL;
253 }
254 }
255
256 /**
257 * __vb2_plane_dmabuf_put() - release memory associated with
258 * a DMABUF shared plane
259 */
260 static void __vb2_plane_dmabuf_put(struct vb2_buffer *vb, struct vb2_plane *p)
261 {
262 if (!p->mem_priv)
263 return;
264
265 if (p->dbuf_mapped)
266 call_void_memop(vb, unmap_dmabuf, p->mem_priv);
267
268 call_void_memop(vb, detach_dmabuf, p->mem_priv);
269 dma_buf_put(p->dbuf);
270 memset(p, 0, sizeof(*p));
271 }
272
273 /**
274 * __vb2_buf_dmabuf_put() - release memory associated with
275 * a DMABUF shared buffer
276 */
277 static void __vb2_buf_dmabuf_put(struct vb2_buffer *vb)
278 {
279 unsigned int plane;
280
281 for (plane = 0; plane < vb->num_planes; ++plane)
282 __vb2_plane_dmabuf_put(vb, &vb->planes[plane]);
283 }
284
285 /**
286 * __setup_lengths() - setup initial lengths for every plane in
287 * every buffer on the queue
288 */
289 static void __setup_lengths(struct vb2_queue *q, unsigned int n)
290 {
291 unsigned int buffer, plane;
292 struct vb2_buffer *vb;
293
294 for (buffer = q->num_buffers; buffer < q->num_buffers + n; ++buffer) {
295 vb = q->bufs[buffer];
296 if (!vb)
297 continue;
298
299 for (plane = 0; plane < vb->num_planes; ++plane)
300 vb->v4l2_planes[plane].length = q->plane_sizes[plane];
301 }
302 }
303
304 /**
305 * __setup_offsets() - setup unique offsets ("cookies") for every plane in
306 * every buffer on the queue
307 */
308 static void __setup_offsets(struct vb2_queue *q, unsigned int n)
309 {
310 unsigned int buffer, plane;
311 struct vb2_buffer *vb;
312 unsigned long off;
313
314 if (q->num_buffers) {
315 struct v4l2_plane *p;
316 vb = q->bufs[q->num_buffers - 1];
317 p = &vb->v4l2_planes[vb->num_planes - 1];
318 off = PAGE_ALIGN(p->m.mem_offset + p->length);
319 } else {
320 off = 0;
321 }
322
323 for (buffer = q->num_buffers; buffer < q->num_buffers + n; ++buffer) {
324 vb = q->bufs[buffer];
325 if (!vb)
326 continue;
327
328 for (plane = 0; plane < vb->num_planes; ++plane) {
329 vb->v4l2_planes[plane].m.mem_offset = off;
330
331 dprintk(3, "buffer %d, plane %d offset 0x%08lx\n",
332 buffer, plane, off);
333
334 off += vb->v4l2_planes[plane].length;
335 off = PAGE_ALIGN(off);
336 }
337 }
338 }
339
340 /**
341 * __vb2_queue_alloc() - allocate videobuf buffer structures and (for MMAP type)
342 * video buffer memory for all buffers/planes on the queue and initializes the
343 * queue
344 *
345 * Returns the number of buffers successfully allocated.
346 */
347 static int __vb2_queue_alloc(struct vb2_queue *q, enum v4l2_memory memory,
348 unsigned int num_buffers, unsigned int num_planes)
349 {
350 unsigned int buffer;
351 struct vb2_buffer *vb;
352 int ret;
353
354 for (buffer = 0; buffer < num_buffers; ++buffer) {
355 /* Allocate videobuf buffer structures */
356 vb = kzalloc(q->buf_struct_size, GFP_KERNEL);
357 if (!vb) {
358 dprintk(1, "memory alloc for buffer struct failed\n");
359 break;
360 }
361
362 /* Length stores number of planes for multiplanar buffers */
363 if (V4L2_TYPE_IS_MULTIPLANAR(q->type))
364 vb->v4l2_buf.length = num_planes;
365
366 vb->state = VB2_BUF_STATE_DEQUEUED;
367 vb->vb2_queue = q;
368 vb->num_planes = num_planes;
369 vb->v4l2_buf.index = q->num_buffers + buffer;
370 vb->v4l2_buf.type = q->type;
371 vb->v4l2_buf.memory = memory;
372
373 /* Allocate video buffer memory for the MMAP type */
374 if (memory == V4L2_MEMORY_MMAP) {
375 ret = __vb2_buf_mem_alloc(vb);
376 if (ret) {
377 dprintk(1, "failed allocating memory for "
378 "buffer %d\n", buffer);
379 kfree(vb);
380 break;
381 }
382 /*
383 * Call the driver-provided buffer initialization
384 * callback, if given. An error in initialization
385 * results in queue setup failure.
386 */
387 ret = call_vb_qop(vb, buf_init, vb);
388 if (ret) {
389 dprintk(1, "buffer %d %p initialization"
390 " failed\n", buffer, vb);
391 __vb2_buf_mem_free(vb);
392 kfree(vb);
393 break;
394 }
395 }
396
397 q->bufs[q->num_buffers + buffer] = vb;
398 }
399
400 __setup_lengths(q, buffer);
401 if (memory == V4L2_MEMORY_MMAP)
402 __setup_offsets(q, buffer);
403
404 dprintk(1, "allocated %d buffers, %d plane(s) each\n",
405 buffer, num_planes);
406
407 return buffer;
408 }
409
410 /**
411 * __vb2_free_mem() - release all video buffer memory for a given queue
412 */
413 static void __vb2_free_mem(struct vb2_queue *q, unsigned int buffers)
414 {
415 unsigned int buffer;
416 struct vb2_buffer *vb;
417
418 for (buffer = q->num_buffers - buffers; buffer < q->num_buffers;
419 ++buffer) {
420 vb = q->bufs[buffer];
421 if (!vb)
422 continue;
423
424 /* Free MMAP buffers or release USERPTR buffers */
425 if (q->memory == V4L2_MEMORY_MMAP)
426 __vb2_buf_mem_free(vb);
427 else if (q->memory == V4L2_MEMORY_DMABUF)
428 __vb2_buf_dmabuf_put(vb);
429 else
430 __vb2_buf_userptr_put(vb);
431 }
432 }
433
434 /**
435 * __vb2_queue_free() - free buffers at the end of the queue - video memory and
436 * related information, if no buffers are left return the queue to an
437 * uninitialized state. Might be called even if the queue has already been freed.
438 */
439 static int __vb2_queue_free(struct vb2_queue *q, unsigned int buffers)
440 {
441 unsigned int buffer;
442
443 /*
444 * Sanity check: when preparing a buffer the queue lock is released for
445 * a short while (see __buf_prepare for the details), which would allow
446 * a race with a reqbufs which can call this function. Removing the
447 * buffers from underneath __buf_prepare is obviously a bad idea, so we
448 * check if any of the buffers is in the state PREPARING, and if so we
449 * just return -EAGAIN.
450 */
451 for (buffer = q->num_buffers - buffers; buffer < q->num_buffers;
452 ++buffer) {
453 if (q->bufs[buffer] == NULL)
454 continue;
455 if (q->bufs[buffer]->state == VB2_BUF_STATE_PREPARING) {
456 dprintk(1, "preparing buffers, cannot free\n");
457 return -EAGAIN;
458 }
459 }
460
461 /* Call driver-provided cleanup function for each buffer, if provided */
462 for (buffer = q->num_buffers - buffers; buffer < q->num_buffers;
463 ++buffer) {
464 struct vb2_buffer *vb = q->bufs[buffer];
465
466 if (vb && vb->planes[0].mem_priv)
467 call_void_vb_qop(vb, buf_cleanup, vb);
468 }
469
470 /* Release video buffer memory */
471 __vb2_free_mem(q, buffers);
472
473 #ifdef CONFIG_VIDEO_ADV_DEBUG
474 /*
475 * Check that all the calls were balances during the life-time of this
476 * queue. If not (or if the debug level is 1 or up), then dump the
477 * counters to the kernel log.
478 */
479 if (q->num_buffers) {
480 bool unbalanced = q->cnt_start_streaming != q->cnt_stop_streaming ||
481 q->cnt_wait_prepare != q->cnt_wait_finish;
482
483 if (unbalanced || debug) {
484 pr_info("vb2: counters for queue %p:%s\n", q,
485 unbalanced ? " UNBALANCED!" : "");
486 pr_info("vb2: setup: %u start_streaming: %u stop_streaming: %u\n",
487 q->cnt_queue_setup, q->cnt_start_streaming,
488 q->cnt_stop_streaming);
489 pr_info("vb2: wait_prepare: %u wait_finish: %u\n",
490 q->cnt_wait_prepare, q->cnt_wait_finish);
491 }
492 q->cnt_queue_setup = 0;
493 q->cnt_wait_prepare = 0;
494 q->cnt_wait_finish = 0;
495 q->cnt_start_streaming = 0;
496 q->cnt_stop_streaming = 0;
497 }
498 for (buffer = 0; buffer < q->num_buffers; ++buffer) {
499 struct vb2_buffer *vb = q->bufs[buffer];
500 bool unbalanced = vb->cnt_mem_alloc != vb->cnt_mem_put ||
501 vb->cnt_mem_prepare != vb->cnt_mem_finish ||
502 vb->cnt_mem_get_userptr != vb->cnt_mem_put_userptr ||
503 vb->cnt_mem_attach_dmabuf != vb->cnt_mem_detach_dmabuf ||
504 vb->cnt_mem_map_dmabuf != vb->cnt_mem_unmap_dmabuf ||
505 vb->cnt_buf_queue != vb->cnt_buf_done ||
506 vb->cnt_buf_prepare != vb->cnt_buf_finish ||
507 vb->cnt_buf_init != vb->cnt_buf_cleanup;
508
509 if (unbalanced || debug) {
510 pr_info("vb2: counters for queue %p, buffer %d:%s\n",
511 q, buffer, unbalanced ? " UNBALANCED!" : "");
512 pr_info("vb2: buf_init: %u buf_cleanup: %u buf_prepare: %u buf_finish: %u\n",
513 vb->cnt_buf_init, vb->cnt_buf_cleanup,
514 vb->cnt_buf_prepare, vb->cnt_buf_finish);
515 pr_info("vb2: buf_queue: %u buf_done: %u\n",
516 vb->cnt_buf_queue, vb->cnt_buf_done);
517 pr_info("vb2: alloc: %u put: %u prepare: %u finish: %u mmap: %u\n",
518 vb->cnt_mem_alloc, vb->cnt_mem_put,
519 vb->cnt_mem_prepare, vb->cnt_mem_finish,
520 vb->cnt_mem_mmap);
521 pr_info("vb2: get_userptr: %u put_userptr: %u\n",
522 vb->cnt_mem_get_userptr, vb->cnt_mem_put_userptr);
523 pr_info("vb2: attach_dmabuf: %u detach_dmabuf: %u map_dmabuf: %u unmap_dmabuf: %u\n",
524 vb->cnt_mem_attach_dmabuf, vb->cnt_mem_detach_dmabuf,
525 vb->cnt_mem_map_dmabuf, vb->cnt_mem_unmap_dmabuf);
526 pr_info("vb2: get_dmabuf: %u num_users: %u vaddr: %u cookie: %u\n",
527 vb->cnt_mem_get_dmabuf,
528 vb->cnt_mem_num_users,
529 vb->cnt_mem_vaddr,
530 vb->cnt_mem_cookie);
531 }
532 }
533 #endif
534
535 /* Free videobuf buffers */
536 for (buffer = q->num_buffers - buffers; buffer < q->num_buffers;
537 ++buffer) {
538 kfree(q->bufs[buffer]);
539 q->bufs[buffer] = NULL;
540 }
541
542 q->num_buffers -= buffers;
543 if (!q->num_buffers) {
544 q->memory = 0;
545 INIT_LIST_HEAD(&q->queued_list);
546 }
547 return 0;
548 }
549
550 /**
551 * __verify_planes_array() - verify that the planes array passed in struct
552 * v4l2_buffer from userspace can be safely used
553 */
554 static int __verify_planes_array(struct vb2_buffer *vb, const struct v4l2_buffer *b)
555 {
556 if (!V4L2_TYPE_IS_MULTIPLANAR(b->type))
557 return 0;
558
559 /* Is memory for copying plane information present? */
560 if (NULL == b->m.planes) {
561 dprintk(1, "multi-planar buffer passed but "
562 "planes array not provided\n");
563 return -EINVAL;
564 }
565
566 if (b->length < vb->num_planes || b->length > VIDEO_MAX_PLANES) {
567 dprintk(1, "incorrect planes array length, "
568 "expected %d, got %d\n", vb->num_planes, b->length);
569 return -EINVAL;
570 }
571
572 return 0;
573 }
574
575 /**
576 * __verify_length() - Verify that the bytesused value for each plane fits in
577 * the plane length and that the data offset doesn't exceed the bytesused value.
578 */
579 static int __verify_length(struct vb2_buffer *vb, const struct v4l2_buffer *b)
580 {
581 unsigned int length;
582 unsigned int bytesused;
583 unsigned int plane;
584
585 if (!V4L2_TYPE_IS_OUTPUT(b->type))
586 return 0;
587
588 if (V4L2_TYPE_IS_MULTIPLANAR(b->type)) {
589 for (plane = 0; plane < vb->num_planes; ++plane) {
590 length = (b->memory == V4L2_MEMORY_USERPTR ||
591 b->memory == V4L2_MEMORY_DMABUF)
592 ? b->m.planes[plane].length
593 : vb->v4l2_planes[plane].length;
594 bytesused = b->m.planes[plane].bytesused
595 ? b->m.planes[plane].bytesused : length;
596
597 if (b->m.planes[plane].bytesused > length)
598 return -EINVAL;
599
600 if (b->m.planes[plane].data_offset > 0 &&
601 b->m.planes[plane].data_offset >= bytesused)
602 return -EINVAL;
603 }
604 } else {
605 length = (b->memory == V4L2_MEMORY_USERPTR)
606 ? b->length : vb->v4l2_planes[0].length;
607 bytesused = b->bytesused ? b->bytesused : length;
608
609 if (b->bytesused > length)
610 return -EINVAL;
611 }
612
613 return 0;
614 }
615
616 /**
617 * __buffer_in_use() - return true if the buffer is in use and
618 * the queue cannot be freed (by the means of REQBUFS(0)) call
619 */
620 static bool __buffer_in_use(struct vb2_queue *q, struct vb2_buffer *vb)
621 {
622 unsigned int plane;
623 for (plane = 0; plane < vb->num_planes; ++plane) {
624 void *mem_priv = vb->planes[plane].mem_priv;
625 /*
626 * If num_users() has not been provided, call_memop
627 * will return 0, apparently nobody cares about this
628 * case anyway. If num_users() returns more than 1,
629 * we are not the only user of the plane's memory.
630 */
631 if (mem_priv && call_memop(vb, num_users, mem_priv) > 1)
632 return true;
633 }
634 return false;
635 }
636
637 /**
638 * __buffers_in_use() - return true if any buffers on the queue are in use and
639 * the queue cannot be freed (by the means of REQBUFS(0)) call
640 */
641 static bool __buffers_in_use(struct vb2_queue *q)
642 {
643 unsigned int buffer;
644 for (buffer = 0; buffer < q->num_buffers; ++buffer) {
645 if (__buffer_in_use(q, q->bufs[buffer]))
646 return true;
647 }
648 return false;
649 }
650
651 /**
652 * __fill_v4l2_buffer() - fill in a struct v4l2_buffer with information to be
653 * returned to userspace
654 */
655 static void __fill_v4l2_buffer(struct vb2_buffer *vb, struct v4l2_buffer *b)
656 {
657 struct vb2_queue *q = vb->vb2_queue;
658
659 /* Copy back data such as timestamp, flags, etc. */
660 memcpy(b, &vb->v4l2_buf, offsetof(struct v4l2_buffer, m));
661 b->reserved2 = vb->v4l2_buf.reserved2;
662 b->reserved = vb->v4l2_buf.reserved;
663
664 if (V4L2_TYPE_IS_MULTIPLANAR(q->type)) {
665 /*
666 * Fill in plane-related data if userspace provided an array
667 * for it. The caller has already verified memory and size.
668 */
669 b->length = vb->num_planes;
670 memcpy(b->m.planes, vb->v4l2_planes,
671 b->length * sizeof(struct v4l2_plane));
672 } else {
673 /*
674 * We use length and offset in v4l2_planes array even for
675 * single-planar buffers, but userspace does not.
676 */
677 b->length = vb->v4l2_planes[0].length;
678 b->bytesused = vb->v4l2_planes[0].bytesused;
679 if (q->memory == V4L2_MEMORY_MMAP)
680 b->m.offset = vb->v4l2_planes[0].m.mem_offset;
681 else if (q->memory == V4L2_MEMORY_USERPTR)
682 b->m.userptr = vb->v4l2_planes[0].m.userptr;
683 else if (q->memory == V4L2_MEMORY_DMABUF)
684 b->m.fd = vb->v4l2_planes[0].m.fd;
685 }
686
687 /*
688 * Clear any buffer state related flags.
689 */
690 b->flags &= ~V4L2_BUFFER_MASK_FLAGS;
691 b->flags |= q->timestamp_flags & V4L2_BUF_FLAG_TIMESTAMP_MASK;
692 if ((q->timestamp_flags & V4L2_BUF_FLAG_TIMESTAMP_MASK) !=
693 V4L2_BUF_FLAG_TIMESTAMP_COPY) {
694 /*
695 * For non-COPY timestamps, drop timestamp source bits
696 * and obtain the timestamp source from the queue.
697 */
698 b->flags &= ~V4L2_BUF_FLAG_TSTAMP_SRC_MASK;
699 b->flags |= q->timestamp_flags & V4L2_BUF_FLAG_TSTAMP_SRC_MASK;
700 }
701
702 switch (vb->state) {
703 case VB2_BUF_STATE_QUEUED:
704 case VB2_BUF_STATE_ACTIVE:
705 b->flags |= V4L2_BUF_FLAG_QUEUED;
706 break;
707 case VB2_BUF_STATE_ERROR:
708 b->flags |= V4L2_BUF_FLAG_ERROR;
709 /* fall through */
710 case VB2_BUF_STATE_DONE:
711 b->flags |= V4L2_BUF_FLAG_DONE;
712 break;
713 case VB2_BUF_STATE_PREPARED:
714 b->flags |= V4L2_BUF_FLAG_PREPARED;
715 break;
716 case VB2_BUF_STATE_PREPARING:
717 case VB2_BUF_STATE_DEQUEUED:
718 /* nothing */
719 break;
720 }
721
722 if (__buffer_in_use(q, vb))
723 b->flags |= V4L2_BUF_FLAG_MAPPED;
724 }
725
726 /**
727 * vb2_querybuf() - query video buffer information
728 * @q: videobuf queue
729 * @b: buffer struct passed from userspace to vidioc_querybuf handler
730 * in driver
731 *
732 * Should be called from vidioc_querybuf ioctl handler in driver.
733 * This function will verify the passed v4l2_buffer structure and fill the
734 * relevant information for the userspace.
735 *
736 * The return values from this function are intended to be directly returned
737 * from vidioc_querybuf handler in driver.
738 */
739 int vb2_querybuf(struct vb2_queue *q, struct v4l2_buffer *b)
740 {
741 struct vb2_buffer *vb;
742 int ret;
743
744 if (b->type != q->type) {
745 dprintk(1, "wrong buffer type\n");
746 return -EINVAL;
747 }
748
749 if (b->index >= q->num_buffers) {
750 dprintk(1, "buffer index out of range\n");
751 return -EINVAL;
752 }
753 vb = q->bufs[b->index];
754 ret = __verify_planes_array(vb, b);
755 if (!ret)
756 __fill_v4l2_buffer(vb, b);
757 return ret;
758 }
759 EXPORT_SYMBOL(vb2_querybuf);
760
761 /**
762 * __verify_userptr_ops() - verify that all memory operations required for
763 * USERPTR queue type have been provided
764 */
765 static int __verify_userptr_ops(struct vb2_queue *q)
766 {
767 if (!(q->io_modes & VB2_USERPTR) || !q->mem_ops->get_userptr ||
768 !q->mem_ops->put_userptr)
769 return -EINVAL;
770
771 return 0;
772 }
773
774 /**
775 * __verify_mmap_ops() - verify that all memory operations required for
776 * MMAP queue type have been provided
777 */
778 static int __verify_mmap_ops(struct vb2_queue *q)
779 {
780 if (!(q->io_modes & VB2_MMAP) || !q->mem_ops->alloc ||
781 !q->mem_ops->put || !q->mem_ops->mmap)
782 return -EINVAL;
783
784 return 0;
785 }
786
787 /**
788 * __verify_dmabuf_ops() - verify that all memory operations required for
789 * DMABUF queue type have been provided
790 */
791 static int __verify_dmabuf_ops(struct vb2_queue *q)
792 {
793 if (!(q->io_modes & VB2_DMABUF) || !q->mem_ops->attach_dmabuf ||
794 !q->mem_ops->detach_dmabuf || !q->mem_ops->map_dmabuf ||
795 !q->mem_ops->unmap_dmabuf)
796 return -EINVAL;
797
798 return 0;
799 }
800
801 /**
802 * __verify_memory_type() - Check whether the memory type and buffer type
803 * passed to a buffer operation are compatible with the queue.
804 */
805 static int __verify_memory_type(struct vb2_queue *q,
806 enum v4l2_memory memory, enum v4l2_buf_type type)
807 {
808 if (memory != V4L2_MEMORY_MMAP && memory != V4L2_MEMORY_USERPTR &&
809 memory != V4L2_MEMORY_DMABUF) {
810 dprintk(1, "unsupported memory type\n");
811 return -EINVAL;
812 }
813
814 if (type != q->type) {
815 dprintk(1, "requested type is incorrect\n");
816 return -EINVAL;
817 }
818
819 /*
820 * Make sure all the required memory ops for given memory type
821 * are available.
822 */
823 if (memory == V4L2_MEMORY_MMAP && __verify_mmap_ops(q)) {
824 dprintk(1, "MMAP for current setup unsupported\n");
825 return -EINVAL;
826 }
827
828 if (memory == V4L2_MEMORY_USERPTR && __verify_userptr_ops(q)) {
829 dprintk(1, "USERPTR for current setup unsupported\n");
830 return -EINVAL;
831 }
832
833 if (memory == V4L2_MEMORY_DMABUF && __verify_dmabuf_ops(q)) {
834 dprintk(1, "DMABUF for current setup unsupported\n");
835 return -EINVAL;
836 }
837
838 /*
839 * Place the busy tests at the end: -EBUSY can be ignored when
840 * create_bufs is called with count == 0, but count == 0 should still
841 * do the memory and type validation.
842 */
843 if (vb2_fileio_is_active(q)) {
844 dprintk(1, "file io in progress\n");
845 return -EBUSY;
846 }
847 return 0;
848 }
849
850 /**
851 * __reqbufs() - Initiate streaming
852 * @q: videobuf2 queue
853 * @req: struct passed from userspace to vidioc_reqbufs handler in driver
854 *
855 * Should be called from vidioc_reqbufs ioctl handler of a driver.
856 * This function:
857 * 1) verifies streaming parameters passed from the userspace,
858 * 2) sets up the queue,
859 * 3) negotiates number of buffers and planes per buffer with the driver
860 * to be used during streaming,
861 * 4) allocates internal buffer structures (struct vb2_buffer), according to
862 * the agreed parameters,
863 * 5) for MMAP memory type, allocates actual video memory, using the
864 * memory handling/allocation routines provided during queue initialization
865 *
866 * If req->count is 0, all the memory will be freed instead.
867 * If the queue has been allocated previously (by a previous vb2_reqbufs) call
868 * and the queue is not busy, memory will be reallocated.
869 *
870 * The return values from this function are intended to be directly returned
871 * from vidioc_reqbufs handler in driver.
872 */
873 static int __reqbufs(struct vb2_queue *q, struct v4l2_requestbuffers *req)
874 {
875 unsigned int num_buffers, allocated_buffers, num_planes = 0;
876 int ret;
877
878 if (q->streaming) {
879 dprintk(1, "streaming active\n");
880 return -EBUSY;
881 }
882
883 if (req->count == 0 || q->num_buffers != 0 || q->memory != req->memory) {
884 /*
885 * We already have buffers allocated, so first check if they
886 * are not in use and can be freed.
887 */
888 mutex_lock(&q->mmap_lock);
889 if (q->memory == V4L2_MEMORY_MMAP && __buffers_in_use(q)) {
890 mutex_unlock(&q->mmap_lock);
891 dprintk(1, "memory in use, cannot free\n");
892 return -EBUSY;
893 }
894
895 /*
896 * Call queue_cancel to clean up any buffers in the PREPARED or
897 * QUEUED state which is possible if buffers were prepared or
898 * queued without ever calling STREAMON.
899 */
900 __vb2_queue_cancel(q);
901 ret = __vb2_queue_free(q, q->num_buffers);
902 mutex_unlock(&q->mmap_lock);
903 if (ret)
904 return ret;
905
906 /*
907 * In case of REQBUFS(0) return immediately without calling
908 * driver's queue_setup() callback and allocating resources.
909 */
910 if (req->count == 0)
911 return 0;
912 }
913
914 /*
915 * Make sure the requested values and current defaults are sane.
916 */
917 num_buffers = min_t(unsigned int, req->count, VIDEO_MAX_FRAME);
918 num_buffers = max_t(unsigned int, num_buffers, q->min_buffers_needed);
919 memset(q->plane_sizes, 0, sizeof(q->plane_sizes));
920 memset(q->alloc_ctx, 0, sizeof(q->alloc_ctx));
921 q->memory = req->memory;
922
923 /*
924 * Ask the driver how many buffers and planes per buffer it requires.
925 * Driver also sets the size and allocator context for each plane.
926 */
927 ret = call_qop(q, queue_setup, q, NULL, &num_buffers, &num_planes,
928 q->plane_sizes, q->alloc_ctx);
929 if (ret)
930 return ret;
931
932 /* Finally, allocate buffers and video memory */
933 allocated_buffers = __vb2_queue_alloc(q, req->memory, num_buffers, num_planes);
934 if (allocated_buffers == 0) {
935 dprintk(1, "memory allocation failed\n");
936 return -ENOMEM;
937 }
938
939 /*
940 * There is no point in continuing if we can't allocate the minimum
941 * number of buffers needed by this vb2_queue.
942 */
943 if (allocated_buffers < q->min_buffers_needed)
944 ret = -ENOMEM;
945
946 /*
947 * Check if driver can handle the allocated number of buffers.
948 */
949 if (!ret && allocated_buffers < num_buffers) {
950 num_buffers = allocated_buffers;
951
952 ret = call_qop(q, queue_setup, q, NULL, &num_buffers,
953 &num_planes, q->plane_sizes, q->alloc_ctx);
954
955 if (!ret && allocated_buffers < num_buffers)
956 ret = -ENOMEM;
957
958 /*
959 * Either the driver has accepted a smaller number of buffers,
960 * or .queue_setup() returned an error
961 */
962 }
963
964 mutex_lock(&q->mmap_lock);
965 q->num_buffers = allocated_buffers;
966
967 if (ret < 0) {
968 /*
969 * Note: __vb2_queue_free() will subtract 'allocated_buffers'
970 * from q->num_buffers.
971 */
972 __vb2_queue_free(q, allocated_buffers);
973 mutex_unlock(&q->mmap_lock);
974 return ret;
975 }
976 mutex_unlock(&q->mmap_lock);
977
978 /*
979 * Return the number of successfully allocated buffers
980 * to the userspace.
981 */
982 req->count = allocated_buffers;
983 q->waiting_for_buffers = !V4L2_TYPE_IS_OUTPUT(q->type);
984
985 return 0;
986 }
987
988 /**
989 * vb2_reqbufs() - Wrapper for __reqbufs() that also verifies the memory and
990 * type values.
991 * @q: videobuf2 queue
992 * @req: struct passed from userspace to vidioc_reqbufs handler in driver
993 */
994 int vb2_reqbufs(struct vb2_queue *q, struct v4l2_requestbuffers *req)
995 {
996 int ret = __verify_memory_type(q, req->memory, req->type);
997
998 return ret ? ret : __reqbufs(q, req);
999 }
1000 EXPORT_SYMBOL_GPL(vb2_reqbufs);
1001
1002 /**
1003 * __create_bufs() - Allocate buffers and any required auxiliary structs
1004 * @q: videobuf2 queue
1005 * @create: creation parameters, passed from userspace to vidioc_create_bufs
1006 * handler in driver
1007 *
1008 * Should be called from vidioc_create_bufs ioctl handler of a driver.
1009 * This function:
1010 * 1) verifies parameter sanity
1011 * 2) calls the .queue_setup() queue operation
1012 * 3) performs any necessary memory allocations
1013 *
1014 * The return values from this function are intended to be directly returned
1015 * from vidioc_create_bufs handler in driver.
1016 */
1017 static int __create_bufs(struct vb2_queue *q, struct v4l2_create_buffers *create)
1018 {
1019 unsigned int num_planes = 0, num_buffers, allocated_buffers;
1020 int ret;
1021
1022 if (q->num_buffers == VIDEO_MAX_FRAME) {
1023 dprintk(1, "maximum number of buffers already allocated\n");
1024 return -ENOBUFS;
1025 }
1026
1027 if (!q->num_buffers) {
1028 memset(q->plane_sizes, 0, sizeof(q->plane_sizes));
1029 memset(q->alloc_ctx, 0, sizeof(q->alloc_ctx));
1030 q->memory = create->memory;
1031 q->waiting_for_buffers = !V4L2_TYPE_IS_OUTPUT(q->type);
1032 }
1033
1034 num_buffers = min(create->count, VIDEO_MAX_FRAME - q->num_buffers);
1035
1036 /*
1037 * Ask the driver, whether the requested number of buffers, planes per
1038 * buffer and their sizes are acceptable
1039 */
1040 ret = call_qop(q, queue_setup, q, &create->format, &num_buffers,
1041 &num_planes, q->plane_sizes, q->alloc_ctx);
1042 if (ret)
1043 return ret;
1044
1045 /* Finally, allocate buffers and video memory */
1046 allocated_buffers = __vb2_queue_alloc(q, create->memory, num_buffers,
1047 num_planes);
1048 if (allocated_buffers == 0) {
1049 dprintk(1, "memory allocation failed\n");
1050 return -ENOMEM;
1051 }
1052
1053 /*
1054 * Check if driver can handle the so far allocated number of buffers.
1055 */
1056 if (allocated_buffers < num_buffers) {
1057 num_buffers = allocated_buffers;
1058
1059 /*
1060 * q->num_buffers contains the total number of buffers, that the
1061 * queue driver has set up
1062 */
1063 ret = call_qop(q, queue_setup, q, &create->format, &num_buffers,
1064 &num_planes, q->plane_sizes, q->alloc_ctx);
1065
1066 if (!ret && allocated_buffers < num_buffers)
1067 ret = -ENOMEM;
1068
1069 /*
1070 * Either the driver has accepted a smaller number of buffers,
1071 * or .queue_setup() returned an error
1072 */
1073 }
1074
1075 mutex_lock(&q->mmap_lock);
1076 q->num_buffers += allocated_buffers;
1077
1078 if (ret < 0) {
1079 /*
1080 * Note: __vb2_queue_free() will subtract 'allocated_buffers'
1081 * from q->num_buffers.
1082 */
1083 __vb2_queue_free(q, allocated_buffers);
1084 mutex_unlock(&q->mmap_lock);
1085 return -ENOMEM;
1086 }
1087 mutex_unlock(&q->mmap_lock);
1088
1089 /*
1090 * Return the number of successfully allocated buffers
1091 * to the userspace.
1092 */
1093 create->count = allocated_buffers;
1094
1095 return 0;
1096 }
1097
1098 /**
1099 * vb2_create_bufs() - Wrapper for __create_bufs() that also verifies the
1100 * memory and type values.
1101 * @q: videobuf2 queue
1102 * @create: creation parameters, passed from userspace to vidioc_create_bufs
1103 * handler in driver
1104 */
1105 int vb2_create_bufs(struct vb2_queue *q, struct v4l2_create_buffers *create)
1106 {
1107 int ret = __verify_memory_type(q, create->memory, create->format.type);
1108
1109 create->index = q->num_buffers;
1110 if (create->count == 0)
1111 return ret != -EBUSY ? ret : 0;
1112 return ret ? ret : __create_bufs(q, create);
1113 }
1114 EXPORT_SYMBOL_GPL(vb2_create_bufs);
1115
1116 /**
1117 * vb2_plane_vaddr() - Return a kernel virtual address of a given plane
1118 * @vb: vb2_buffer to which the plane in question belongs to
1119 * @plane_no: plane number for which the address is to be returned
1120 *
1121 * This function returns a kernel virtual address of a given plane if
1122 * such a mapping exist, NULL otherwise.
1123 */
1124 void *vb2_plane_vaddr(struct vb2_buffer *vb, unsigned int plane_no)
1125 {
1126 if (plane_no > vb->num_planes || !vb->planes[plane_no].mem_priv)
1127 return NULL;
1128
1129 return call_ptr_memop(vb, vaddr, vb->planes[plane_no].mem_priv);
1130
1131 }
1132 EXPORT_SYMBOL_GPL(vb2_plane_vaddr);
1133
1134 /**
1135 * vb2_plane_cookie() - Return allocator specific cookie for the given plane
1136 * @vb: vb2_buffer to which the plane in question belongs to
1137 * @plane_no: plane number for which the cookie is to be returned
1138 *
1139 * This function returns an allocator specific cookie for a given plane if
1140 * available, NULL otherwise. The allocator should provide some simple static
1141 * inline function, which would convert this cookie to the allocator specific
1142 * type that can be used directly by the driver to access the buffer. This can
1143 * be for example physical address, pointer to scatter list or IOMMU mapping.
1144 */
1145 void *vb2_plane_cookie(struct vb2_buffer *vb, unsigned int plane_no)
1146 {
1147 if (plane_no >= vb->num_planes || !vb->planes[plane_no].mem_priv)
1148 return NULL;
1149
1150 return call_ptr_memop(vb, cookie, vb->planes[plane_no].mem_priv);
1151 }
1152 EXPORT_SYMBOL_GPL(vb2_plane_cookie);
1153
1154 /**
1155 * vb2_buffer_done() - inform videobuf that an operation on a buffer is finished
1156 * @vb: vb2_buffer returned from the driver
1157 * @state: either VB2_BUF_STATE_DONE if the operation finished successfully,
1158 * VB2_BUF_STATE_ERROR if the operation finished with an error or
1159 * VB2_BUF_STATE_QUEUED if the driver wants to requeue buffers.
1160 * If start_streaming fails then it should return buffers with state
1161 * VB2_BUF_STATE_QUEUED to put them back into the queue.
1162 *
1163 * This function should be called by the driver after a hardware operation on
1164 * a buffer is finished and the buffer may be returned to userspace. The driver
1165 * cannot use this buffer anymore until it is queued back to it by videobuf
1166 * by the means of buf_queue callback. Only buffers previously queued to the
1167 * driver by buf_queue can be passed to this function.
1168 *
1169 * While streaming a buffer can only be returned in state DONE or ERROR.
1170 * The start_streaming op can also return them in case the DMA engine cannot
1171 * be started for some reason. In that case the buffers should be returned with
1172 * state QUEUED.
1173 */
1174 void vb2_buffer_done(struct vb2_buffer *vb, enum vb2_buffer_state state)
1175 {
1176 struct vb2_queue *q = vb->vb2_queue;
1177 unsigned long flags;
1178 unsigned int plane;
1179
1180 if (WARN_ON(vb->state != VB2_BUF_STATE_ACTIVE))
1181 return;
1182
1183 if (WARN_ON(state != VB2_BUF_STATE_DONE &&
1184 state != VB2_BUF_STATE_ERROR &&
1185 state != VB2_BUF_STATE_QUEUED))
1186 state = VB2_BUF_STATE_ERROR;
1187
1188 #ifdef CONFIG_VIDEO_ADV_DEBUG
1189 /*
1190 * Although this is not a callback, it still does have to balance
1191 * with the buf_queue op. So update this counter manually.
1192 */
1193 vb->cnt_buf_done++;
1194 #endif
1195 dprintk(4, "done processing on buffer %d, state: %d\n",
1196 vb->v4l2_buf.index, state);
1197
1198 /* sync buffers */
1199 for (plane = 0; plane < vb->num_planes; ++plane)
1200 call_void_memop(vb, finish, vb->planes[plane].mem_priv);
1201
1202 /* Add the buffer to the done buffers list */
1203 spin_lock_irqsave(&q->done_lock, flags);
1204 vb->state = state;
1205 if (state != VB2_BUF_STATE_QUEUED)
1206 list_add_tail(&vb->done_entry, &q->done_list);
1207 atomic_dec(&q->owned_by_drv_count);
1208 spin_unlock_irqrestore(&q->done_lock, flags);
1209
1210 if (state == VB2_BUF_STATE_QUEUED) {
1211 if (q->start_streaming_called)
1212 __enqueue_in_driver(vb);
1213 return;
1214 }
1215
1216 /* Inform any processes that may be waiting for buffers */
1217 wake_up(&q->done_wq);
1218 }
1219 EXPORT_SYMBOL_GPL(vb2_buffer_done);
1220
1221 /**
1222 * vb2_discard_done() - discard all buffers marked as DONE
1223 * @q: videobuf2 queue
1224 *
1225 * This function is intended to be used with suspend/resume operations. It
1226 * discards all 'done' buffers as they would be too old to be requested after
1227 * resume.
1228 *
1229 * Drivers must stop the hardware and synchronize with interrupt handlers and/or
1230 * delayed works before calling this function to make sure no buffer will be
1231 * touched by the driver and/or hardware.
1232 */
1233 void vb2_discard_done(struct vb2_queue *q)
1234 {
1235 struct vb2_buffer *vb;
1236 unsigned long flags;
1237
1238 spin_lock_irqsave(&q->done_lock, flags);
1239 list_for_each_entry(vb, &q->done_list, done_entry)
1240 vb->state = VB2_BUF_STATE_ERROR;
1241 spin_unlock_irqrestore(&q->done_lock, flags);
1242 }
1243 EXPORT_SYMBOL_GPL(vb2_discard_done);
1244
1245 static void vb2_warn_zero_bytesused(struct vb2_buffer *vb)
1246 {
1247 static bool __check_once __read_mostly;
1248
1249 if (__check_once)
1250 return;
1251
1252 __check_once = true;
1253 __WARN();
1254
1255 pr_warn_once("use of bytesused == 0 is deprecated and will be removed in the future,\n");
1256 if (vb->vb2_queue->allow_zero_bytesused)
1257 pr_warn_once("use VIDIOC_DECODER_CMD(V4L2_DEC_CMD_STOP) instead.\n");
1258 else
1259 pr_warn_once("use the actual size instead.\n");
1260 }
1261
1262 /**
1263 * __fill_vb2_buffer() - fill a vb2_buffer with information provided in a
1264 * v4l2_buffer by the userspace. The caller has already verified that struct
1265 * v4l2_buffer has a valid number of planes.
1266 */
1267 static void __fill_vb2_buffer(struct vb2_buffer *vb, const struct v4l2_buffer *b,
1268 struct v4l2_plane *v4l2_planes)
1269 {
1270 unsigned int plane;
1271
1272 if (V4L2_TYPE_IS_MULTIPLANAR(b->type)) {
1273 if (b->memory == V4L2_MEMORY_USERPTR) {
1274 for (plane = 0; plane < vb->num_planes; ++plane) {
1275 v4l2_planes[plane].m.userptr =
1276 b->m.planes[plane].m.userptr;
1277 v4l2_planes[plane].length =
1278 b->m.planes[plane].length;
1279 }
1280 }
1281 if (b->memory == V4L2_MEMORY_DMABUF) {
1282 for (plane = 0; plane < vb->num_planes; ++plane) {
1283 v4l2_planes[plane].m.fd =
1284 b->m.planes[plane].m.fd;
1285 v4l2_planes[plane].length =
1286 b->m.planes[plane].length;
1287 }
1288 }
1289
1290 /* Fill in driver-provided information for OUTPUT types */
1291 if (V4L2_TYPE_IS_OUTPUT(b->type)) {
1292 /*
1293 * Will have to go up to b->length when API starts
1294 * accepting variable number of planes.
1295 *
1296 * If bytesused == 0 for the output buffer, then fall
1297 * back to the full buffer size. In that case
1298 * userspace clearly never bothered to set it and
1299 * it's a safe assumption that they really meant to
1300 * use the full plane sizes.
1301 *
1302 * Some drivers, e.g. old codec drivers, use bytesused == 0
1303 * as a way to indicate that streaming is finished.
1304 * In that case, the driver should use the
1305 * allow_zero_bytesused flag to keep old userspace
1306 * applications working.
1307 */
1308 for (plane = 0; plane < vb->num_planes; ++plane) {
1309 struct v4l2_plane *pdst = &v4l2_planes[plane];
1310 struct v4l2_plane *psrc = &b->m.planes[plane];
1311
1312 if (psrc->bytesused == 0)
1313 vb2_warn_zero_bytesused(vb);
1314
1315 if (vb->vb2_queue->allow_zero_bytesused)
1316 pdst->bytesused = psrc->bytesused;
1317 else
1318 pdst->bytesused = psrc->bytesused ?
1319 psrc->bytesused : pdst->length;
1320 pdst->data_offset = psrc->data_offset;
1321 }
1322 }
1323 } else {
1324 /*
1325 * Single-planar buffers do not use planes array,
1326 * so fill in relevant v4l2_buffer struct fields instead.
1327 * In videobuf we use our internal V4l2_planes struct for
1328 * single-planar buffers as well, for simplicity.
1329 *
1330 * If bytesused == 0 for the output buffer, then fall back
1331 * to the full buffer size as that's a sensible default.
1332 *
1333 * Some drivers, e.g. old codec drivers, use bytesused == 0 as
1334 * a way to indicate that streaming is finished. In that case,
1335 * the driver should use the allow_zero_bytesused flag to keep
1336 * old userspace applications working.
1337 */
1338 if (b->memory == V4L2_MEMORY_USERPTR) {
1339 v4l2_planes[0].m.userptr = b->m.userptr;
1340 v4l2_planes[0].length = b->length;
1341 }
1342
1343 if (b->memory == V4L2_MEMORY_DMABUF) {
1344 v4l2_planes[0].m.fd = b->m.fd;
1345 v4l2_planes[0].length = b->length;
1346 }
1347
1348 if (V4L2_TYPE_IS_OUTPUT(b->type)) {
1349 if (b->bytesused == 0)
1350 vb2_warn_zero_bytesused(vb);
1351
1352 if (vb->vb2_queue->allow_zero_bytesused)
1353 v4l2_planes[0].bytesused = b->bytesused;
1354 else
1355 v4l2_planes[0].bytesused = b->bytesused ?
1356 b->bytesused : v4l2_planes[0].length;
1357 } else
1358 v4l2_planes[0].bytesused = 0;
1359
1360 }
1361
1362 /* Zero flags that the vb2 core handles */
1363 vb->v4l2_buf.flags = b->flags & ~V4L2_BUFFER_MASK_FLAGS;
1364 if ((vb->vb2_queue->timestamp_flags & V4L2_BUF_FLAG_TIMESTAMP_MASK) !=
1365 V4L2_BUF_FLAG_TIMESTAMP_COPY || !V4L2_TYPE_IS_OUTPUT(b->type)) {
1366 /*
1367 * Non-COPY timestamps and non-OUTPUT queues will get
1368 * their timestamp and timestamp source flags from the
1369 * queue.
1370 */
1371 vb->v4l2_buf.flags &= ~V4L2_BUF_FLAG_TSTAMP_SRC_MASK;
1372 }
1373
1374 if (V4L2_TYPE_IS_OUTPUT(b->type)) {
1375 /*
1376 * For output buffers mask out the timecode flag:
1377 * this will be handled later in vb2_internal_qbuf().
1378 * The 'field' is valid metadata for this output buffer
1379 * and so that needs to be copied here.
1380 */
1381 vb->v4l2_buf.flags &= ~V4L2_BUF_FLAG_TIMECODE;
1382 vb->v4l2_buf.field = b->field;
1383 } else {
1384 /* Zero any output buffer flags as this is a capture buffer */
1385 vb->v4l2_buf.flags &= ~V4L2_BUFFER_OUT_FLAGS;
1386 }
1387 }
1388
1389 /**
1390 * __qbuf_mmap() - handle qbuf of an MMAP buffer
1391 */
1392 static int __qbuf_mmap(struct vb2_buffer *vb, const struct v4l2_buffer *b)
1393 {
1394 __fill_vb2_buffer(vb, b, vb->v4l2_planes);
1395 return call_vb_qop(vb, buf_prepare, vb);
1396 }
1397
1398 /**
1399 * __qbuf_userptr() - handle qbuf of a USERPTR buffer
1400 */
1401 static int __qbuf_userptr(struct vb2_buffer *vb, const struct v4l2_buffer *b)
1402 {
1403 struct v4l2_plane planes[VIDEO_MAX_PLANES];
1404 struct vb2_queue *q = vb->vb2_queue;
1405 void *mem_priv;
1406 unsigned int plane;
1407 int ret;
1408 enum dma_data_direction dma_dir =
1409 V4L2_TYPE_IS_OUTPUT(q->type) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
1410 bool reacquired = vb->planes[0].mem_priv == NULL;
1411
1412 memset(planes, 0, sizeof(planes[0]) * vb->num_planes);
1413 /* Copy relevant information provided by the userspace */
1414 __fill_vb2_buffer(vb, b, planes);
1415
1416 for (plane = 0; plane < vb->num_planes; ++plane) {
1417 /* Skip the plane if already verified */
1418 if (vb->v4l2_planes[plane].m.userptr &&
1419 vb->v4l2_planes[plane].m.userptr == planes[plane].m.userptr
1420 && vb->v4l2_planes[plane].length == planes[plane].length)
1421 continue;
1422
1423 dprintk(3, "userspace address for plane %d changed, "
1424 "reacquiring memory\n", plane);
1425
1426 /* Check if the provided plane buffer is large enough */
1427 if (planes[plane].length < q->plane_sizes[plane]) {
1428 dprintk(1, "provided buffer size %u is less than "
1429 "setup size %u for plane %d\n",
1430 planes[plane].length,
1431 q->plane_sizes[plane], plane);
1432 ret = -EINVAL;
1433 goto err;
1434 }
1435
1436 /* Release previously acquired memory if present */
1437 if (vb->planes[plane].mem_priv) {
1438 if (!reacquired) {
1439 reacquired = true;
1440 call_void_vb_qop(vb, buf_cleanup, vb);
1441 }
1442 call_void_memop(vb, put_userptr, vb->planes[plane].mem_priv);
1443 }
1444
1445 vb->planes[plane].mem_priv = NULL;
1446 memset(&vb->v4l2_planes[plane], 0, sizeof(struct v4l2_plane));
1447
1448 /* Acquire each plane's memory */
1449 mem_priv = call_ptr_memop(vb, get_userptr, q->alloc_ctx[plane],
1450 planes[plane].m.userptr,
1451 planes[plane].length, dma_dir);
1452 if (IS_ERR_OR_NULL(mem_priv)) {
1453 dprintk(1, "failed acquiring userspace "
1454 "memory for plane %d\n", plane);
1455 ret = mem_priv ? PTR_ERR(mem_priv) : -EINVAL;
1456 goto err;
1457 }
1458 vb->planes[plane].mem_priv = mem_priv;
1459 }
1460
1461 /*
1462 * Now that everything is in order, copy relevant information
1463 * provided by userspace.
1464 */
1465 for (plane = 0; plane < vb->num_planes; ++plane)
1466 vb->v4l2_planes[plane] = planes[plane];
1467
1468 if (reacquired) {
1469 /*
1470 * One or more planes changed, so we must call buf_init to do
1471 * the driver-specific initialization on the newly acquired
1472 * buffer, if provided.
1473 */
1474 ret = call_vb_qop(vb, buf_init, vb);
1475 if (ret) {
1476 dprintk(1, "buffer initialization failed\n");
1477 goto err;
1478 }
1479 }
1480
1481 ret = call_vb_qop(vb, buf_prepare, vb);
1482 if (ret) {
1483 dprintk(1, "buffer preparation failed\n");
1484 call_void_vb_qop(vb, buf_cleanup, vb);
1485 goto err;
1486 }
1487
1488 return 0;
1489 err:
1490 /* In case of errors, release planes that were already acquired */
1491 for (plane = 0; plane < vb->num_planes; ++plane) {
1492 if (vb->planes[plane].mem_priv)
1493 call_void_memop(vb, put_userptr, vb->planes[plane].mem_priv);
1494 vb->planes[plane].mem_priv = NULL;
1495 vb->v4l2_planes[plane].m.userptr = 0;
1496 vb->v4l2_planes[plane].length = 0;
1497 }
1498
1499 return ret;
1500 }
1501
1502 /**
1503 * __qbuf_dmabuf() - handle qbuf of a DMABUF buffer
1504 */
1505 static int __qbuf_dmabuf(struct vb2_buffer *vb, const struct v4l2_buffer *b)
1506 {
1507 struct v4l2_plane planes[VIDEO_MAX_PLANES];
1508 struct vb2_queue *q = vb->vb2_queue;
1509 void *mem_priv;
1510 unsigned int plane;
1511 int ret;
1512 enum dma_data_direction dma_dir =
1513 V4L2_TYPE_IS_OUTPUT(q->type) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
1514 bool reacquired = vb->planes[0].mem_priv == NULL;
1515
1516 memset(planes, 0, sizeof(planes[0]) * vb->num_planes);
1517 /* Copy relevant information provided by the userspace */
1518 __fill_vb2_buffer(vb, b, planes);
1519
1520 for (plane = 0; plane < vb->num_planes; ++plane) {
1521 struct dma_buf *dbuf = dma_buf_get(planes[plane].m.fd);
1522
1523 if (IS_ERR_OR_NULL(dbuf)) {
1524 dprintk(1, "invalid dmabuf fd for plane %d\n",
1525 plane);
1526 ret = -EINVAL;
1527 goto err;
1528 }
1529
1530 /* use DMABUF size if length is not provided */
1531 if (planes[plane].length == 0)
1532 planes[plane].length = dbuf->size;
1533
1534 if (planes[plane].length < q->plane_sizes[plane]) {
1535 dprintk(1, "invalid dmabuf length for plane %d\n",
1536 plane);
1537 ret = -EINVAL;
1538 goto err;
1539 }
1540
1541 /* Skip the plane if already verified */
1542 if (dbuf == vb->planes[plane].dbuf &&
1543 vb->v4l2_planes[plane].length == planes[plane].length) {
1544 dma_buf_put(dbuf);
1545 continue;
1546 }
1547
1548 dprintk(1, "buffer for plane %d changed\n", plane);
1549
1550 if (!reacquired) {
1551 reacquired = true;
1552 call_void_vb_qop(vb, buf_cleanup, vb);
1553 }
1554
1555 /* Release previously acquired memory if present */
1556 __vb2_plane_dmabuf_put(vb, &vb->planes[plane]);
1557 memset(&vb->v4l2_planes[plane], 0, sizeof(struct v4l2_plane));
1558
1559 /* Acquire each plane's memory */
1560 mem_priv = call_ptr_memop(vb, attach_dmabuf, q->alloc_ctx[plane],
1561 dbuf, planes[plane].length, dma_dir);
1562 if (IS_ERR(mem_priv)) {
1563 dprintk(1, "failed to attach dmabuf\n");
1564 ret = PTR_ERR(mem_priv);
1565 dma_buf_put(dbuf);
1566 goto err;
1567 }
1568
1569 vb->planes[plane].dbuf = dbuf;
1570 vb->planes[plane].mem_priv = mem_priv;
1571 }
1572
1573 /* TODO: This pins the buffer(s) with dma_buf_map_attachment()).. but
1574 * really we want to do this just before the DMA, not while queueing
1575 * the buffer(s)..
1576 */
1577 for (plane = 0; plane < vb->num_planes; ++plane) {
1578 ret = call_memop(vb, map_dmabuf, vb->planes[plane].mem_priv);
1579 if (ret) {
1580 dprintk(1, "failed to map dmabuf for plane %d\n",
1581 plane);
1582 goto err;
1583 }
1584 vb->planes[plane].dbuf_mapped = 1;
1585 }
1586
1587 /*
1588 * Now that everything is in order, copy relevant information
1589 * provided by userspace.
1590 */
1591 for (plane = 0; plane < vb->num_planes; ++plane)
1592 vb->v4l2_planes[plane] = planes[plane];
1593
1594 if (reacquired) {
1595 /*
1596 * Call driver-specific initialization on the newly acquired buffer,
1597 * if provided.
1598 */
1599 ret = call_vb_qop(vb, buf_init, vb);
1600 if (ret) {
1601 dprintk(1, "buffer initialization failed\n");
1602 goto err;
1603 }
1604 }
1605
1606 ret = call_vb_qop(vb, buf_prepare, vb);
1607 if (ret) {
1608 dprintk(1, "buffer preparation failed\n");
1609 call_void_vb_qop(vb, buf_cleanup, vb);
1610 goto err;
1611 }
1612
1613 return 0;
1614 err:
1615 /* In case of errors, release planes that were already acquired */
1616 __vb2_buf_dmabuf_put(vb);
1617
1618 return ret;
1619 }
1620
1621 /**
1622 * __enqueue_in_driver() - enqueue a vb2_buffer in driver for processing
1623 */
1624 static void __enqueue_in_driver(struct vb2_buffer *vb)
1625 {
1626 struct vb2_queue *q = vb->vb2_queue;
1627 unsigned int plane;
1628
1629 vb->state = VB2_BUF_STATE_ACTIVE;
1630 atomic_inc(&q->owned_by_drv_count);
1631
1632 /* sync buffers */
1633 for (plane = 0; plane < vb->num_planes; ++plane)
1634 call_void_memop(vb, prepare, vb->planes[plane].mem_priv);
1635
1636 call_void_vb_qop(vb, buf_queue, vb);
1637 }
1638
1639 static int __buf_prepare(struct vb2_buffer *vb, const struct v4l2_buffer *b)
1640 {
1641 struct vb2_queue *q = vb->vb2_queue;
1642 int ret;
1643
1644 ret = __verify_length(vb, b);
1645 if (ret < 0) {
1646 dprintk(1, "plane parameters verification failed: %d\n", ret);
1647 return ret;
1648 }
1649 if (b->field == V4L2_FIELD_ALTERNATE && V4L2_TYPE_IS_OUTPUT(q->type)) {
1650 /*
1651 * If the format's field is ALTERNATE, then the buffer's field
1652 * should be either TOP or BOTTOM, not ALTERNATE since that
1653 * makes no sense. The driver has to know whether the
1654 * buffer represents a top or a bottom field in order to
1655 * program any DMA correctly. Using ALTERNATE is wrong, since
1656 * that just says that it is either a top or a bottom field,
1657 * but not which of the two it is.
1658 */
1659 dprintk(1, "the field is incorrectly set to ALTERNATE for an output buffer\n");
1660 return -EINVAL;
1661 }
1662
1663 if (q->error) {
1664 dprintk(1, "fatal error occurred on queue\n");
1665 return -EIO;
1666 }
1667
1668 vb->state = VB2_BUF_STATE_PREPARING;
1669 vb->v4l2_buf.timestamp.tv_sec = 0;
1670 vb->v4l2_buf.timestamp.tv_usec = 0;
1671 vb->v4l2_buf.sequence = 0;
1672
1673 switch (q->memory) {
1674 case V4L2_MEMORY_MMAP:
1675 ret = __qbuf_mmap(vb, b);
1676 break;
1677 case V4L2_MEMORY_USERPTR:
1678 down_read(&current->mm->mmap_sem);
1679 ret = __qbuf_userptr(vb, b);
1680 up_read(&current->mm->mmap_sem);
1681 break;
1682 case V4L2_MEMORY_DMABUF:
1683 ret = __qbuf_dmabuf(vb, b);
1684 break;
1685 default:
1686 WARN(1, "Invalid queue type\n");
1687 ret = -EINVAL;
1688 }
1689
1690 if (ret)
1691 dprintk(1, "buffer preparation failed: %d\n", ret);
1692 vb->state = ret ? VB2_BUF_STATE_DEQUEUED : VB2_BUF_STATE_PREPARED;
1693
1694 return ret;
1695 }
1696
1697 static int vb2_queue_or_prepare_buf(struct vb2_queue *q, struct v4l2_buffer *b,
1698 const char *opname)
1699 {
1700 if (b->type != q->type) {
1701 dprintk(1, "%s: invalid buffer type\n", opname);
1702 return -EINVAL;
1703 }
1704
1705 if (b->index >= q->num_buffers) {
1706 dprintk(1, "%s: buffer index out of range\n", opname);
1707 return -EINVAL;
1708 }
1709
1710 if (q->bufs[b->index] == NULL) {
1711 /* Should never happen */
1712 dprintk(1, "%s: buffer is NULL\n", opname);
1713 return -EINVAL;
1714 }
1715
1716 if (b->memory != q->memory) {
1717 dprintk(1, "%s: invalid memory type\n", opname);
1718 return -EINVAL;
1719 }
1720
1721 return __verify_planes_array(q->bufs[b->index], b);
1722 }
1723
1724 /**
1725 * vb2_prepare_buf() - Pass ownership of a buffer from userspace to the kernel
1726 * @q: videobuf2 queue
1727 * @b: buffer structure passed from userspace to vidioc_prepare_buf
1728 * handler in driver
1729 *
1730 * Should be called from vidioc_prepare_buf ioctl handler of a driver.
1731 * This function:
1732 * 1) verifies the passed buffer,
1733 * 2) calls buf_prepare callback in the driver (if provided), in which
1734 * driver-specific buffer initialization can be performed,
1735 *
1736 * The return values from this function are intended to be directly returned
1737 * from vidioc_prepare_buf handler in driver.
1738 */
1739 int vb2_prepare_buf(struct vb2_queue *q, struct v4l2_buffer *b)
1740 {
1741 struct vb2_buffer *vb;
1742 int ret;
1743
1744 if (vb2_fileio_is_active(q)) {
1745 dprintk(1, "file io in progress\n");
1746 return -EBUSY;
1747 }
1748
1749 ret = vb2_queue_or_prepare_buf(q, b, "prepare_buf");
1750 if (ret)
1751 return ret;
1752
1753 vb = q->bufs[b->index];
1754 if (vb->state != VB2_BUF_STATE_DEQUEUED) {
1755 dprintk(1, "invalid buffer state %d\n",
1756 vb->state);
1757 return -EINVAL;
1758 }
1759
1760 ret = __buf_prepare(vb, b);
1761 if (!ret) {
1762 /* Fill buffer information for the userspace */
1763 __fill_v4l2_buffer(vb, b);
1764
1765 dprintk(1, "prepare of buffer %d succeeded\n", vb->v4l2_buf.index);
1766 }
1767 return ret;
1768 }
1769 EXPORT_SYMBOL_GPL(vb2_prepare_buf);
1770
1771 /**
1772 * vb2_start_streaming() - Attempt to start streaming.
1773 * @q: videobuf2 queue
1774 *
1775 * Attempt to start streaming. When this function is called there must be
1776 * at least q->min_buffers_needed buffers queued up (i.e. the minimum
1777 * number of buffers required for the DMA engine to function). If the
1778 * @start_streaming op fails it is supposed to return all the driver-owned
1779 * buffers back to vb2 in state QUEUED. Check if that happened and if
1780 * not warn and reclaim them forcefully.
1781 */
1782 static int vb2_start_streaming(struct vb2_queue *q)
1783 {
1784 struct vb2_buffer *vb;
1785 int ret;
1786
1787 /*
1788 * If any buffers were queued before streamon,
1789 * we can now pass them to driver for processing.
1790 */
1791 list_for_each_entry(vb, &q->queued_list, queued_entry)
1792 __enqueue_in_driver(vb);
1793
1794 /* Tell the driver to start streaming */
1795 q->start_streaming_called = 1;
1796 ret = call_qop(q, start_streaming, q,
1797 atomic_read(&q->owned_by_drv_count));
1798 if (!ret)
1799 return 0;
1800
1801 q->start_streaming_called = 0;
1802
1803 dprintk(1, "driver refused to start streaming\n");
1804 /*
1805 * If you see this warning, then the driver isn't cleaning up properly
1806 * after a failed start_streaming(). See the start_streaming()
1807 * documentation in videobuf2-core.h for more information how buffers
1808 * should be returned to vb2 in start_streaming().
1809 */
1810 if (WARN_ON(atomic_read(&q->owned_by_drv_count))) {
1811 unsigned i;
1812
1813 /*
1814 * Forcefully reclaim buffers if the driver did not
1815 * correctly return them to vb2.
1816 */
1817 for (i = 0; i < q->num_buffers; ++i) {
1818 vb = q->bufs[i];
1819 if (vb->state == VB2_BUF_STATE_ACTIVE)
1820 vb2_buffer_done(vb, VB2_BUF_STATE_QUEUED);
1821 }
1822 /* Must be zero now */
1823 WARN_ON(atomic_read(&q->owned_by_drv_count));
1824 }
1825 /*
1826 * If done_list is not empty, then start_streaming() didn't call
1827 * vb2_buffer_done(vb, VB2_BUF_STATE_QUEUED) but STATE_ERROR or
1828 * STATE_DONE.
1829 */
1830 WARN_ON(!list_empty(&q->done_list));
1831 return ret;
1832 }
1833
1834 static int vb2_internal_qbuf(struct vb2_queue *q, struct v4l2_buffer *b)
1835 {
1836 int ret = vb2_queue_or_prepare_buf(q, b, "qbuf");
1837 struct vb2_buffer *vb;
1838
1839 if (ret)
1840 return ret;
1841
1842 vb = q->bufs[b->index];
1843
1844 switch (vb->state) {
1845 case VB2_BUF_STATE_DEQUEUED:
1846 ret = __buf_prepare(vb, b);
1847 if (ret)
1848 return ret;
1849 break;
1850 case VB2_BUF_STATE_PREPARED:
1851 break;
1852 case VB2_BUF_STATE_PREPARING:
1853 dprintk(1, "buffer still being prepared\n");
1854 return -EINVAL;
1855 default:
1856 dprintk(1, "invalid buffer state %d\n", vb->state);
1857 return -EINVAL;
1858 }
1859
1860 /*
1861 * Add to the queued buffers list, a buffer will stay on it until
1862 * dequeued in dqbuf.
1863 */
1864 list_add_tail(&vb->queued_entry, &q->queued_list);
1865 q->queued_count++;
1866 q->waiting_for_buffers = false;
1867 vb->state = VB2_BUF_STATE_QUEUED;
1868 if (V4L2_TYPE_IS_OUTPUT(q->type)) {
1869 /*
1870 * For output buffers copy the timestamp if needed,
1871 * and the timecode field and flag if needed.
1872 */
1873 if ((q->timestamp_flags & V4L2_BUF_FLAG_TIMESTAMP_MASK) ==
1874 V4L2_BUF_FLAG_TIMESTAMP_COPY)
1875 vb->v4l2_buf.timestamp = b->timestamp;
1876 vb->v4l2_buf.flags |= b->flags & V4L2_BUF_FLAG_TIMECODE;
1877 if (b->flags & V4L2_BUF_FLAG_TIMECODE)
1878 vb->v4l2_buf.timecode = b->timecode;
1879 }
1880
1881 /*
1882 * If already streaming, give the buffer to driver for processing.
1883 * If not, the buffer will be given to driver on next streamon.
1884 */
1885 if (q->start_streaming_called)
1886 __enqueue_in_driver(vb);
1887
1888 /* Fill buffer information for the userspace */
1889 __fill_v4l2_buffer(vb, b);
1890
1891 /*
1892 * If streamon has been called, and we haven't yet called
1893 * start_streaming() since not enough buffers were queued, and
1894 * we now have reached the minimum number of queued buffers,
1895 * then we can finally call start_streaming().
1896 */
1897 if (q->streaming && !q->start_streaming_called &&
1898 q->queued_count >= q->min_buffers_needed) {
1899 ret = vb2_start_streaming(q);
1900 if (ret)
1901 return ret;
1902 }
1903
1904 dprintk(1, "qbuf of buffer %d succeeded\n", vb->v4l2_buf.index);
1905 return 0;
1906 }
1907
1908 /**
1909 * vb2_qbuf() - Queue a buffer from userspace
1910 * @q: videobuf2 queue
1911 * @b: buffer structure passed from userspace to vidioc_qbuf handler
1912 * in driver
1913 *
1914 * Should be called from vidioc_qbuf ioctl handler of a driver.
1915 * This function:
1916 * 1) verifies the passed buffer,
1917 * 2) if necessary, calls buf_prepare callback in the driver (if provided), in
1918 * which driver-specific buffer initialization can be performed,
1919 * 3) if streaming is on, queues the buffer in driver by the means of buf_queue
1920 * callback for processing.
1921 *
1922 * The return values from this function are intended to be directly returned
1923 * from vidioc_qbuf handler in driver.
1924 */
1925 int vb2_qbuf(struct vb2_queue *q, struct v4l2_buffer *b)
1926 {
1927 if (vb2_fileio_is_active(q)) {
1928 dprintk(1, "file io in progress\n");
1929 return -EBUSY;
1930 }
1931
1932 return vb2_internal_qbuf(q, b);
1933 }
1934 EXPORT_SYMBOL_GPL(vb2_qbuf);
1935
1936 /**
1937 * __vb2_wait_for_done_vb() - wait for a buffer to become available
1938 * for dequeuing
1939 *
1940 * Will sleep if required for nonblocking == false.
1941 */
1942 static int __vb2_wait_for_done_vb(struct vb2_queue *q, int nonblocking)
1943 {
1944 /*
1945 * All operations on vb_done_list are performed under done_lock
1946 * spinlock protection. However, buffers may be removed from
1947 * it and returned to userspace only while holding both driver's
1948 * lock and the done_lock spinlock. Thus we can be sure that as
1949 * long as we hold the driver's lock, the list will remain not
1950 * empty if list_empty() check succeeds.
1951 */
1952
1953 for (;;) {
1954 int ret;
1955
1956 if (!q->streaming) {
1957 dprintk(1, "streaming off, will not wait for buffers\n");
1958 return -EINVAL;
1959 }
1960
1961 if (q->error) {
1962 dprintk(1, "Queue in error state, will not wait for buffers\n");
1963 return -EIO;
1964 }
1965
1966 if (q->last_buffer_dequeued) {
1967 dprintk(3, "last buffer dequeued already, will not wait for buffers\n");
1968 return -EPIPE;
1969 }
1970
1971 if (!list_empty(&q->done_list)) {
1972 /*
1973 * Found a buffer that we were waiting for.
1974 */
1975 break;
1976 }
1977
1978 if (nonblocking) {
1979 dprintk(1, "nonblocking and no buffers to dequeue, "
1980 "will not wait\n");
1981 return -EAGAIN;
1982 }
1983
1984 /*
1985 * We are streaming and blocking, wait for another buffer to
1986 * become ready or for streamoff. Driver's lock is released to
1987 * allow streamoff or qbuf to be called while waiting.
1988 */
1989 call_void_qop(q, wait_prepare, q);
1990
1991 /*
1992 * All locks have been released, it is safe to sleep now.
1993 */
1994 dprintk(3, "will sleep waiting for buffers\n");
1995 ret = wait_event_interruptible(q->done_wq,
1996 !list_empty(&q->done_list) || !q->streaming ||
1997 q->error);
1998
1999 /*
2000 * We need to reevaluate both conditions again after reacquiring
2001 * the locks or return an error if one occurred.
2002 */
2003 call_void_qop(q, wait_finish, q);
2004 if (ret) {
2005 dprintk(1, "sleep was interrupted\n");
2006 return ret;
2007 }
2008 }
2009 return 0;
2010 }
2011
2012 /**
2013 * __vb2_get_done_vb() - get a buffer ready for dequeuing
2014 *
2015 * Will sleep if required for nonblocking == false.
2016 */
2017 static int __vb2_get_done_vb(struct vb2_queue *q, struct vb2_buffer **vb,
2018 struct v4l2_buffer *b, int nonblocking)
2019 {
2020 unsigned long flags;
2021 int ret;
2022
2023 /*
2024 * Wait for at least one buffer to become available on the done_list.
2025 */
2026 ret = __vb2_wait_for_done_vb(q, nonblocking);
2027 if (ret)
2028 return ret;
2029
2030 /*
2031 * Driver's lock has been held since we last verified that done_list
2032 * is not empty, so no need for another list_empty(done_list) check.
2033 */
2034 spin_lock_irqsave(&q->done_lock, flags);
2035 *vb = list_first_entry(&q->done_list, struct vb2_buffer, done_entry);
2036 /*
2037 * Only remove the buffer from done_list if v4l2_buffer can handle all
2038 * the planes.
2039 */
2040 ret = __verify_planes_array(*vb, b);
2041 if (!ret)
2042 list_del(&(*vb)->done_entry);
2043 spin_unlock_irqrestore(&q->done_lock, flags);
2044
2045 return ret;
2046 }
2047
2048 /**
2049 * vb2_wait_for_all_buffers() - wait until all buffers are given back to vb2
2050 * @q: videobuf2 queue
2051 *
2052 * This function will wait until all buffers that have been given to the driver
2053 * by buf_queue() are given back to vb2 with vb2_buffer_done(). It doesn't call
2054 * wait_prepare, wait_finish pair. It is intended to be called with all locks
2055 * taken, for example from stop_streaming() callback.
2056 */
2057 int vb2_wait_for_all_buffers(struct vb2_queue *q)
2058 {
2059 if (!q->streaming) {
2060 dprintk(1, "streaming off, will not wait for buffers\n");
2061 return -EINVAL;
2062 }
2063
2064 if (q->start_streaming_called)
2065 wait_event(q->done_wq, !atomic_read(&q->owned_by_drv_count));
2066 return 0;
2067 }
2068 EXPORT_SYMBOL_GPL(vb2_wait_for_all_buffers);
2069
2070 /**
2071 * __vb2_dqbuf() - bring back the buffer to the DEQUEUED state
2072 */
2073 static void __vb2_dqbuf(struct vb2_buffer *vb)
2074 {
2075 struct vb2_queue *q = vb->vb2_queue;
2076 unsigned int i;
2077
2078 /* nothing to do if the buffer is already dequeued */
2079 if (vb->state == VB2_BUF_STATE_DEQUEUED)
2080 return;
2081
2082 vb->state = VB2_BUF_STATE_DEQUEUED;
2083
2084 /* unmap DMABUF buffer */
2085 if (q->memory == V4L2_MEMORY_DMABUF)
2086 for (i = 0; i < vb->num_planes; ++i) {
2087 if (!vb->planes[i].dbuf_mapped)
2088 continue;
2089 call_void_memop(vb, unmap_dmabuf, vb->planes[i].mem_priv);
2090 vb->planes[i].dbuf_mapped = 0;
2091 }
2092 }
2093
2094 static int vb2_internal_dqbuf(struct vb2_queue *q, struct v4l2_buffer *b, bool nonblocking)
2095 {
2096 struct vb2_buffer *vb = NULL;
2097 int ret;
2098
2099 if (b->type != q->type) {
2100 dprintk(1, "invalid buffer type\n");
2101 return -EINVAL;
2102 }
2103 ret = __vb2_get_done_vb(q, &vb, b, nonblocking);
2104 if (ret < 0)
2105 return ret;
2106
2107 switch (vb->state) {
2108 case VB2_BUF_STATE_DONE:
2109 dprintk(3, "returning done buffer\n");
2110 break;
2111 case VB2_BUF_STATE_ERROR:
2112 dprintk(3, "returning done buffer with errors\n");
2113 break;
2114 default:
2115 dprintk(1, "invalid buffer state\n");
2116 return -EINVAL;
2117 }
2118
2119 call_void_vb_qop(vb, buf_finish, vb);
2120
2121 /* Fill buffer information for the userspace */
2122 __fill_v4l2_buffer(vb, b);
2123 /* Remove from videobuf queue */
2124 list_del(&vb->queued_entry);
2125 q->queued_count--;
2126 if (!V4L2_TYPE_IS_OUTPUT(q->type) &&
2127 vb->v4l2_buf.flags & V4L2_BUF_FLAG_LAST)
2128 q->last_buffer_dequeued = true;
2129 /* go back to dequeued state */
2130 __vb2_dqbuf(vb);
2131
2132 dprintk(1, "dqbuf of buffer %d, with state %d\n",
2133 vb->v4l2_buf.index, vb->state);
2134
2135 return 0;
2136 }
2137
2138 /**
2139 * vb2_dqbuf() - Dequeue a buffer to the userspace
2140 * @q: videobuf2 queue
2141 * @b: buffer structure passed from userspace to vidioc_dqbuf handler
2142 * in driver
2143 * @nonblocking: if true, this call will not sleep waiting for a buffer if no
2144 * buffers ready for dequeuing are present. Normally the driver
2145 * would be passing (file->f_flags & O_NONBLOCK) here
2146 *
2147 * Should be called from vidioc_dqbuf ioctl handler of a driver.
2148 * This function:
2149 * 1) verifies the passed buffer,
2150 * 2) calls buf_finish callback in the driver (if provided), in which
2151 * driver can perform any additional operations that may be required before
2152 * returning the buffer to userspace, such as cache sync,
2153 * 3) the buffer struct members are filled with relevant information for
2154 * the userspace.
2155 *
2156 * The return values from this function are intended to be directly returned
2157 * from vidioc_dqbuf handler in driver.
2158 */
2159 int vb2_dqbuf(struct vb2_queue *q, struct v4l2_buffer *b, bool nonblocking)
2160 {
2161 if (vb2_fileio_is_active(q)) {
2162 dprintk(1, "file io in progress\n");
2163 return -EBUSY;
2164 }
2165 return vb2_internal_dqbuf(q, b, nonblocking);
2166 }
2167 EXPORT_SYMBOL_GPL(vb2_dqbuf);
2168
2169 /**
2170 * __vb2_queue_cancel() - cancel and stop (pause) streaming
2171 *
2172 * Removes all queued buffers from driver's queue and all buffers queued by
2173 * userspace from videobuf's queue. Returns to state after reqbufs.
2174 */
2175 static void __vb2_queue_cancel(struct vb2_queue *q)
2176 {
2177 unsigned int i;
2178
2179 /*
2180 * Tell driver to stop all transactions and release all queued
2181 * buffers.
2182 */
2183 if (q->start_streaming_called)
2184 call_void_qop(q, stop_streaming, q);
2185
2186 /*
2187 * If you see this warning, then the driver isn't cleaning up properly
2188 * in stop_streaming(). See the stop_streaming() documentation in
2189 * videobuf2-core.h for more information how buffers should be returned
2190 * to vb2 in stop_streaming().
2191 */
2192 if (WARN_ON(atomic_read(&q->owned_by_drv_count))) {
2193 for (i = 0; i < q->num_buffers; ++i)
2194 if (q->bufs[i]->state == VB2_BUF_STATE_ACTIVE)
2195 vb2_buffer_done(q->bufs[i], VB2_BUF_STATE_ERROR);
2196 /* Must be zero now */
2197 WARN_ON(atomic_read(&q->owned_by_drv_count));
2198 }
2199
2200 q->streaming = 0;
2201 q->start_streaming_called = 0;
2202 q->queued_count = 0;
2203 q->error = 0;
2204
2205 /*
2206 * Remove all buffers from videobuf's list...
2207 */
2208 INIT_LIST_HEAD(&q->queued_list);
2209 /*
2210 * ...and done list; userspace will not receive any buffers it
2211 * has not already dequeued before initiating cancel.
2212 */
2213 INIT_LIST_HEAD(&q->done_list);
2214 atomic_set(&q->owned_by_drv_count, 0);
2215 wake_up_all(&q->done_wq);
2216
2217 /*
2218 * Reinitialize all buffers for next use.
2219 * Make sure to call buf_finish for any queued buffers. Normally
2220 * that's done in dqbuf, but that's not going to happen when we
2221 * cancel the whole queue. Note: this code belongs here, not in
2222 * __vb2_dqbuf() since in vb2_internal_dqbuf() there is a critical
2223 * call to __fill_v4l2_buffer() after buf_finish(). That order can't
2224 * be changed, so we can't move the buf_finish() to __vb2_dqbuf().
2225 */
2226 for (i = 0; i < q->num_buffers; ++i) {
2227 struct vb2_buffer *vb = q->bufs[i];
2228
2229 if (vb->state != VB2_BUF_STATE_DEQUEUED) {
2230 vb->state = VB2_BUF_STATE_PREPARED;
2231 call_void_vb_qop(vb, buf_finish, vb);
2232 }
2233 __vb2_dqbuf(vb);
2234 }
2235 }
2236
2237 static int vb2_internal_streamon(struct vb2_queue *q, enum v4l2_buf_type type)
2238 {
2239 int ret;
2240
2241 if (type != q->type) {
2242 dprintk(1, "invalid stream type\n");
2243 return -EINVAL;
2244 }
2245
2246 if (q->streaming) {
2247 dprintk(3, "already streaming\n");
2248 return 0;
2249 }
2250
2251 if (!q->num_buffers) {
2252 dprintk(1, "no buffers have been allocated\n");
2253 return -EINVAL;
2254 }
2255
2256 if (q->num_buffers < q->min_buffers_needed) {
2257 dprintk(1, "need at least %u allocated buffers\n",
2258 q->min_buffers_needed);
2259 return -EINVAL;
2260 }
2261
2262 /*
2263 * Tell driver to start streaming provided sufficient buffers
2264 * are available.
2265 */
2266 if (q->queued_count >= q->min_buffers_needed) {
2267 ret = vb2_start_streaming(q);
2268 if (ret) {
2269 __vb2_queue_cancel(q);
2270 return ret;
2271 }
2272 }
2273
2274 q->streaming = 1;
2275
2276 dprintk(3, "successful\n");
2277 return 0;
2278 }
2279
2280 /**
2281 * vb2_queue_error() - signal a fatal error on the queue
2282 * @q: videobuf2 queue
2283 *
2284 * Flag that a fatal unrecoverable error has occurred and wake up all processes
2285 * waiting on the queue. Polling will now set POLLERR and queuing and dequeuing
2286 * buffers will return -EIO.
2287 *
2288 * The error flag will be cleared when cancelling the queue, either from
2289 * vb2_streamoff or vb2_queue_release. Drivers should thus not call this
2290 * function before starting the stream, otherwise the error flag will remain set
2291 * until the queue is released when closing the device node.
2292 */
2293 void vb2_queue_error(struct vb2_queue *q)
2294 {
2295 q->error = 1;
2296
2297 wake_up_all(&q->done_wq);
2298 }
2299 EXPORT_SYMBOL_GPL(vb2_queue_error);
2300
2301 /**
2302 * vb2_streamon - start streaming
2303 * @q: videobuf2 queue
2304 * @type: type argument passed from userspace to vidioc_streamon handler
2305 *
2306 * Should be called from vidioc_streamon handler of a driver.
2307 * This function:
2308 * 1) verifies current state
2309 * 2) passes any previously queued buffers to the driver and starts streaming
2310 *
2311 * The return values from this function are intended to be directly returned
2312 * from vidioc_streamon handler in the driver.
2313 */
2314 int vb2_streamon(struct vb2_queue *q, enum v4l2_buf_type type)
2315 {
2316 if (vb2_fileio_is_active(q)) {
2317 dprintk(1, "file io in progress\n");
2318 return -EBUSY;
2319 }
2320 return vb2_internal_streamon(q, type);
2321 }
2322 EXPORT_SYMBOL_GPL(vb2_streamon);
2323
2324 static int vb2_internal_streamoff(struct vb2_queue *q, enum v4l2_buf_type type)
2325 {
2326 if (type != q->type) {
2327 dprintk(1, "invalid stream type\n");
2328 return -EINVAL;
2329 }
2330
2331 /*
2332 * Cancel will pause streaming and remove all buffers from the driver
2333 * and videobuf, effectively returning control over them to userspace.
2334 *
2335 * Note that we do this even if q->streaming == 0: if you prepare or
2336 * queue buffers, and then call streamoff without ever having called
2337 * streamon, you would still expect those buffers to be returned to
2338 * their normal dequeued state.
2339 */
2340 __vb2_queue_cancel(q);
2341 q->waiting_for_buffers = !V4L2_TYPE_IS_OUTPUT(q->type);
2342 q->last_buffer_dequeued = false;
2343
2344 dprintk(3, "successful\n");
2345 return 0;
2346 }
2347
2348 /**
2349 * vb2_streamoff - stop streaming
2350 * @q: videobuf2 queue
2351 * @type: type argument passed from userspace to vidioc_streamoff handler
2352 *
2353 * Should be called from vidioc_streamoff handler of a driver.
2354 * This function:
2355 * 1) verifies current state,
2356 * 2) stop streaming and dequeues any queued buffers, including those previously
2357 * passed to the driver (after waiting for the driver to finish).
2358 *
2359 * This call can be used for pausing playback.
2360 * The return values from this function are intended to be directly returned
2361 * from vidioc_streamoff handler in the driver
2362 */
2363 int vb2_streamoff(struct vb2_queue *q, enum v4l2_buf_type type)
2364 {
2365 if (vb2_fileio_is_active(q)) {
2366 dprintk(1, "file io in progress\n");
2367 return -EBUSY;
2368 }
2369 return vb2_internal_streamoff(q, type);
2370 }
2371 EXPORT_SYMBOL_GPL(vb2_streamoff);
2372
2373 /**
2374 * __find_plane_by_offset() - find plane associated with the given offset off
2375 */
2376 static int __find_plane_by_offset(struct vb2_queue *q, unsigned long off,
2377 unsigned int *_buffer, unsigned int *_plane)
2378 {
2379 struct vb2_buffer *vb;
2380 unsigned int buffer, plane;
2381
2382 /*
2383 * Go over all buffers and their planes, comparing the given offset
2384 * with an offset assigned to each plane. If a match is found,
2385 * return its buffer and plane numbers.
2386 */
2387 for (buffer = 0; buffer < q->num_buffers; ++buffer) {
2388 vb = q->bufs[buffer];
2389
2390 for (plane = 0; plane < vb->num_planes; ++plane) {
2391 if (vb->v4l2_planes[plane].m.mem_offset == off) {
2392 *_buffer = buffer;
2393 *_plane = plane;
2394 return 0;
2395 }
2396 }
2397 }
2398
2399 return -EINVAL;
2400 }
2401
2402 /**
2403 * vb2_expbuf() - Export a buffer as a file descriptor
2404 * @q: videobuf2 queue
2405 * @eb: export buffer structure passed from userspace to vidioc_expbuf
2406 * handler in driver
2407 *
2408 * The return values from this function are intended to be directly returned
2409 * from vidioc_expbuf handler in driver.
2410 */
2411 int vb2_expbuf(struct vb2_queue *q, struct v4l2_exportbuffer *eb)
2412 {
2413 struct vb2_buffer *vb = NULL;
2414 struct vb2_plane *vb_plane;
2415 int ret;
2416 struct dma_buf *dbuf;
2417
2418 if (q->memory != V4L2_MEMORY_MMAP) {
2419 dprintk(1, "queue is not currently set up for mmap\n");
2420 return -EINVAL;
2421 }
2422
2423 if (!q->mem_ops->get_dmabuf) {
2424 dprintk(1, "queue does not support DMA buffer exporting\n");
2425 return -EINVAL;
2426 }
2427
2428 if (eb->flags & ~(O_CLOEXEC | O_ACCMODE)) {
2429 dprintk(1, "queue does support only O_CLOEXEC and access mode flags\n");
2430 return -EINVAL;
2431 }
2432
2433 if (eb->type != q->type) {
2434 dprintk(1, "invalid buffer type\n");
2435 return -EINVAL;
2436 }
2437
2438 if (eb->index >= q->num_buffers) {
2439 dprintk(1, "buffer index out of range\n");
2440 return -EINVAL;
2441 }
2442
2443 vb = q->bufs[eb->index];
2444
2445 if (eb->plane >= vb->num_planes) {
2446 dprintk(1, "buffer plane out of range\n");
2447 return -EINVAL;
2448 }
2449
2450 if (vb2_fileio_is_active(q)) {
2451 dprintk(1, "expbuf: file io in progress\n");
2452 return -EBUSY;
2453 }
2454
2455 vb_plane = &vb->planes[eb->plane];
2456
2457 dbuf = call_ptr_memop(vb, get_dmabuf, vb_plane->mem_priv, eb->flags & O_ACCMODE);
2458 if (IS_ERR_OR_NULL(dbuf)) {
2459 dprintk(1, "failed to export buffer %d, plane %d\n",
2460 eb->index, eb->plane);
2461 return -EINVAL;
2462 }
2463
2464 ret = dma_buf_fd(dbuf, eb->flags & ~O_ACCMODE);
2465 if (ret < 0) {
2466 dprintk(3, "buffer %d, plane %d failed to export (%d)\n",
2467 eb->index, eb->plane, ret);
2468 dma_buf_put(dbuf);
2469 return ret;
2470 }
2471
2472 dprintk(3, "buffer %d, plane %d exported as %d descriptor\n",
2473 eb->index, eb->plane, ret);
2474 eb->fd = ret;
2475
2476 return 0;
2477 }
2478 EXPORT_SYMBOL_GPL(vb2_expbuf);
2479
2480 /**
2481 * vb2_mmap() - map video buffers into application address space
2482 * @q: videobuf2 queue
2483 * @vma: vma passed to the mmap file operation handler in the driver
2484 *
2485 * Should be called from mmap file operation handler of a driver.
2486 * This function maps one plane of one of the available video buffers to
2487 * userspace. To map whole video memory allocated on reqbufs, this function
2488 * has to be called once per each plane per each buffer previously allocated.
2489 *
2490 * When the userspace application calls mmap, it passes to it an offset returned
2491 * to it earlier by the means of vidioc_querybuf handler. That offset acts as
2492 * a "cookie", which is then used to identify the plane to be mapped.
2493 * This function finds a plane with a matching offset and a mapping is performed
2494 * by the means of a provided memory operation.
2495 *
2496 * The return values from this function are intended to be directly returned
2497 * from the mmap handler in driver.
2498 */
2499 int vb2_mmap(struct vb2_queue *q, struct vm_area_struct *vma)
2500 {
2501 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
2502 struct vb2_buffer *vb;
2503 unsigned int buffer = 0, plane = 0;
2504 int ret;
2505 unsigned long length;
2506
2507 if (q->memory != V4L2_MEMORY_MMAP) {
2508 dprintk(1, "queue is not currently set up for mmap\n");
2509 return -EINVAL;
2510 }
2511
2512 /*
2513 * Check memory area access mode.
2514 */
2515 if (!(vma->vm_flags & VM_SHARED)) {
2516 dprintk(1, "invalid vma flags, VM_SHARED needed\n");
2517 return -EINVAL;
2518 }
2519 if (V4L2_TYPE_IS_OUTPUT(q->type)) {
2520 if (!(vma->vm_flags & VM_WRITE)) {
2521 dprintk(1, "invalid vma flags, VM_WRITE needed\n");
2522 return -EINVAL;
2523 }
2524 } else {
2525 if (!(vma->vm_flags & VM_READ)) {
2526 dprintk(1, "invalid vma flags, VM_READ needed\n");
2527 return -EINVAL;
2528 }
2529 }
2530 if (vb2_fileio_is_active(q)) {
2531 dprintk(1, "mmap: file io in progress\n");
2532 return -EBUSY;
2533 }
2534
2535 /*
2536 * Find the plane corresponding to the offset passed by userspace.
2537 */
2538 ret = __find_plane_by_offset(q, off, &buffer, &plane);
2539 if (ret)
2540 return ret;
2541
2542 vb = q->bufs[buffer];
2543
2544 /*
2545 * MMAP requires page_aligned buffers.
2546 * The buffer length was page_aligned at __vb2_buf_mem_alloc(),
2547 * so, we need to do the same here.
2548 */
2549 length = PAGE_ALIGN(vb->v4l2_planes[plane].length);
2550 if (length < (vma->vm_end - vma->vm_start)) {
2551 dprintk(1,
2552 "MMAP invalid, as it would overflow buffer length\n");
2553 return -EINVAL;
2554 }
2555
2556 mutex_lock(&q->mmap_lock);
2557 ret = call_memop(vb, mmap, vb->planes[plane].mem_priv, vma);
2558 mutex_unlock(&q->mmap_lock);
2559 if (ret)
2560 return ret;
2561
2562 dprintk(3, "buffer %d, plane %d successfully mapped\n", buffer, plane);
2563 return 0;
2564 }
2565 EXPORT_SYMBOL_GPL(vb2_mmap);
2566
2567 #ifndef CONFIG_MMU
2568 unsigned long vb2_get_unmapped_area(struct vb2_queue *q,
2569 unsigned long addr,
2570 unsigned long len,
2571 unsigned long pgoff,
2572 unsigned long flags)
2573 {
2574 unsigned long off = pgoff << PAGE_SHIFT;
2575 struct vb2_buffer *vb;
2576 unsigned int buffer, plane;
2577 void *vaddr;
2578 int ret;
2579
2580 if (q->memory != V4L2_MEMORY_MMAP) {
2581 dprintk(1, "queue is not currently set up for mmap\n");
2582 return -EINVAL;
2583 }
2584
2585 /*
2586 * Find the plane corresponding to the offset passed by userspace.
2587 */
2588 ret = __find_plane_by_offset(q, off, &buffer, &plane);
2589 if (ret)
2590 return ret;
2591
2592 vb = q->bufs[buffer];
2593
2594 vaddr = vb2_plane_vaddr(vb, plane);
2595 return vaddr ? (unsigned long)vaddr : -EINVAL;
2596 }
2597 EXPORT_SYMBOL_GPL(vb2_get_unmapped_area);
2598 #endif
2599
2600 static int __vb2_init_fileio(struct vb2_queue *q, int read);
2601 static int __vb2_cleanup_fileio(struct vb2_queue *q);
2602
2603 /**
2604 * vb2_poll() - implements poll userspace operation
2605 * @q: videobuf2 queue
2606 * @file: file argument passed to the poll file operation handler
2607 * @wait: wait argument passed to the poll file operation handler
2608 *
2609 * This function implements poll file operation handler for a driver.
2610 * For CAPTURE queues, if a buffer is ready to be dequeued, the userspace will
2611 * be informed that the file descriptor of a video device is available for
2612 * reading.
2613 * For OUTPUT queues, if a buffer is ready to be dequeued, the file descriptor
2614 * will be reported as available for writing.
2615 *
2616 * If the driver uses struct v4l2_fh, then vb2_poll() will also check for any
2617 * pending events.
2618 *
2619 * The return values from this function are intended to be directly returned
2620 * from poll handler in driver.
2621 */
2622 unsigned int vb2_poll(struct vb2_queue *q, struct file *file, poll_table *wait)
2623 {
2624 struct video_device *vfd = video_devdata(file);
2625 unsigned long req_events = poll_requested_events(wait);
2626 struct vb2_buffer *vb = NULL;
2627 unsigned int res = 0;
2628 unsigned long flags;
2629
2630 if (test_bit(V4L2_FL_USES_V4L2_FH, &vfd->flags)) {
2631 struct v4l2_fh *fh = file->private_data;
2632
2633 if (v4l2_event_pending(fh))
2634 res = POLLPRI;
2635 else if (req_events & POLLPRI)
2636 poll_wait(file, &fh->wait, wait);
2637 }
2638
2639 if (!V4L2_TYPE_IS_OUTPUT(q->type) && !(req_events & (POLLIN | POLLRDNORM)))
2640 return res;
2641 if (V4L2_TYPE_IS_OUTPUT(q->type) && !(req_events & (POLLOUT | POLLWRNORM)))
2642 return res;
2643
2644 /*
2645 * Start file I/O emulator only if streaming API has not been used yet.
2646 */
2647 if (q->num_buffers == 0 && !vb2_fileio_is_active(q)) {
2648 if (!V4L2_TYPE_IS_OUTPUT(q->type) && (q->io_modes & VB2_READ) &&
2649 (req_events & (POLLIN | POLLRDNORM))) {
2650 if (__vb2_init_fileio(q, 1))
2651 return res | POLLERR;
2652 }
2653 if (V4L2_TYPE_IS_OUTPUT(q->type) && (q->io_modes & VB2_WRITE) &&
2654 (req_events & (POLLOUT | POLLWRNORM))) {
2655 if (__vb2_init_fileio(q, 0))
2656 return res | POLLERR;
2657 /*
2658 * Write to OUTPUT queue can be done immediately.
2659 */
2660 return res | POLLOUT | POLLWRNORM;
2661 }
2662 }
2663
2664 /*
2665 * There is nothing to wait for if the queue isn't streaming, or if the
2666 * error flag is set.
2667 */
2668 if (!vb2_is_streaming(q) || q->error)
2669 return res | POLLERR;
2670 /*
2671 * For compatibility with vb1: if QBUF hasn't been called yet, then
2672 * return POLLERR as well. This only affects capture queues, output
2673 * queues will always initialize waiting_for_buffers to false.
2674 */
2675 if (q->waiting_for_buffers)
2676 return res | POLLERR;
2677
2678 /*
2679 * For output streams you can write as long as there are fewer buffers
2680 * queued than there are buffers available.
2681 */
2682 if (V4L2_TYPE_IS_OUTPUT(q->type) && q->queued_count < q->num_buffers)
2683 return res | POLLOUT | POLLWRNORM;
2684
2685 if (list_empty(&q->done_list)) {
2686 /*
2687 * If the last buffer was dequeued from a capture queue,
2688 * return immediately. DQBUF will return -EPIPE.
2689 */
2690 if (q->last_buffer_dequeued)
2691 return res | POLLIN | POLLRDNORM;
2692
2693 poll_wait(file, &q->done_wq, wait);
2694 }
2695
2696 /*
2697 * Take first buffer available for dequeuing.
2698 */
2699 spin_lock_irqsave(&q->done_lock, flags);
2700 if (!list_empty(&q->done_list))
2701 vb = list_first_entry(&q->done_list, struct vb2_buffer,
2702 done_entry);
2703 spin_unlock_irqrestore(&q->done_lock, flags);
2704
2705 if (vb && (vb->state == VB2_BUF_STATE_DONE
2706 || vb->state == VB2_BUF_STATE_ERROR)) {
2707 return (V4L2_TYPE_IS_OUTPUT(q->type)) ?
2708 res | POLLOUT | POLLWRNORM :
2709 res | POLLIN | POLLRDNORM;
2710 }
2711 return res;
2712 }
2713 EXPORT_SYMBOL_GPL(vb2_poll);
2714
2715 /**
2716 * vb2_queue_init() - initialize a videobuf2 queue
2717 * @q: videobuf2 queue; this structure should be allocated in driver
2718 *
2719 * The vb2_queue structure should be allocated by the driver. The driver is
2720 * responsible of clearing it's content and setting initial values for some
2721 * required entries before calling this function.
2722 * q->ops, q->mem_ops, q->type and q->io_modes are mandatory. Please refer
2723 * to the struct vb2_queue description in include/media/videobuf2-core.h
2724 * for more information.
2725 */
2726 int vb2_queue_init(struct vb2_queue *q)
2727 {
2728 /*
2729 * Sanity check
2730 */
2731 if (WARN_ON(!q) ||
2732 WARN_ON(!q->ops) ||
2733 WARN_ON(!q->mem_ops) ||
2734 WARN_ON(!q->type) ||
2735 WARN_ON(!q->io_modes) ||
2736 WARN_ON(!q->ops->queue_setup) ||
2737 WARN_ON(!q->ops->buf_queue) ||
2738 WARN_ON(q->timestamp_flags &
2739 ~(V4L2_BUF_FLAG_TIMESTAMP_MASK |
2740 V4L2_BUF_FLAG_TSTAMP_SRC_MASK)))
2741 return -EINVAL;
2742
2743 /* Warn that the driver should choose an appropriate timestamp type */
2744 WARN_ON((q->timestamp_flags & V4L2_BUF_FLAG_TIMESTAMP_MASK) ==
2745 V4L2_BUF_FLAG_TIMESTAMP_UNKNOWN);
2746
2747 INIT_LIST_HEAD(&q->queued_list);
2748 INIT_LIST_HEAD(&q->done_list);
2749 spin_lock_init(&q->done_lock);
2750 mutex_init(&q->mmap_lock);
2751 init_waitqueue_head(&q->done_wq);
2752
2753 if (q->buf_struct_size == 0)
2754 q->buf_struct_size = sizeof(struct vb2_buffer);
2755
2756 return 0;
2757 }
2758 EXPORT_SYMBOL_GPL(vb2_queue_init);
2759
2760 /**
2761 * vb2_queue_release() - stop streaming, release the queue and free memory
2762 * @q: videobuf2 queue
2763 *
2764 * This function stops streaming and performs necessary clean ups, including
2765 * freeing video buffer memory. The driver is responsible for freeing
2766 * the vb2_queue structure itself.
2767 */
2768 void vb2_queue_release(struct vb2_queue *q)
2769 {
2770 __vb2_cleanup_fileio(q);
2771 __vb2_queue_cancel(q);
2772 mutex_lock(&q->mmap_lock);
2773 __vb2_queue_free(q, q->num_buffers);
2774 mutex_unlock(&q->mmap_lock);
2775 }
2776 EXPORT_SYMBOL_GPL(vb2_queue_release);
2777
2778 /**
2779 * struct vb2_fileio_buf - buffer context used by file io emulator
2780 *
2781 * vb2 provides a compatibility layer and emulator of file io (read and
2782 * write) calls on top of streaming API. This structure is used for
2783 * tracking context related to the buffers.
2784 */
2785 struct vb2_fileio_buf {
2786 void *vaddr;
2787 unsigned int size;
2788 unsigned int pos;
2789 unsigned int queued:1;
2790 };
2791
2792 /**
2793 * struct vb2_fileio_data - queue context used by file io emulator
2794 *
2795 * @cur_index: the index of the buffer currently being read from or
2796 * written to. If equal to q->num_buffers then a new buffer
2797 * must be dequeued.
2798 * @initial_index: in the read() case all buffers are queued up immediately
2799 * in __vb2_init_fileio() and __vb2_perform_fileio() just cycles
2800 * buffers. However, in the write() case no buffers are initially
2801 * queued, instead whenever a buffer is full it is queued up by
2802 * __vb2_perform_fileio(). Only once all available buffers have
2803 * been queued up will __vb2_perform_fileio() start to dequeue
2804 * buffers. This means that initially __vb2_perform_fileio()
2805 * needs to know what buffer index to use when it is queuing up
2806 * the buffers for the first time. That initial index is stored
2807 * in this field. Once it is equal to q->num_buffers all
2808 * available buffers have been queued and __vb2_perform_fileio()
2809 * should start the normal dequeue/queue cycle.
2810 *
2811 * vb2 provides a compatibility layer and emulator of file io (read and
2812 * write) calls on top of streaming API. For proper operation it required
2813 * this structure to save the driver state between each call of the read
2814 * or write function.
2815 */
2816 struct vb2_fileio_data {
2817 struct v4l2_requestbuffers req;
2818 struct v4l2_plane p;
2819 struct v4l2_buffer b;
2820 struct vb2_fileio_buf bufs[VIDEO_MAX_FRAME];
2821 unsigned int cur_index;
2822 unsigned int initial_index;
2823 unsigned int q_count;
2824 unsigned int dq_count;
2825 unsigned read_once:1;
2826 unsigned write_immediately:1;
2827 };
2828
2829 /**
2830 * __vb2_init_fileio() - initialize file io emulator
2831 * @q: videobuf2 queue
2832 * @read: mode selector (1 means read, 0 means write)
2833 */
2834 static int __vb2_init_fileio(struct vb2_queue *q, int read)
2835 {
2836 struct vb2_fileio_data *fileio;
2837 int i, ret;
2838 unsigned int count = 0;
2839
2840 /*
2841 * Sanity check
2842 */
2843 if (WARN_ON((read && !(q->io_modes & VB2_READ)) ||
2844 (!read && !(q->io_modes & VB2_WRITE))))
2845 return -EINVAL;
2846
2847 /*
2848 * Check if device supports mapping buffers to kernel virtual space.
2849 */
2850 if (!q->mem_ops->vaddr)
2851 return -EBUSY;
2852
2853 /*
2854 * Check if streaming api has not been already activated.
2855 */
2856 if (q->streaming || q->num_buffers > 0)
2857 return -EBUSY;
2858
2859 /*
2860 * Start with count 1, driver can increase it in queue_setup()
2861 */
2862 count = 1;
2863
2864 dprintk(3, "setting up file io: mode %s, count %d, read_once %d, write_immediately %d\n",
2865 (read) ? "read" : "write", count, q->fileio_read_once,
2866 q->fileio_write_immediately);
2867
2868 fileio = kzalloc(sizeof(struct vb2_fileio_data), GFP_KERNEL);
2869 if (fileio == NULL)
2870 return -ENOMEM;
2871
2872 fileio->read_once = q->fileio_read_once;
2873 fileio->write_immediately = q->fileio_write_immediately;
2874
2875 /*
2876 * Request buffers and use MMAP type to force driver
2877 * to allocate buffers by itself.
2878 */
2879 fileio->req.count = count;
2880 fileio->req.memory = V4L2_MEMORY_MMAP;
2881 fileio->req.type = q->type;
2882 q->fileio = fileio;
2883 ret = __reqbufs(q, &fileio->req);
2884 if (ret)
2885 goto err_kfree;
2886
2887 /*
2888 * Check if plane_count is correct
2889 * (multiplane buffers are not supported).
2890 */
2891 if (q->bufs[0]->num_planes != 1) {
2892 ret = -EBUSY;
2893 goto err_reqbufs;
2894 }
2895
2896 /*
2897 * Get kernel address of each buffer.
2898 */
2899 for (i = 0; i < q->num_buffers; i++) {
2900 fileio->bufs[i].vaddr = vb2_plane_vaddr(q->bufs[i], 0);
2901 if (fileio->bufs[i].vaddr == NULL) {
2902 ret = -EINVAL;
2903 goto err_reqbufs;
2904 }
2905 fileio->bufs[i].size = vb2_plane_size(q->bufs[i], 0);
2906 }
2907
2908 /*
2909 * Read mode requires pre queuing of all buffers.
2910 */
2911 if (read) {
2912 bool is_multiplanar = V4L2_TYPE_IS_MULTIPLANAR(q->type);
2913
2914 /*
2915 * Queue all buffers.
2916 */
2917 for (i = 0; i < q->num_buffers; i++) {
2918 struct v4l2_buffer *b = &fileio->b;
2919
2920 memset(b, 0, sizeof(*b));
2921 b->type = q->type;
2922 if (is_multiplanar) {
2923 memset(&fileio->p, 0, sizeof(fileio->p));
2924 b->m.planes = &fileio->p;
2925 b->length = 1;
2926 }
2927 b->memory = q->memory;
2928 b->index = i;
2929 ret = vb2_internal_qbuf(q, b);
2930 if (ret)
2931 goto err_reqbufs;
2932 fileio->bufs[i].queued = 1;
2933 }
2934 /*
2935 * All buffers have been queued, so mark that by setting
2936 * initial_index to q->num_buffers
2937 */
2938 fileio->initial_index = q->num_buffers;
2939 fileio->cur_index = q->num_buffers;
2940 }
2941
2942 /*
2943 * Start streaming.
2944 */
2945 ret = vb2_internal_streamon(q, q->type);
2946 if (ret)
2947 goto err_reqbufs;
2948
2949 return ret;
2950
2951 err_reqbufs:
2952 fileio->req.count = 0;
2953 __reqbufs(q, &fileio->req);
2954
2955 err_kfree:
2956 q->fileio = NULL;
2957 kfree(fileio);
2958 return ret;
2959 }
2960
2961 /**
2962 * __vb2_cleanup_fileio() - free resourced used by file io emulator
2963 * @q: videobuf2 queue
2964 */
2965 static int __vb2_cleanup_fileio(struct vb2_queue *q)
2966 {
2967 struct vb2_fileio_data *fileio = q->fileio;
2968
2969 if (fileio) {
2970 vb2_internal_streamoff(q, q->type);
2971 q->fileio = NULL;
2972 fileio->req.count = 0;
2973 vb2_reqbufs(q, &fileio->req);
2974 kfree(fileio);
2975 dprintk(3, "file io emulator closed\n");
2976 }
2977 return 0;
2978 }
2979
2980 /**
2981 * __vb2_perform_fileio() - perform a single file io (read or write) operation
2982 * @q: videobuf2 queue
2983 * @data: pointed to target userspace buffer
2984 * @count: number of bytes to read or write
2985 * @ppos: file handle position tracking pointer
2986 * @nonblock: mode selector (1 means blocking calls, 0 means nonblocking)
2987 * @read: access mode selector (1 means read, 0 means write)
2988 */
2989 static size_t __vb2_perform_fileio(struct vb2_queue *q, char __user *data, size_t count,
2990 loff_t *ppos, int nonblock, int read)
2991 {
2992 struct vb2_fileio_data *fileio;
2993 struct vb2_fileio_buf *buf;
2994 bool is_multiplanar = V4L2_TYPE_IS_MULTIPLANAR(q->type);
2995 /*
2996 * When using write() to write data to an output video node the vb2 core
2997 * should set timestamps if V4L2_BUF_FLAG_TIMESTAMP_COPY is set. Nobody
2998 * else is able to provide this information with the write() operation.
2999 */
3000 bool set_timestamp = !read &&
3001 (q->timestamp_flags & V4L2_BUF_FLAG_TIMESTAMP_MASK) ==
3002 V4L2_BUF_FLAG_TIMESTAMP_COPY;
3003 int ret, index;
3004
3005 dprintk(3, "mode %s, offset %ld, count %zd, %sblocking\n",
3006 read ? "read" : "write", (long)*ppos, count,
3007 nonblock ? "non" : "");
3008
3009 if (!data)
3010 return -EINVAL;
3011
3012 /*
3013 * Initialize emulator on first call.
3014 */
3015 if (!vb2_fileio_is_active(q)) {
3016 ret = __vb2_init_fileio(q, read);
3017 dprintk(3, "vb2_init_fileio result: %d\n", ret);
3018 if (ret)
3019 return ret;
3020 }
3021 fileio = q->fileio;
3022
3023 /*
3024 * Check if we need to dequeue the buffer.
3025 */
3026 index = fileio->cur_index;
3027 if (index >= q->num_buffers) {
3028 /*
3029 * Call vb2_dqbuf to get buffer back.
3030 */
3031 memset(&fileio->b, 0, sizeof(fileio->b));
3032 fileio->b.type = q->type;
3033 fileio->b.memory = q->memory;
3034 if (is_multiplanar) {
3035 memset(&fileio->p, 0, sizeof(fileio->p));
3036 fileio->b.m.planes = &fileio->p;
3037 fileio->b.length = 1;
3038 }
3039 ret = vb2_internal_dqbuf(q, &fileio->b, nonblock);
3040 dprintk(5, "vb2_dqbuf result: %d\n", ret);
3041 if (ret)
3042 return ret;
3043 fileio->dq_count += 1;
3044
3045 fileio->cur_index = index = fileio->b.index;
3046 buf = &fileio->bufs[index];
3047
3048 /*
3049 * Get number of bytes filled by the driver
3050 */
3051 buf->pos = 0;
3052 buf->queued = 0;
3053 buf->size = read ? vb2_get_plane_payload(q->bufs[index], 0)
3054 : vb2_plane_size(q->bufs[index], 0);
3055 /* Compensate for data_offset on read in the multiplanar case. */
3056 if (is_multiplanar && read &&
3057 fileio->b.m.planes[0].data_offset < buf->size) {
3058 buf->pos = fileio->b.m.planes[0].data_offset;
3059 buf->size -= buf->pos;
3060 }
3061 } else {
3062 buf = &fileio->bufs[index];
3063 }
3064
3065 /*
3066 * Limit count on last few bytes of the buffer.
3067 */
3068 if (buf->pos + count > buf->size) {
3069 count = buf->size - buf->pos;
3070 dprintk(5, "reducing read count: %zd\n", count);
3071 }
3072
3073 /*
3074 * Transfer data to userspace.
3075 */
3076 dprintk(3, "copying %zd bytes - buffer %d, offset %u\n",
3077 count, index, buf->pos);
3078 if (read)
3079 ret = copy_to_user(data, buf->vaddr + buf->pos, count);
3080 else
3081 ret = copy_from_user(buf->vaddr + buf->pos, data, count);
3082 if (ret) {
3083 dprintk(3, "error copying data\n");
3084 return -EFAULT;
3085 }
3086
3087 /*
3088 * Update counters.
3089 */
3090 buf->pos += count;
3091 *ppos += count;
3092
3093 /*
3094 * Queue next buffer if required.
3095 */
3096 if (buf->pos == buf->size || (!read && fileio->write_immediately)) {
3097 /*
3098 * Check if this is the last buffer to read.
3099 */
3100 if (read && fileio->read_once && fileio->dq_count == 1) {
3101 dprintk(3, "read limit reached\n");
3102 return __vb2_cleanup_fileio(q);
3103 }
3104
3105 /*
3106 * Call vb2_qbuf and give buffer to the driver.
3107 */
3108 memset(&fileio->b, 0, sizeof(fileio->b));
3109 fileio->b.type = q->type;
3110 fileio->b.memory = q->memory;
3111 fileio->b.index = index;
3112 fileio->b.bytesused = buf->pos;
3113 if (is_multiplanar) {
3114 memset(&fileio->p, 0, sizeof(fileio->p));
3115 fileio->p.bytesused = buf->pos;
3116 fileio->b.m.planes = &fileio->p;
3117 fileio->b.length = 1;
3118 }
3119 if (set_timestamp)
3120 v4l2_get_timestamp(&fileio->b.timestamp);
3121 ret = vb2_internal_qbuf(q, &fileio->b);
3122 dprintk(5, "vb2_dbuf result: %d\n", ret);
3123 if (ret)
3124 return ret;
3125
3126 /*
3127 * Buffer has been queued, update the status
3128 */
3129 buf->pos = 0;
3130 buf->queued = 1;
3131 buf->size = vb2_plane_size(q->bufs[index], 0);
3132 fileio->q_count += 1;
3133 /*
3134 * If we are queuing up buffers for the first time, then
3135 * increase initial_index by one.
3136 */
3137 if (fileio->initial_index < q->num_buffers)
3138 fileio->initial_index++;
3139 /*
3140 * The next buffer to use is either a buffer that's going to be
3141 * queued for the first time (initial_index < q->num_buffers)
3142 * or it is equal to q->num_buffers, meaning that the next
3143 * time we need to dequeue a buffer since we've now queued up
3144 * all the 'first time' buffers.
3145 */
3146 fileio->cur_index = fileio->initial_index;
3147 }
3148
3149 /*
3150 * Return proper number of bytes processed.
3151 */
3152 if (ret == 0)
3153 ret = count;
3154 return ret;
3155 }
3156
3157 size_t vb2_read(struct vb2_queue *q, char __user *data, size_t count,
3158 loff_t *ppos, int nonblocking)
3159 {
3160 return __vb2_perform_fileio(q, data, count, ppos, nonblocking, 1);
3161 }
3162 EXPORT_SYMBOL_GPL(vb2_read);
3163
3164 size_t vb2_write(struct vb2_queue *q, const char __user *data, size_t count,
3165 loff_t *ppos, int nonblocking)
3166 {
3167 return __vb2_perform_fileio(q, (char __user *) data, count,
3168 ppos, nonblocking, 0);
3169 }
3170 EXPORT_SYMBOL_GPL(vb2_write);
3171
3172 struct vb2_threadio_data {
3173 struct task_struct *thread;
3174 vb2_thread_fnc fnc;
3175 void *priv;
3176 bool stop;
3177 };
3178
3179 static int vb2_thread(void *data)
3180 {
3181 struct vb2_queue *q = data;
3182 struct vb2_threadio_data *threadio = q->threadio;
3183 struct vb2_fileio_data *fileio = q->fileio;
3184 bool set_timestamp = false;
3185 int prequeue = 0;
3186 int index = 0;
3187 int ret = 0;
3188
3189 if (V4L2_TYPE_IS_OUTPUT(q->type)) {
3190 prequeue = q->num_buffers;
3191 set_timestamp =
3192 (q->timestamp_flags & V4L2_BUF_FLAG_TIMESTAMP_MASK) ==
3193 V4L2_BUF_FLAG_TIMESTAMP_COPY;
3194 }
3195
3196 set_freezable();
3197
3198 for (;;) {
3199 struct vb2_buffer *vb;
3200
3201 /*
3202 * Call vb2_dqbuf to get buffer back.
3203 */
3204 memset(&fileio->b, 0, sizeof(fileio->b));
3205 fileio->b.type = q->type;
3206 fileio->b.memory = q->memory;
3207 if (prequeue) {
3208 fileio->b.index = index++;
3209 prequeue--;
3210 } else {
3211 call_void_qop(q, wait_finish, q);
3212 if (!threadio->stop)
3213 ret = vb2_internal_dqbuf(q, &fileio->b, 0);
3214 call_void_qop(q, wait_prepare, q);
3215 dprintk(5, "file io: vb2_dqbuf result: %d\n", ret);
3216 }
3217 if (ret || threadio->stop)
3218 break;
3219 try_to_freeze();
3220
3221 vb = q->bufs[fileio->b.index];
3222 if (!(fileio->b.flags & V4L2_BUF_FLAG_ERROR))
3223 if (threadio->fnc(vb, threadio->priv))
3224 break;
3225 call_void_qop(q, wait_finish, q);
3226 if (set_timestamp)
3227 v4l2_get_timestamp(&fileio->b.timestamp);
3228 if (!threadio->stop)
3229 ret = vb2_internal_qbuf(q, &fileio->b);
3230 call_void_qop(q, wait_prepare, q);
3231 if (ret || threadio->stop)
3232 break;
3233 }
3234
3235 /* Hmm, linux becomes *very* unhappy without this ... */
3236 while (!kthread_should_stop()) {
3237 set_current_state(TASK_INTERRUPTIBLE);
3238 schedule();
3239 }
3240 return 0;
3241 }
3242
3243 /*
3244 * This function should not be used for anything else but the videobuf2-dvb
3245 * support. If you think you have another good use-case for this, then please
3246 * contact the linux-media mailinglist first.
3247 */
3248 int vb2_thread_start(struct vb2_queue *q, vb2_thread_fnc fnc, void *priv,
3249 const char *thread_name)
3250 {
3251 struct vb2_threadio_data *threadio;
3252 int ret = 0;
3253
3254 if (q->threadio)
3255 return -EBUSY;
3256 if (vb2_is_busy(q))
3257 return -EBUSY;
3258 if (WARN_ON(q->fileio))
3259 return -EBUSY;
3260
3261 threadio = kzalloc(sizeof(*threadio), GFP_KERNEL);
3262 if (threadio == NULL)
3263 return -ENOMEM;
3264 threadio->fnc = fnc;
3265 threadio->priv = priv;
3266
3267 ret = __vb2_init_fileio(q, !V4L2_TYPE_IS_OUTPUT(q->type));
3268 dprintk(3, "file io: vb2_init_fileio result: %d\n", ret);
3269 if (ret)
3270 goto nomem;
3271 q->threadio = threadio;
3272 threadio->thread = kthread_run(vb2_thread, q, "vb2-%s", thread_name);
3273 if (IS_ERR(threadio->thread)) {
3274 ret = PTR_ERR(threadio->thread);
3275 threadio->thread = NULL;
3276 goto nothread;
3277 }
3278 return 0;
3279
3280 nothread:
3281 __vb2_cleanup_fileio(q);
3282 nomem:
3283 kfree(threadio);
3284 return ret;
3285 }
3286 EXPORT_SYMBOL_GPL(vb2_thread_start);
3287
3288 int vb2_thread_stop(struct vb2_queue *q)
3289 {
3290 struct vb2_threadio_data *threadio = q->threadio;
3291 int err;
3292
3293 if (threadio == NULL)
3294 return 0;
3295 threadio->stop = true;
3296 /* Wake up all pending sleeps in the thread */
3297 vb2_queue_error(q);
3298 err = kthread_stop(threadio->thread);
3299 __vb2_cleanup_fileio(q);
3300 threadio->thread = NULL;
3301 kfree(threadio);
3302 q->threadio = NULL;
3303 return err;
3304 }
3305 EXPORT_SYMBOL_GPL(vb2_thread_stop);
3306
3307 /*
3308 * The following functions are not part of the vb2 core API, but are helper
3309 * functions that plug into struct v4l2_ioctl_ops, struct v4l2_file_operations
3310 * and struct vb2_ops.
3311 * They contain boilerplate code that most if not all drivers have to do
3312 * and so they simplify the driver code.
3313 */
3314
3315 /* The queue is busy if there is a owner and you are not that owner. */
3316 static inline bool vb2_queue_is_busy(struct video_device *vdev, struct file *file)
3317 {
3318 return vdev->queue->owner && vdev->queue->owner != file->private_data;
3319 }
3320
3321 /* vb2 ioctl helpers */
3322
3323 int vb2_ioctl_reqbufs(struct file *file, void *priv,
3324 struct v4l2_requestbuffers *p)
3325 {
3326 struct video_device *vdev = video_devdata(file);
3327 int res = __verify_memory_type(vdev->queue, p->memory, p->type);
3328
3329 if (res)
3330 return res;
3331 if (vb2_queue_is_busy(vdev, file))
3332 return -EBUSY;
3333 res = __reqbufs(vdev->queue, p);
3334 /* If count == 0, then the owner has released all buffers and he
3335 is no longer owner of the queue. Otherwise we have a new owner. */
3336 if (res == 0)
3337 vdev->queue->owner = p->count ? file->private_data : NULL;
3338 return res;
3339 }
3340 EXPORT_SYMBOL_GPL(vb2_ioctl_reqbufs);
3341
3342 int vb2_ioctl_create_bufs(struct file *file, void *priv,
3343 struct v4l2_create_buffers *p)
3344 {
3345 struct video_device *vdev = video_devdata(file);
3346 int res = __verify_memory_type(vdev->queue, p->memory, p->format.type);
3347
3348 p->index = vdev->queue->num_buffers;
3349 /* If count == 0, then just check if memory and type are valid.
3350 Any -EBUSY result from __verify_memory_type can be mapped to 0. */
3351 if (p->count == 0)
3352 return res != -EBUSY ? res : 0;
3353 if (res)
3354 return res;
3355 if (vb2_queue_is_busy(vdev, file))
3356 return -EBUSY;
3357 res = __create_bufs(vdev->queue, p);
3358 if (res == 0)
3359 vdev->queue->owner = file->private_data;
3360 return res;
3361 }
3362 EXPORT_SYMBOL_GPL(vb2_ioctl_create_bufs);
3363
3364 int vb2_ioctl_prepare_buf(struct file *file, void *priv,
3365 struct v4l2_buffer *p)
3366 {
3367 struct video_device *vdev = video_devdata(file);
3368
3369 if (vb2_queue_is_busy(vdev, file))
3370 return -EBUSY;
3371 return vb2_prepare_buf(vdev->queue, p);
3372 }
3373 EXPORT_SYMBOL_GPL(vb2_ioctl_prepare_buf);
3374
3375 int vb2_ioctl_querybuf(struct file *file, void *priv, struct v4l2_buffer *p)
3376 {
3377 struct video_device *vdev = video_devdata(file);
3378
3379 /* No need to call vb2_queue_is_busy(), anyone can query buffers. */
3380 return vb2_querybuf(vdev->queue, p);
3381 }
3382 EXPORT_SYMBOL_GPL(vb2_ioctl_querybuf);
3383
3384 int vb2_ioctl_qbuf(struct file *file, void *priv, struct v4l2_buffer *p)
3385 {
3386 struct video_device *vdev = video_devdata(file);
3387
3388 if (vb2_queue_is_busy(vdev, file))
3389 return -EBUSY;
3390 return vb2_qbuf(vdev->queue, p);
3391 }
3392 EXPORT_SYMBOL_GPL(vb2_ioctl_qbuf);
3393
3394 int vb2_ioctl_dqbuf(struct file *file, void *priv, struct v4l2_buffer *p)
3395 {
3396 struct video_device *vdev = video_devdata(file);
3397
3398 if (vb2_queue_is_busy(vdev, file))
3399 return -EBUSY;
3400 return vb2_dqbuf(vdev->queue, p, file->f_flags & O_NONBLOCK);
3401 }
3402 EXPORT_SYMBOL_GPL(vb2_ioctl_dqbuf);
3403
3404 int vb2_ioctl_streamon(struct file *file, void *priv, enum v4l2_buf_type i)
3405 {
3406 struct video_device *vdev = video_devdata(file);
3407
3408 if (vb2_queue_is_busy(vdev, file))
3409 return -EBUSY;
3410 return vb2_streamon(vdev->queue, i);
3411 }
3412 EXPORT_SYMBOL_GPL(vb2_ioctl_streamon);
3413
3414 int vb2_ioctl_streamoff(struct file *file, void *priv, enum v4l2_buf_type i)
3415 {
3416 struct video_device *vdev = video_devdata(file);
3417
3418 if (vb2_queue_is_busy(vdev, file))
3419 return -EBUSY;
3420 return vb2_streamoff(vdev->queue, i);
3421 }
3422 EXPORT_SYMBOL_GPL(vb2_ioctl_streamoff);
3423
3424 int vb2_ioctl_expbuf(struct file *file, void *priv, struct v4l2_exportbuffer *p)
3425 {
3426 struct video_device *vdev = video_devdata(file);
3427
3428 if (vb2_queue_is_busy(vdev, file))
3429 return -EBUSY;
3430 return vb2_expbuf(vdev->queue, p);
3431 }
3432 EXPORT_SYMBOL_GPL(vb2_ioctl_expbuf);
3433
3434 /* v4l2_file_operations helpers */
3435
3436 int vb2_fop_mmap(struct file *file, struct vm_area_struct *vma)
3437 {
3438 struct video_device *vdev = video_devdata(file);
3439
3440 return vb2_mmap(vdev->queue, vma);
3441 }
3442 EXPORT_SYMBOL_GPL(vb2_fop_mmap);
3443
3444 int _vb2_fop_release(struct file *file, struct mutex *lock)
3445 {
3446 struct video_device *vdev = video_devdata(file);
3447
3448 if (lock)
3449 mutex_lock(lock);
3450 if (file->private_data == vdev->queue->owner) {
3451 vb2_queue_release(vdev->queue);
3452 vdev->queue->owner = NULL;
3453 }
3454 if (lock)
3455 mutex_unlock(lock);
3456 return v4l2_fh_release(file);
3457 }
3458 EXPORT_SYMBOL_GPL(_vb2_fop_release);
3459
3460 int vb2_fop_release(struct file *file)
3461 {
3462 struct video_device *vdev = video_devdata(file);
3463 struct mutex *lock = vdev->queue->lock ? vdev->queue->lock : vdev->lock;
3464
3465 return _vb2_fop_release(file, lock);
3466 }
3467 EXPORT_SYMBOL_GPL(vb2_fop_release);
3468
3469 ssize_t vb2_fop_write(struct file *file, const char __user *buf,
3470 size_t count, loff_t *ppos)
3471 {
3472 struct video_device *vdev = video_devdata(file);
3473 struct mutex *lock = vdev->queue->lock ? vdev->queue->lock : vdev->lock;
3474 int err = -EBUSY;
3475
3476 if (!(vdev->queue->io_modes & VB2_WRITE))
3477 return -EINVAL;
3478 if (lock && mutex_lock_interruptible(lock))
3479 return -ERESTARTSYS;
3480 if (vb2_queue_is_busy(vdev, file))
3481 goto exit;
3482 err = vb2_write(vdev->queue, buf, count, ppos,
3483 file->f_flags & O_NONBLOCK);
3484 if (vdev->queue->fileio)
3485 vdev->queue->owner = file->private_data;
3486 exit:
3487 if (lock)
3488 mutex_unlock(lock);
3489 return err;
3490 }
3491 EXPORT_SYMBOL_GPL(vb2_fop_write);
3492
3493 ssize_t vb2_fop_read(struct file *file, char __user *buf,
3494 size_t count, loff_t *ppos)
3495 {
3496 struct video_device *vdev = video_devdata(file);
3497 struct mutex *lock = vdev->queue->lock ? vdev->queue->lock : vdev->lock;
3498 int err = -EBUSY;
3499
3500 if (!(vdev->queue->io_modes & VB2_READ))
3501 return -EINVAL;
3502 if (lock && mutex_lock_interruptible(lock))
3503 return -ERESTARTSYS;
3504 if (vb2_queue_is_busy(vdev, file))
3505 goto exit;
3506 err = vb2_read(vdev->queue, buf, count, ppos,
3507 file->f_flags & O_NONBLOCK);
3508 if (vdev->queue->fileio)
3509 vdev->queue->owner = file->private_data;
3510 exit:
3511 if (lock)
3512 mutex_unlock(lock);
3513 return err;
3514 }
3515 EXPORT_SYMBOL_GPL(vb2_fop_read);
3516
3517 unsigned int vb2_fop_poll(struct file *file, poll_table *wait)
3518 {
3519 struct video_device *vdev = video_devdata(file);
3520 struct vb2_queue *q = vdev->queue;
3521 struct mutex *lock = q->lock ? q->lock : vdev->lock;
3522 unsigned res;
3523 void *fileio;
3524
3525 /*
3526 * If this helper doesn't know how to lock, then you shouldn't be using
3527 * it but you should write your own.
3528 */
3529 WARN_ON(!lock);
3530
3531 if (lock && mutex_lock_interruptible(lock))
3532 return POLLERR;
3533
3534 fileio = q->fileio;
3535
3536 res = vb2_poll(vdev->queue, file, wait);
3537
3538 /* If fileio was started, then we have a new queue owner. */
3539 if (!fileio && q->fileio)
3540 q->owner = file->private_data;
3541 if (lock)
3542 mutex_unlock(lock);
3543 return res;
3544 }
3545 EXPORT_SYMBOL_GPL(vb2_fop_poll);
3546
3547 #ifndef CONFIG_MMU
3548 unsigned long vb2_fop_get_unmapped_area(struct file *file, unsigned long addr,
3549 unsigned long len, unsigned long pgoff, unsigned long flags)
3550 {
3551 struct video_device *vdev = video_devdata(file);
3552
3553 return vb2_get_unmapped_area(vdev->queue, addr, len, pgoff, flags);
3554 }
3555 EXPORT_SYMBOL_GPL(vb2_fop_get_unmapped_area);
3556 #endif
3557
3558 /* vb2_ops helpers. Only use if vq->lock is non-NULL. */
3559
3560 void vb2_ops_wait_prepare(struct vb2_queue *vq)
3561 {
3562 mutex_unlock(vq->lock);
3563 }
3564 EXPORT_SYMBOL_GPL(vb2_ops_wait_prepare);
3565
3566 void vb2_ops_wait_finish(struct vb2_queue *vq)
3567 {
3568 mutex_lock(vq->lock);
3569 }
3570 EXPORT_SYMBOL_GPL(vb2_ops_wait_finish);
3571
3572 MODULE_DESCRIPTION("Driver helper framework for Video for Linux 2");
3573 MODULE_AUTHOR("Pawel Osciak <pawel@osciak.com>, Marek Szyprowski");
3574 MODULE_LICENSE("GPL");
This page took 0.107123 seconds and 5 git commands to generate.