Merge branch 'v4l_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[deliverable/linux.git] / drivers / media / video / cafe_ccic.c
1 /*
2 * A driver for the CMOS camera controller in the Marvell 88ALP01 "cafe"
3 * multifunction chip. Currently works with the Omnivision OV7670
4 * sensor.
5 *
6 * The data sheet for this device can be found at:
7 * http://www.marvell.com/products/pc_connectivity/88alp01/
8 *
9 * Copyright 2006 One Laptop Per Child Association, Inc.
10 * Copyright 2006-7 Jonathan Corbet <corbet@lwn.net>
11 *
12 * Written by Jonathan Corbet, corbet@lwn.net.
13 *
14 * v4l2_device/v4l2_subdev conversion by:
15 * Copyright (C) 2009 Hans Verkuil <hverkuil@xs4all.nl>
16 *
17 * Note: this conversion is untested! Please contact the linux-media
18 * mailinglist if you can test this, together with the test results.
19 *
20 * This file may be distributed under the terms of the GNU General
21 * Public License, version 2.
22 */
23
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/init.h>
27 #include <linux/fs.h>
28 #include <linux/dmi.h>
29 #include <linux/mm.h>
30 #include <linux/pci.h>
31 #include <linux/i2c.h>
32 #include <linux/interrupt.h>
33 #include <linux/spinlock.h>
34 #include <linux/videodev2.h>
35 #include <linux/slab.h>
36 #include <media/v4l2-device.h>
37 #include <media/v4l2-ioctl.h>
38 #include <media/v4l2-chip-ident.h>
39 #include <linux/device.h>
40 #include <linux/wait.h>
41 #include <linux/list.h>
42 #include <linux/dma-mapping.h>
43 #include <linux/delay.h>
44 #include <linux/jiffies.h>
45 #include <linux/vmalloc.h>
46
47 #include <asm/uaccess.h>
48 #include <asm/io.h>
49
50 #include "ov7670.h"
51 #include "cafe_ccic-regs.h"
52
53 #define CAFE_VERSION 0x000002
54
55
56 /*
57 * Parameters.
58 */
59 MODULE_AUTHOR("Jonathan Corbet <corbet@lwn.net>");
60 MODULE_DESCRIPTION("Marvell 88ALP01 CMOS Camera Controller driver");
61 MODULE_LICENSE("GPL");
62 MODULE_SUPPORTED_DEVICE("Video");
63
64 /*
65 * Internal DMA buffer management. Since the controller cannot do S/G I/O,
66 * we must have physically contiguous buffers to bring frames into.
67 * These parameters control how many buffers we use, whether we
68 * allocate them at load time (better chance of success, but nails down
69 * memory) or when somebody tries to use the camera (riskier), and,
70 * for load-time allocation, how big they should be.
71 *
72 * The controller can cycle through three buffers. We could use
73 * more by flipping pointers around, but it probably makes little
74 * sense.
75 */
76
77 #define MAX_DMA_BUFS 3
78 static int alloc_bufs_at_read;
79 module_param(alloc_bufs_at_read, bool, 0444);
80 MODULE_PARM_DESC(alloc_bufs_at_read,
81 "Non-zero value causes DMA buffers to be allocated when the "
82 "video capture device is read, rather than at module load "
83 "time. This saves memory, but decreases the chances of "
84 "successfully getting those buffers.");
85
86 static int n_dma_bufs = 3;
87 module_param(n_dma_bufs, uint, 0644);
88 MODULE_PARM_DESC(n_dma_bufs,
89 "The number of DMA buffers to allocate. Can be either two "
90 "(saves memory, makes timing tighter) or three.");
91
92 static int dma_buf_size = VGA_WIDTH * VGA_HEIGHT * 2; /* Worst case */
93 module_param(dma_buf_size, uint, 0444);
94 MODULE_PARM_DESC(dma_buf_size,
95 "The size of the allocated DMA buffers. If actual operating "
96 "parameters require larger buffers, an attempt to reallocate "
97 "will be made.");
98
99 static int min_buffers = 1;
100 module_param(min_buffers, uint, 0644);
101 MODULE_PARM_DESC(min_buffers,
102 "The minimum number of streaming I/O buffers we are willing "
103 "to work with.");
104
105 static int max_buffers = 10;
106 module_param(max_buffers, uint, 0644);
107 MODULE_PARM_DESC(max_buffers,
108 "The maximum number of streaming I/O buffers an application "
109 "will be allowed to allocate. These buffers are big and live "
110 "in vmalloc space.");
111
112 static int flip;
113 module_param(flip, bool, 0444);
114 MODULE_PARM_DESC(flip,
115 "If set, the sensor will be instructed to flip the image "
116 "vertically.");
117
118
119 enum cafe_state {
120 S_NOTREADY, /* Not yet initialized */
121 S_IDLE, /* Just hanging around */
122 S_FLAKED, /* Some sort of problem */
123 S_SINGLEREAD, /* In read() */
124 S_SPECREAD, /* Speculative read (for future read()) */
125 S_STREAMING /* Streaming data */
126 };
127
128 /*
129 * Tracking of streaming I/O buffers.
130 */
131 struct cafe_sio_buffer {
132 struct list_head list;
133 struct v4l2_buffer v4lbuf;
134 char *buffer; /* Where it lives in kernel space */
135 int mapcount;
136 struct cafe_camera *cam;
137 };
138
139 /*
140 * A description of one of our devices.
141 * Locking: controlled by s_mutex. Certain fields, however, require
142 * the dev_lock spinlock; they are marked as such by comments.
143 * dev_lock is also required for access to device registers.
144 */
145 struct cafe_camera
146 {
147 struct v4l2_device v4l2_dev;
148 enum cafe_state state;
149 unsigned long flags; /* Buffer status, mainly (dev_lock) */
150 int users; /* How many open FDs */
151 struct file *owner; /* Who has data access (v4l2) */
152
153 /*
154 * Subsystem structures.
155 */
156 struct pci_dev *pdev;
157 struct video_device vdev;
158 struct i2c_adapter i2c_adapter;
159 struct v4l2_subdev *sensor;
160 unsigned short sensor_addr;
161
162 unsigned char __iomem *regs;
163 struct list_head dev_list; /* link to other devices */
164
165 /* DMA buffers */
166 unsigned int nbufs; /* How many are alloc'd */
167 int next_buf; /* Next to consume (dev_lock) */
168 unsigned int dma_buf_size; /* allocated size */
169 void *dma_bufs[MAX_DMA_BUFS]; /* Internal buffer addresses */
170 dma_addr_t dma_handles[MAX_DMA_BUFS]; /* Buffer bus addresses */
171 unsigned int specframes; /* Unconsumed spec frames (dev_lock) */
172 unsigned int sequence; /* Frame sequence number */
173 unsigned int buf_seq[MAX_DMA_BUFS]; /* Sequence for individual buffers */
174
175 /* Streaming buffers */
176 unsigned int n_sbufs; /* How many we have */
177 struct cafe_sio_buffer *sb_bufs; /* The array of housekeeping structs */
178 struct list_head sb_avail; /* Available for data (we own) (dev_lock) */
179 struct list_head sb_full; /* With data (user space owns) (dev_lock) */
180 struct tasklet_struct s_tasklet;
181
182 /* Current operating parameters */
183 u32 sensor_type; /* Currently ov7670 only */
184 struct v4l2_pix_format pix_format;
185 enum v4l2_mbus_pixelcode mbus_code;
186
187 /* Locks */
188 struct mutex s_mutex; /* Access to this structure */
189 spinlock_t dev_lock; /* Access to device */
190
191 /* Misc */
192 wait_queue_head_t smbus_wait; /* Waiting on i2c events */
193 wait_queue_head_t iowait; /* Waiting on frame data */
194 };
195
196 /*
197 * Status flags. Always manipulated with bit operations.
198 */
199 #define CF_BUF0_VALID 0 /* Buffers valid - first three */
200 #define CF_BUF1_VALID 1
201 #define CF_BUF2_VALID 2
202 #define CF_DMA_ACTIVE 3 /* A frame is incoming */
203 #define CF_CONFIG_NEEDED 4 /* Must configure hardware */
204
205 #define sensor_call(cam, o, f, args...) \
206 v4l2_subdev_call(cam->sensor, o, f, ##args)
207
208 static inline struct cafe_camera *to_cam(struct v4l2_device *dev)
209 {
210 return container_of(dev, struct cafe_camera, v4l2_dev);
211 }
212
213 static struct cafe_format_struct {
214 __u8 *desc;
215 __u32 pixelformat;
216 int bpp; /* Bytes per pixel */
217 enum v4l2_mbus_pixelcode mbus_code;
218 } cafe_formats[] = {
219 {
220 .desc = "YUYV 4:2:2",
221 .pixelformat = V4L2_PIX_FMT_YUYV,
222 .mbus_code = V4L2_MBUS_FMT_YUYV8_2X8,
223 .bpp = 2,
224 },
225 {
226 .desc = "RGB 444",
227 .pixelformat = V4L2_PIX_FMT_RGB444,
228 .mbus_code = V4L2_MBUS_FMT_RGB444_2X8_PADHI_LE,
229 .bpp = 2,
230 },
231 {
232 .desc = "RGB 565",
233 .pixelformat = V4L2_PIX_FMT_RGB565,
234 .mbus_code = V4L2_MBUS_FMT_RGB565_2X8_LE,
235 .bpp = 2,
236 },
237 {
238 .desc = "Raw RGB Bayer",
239 .pixelformat = V4L2_PIX_FMT_SBGGR8,
240 .mbus_code = V4L2_MBUS_FMT_SBGGR8_1X8,
241 .bpp = 1
242 },
243 };
244 #define N_CAFE_FMTS ARRAY_SIZE(cafe_formats)
245
246 static struct cafe_format_struct *cafe_find_format(u32 pixelformat)
247 {
248 unsigned i;
249
250 for (i = 0; i < N_CAFE_FMTS; i++)
251 if (cafe_formats[i].pixelformat == pixelformat)
252 return cafe_formats + i;
253 /* Not found? Then return the first format. */
254 return cafe_formats;
255 }
256
257 /*
258 * Start over with DMA buffers - dev_lock needed.
259 */
260 static void cafe_reset_buffers(struct cafe_camera *cam)
261 {
262 int i;
263
264 cam->next_buf = -1;
265 for (i = 0; i < cam->nbufs; i++)
266 clear_bit(i, &cam->flags);
267 cam->specframes = 0;
268 }
269
270 static inline int cafe_needs_config(struct cafe_camera *cam)
271 {
272 return test_bit(CF_CONFIG_NEEDED, &cam->flags);
273 }
274
275 static void cafe_set_config_needed(struct cafe_camera *cam, int needed)
276 {
277 if (needed)
278 set_bit(CF_CONFIG_NEEDED, &cam->flags);
279 else
280 clear_bit(CF_CONFIG_NEEDED, &cam->flags);
281 }
282
283
284
285
286 /*
287 * Debugging and related.
288 */
289 #define cam_err(cam, fmt, arg...) \
290 dev_err(&(cam)->pdev->dev, fmt, ##arg);
291 #define cam_warn(cam, fmt, arg...) \
292 dev_warn(&(cam)->pdev->dev, fmt, ##arg);
293 #define cam_dbg(cam, fmt, arg...) \
294 dev_dbg(&(cam)->pdev->dev, fmt, ##arg);
295
296
297 /* ---------------------------------------------------------------------*/
298
299 /*
300 * Device register I/O
301 */
302 static inline void cafe_reg_write(struct cafe_camera *cam, unsigned int reg,
303 unsigned int val)
304 {
305 iowrite32(val, cam->regs + reg);
306 }
307
308 static inline unsigned int cafe_reg_read(struct cafe_camera *cam,
309 unsigned int reg)
310 {
311 return ioread32(cam->regs + reg);
312 }
313
314
315 static inline void cafe_reg_write_mask(struct cafe_camera *cam, unsigned int reg,
316 unsigned int val, unsigned int mask)
317 {
318 unsigned int v = cafe_reg_read(cam, reg);
319
320 v = (v & ~mask) | (val & mask);
321 cafe_reg_write(cam, reg, v);
322 }
323
324 static inline void cafe_reg_clear_bit(struct cafe_camera *cam,
325 unsigned int reg, unsigned int val)
326 {
327 cafe_reg_write_mask(cam, reg, 0, val);
328 }
329
330 static inline void cafe_reg_set_bit(struct cafe_camera *cam,
331 unsigned int reg, unsigned int val)
332 {
333 cafe_reg_write_mask(cam, reg, val, val);
334 }
335
336
337
338 /* -------------------------------------------------------------------- */
339 /*
340 * The I2C/SMBUS interface to the camera itself starts here. The
341 * controller handles SMBUS itself, presenting a relatively simple register
342 * interface; all we have to do is to tell it where to route the data.
343 */
344 #define CAFE_SMBUS_TIMEOUT (HZ) /* generous */
345
346 static int cafe_smbus_write_done(struct cafe_camera *cam)
347 {
348 unsigned long flags;
349 int c1;
350
351 /*
352 * We must delay after the interrupt, or the controller gets confused
353 * and never does give us good status. Fortunately, we don't do this
354 * often.
355 */
356 udelay(20);
357 spin_lock_irqsave(&cam->dev_lock, flags);
358 c1 = cafe_reg_read(cam, REG_TWSIC1);
359 spin_unlock_irqrestore(&cam->dev_lock, flags);
360 return (c1 & (TWSIC1_WSTAT|TWSIC1_ERROR)) != TWSIC1_WSTAT;
361 }
362
363 static int cafe_smbus_write_data(struct cafe_camera *cam,
364 u16 addr, u8 command, u8 value)
365 {
366 unsigned int rval;
367 unsigned long flags;
368
369 spin_lock_irqsave(&cam->dev_lock, flags);
370 rval = TWSIC0_EN | ((addr << TWSIC0_SID_SHIFT) & TWSIC0_SID);
371 rval |= TWSIC0_OVMAGIC; /* Make OV sensors work */
372 /*
373 * Marvell sez set clkdiv to all 1's for now.
374 */
375 rval |= TWSIC0_CLKDIV;
376 cafe_reg_write(cam, REG_TWSIC0, rval);
377 (void) cafe_reg_read(cam, REG_TWSIC1); /* force write */
378 rval = value | ((command << TWSIC1_ADDR_SHIFT) & TWSIC1_ADDR);
379 cafe_reg_write(cam, REG_TWSIC1, rval);
380 spin_unlock_irqrestore(&cam->dev_lock, flags);
381
382 /* Unfortunately, reading TWSIC1 too soon after sending a command
383 * causes the device to die.
384 * Use a busy-wait because we often send a large quantity of small
385 * commands at-once; using msleep() would cause a lot of context
386 * switches which take longer than 2ms, resulting in a noticable
387 * boot-time and capture-start delays.
388 */
389 mdelay(2);
390
391 /*
392 * Another sad fact is that sometimes, commands silently complete but
393 * cafe_smbus_write_done() never becomes aware of this.
394 * This happens at random and appears to possible occur with any
395 * command.
396 * We don't understand why this is. We work around this issue
397 * with the timeout in the wait below, assuming that all commands
398 * complete within the timeout.
399 */
400 wait_event_timeout(cam->smbus_wait, cafe_smbus_write_done(cam),
401 CAFE_SMBUS_TIMEOUT);
402
403 spin_lock_irqsave(&cam->dev_lock, flags);
404 rval = cafe_reg_read(cam, REG_TWSIC1);
405 spin_unlock_irqrestore(&cam->dev_lock, flags);
406
407 if (rval & TWSIC1_WSTAT) {
408 cam_err(cam, "SMBUS write (%02x/%02x/%02x) timed out\n", addr,
409 command, value);
410 return -EIO;
411 }
412 if (rval & TWSIC1_ERROR) {
413 cam_err(cam, "SMBUS write (%02x/%02x/%02x) error\n", addr,
414 command, value);
415 return -EIO;
416 }
417 return 0;
418 }
419
420
421
422 static int cafe_smbus_read_done(struct cafe_camera *cam)
423 {
424 unsigned long flags;
425 int c1;
426
427 /*
428 * We must delay after the interrupt, or the controller gets confused
429 * and never does give us good status. Fortunately, we don't do this
430 * often.
431 */
432 udelay(20);
433 spin_lock_irqsave(&cam->dev_lock, flags);
434 c1 = cafe_reg_read(cam, REG_TWSIC1);
435 spin_unlock_irqrestore(&cam->dev_lock, flags);
436 return c1 & (TWSIC1_RVALID|TWSIC1_ERROR);
437 }
438
439
440
441 static int cafe_smbus_read_data(struct cafe_camera *cam,
442 u16 addr, u8 command, u8 *value)
443 {
444 unsigned int rval;
445 unsigned long flags;
446
447 spin_lock_irqsave(&cam->dev_lock, flags);
448 rval = TWSIC0_EN | ((addr << TWSIC0_SID_SHIFT) & TWSIC0_SID);
449 rval |= TWSIC0_OVMAGIC; /* Make OV sensors work */
450 /*
451 * Marvel sez set clkdiv to all 1's for now.
452 */
453 rval |= TWSIC0_CLKDIV;
454 cafe_reg_write(cam, REG_TWSIC0, rval);
455 (void) cafe_reg_read(cam, REG_TWSIC1); /* force write */
456 rval = TWSIC1_READ | ((command << TWSIC1_ADDR_SHIFT) & TWSIC1_ADDR);
457 cafe_reg_write(cam, REG_TWSIC1, rval);
458 spin_unlock_irqrestore(&cam->dev_lock, flags);
459
460 wait_event_timeout(cam->smbus_wait,
461 cafe_smbus_read_done(cam), CAFE_SMBUS_TIMEOUT);
462 spin_lock_irqsave(&cam->dev_lock, flags);
463 rval = cafe_reg_read(cam, REG_TWSIC1);
464 spin_unlock_irqrestore(&cam->dev_lock, flags);
465
466 if (rval & TWSIC1_ERROR) {
467 cam_err(cam, "SMBUS read (%02x/%02x) error\n", addr, command);
468 return -EIO;
469 }
470 if (! (rval & TWSIC1_RVALID)) {
471 cam_err(cam, "SMBUS read (%02x/%02x) timed out\n", addr,
472 command);
473 return -EIO;
474 }
475 *value = rval & 0xff;
476 return 0;
477 }
478
479 /*
480 * Perform a transfer over SMBUS. This thing is called under
481 * the i2c bus lock, so we shouldn't race with ourselves...
482 */
483 static int cafe_smbus_xfer(struct i2c_adapter *adapter, u16 addr,
484 unsigned short flags, char rw, u8 command,
485 int size, union i2c_smbus_data *data)
486 {
487 struct v4l2_device *v4l2_dev = i2c_get_adapdata(adapter);
488 struct cafe_camera *cam = to_cam(v4l2_dev);
489 int ret = -EINVAL;
490
491 /*
492 * This interface would appear to only do byte data ops. OK
493 * it can do word too, but the cam chip has no use for that.
494 */
495 if (size != I2C_SMBUS_BYTE_DATA) {
496 cam_err(cam, "funky xfer size %d\n", size);
497 return -EINVAL;
498 }
499
500 if (rw == I2C_SMBUS_WRITE)
501 ret = cafe_smbus_write_data(cam, addr, command, data->byte);
502 else if (rw == I2C_SMBUS_READ)
503 ret = cafe_smbus_read_data(cam, addr, command, &data->byte);
504 return ret;
505 }
506
507
508 static void cafe_smbus_enable_irq(struct cafe_camera *cam)
509 {
510 unsigned long flags;
511
512 spin_lock_irqsave(&cam->dev_lock, flags);
513 cafe_reg_set_bit(cam, REG_IRQMASK, TWSIIRQS);
514 spin_unlock_irqrestore(&cam->dev_lock, flags);
515 }
516
517 static u32 cafe_smbus_func(struct i2c_adapter *adapter)
518 {
519 return I2C_FUNC_SMBUS_READ_BYTE_DATA |
520 I2C_FUNC_SMBUS_WRITE_BYTE_DATA;
521 }
522
523 static struct i2c_algorithm cafe_smbus_algo = {
524 .smbus_xfer = cafe_smbus_xfer,
525 .functionality = cafe_smbus_func
526 };
527
528 /* Somebody is on the bus */
529 static void cafe_ctlr_stop_dma(struct cafe_camera *cam);
530 static void cafe_ctlr_power_down(struct cafe_camera *cam);
531
532 static int cafe_smbus_setup(struct cafe_camera *cam)
533 {
534 struct i2c_adapter *adap = &cam->i2c_adapter;
535 int ret;
536
537 cafe_smbus_enable_irq(cam);
538 adap->owner = THIS_MODULE;
539 adap->algo = &cafe_smbus_algo;
540 strcpy(adap->name, "cafe_ccic");
541 adap->dev.parent = &cam->pdev->dev;
542 i2c_set_adapdata(adap, &cam->v4l2_dev);
543 ret = i2c_add_adapter(adap);
544 if (ret)
545 printk(KERN_ERR "Unable to register cafe i2c adapter\n");
546 return ret;
547 }
548
549 static void cafe_smbus_shutdown(struct cafe_camera *cam)
550 {
551 i2c_del_adapter(&cam->i2c_adapter);
552 }
553
554
555 /* ------------------------------------------------------------------- */
556 /*
557 * Deal with the controller.
558 */
559
560 /*
561 * Do everything we think we need to have the interface operating
562 * according to the desired format.
563 */
564 static void cafe_ctlr_dma(struct cafe_camera *cam)
565 {
566 /*
567 * Store the first two Y buffers (we aren't supporting
568 * planar formats for now, so no UV bufs). Then either
569 * set the third if it exists, or tell the controller
570 * to just use two.
571 */
572 cafe_reg_write(cam, REG_Y0BAR, cam->dma_handles[0]);
573 cafe_reg_write(cam, REG_Y1BAR, cam->dma_handles[1]);
574 if (cam->nbufs > 2) {
575 cafe_reg_write(cam, REG_Y2BAR, cam->dma_handles[2]);
576 cafe_reg_clear_bit(cam, REG_CTRL1, C1_TWOBUFS);
577 }
578 else
579 cafe_reg_set_bit(cam, REG_CTRL1, C1_TWOBUFS);
580 cafe_reg_write(cam, REG_UBAR, 0); /* 32 bits only for now */
581 }
582
583 static void cafe_ctlr_image(struct cafe_camera *cam)
584 {
585 int imgsz;
586 struct v4l2_pix_format *fmt = &cam->pix_format;
587
588 imgsz = ((fmt->height << IMGSZ_V_SHIFT) & IMGSZ_V_MASK) |
589 (fmt->bytesperline & IMGSZ_H_MASK);
590 cafe_reg_write(cam, REG_IMGSIZE, imgsz);
591 cafe_reg_write(cam, REG_IMGOFFSET, 0);
592 /* YPITCH just drops the last two bits */
593 cafe_reg_write_mask(cam, REG_IMGPITCH, fmt->bytesperline,
594 IMGP_YP_MASK);
595 /*
596 * Tell the controller about the image format we are using.
597 */
598 switch (cam->pix_format.pixelformat) {
599 case V4L2_PIX_FMT_YUYV:
600 cafe_reg_write_mask(cam, REG_CTRL0,
601 C0_DF_YUV|C0_YUV_PACKED|C0_YUVE_YUYV,
602 C0_DF_MASK);
603 break;
604
605 case V4L2_PIX_FMT_RGB444:
606 cafe_reg_write_mask(cam, REG_CTRL0,
607 C0_DF_RGB|C0_RGBF_444|C0_RGB4_XRGB,
608 C0_DF_MASK);
609 /* Alpha value? */
610 break;
611
612 case V4L2_PIX_FMT_RGB565:
613 cafe_reg_write_mask(cam, REG_CTRL0,
614 C0_DF_RGB|C0_RGBF_565|C0_RGB5_BGGR,
615 C0_DF_MASK);
616 break;
617
618 default:
619 cam_err(cam, "Unknown format %x\n", cam->pix_format.pixelformat);
620 break;
621 }
622 /*
623 * Make sure it knows we want to use hsync/vsync.
624 */
625 cafe_reg_write_mask(cam, REG_CTRL0, C0_SIF_HVSYNC,
626 C0_SIFM_MASK);
627 }
628
629
630 /*
631 * Configure the controller for operation; caller holds the
632 * device mutex.
633 */
634 static int cafe_ctlr_configure(struct cafe_camera *cam)
635 {
636 unsigned long flags;
637
638 spin_lock_irqsave(&cam->dev_lock, flags);
639 cafe_ctlr_dma(cam);
640 cafe_ctlr_image(cam);
641 cafe_set_config_needed(cam, 0);
642 spin_unlock_irqrestore(&cam->dev_lock, flags);
643 return 0;
644 }
645
646 static void cafe_ctlr_irq_enable(struct cafe_camera *cam)
647 {
648 /*
649 * Clear any pending interrupts, since we do not
650 * expect to have I/O active prior to enabling.
651 */
652 cafe_reg_write(cam, REG_IRQSTAT, FRAMEIRQS);
653 cafe_reg_set_bit(cam, REG_IRQMASK, FRAMEIRQS);
654 }
655
656 static void cafe_ctlr_irq_disable(struct cafe_camera *cam)
657 {
658 cafe_reg_clear_bit(cam, REG_IRQMASK, FRAMEIRQS);
659 }
660
661 /*
662 * Make the controller start grabbing images. Everything must
663 * be set up before doing this.
664 */
665 static void cafe_ctlr_start(struct cafe_camera *cam)
666 {
667 /* set_bit performs a read, so no other barrier should be
668 needed here */
669 cafe_reg_set_bit(cam, REG_CTRL0, C0_ENABLE);
670 }
671
672 static void cafe_ctlr_stop(struct cafe_camera *cam)
673 {
674 cafe_reg_clear_bit(cam, REG_CTRL0, C0_ENABLE);
675 }
676
677 static void cafe_ctlr_init(struct cafe_camera *cam)
678 {
679 unsigned long flags;
680
681 spin_lock_irqsave(&cam->dev_lock, flags);
682 /*
683 * Added magic to bring up the hardware on the B-Test board
684 */
685 cafe_reg_write(cam, 0x3038, 0x8);
686 cafe_reg_write(cam, 0x315c, 0x80008);
687 /*
688 * Go through the dance needed to wake the device up.
689 * Note that these registers are global and shared
690 * with the NAND and SD devices. Interaction between the
691 * three still needs to be examined.
692 */
693 cafe_reg_write(cam, REG_GL_CSR, GCSR_SRS|GCSR_MRS); /* Needed? */
694 cafe_reg_write(cam, REG_GL_CSR, GCSR_SRC|GCSR_MRC);
695 cafe_reg_write(cam, REG_GL_CSR, GCSR_SRC|GCSR_MRS);
696 /*
697 * Here we must wait a bit for the controller to come around.
698 */
699 spin_unlock_irqrestore(&cam->dev_lock, flags);
700 msleep(5);
701 spin_lock_irqsave(&cam->dev_lock, flags);
702
703 cafe_reg_write(cam, REG_GL_CSR, GCSR_CCIC_EN|GCSR_SRC|GCSR_MRC);
704 cafe_reg_set_bit(cam, REG_GL_IMASK, GIMSK_CCIC_EN);
705 /*
706 * Make sure it's not powered down.
707 */
708 cafe_reg_clear_bit(cam, REG_CTRL1, C1_PWRDWN);
709 /*
710 * Turn off the enable bit. It sure should be off anyway,
711 * but it's good to be sure.
712 */
713 cafe_reg_clear_bit(cam, REG_CTRL0, C0_ENABLE);
714 /*
715 * Mask all interrupts.
716 */
717 cafe_reg_write(cam, REG_IRQMASK, 0);
718 /*
719 * Clock the sensor appropriately. Controller clock should
720 * be 48MHz, sensor "typical" value is half that.
721 */
722 cafe_reg_write_mask(cam, REG_CLKCTRL, 2, CLK_DIV_MASK);
723 spin_unlock_irqrestore(&cam->dev_lock, flags);
724 }
725
726
727 /*
728 * Stop the controller, and don't return until we're really sure that no
729 * further DMA is going on.
730 */
731 static void cafe_ctlr_stop_dma(struct cafe_camera *cam)
732 {
733 unsigned long flags;
734
735 /*
736 * Theory: stop the camera controller (whether it is operating
737 * or not). Delay briefly just in case we race with the SOF
738 * interrupt, then wait until no DMA is active.
739 */
740 spin_lock_irqsave(&cam->dev_lock, flags);
741 cafe_ctlr_stop(cam);
742 spin_unlock_irqrestore(&cam->dev_lock, flags);
743 mdelay(1);
744 wait_event_timeout(cam->iowait,
745 !test_bit(CF_DMA_ACTIVE, &cam->flags), HZ);
746 if (test_bit(CF_DMA_ACTIVE, &cam->flags))
747 cam_err(cam, "Timeout waiting for DMA to end\n");
748 /* This would be bad news - what now? */
749 spin_lock_irqsave(&cam->dev_lock, flags);
750 cam->state = S_IDLE;
751 cafe_ctlr_irq_disable(cam);
752 spin_unlock_irqrestore(&cam->dev_lock, flags);
753 }
754
755 /*
756 * Power up and down.
757 */
758 static void cafe_ctlr_power_up(struct cafe_camera *cam)
759 {
760 unsigned long flags;
761
762 spin_lock_irqsave(&cam->dev_lock, flags);
763 cafe_reg_clear_bit(cam, REG_CTRL1, C1_PWRDWN);
764 /*
765 * Part one of the sensor dance: turn the global
766 * GPIO signal on.
767 */
768 cafe_reg_write(cam, REG_GL_FCR, GFCR_GPIO_ON);
769 cafe_reg_write(cam, REG_GL_GPIOR, GGPIO_OUT|GGPIO_VAL);
770 /*
771 * Put the sensor into operational mode (assumes OLPC-style
772 * wiring). Control 0 is reset - set to 1 to operate.
773 * Control 1 is power down, set to 0 to operate.
774 */
775 cafe_reg_write(cam, REG_GPR, GPR_C1EN|GPR_C0EN); /* pwr up, reset */
776 /* mdelay(1); */ /* Marvell says 1ms will do it */
777 cafe_reg_write(cam, REG_GPR, GPR_C1EN|GPR_C0EN|GPR_C0);
778 /* mdelay(1); */ /* Enough? */
779 spin_unlock_irqrestore(&cam->dev_lock, flags);
780 msleep(5); /* Just to be sure */
781 }
782
783 static void cafe_ctlr_power_down(struct cafe_camera *cam)
784 {
785 unsigned long flags;
786
787 spin_lock_irqsave(&cam->dev_lock, flags);
788 cafe_reg_write(cam, REG_GPR, GPR_C1EN|GPR_C0EN|GPR_C1);
789 cafe_reg_write(cam, REG_GL_FCR, GFCR_GPIO_ON);
790 cafe_reg_write(cam, REG_GL_GPIOR, GGPIO_OUT);
791 cafe_reg_set_bit(cam, REG_CTRL1, C1_PWRDWN);
792 spin_unlock_irqrestore(&cam->dev_lock, flags);
793 }
794
795 /* -------------------------------------------------------------------- */
796 /*
797 * Communications with the sensor.
798 */
799
800 static int __cafe_cam_reset(struct cafe_camera *cam)
801 {
802 return sensor_call(cam, core, reset, 0);
803 }
804
805 /*
806 * We have found the sensor on the i2c. Let's try to have a
807 * conversation.
808 */
809 static int cafe_cam_init(struct cafe_camera *cam)
810 {
811 struct v4l2_dbg_chip_ident chip;
812 int ret;
813
814 mutex_lock(&cam->s_mutex);
815 if (cam->state != S_NOTREADY)
816 cam_warn(cam, "Cam init with device in funky state %d",
817 cam->state);
818 ret = __cafe_cam_reset(cam);
819 if (ret)
820 goto out;
821 chip.ident = V4L2_IDENT_NONE;
822 chip.match.type = V4L2_CHIP_MATCH_I2C_ADDR;
823 chip.match.addr = cam->sensor_addr;
824 ret = sensor_call(cam, core, g_chip_ident, &chip);
825 if (ret)
826 goto out;
827 cam->sensor_type = chip.ident;
828 if (cam->sensor_type != V4L2_IDENT_OV7670) {
829 cam_err(cam, "Unsupported sensor type 0x%x", cam->sensor_type);
830 ret = -EINVAL;
831 goto out;
832 }
833 /* Get/set parameters? */
834 ret = 0;
835 cam->state = S_IDLE;
836 out:
837 cafe_ctlr_power_down(cam);
838 mutex_unlock(&cam->s_mutex);
839 return ret;
840 }
841
842 /*
843 * Configure the sensor to match the parameters we have. Caller should
844 * hold s_mutex
845 */
846 static int cafe_cam_set_flip(struct cafe_camera *cam)
847 {
848 struct v4l2_control ctrl;
849
850 memset(&ctrl, 0, sizeof(ctrl));
851 ctrl.id = V4L2_CID_VFLIP;
852 ctrl.value = flip;
853 return sensor_call(cam, core, s_ctrl, &ctrl);
854 }
855
856
857 static int cafe_cam_configure(struct cafe_camera *cam)
858 {
859 struct v4l2_mbus_framefmt mbus_fmt;
860 int ret;
861
862 if (cam->state != S_IDLE)
863 return -EINVAL;
864 v4l2_fill_mbus_format(&mbus_fmt, &cam->pix_format, cam->mbus_code);
865 ret = sensor_call(cam, core, init, 0);
866 if (ret == 0)
867 ret = sensor_call(cam, video, s_mbus_fmt, &mbus_fmt);
868 /*
869 * OV7670 does weird things if flip is set *before* format...
870 */
871 ret += cafe_cam_set_flip(cam);
872 return ret;
873 }
874
875 /* -------------------------------------------------------------------- */
876 /*
877 * DMA buffer management. These functions need s_mutex held.
878 */
879
880 /* FIXME: this is inefficient as hell, since dma_alloc_coherent just
881 * does a get_free_pages() call, and we waste a good chunk of an orderN
882 * allocation. Should try to allocate the whole set in one chunk.
883 */
884 static int cafe_alloc_dma_bufs(struct cafe_camera *cam, int loadtime)
885 {
886 int i;
887
888 cafe_set_config_needed(cam, 1);
889 if (loadtime)
890 cam->dma_buf_size = dma_buf_size;
891 else
892 cam->dma_buf_size = cam->pix_format.sizeimage;
893 if (n_dma_bufs > 3)
894 n_dma_bufs = 3;
895
896 cam->nbufs = 0;
897 for (i = 0; i < n_dma_bufs; i++) {
898 cam->dma_bufs[i] = dma_alloc_coherent(&cam->pdev->dev,
899 cam->dma_buf_size, cam->dma_handles + i,
900 GFP_KERNEL);
901 if (cam->dma_bufs[i] == NULL) {
902 cam_warn(cam, "Failed to allocate DMA buffer\n");
903 break;
904 }
905 /* For debug, remove eventually */
906 memset(cam->dma_bufs[i], 0xcc, cam->dma_buf_size);
907 (cam->nbufs)++;
908 }
909
910 switch (cam->nbufs) {
911 case 1:
912 dma_free_coherent(&cam->pdev->dev, cam->dma_buf_size,
913 cam->dma_bufs[0], cam->dma_handles[0]);
914 cam->nbufs = 0;
915 case 0:
916 cam_err(cam, "Insufficient DMA buffers, cannot operate\n");
917 return -ENOMEM;
918
919 case 2:
920 if (n_dma_bufs > 2)
921 cam_warn(cam, "Will limp along with only 2 buffers\n");
922 break;
923 }
924 return 0;
925 }
926
927 static void cafe_free_dma_bufs(struct cafe_camera *cam)
928 {
929 int i;
930
931 for (i = 0; i < cam->nbufs; i++) {
932 dma_free_coherent(&cam->pdev->dev, cam->dma_buf_size,
933 cam->dma_bufs[i], cam->dma_handles[i]);
934 cam->dma_bufs[i] = NULL;
935 }
936 cam->nbufs = 0;
937 }
938
939
940
941
942
943 /* ----------------------------------------------------------------------- */
944 /*
945 * Here starts the V4L2 interface code.
946 */
947
948 /*
949 * Read an image from the device.
950 */
951 static ssize_t cafe_deliver_buffer(struct cafe_camera *cam,
952 char __user *buffer, size_t len, loff_t *pos)
953 {
954 int bufno;
955 unsigned long flags;
956
957 spin_lock_irqsave(&cam->dev_lock, flags);
958 if (cam->next_buf < 0) {
959 cam_err(cam, "deliver_buffer: No next buffer\n");
960 spin_unlock_irqrestore(&cam->dev_lock, flags);
961 return -EIO;
962 }
963 bufno = cam->next_buf;
964 clear_bit(bufno, &cam->flags);
965 if (++(cam->next_buf) >= cam->nbufs)
966 cam->next_buf = 0;
967 if (! test_bit(cam->next_buf, &cam->flags))
968 cam->next_buf = -1;
969 cam->specframes = 0;
970 spin_unlock_irqrestore(&cam->dev_lock, flags);
971
972 if (len > cam->pix_format.sizeimage)
973 len = cam->pix_format.sizeimage;
974 if (copy_to_user(buffer, cam->dma_bufs[bufno], len))
975 return -EFAULT;
976 (*pos) += len;
977 return len;
978 }
979
980 /*
981 * Get everything ready, and start grabbing frames.
982 */
983 static int cafe_read_setup(struct cafe_camera *cam, enum cafe_state state)
984 {
985 int ret;
986 unsigned long flags;
987
988 /*
989 * Configuration. If we still don't have DMA buffers,
990 * make one last, desperate attempt.
991 */
992 if (cam->nbufs == 0)
993 if (cafe_alloc_dma_bufs(cam, 0))
994 return -ENOMEM;
995
996 if (cafe_needs_config(cam)) {
997 cafe_cam_configure(cam);
998 ret = cafe_ctlr_configure(cam);
999 if (ret)
1000 return ret;
1001 }
1002
1003 /*
1004 * Turn it loose.
1005 */
1006 spin_lock_irqsave(&cam->dev_lock, flags);
1007 cafe_reset_buffers(cam);
1008 cafe_ctlr_irq_enable(cam);
1009 cam->state = state;
1010 cafe_ctlr_start(cam);
1011 spin_unlock_irqrestore(&cam->dev_lock, flags);
1012 return 0;
1013 }
1014
1015
1016 static ssize_t cafe_v4l_read(struct file *filp,
1017 char __user *buffer, size_t len, loff_t *pos)
1018 {
1019 struct cafe_camera *cam = filp->private_data;
1020 int ret = 0;
1021
1022 /*
1023 * Perhaps we're in speculative read mode and already
1024 * have data?
1025 */
1026 mutex_lock(&cam->s_mutex);
1027 if (cam->state == S_SPECREAD) {
1028 if (cam->next_buf >= 0) {
1029 ret = cafe_deliver_buffer(cam, buffer, len, pos);
1030 if (ret != 0)
1031 goto out_unlock;
1032 }
1033 } else if (cam->state == S_FLAKED || cam->state == S_NOTREADY) {
1034 ret = -EIO;
1035 goto out_unlock;
1036 } else if (cam->state != S_IDLE) {
1037 ret = -EBUSY;
1038 goto out_unlock;
1039 }
1040
1041 /*
1042 * v4l2: multiple processes can open the device, but only
1043 * one gets to grab data from it.
1044 */
1045 if (cam->owner && cam->owner != filp) {
1046 ret = -EBUSY;
1047 goto out_unlock;
1048 }
1049 cam->owner = filp;
1050
1051 /*
1052 * Do setup if need be.
1053 */
1054 if (cam->state != S_SPECREAD) {
1055 ret = cafe_read_setup(cam, S_SINGLEREAD);
1056 if (ret)
1057 goto out_unlock;
1058 }
1059 /*
1060 * Wait for something to happen. This should probably
1061 * be interruptible (FIXME).
1062 */
1063 wait_event_timeout(cam->iowait, cam->next_buf >= 0, HZ);
1064 if (cam->next_buf < 0) {
1065 cam_err(cam, "read() operation timed out\n");
1066 cafe_ctlr_stop_dma(cam);
1067 ret = -EIO;
1068 goto out_unlock;
1069 }
1070 /*
1071 * Give them their data and we should be done.
1072 */
1073 ret = cafe_deliver_buffer(cam, buffer, len, pos);
1074
1075 out_unlock:
1076 mutex_unlock(&cam->s_mutex);
1077 return ret;
1078 }
1079
1080
1081
1082
1083
1084
1085
1086
1087 /*
1088 * Streaming I/O support.
1089 */
1090
1091
1092
1093 static int cafe_vidioc_streamon(struct file *filp, void *priv,
1094 enum v4l2_buf_type type)
1095 {
1096 struct cafe_camera *cam = filp->private_data;
1097 int ret = -EINVAL;
1098
1099 if (type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
1100 goto out;
1101 mutex_lock(&cam->s_mutex);
1102 if (cam->state != S_IDLE || cam->n_sbufs == 0)
1103 goto out_unlock;
1104
1105 cam->sequence = 0;
1106 ret = cafe_read_setup(cam, S_STREAMING);
1107
1108 out_unlock:
1109 mutex_unlock(&cam->s_mutex);
1110 out:
1111 return ret;
1112 }
1113
1114
1115 static int cafe_vidioc_streamoff(struct file *filp, void *priv,
1116 enum v4l2_buf_type type)
1117 {
1118 struct cafe_camera *cam = filp->private_data;
1119 int ret = -EINVAL;
1120
1121 if (type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
1122 goto out;
1123 mutex_lock(&cam->s_mutex);
1124 if (cam->state != S_STREAMING)
1125 goto out_unlock;
1126
1127 cafe_ctlr_stop_dma(cam);
1128 ret = 0;
1129
1130 out_unlock:
1131 mutex_unlock(&cam->s_mutex);
1132 out:
1133 return ret;
1134 }
1135
1136
1137
1138 static int cafe_setup_siobuf(struct cafe_camera *cam, int index)
1139 {
1140 struct cafe_sio_buffer *buf = cam->sb_bufs + index;
1141
1142 INIT_LIST_HEAD(&buf->list);
1143 buf->v4lbuf.length = PAGE_ALIGN(cam->pix_format.sizeimage);
1144 buf->buffer = vmalloc_user(buf->v4lbuf.length);
1145 if (buf->buffer == NULL)
1146 return -ENOMEM;
1147 buf->mapcount = 0;
1148 buf->cam = cam;
1149
1150 buf->v4lbuf.index = index;
1151 buf->v4lbuf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
1152 buf->v4lbuf.field = V4L2_FIELD_NONE;
1153 buf->v4lbuf.memory = V4L2_MEMORY_MMAP;
1154 /*
1155 * Offset: must be 32-bit even on a 64-bit system. videobuf-dma-sg
1156 * just uses the length times the index, but the spec warns
1157 * against doing just that - vma merging problems. So we
1158 * leave a gap between each pair of buffers.
1159 */
1160 buf->v4lbuf.m.offset = 2*index*buf->v4lbuf.length;
1161 return 0;
1162 }
1163
1164 static int cafe_free_sio_buffers(struct cafe_camera *cam)
1165 {
1166 int i;
1167
1168 /*
1169 * If any buffers are mapped, we cannot free them at all.
1170 */
1171 for (i = 0; i < cam->n_sbufs; i++)
1172 if (cam->sb_bufs[i].mapcount > 0)
1173 return -EBUSY;
1174 /*
1175 * OK, let's do it.
1176 */
1177 for (i = 0; i < cam->n_sbufs; i++)
1178 vfree(cam->sb_bufs[i].buffer);
1179 cam->n_sbufs = 0;
1180 kfree(cam->sb_bufs);
1181 cam->sb_bufs = NULL;
1182 INIT_LIST_HEAD(&cam->sb_avail);
1183 INIT_LIST_HEAD(&cam->sb_full);
1184 return 0;
1185 }
1186
1187
1188
1189 static int cafe_vidioc_reqbufs(struct file *filp, void *priv,
1190 struct v4l2_requestbuffers *req)
1191 {
1192 struct cafe_camera *cam = filp->private_data;
1193 int ret = 0; /* Silence warning */
1194
1195 /*
1196 * Make sure it's something we can do. User pointers could be
1197 * implemented without great pain, but that's not been done yet.
1198 */
1199 if (req->memory != V4L2_MEMORY_MMAP)
1200 return -EINVAL;
1201 /*
1202 * If they ask for zero buffers, they really want us to stop streaming
1203 * (if it's happening) and free everything. Should we check owner?
1204 */
1205 mutex_lock(&cam->s_mutex);
1206 if (req->count == 0) {
1207 if (cam->state == S_STREAMING)
1208 cafe_ctlr_stop_dma(cam);
1209 ret = cafe_free_sio_buffers (cam);
1210 goto out;
1211 }
1212 /*
1213 * Device needs to be idle and working. We *could* try to do the
1214 * right thing in S_SPECREAD by shutting things down, but it
1215 * probably doesn't matter.
1216 */
1217 if (cam->state != S_IDLE || (cam->owner && cam->owner != filp)) {
1218 ret = -EBUSY;
1219 goto out;
1220 }
1221 cam->owner = filp;
1222
1223 if (req->count < min_buffers)
1224 req->count = min_buffers;
1225 else if (req->count > max_buffers)
1226 req->count = max_buffers;
1227 if (cam->n_sbufs > 0) {
1228 ret = cafe_free_sio_buffers(cam);
1229 if (ret)
1230 goto out;
1231 }
1232
1233 cam->sb_bufs = kzalloc(req->count*sizeof(struct cafe_sio_buffer),
1234 GFP_KERNEL);
1235 if (cam->sb_bufs == NULL) {
1236 ret = -ENOMEM;
1237 goto out;
1238 }
1239 for (cam->n_sbufs = 0; cam->n_sbufs < req->count; (cam->n_sbufs++)) {
1240 ret = cafe_setup_siobuf(cam, cam->n_sbufs);
1241 if (ret)
1242 break;
1243 }
1244
1245 if (cam->n_sbufs == 0) /* no luck at all - ret already set */
1246 kfree(cam->sb_bufs);
1247 req->count = cam->n_sbufs; /* In case of partial success */
1248
1249 out:
1250 mutex_unlock(&cam->s_mutex);
1251 return ret;
1252 }
1253
1254
1255 static int cafe_vidioc_querybuf(struct file *filp, void *priv,
1256 struct v4l2_buffer *buf)
1257 {
1258 struct cafe_camera *cam = filp->private_data;
1259 int ret = -EINVAL;
1260
1261 mutex_lock(&cam->s_mutex);
1262 if (buf->index >= cam->n_sbufs)
1263 goto out;
1264 *buf = cam->sb_bufs[buf->index].v4lbuf;
1265 ret = 0;
1266 out:
1267 mutex_unlock(&cam->s_mutex);
1268 return ret;
1269 }
1270
1271 static int cafe_vidioc_qbuf(struct file *filp, void *priv,
1272 struct v4l2_buffer *buf)
1273 {
1274 struct cafe_camera *cam = filp->private_data;
1275 struct cafe_sio_buffer *sbuf;
1276 int ret = -EINVAL;
1277 unsigned long flags;
1278
1279 mutex_lock(&cam->s_mutex);
1280 if (buf->index >= cam->n_sbufs)
1281 goto out;
1282 sbuf = cam->sb_bufs + buf->index;
1283 if (sbuf->v4lbuf.flags & V4L2_BUF_FLAG_QUEUED) {
1284 ret = 0; /* Already queued?? */
1285 goto out;
1286 }
1287 if (sbuf->v4lbuf.flags & V4L2_BUF_FLAG_DONE) {
1288 /* Spec doesn't say anything, seems appropriate tho */
1289 ret = -EBUSY;
1290 goto out;
1291 }
1292 sbuf->v4lbuf.flags |= V4L2_BUF_FLAG_QUEUED;
1293 spin_lock_irqsave(&cam->dev_lock, flags);
1294 list_add(&sbuf->list, &cam->sb_avail);
1295 spin_unlock_irqrestore(&cam->dev_lock, flags);
1296 ret = 0;
1297 out:
1298 mutex_unlock(&cam->s_mutex);
1299 return ret;
1300 }
1301
1302 static int cafe_vidioc_dqbuf(struct file *filp, void *priv,
1303 struct v4l2_buffer *buf)
1304 {
1305 struct cafe_camera *cam = filp->private_data;
1306 struct cafe_sio_buffer *sbuf;
1307 int ret = -EINVAL;
1308 unsigned long flags;
1309
1310 mutex_lock(&cam->s_mutex);
1311 if (cam->state != S_STREAMING)
1312 goto out_unlock;
1313 if (list_empty(&cam->sb_full) && filp->f_flags & O_NONBLOCK) {
1314 ret = -EAGAIN;
1315 goto out_unlock;
1316 }
1317
1318 while (list_empty(&cam->sb_full) && cam->state == S_STREAMING) {
1319 mutex_unlock(&cam->s_mutex);
1320 if (wait_event_interruptible(cam->iowait,
1321 !list_empty(&cam->sb_full))) {
1322 ret = -ERESTARTSYS;
1323 goto out;
1324 }
1325 mutex_lock(&cam->s_mutex);
1326 }
1327
1328 if (cam->state != S_STREAMING)
1329 ret = -EINTR;
1330 else {
1331 spin_lock_irqsave(&cam->dev_lock, flags);
1332 /* Should probably recheck !list_empty() here */
1333 sbuf = list_entry(cam->sb_full.next,
1334 struct cafe_sio_buffer, list);
1335 list_del_init(&sbuf->list);
1336 spin_unlock_irqrestore(&cam->dev_lock, flags);
1337 sbuf->v4lbuf.flags &= ~V4L2_BUF_FLAG_DONE;
1338 *buf = sbuf->v4lbuf;
1339 ret = 0;
1340 }
1341
1342 out_unlock:
1343 mutex_unlock(&cam->s_mutex);
1344 out:
1345 return ret;
1346 }
1347
1348
1349
1350 static void cafe_v4l_vm_open(struct vm_area_struct *vma)
1351 {
1352 struct cafe_sio_buffer *sbuf = vma->vm_private_data;
1353 /*
1354 * Locking: done under mmap_sem, so we don't need to
1355 * go back to the camera lock here.
1356 */
1357 sbuf->mapcount++;
1358 }
1359
1360
1361 static void cafe_v4l_vm_close(struct vm_area_struct *vma)
1362 {
1363 struct cafe_sio_buffer *sbuf = vma->vm_private_data;
1364
1365 mutex_lock(&sbuf->cam->s_mutex);
1366 sbuf->mapcount--;
1367 /* Docs say we should stop I/O too... */
1368 if (sbuf->mapcount == 0)
1369 sbuf->v4lbuf.flags &= ~V4L2_BUF_FLAG_MAPPED;
1370 mutex_unlock(&sbuf->cam->s_mutex);
1371 }
1372
1373 static const struct vm_operations_struct cafe_v4l_vm_ops = {
1374 .open = cafe_v4l_vm_open,
1375 .close = cafe_v4l_vm_close
1376 };
1377
1378
1379 static int cafe_v4l_mmap(struct file *filp, struct vm_area_struct *vma)
1380 {
1381 struct cafe_camera *cam = filp->private_data;
1382 unsigned long offset = vma->vm_pgoff << PAGE_SHIFT;
1383 int ret = -EINVAL;
1384 int i;
1385 struct cafe_sio_buffer *sbuf = NULL;
1386
1387 if (! (vma->vm_flags & VM_WRITE) || ! (vma->vm_flags & VM_SHARED))
1388 return -EINVAL;
1389 /*
1390 * Find the buffer they are looking for.
1391 */
1392 mutex_lock(&cam->s_mutex);
1393 for (i = 0; i < cam->n_sbufs; i++)
1394 if (cam->sb_bufs[i].v4lbuf.m.offset == offset) {
1395 sbuf = cam->sb_bufs + i;
1396 break;
1397 }
1398 if (sbuf == NULL)
1399 goto out;
1400
1401 ret = remap_vmalloc_range(vma, sbuf->buffer, 0);
1402 if (ret)
1403 goto out;
1404 vma->vm_flags |= VM_DONTEXPAND;
1405 vma->vm_private_data = sbuf;
1406 vma->vm_ops = &cafe_v4l_vm_ops;
1407 sbuf->v4lbuf.flags |= V4L2_BUF_FLAG_MAPPED;
1408 cafe_v4l_vm_open(vma);
1409 ret = 0;
1410 out:
1411 mutex_unlock(&cam->s_mutex);
1412 return ret;
1413 }
1414
1415
1416
1417 static int cafe_v4l_open(struct file *filp)
1418 {
1419 struct cafe_camera *cam = video_drvdata(filp);
1420
1421 filp->private_data = cam;
1422
1423 mutex_lock(&cam->s_mutex);
1424 if (cam->users == 0) {
1425 cafe_ctlr_power_up(cam);
1426 __cafe_cam_reset(cam);
1427 cafe_set_config_needed(cam, 1);
1428 /* FIXME make sure this is complete */
1429 }
1430 (cam->users)++;
1431 mutex_unlock(&cam->s_mutex);
1432 return 0;
1433 }
1434
1435
1436 static int cafe_v4l_release(struct file *filp)
1437 {
1438 struct cafe_camera *cam = filp->private_data;
1439
1440 mutex_lock(&cam->s_mutex);
1441 (cam->users)--;
1442 if (filp == cam->owner) {
1443 cafe_ctlr_stop_dma(cam);
1444 cafe_free_sio_buffers(cam);
1445 cam->owner = NULL;
1446 }
1447 if (cam->users == 0) {
1448 cafe_ctlr_power_down(cam);
1449 if (alloc_bufs_at_read)
1450 cafe_free_dma_bufs(cam);
1451 }
1452 mutex_unlock(&cam->s_mutex);
1453 return 0;
1454 }
1455
1456
1457
1458 static unsigned int cafe_v4l_poll(struct file *filp,
1459 struct poll_table_struct *pt)
1460 {
1461 struct cafe_camera *cam = filp->private_data;
1462
1463 poll_wait(filp, &cam->iowait, pt);
1464 if (cam->next_buf >= 0)
1465 return POLLIN | POLLRDNORM;
1466 return 0;
1467 }
1468
1469
1470
1471 static int cafe_vidioc_queryctrl(struct file *filp, void *priv,
1472 struct v4l2_queryctrl *qc)
1473 {
1474 struct cafe_camera *cam = priv;
1475 int ret;
1476
1477 mutex_lock(&cam->s_mutex);
1478 ret = sensor_call(cam, core, queryctrl, qc);
1479 mutex_unlock(&cam->s_mutex);
1480 return ret;
1481 }
1482
1483
1484 static int cafe_vidioc_g_ctrl(struct file *filp, void *priv,
1485 struct v4l2_control *ctrl)
1486 {
1487 struct cafe_camera *cam = priv;
1488 int ret;
1489
1490 mutex_lock(&cam->s_mutex);
1491 ret = sensor_call(cam, core, g_ctrl, ctrl);
1492 mutex_unlock(&cam->s_mutex);
1493 return ret;
1494 }
1495
1496
1497 static int cafe_vidioc_s_ctrl(struct file *filp, void *priv,
1498 struct v4l2_control *ctrl)
1499 {
1500 struct cafe_camera *cam = priv;
1501 int ret;
1502
1503 mutex_lock(&cam->s_mutex);
1504 ret = sensor_call(cam, core, s_ctrl, ctrl);
1505 mutex_unlock(&cam->s_mutex);
1506 return ret;
1507 }
1508
1509
1510
1511
1512
1513 static int cafe_vidioc_querycap(struct file *file, void *priv,
1514 struct v4l2_capability *cap)
1515 {
1516 strcpy(cap->driver, "cafe_ccic");
1517 strcpy(cap->card, "cafe_ccic");
1518 cap->version = CAFE_VERSION;
1519 cap->capabilities = V4L2_CAP_VIDEO_CAPTURE |
1520 V4L2_CAP_READWRITE | V4L2_CAP_STREAMING;
1521 return 0;
1522 }
1523
1524
1525 /*
1526 * The default format we use until somebody says otherwise.
1527 */
1528 static const struct v4l2_pix_format cafe_def_pix_format = {
1529 .width = VGA_WIDTH,
1530 .height = VGA_HEIGHT,
1531 .pixelformat = V4L2_PIX_FMT_YUYV,
1532 .field = V4L2_FIELD_NONE,
1533 .bytesperline = VGA_WIDTH*2,
1534 .sizeimage = VGA_WIDTH*VGA_HEIGHT*2,
1535 };
1536
1537 static const enum v4l2_mbus_pixelcode cafe_def_mbus_code =
1538 V4L2_MBUS_FMT_YUYV8_2X8;
1539
1540 static int cafe_vidioc_enum_fmt_vid_cap(struct file *filp,
1541 void *priv, struct v4l2_fmtdesc *fmt)
1542 {
1543 if (fmt->index >= N_CAFE_FMTS)
1544 return -EINVAL;
1545 strlcpy(fmt->description, cafe_formats[fmt->index].desc,
1546 sizeof(fmt->description));
1547 fmt->pixelformat = cafe_formats[fmt->index].pixelformat;
1548 return 0;
1549 }
1550
1551 static int cafe_vidioc_try_fmt_vid_cap(struct file *filp, void *priv,
1552 struct v4l2_format *fmt)
1553 {
1554 struct cafe_camera *cam = priv;
1555 struct cafe_format_struct *f;
1556 struct v4l2_pix_format *pix = &fmt->fmt.pix;
1557 struct v4l2_mbus_framefmt mbus_fmt;
1558 int ret;
1559
1560 f = cafe_find_format(pix->pixelformat);
1561 pix->pixelformat = f->pixelformat;
1562 v4l2_fill_mbus_format(&mbus_fmt, pix, f->mbus_code);
1563 mutex_lock(&cam->s_mutex);
1564 ret = sensor_call(cam, video, try_mbus_fmt, &mbus_fmt);
1565 mutex_unlock(&cam->s_mutex);
1566 v4l2_fill_pix_format(pix, &mbus_fmt);
1567 pix->bytesperline = pix->width * f->bpp;
1568 pix->sizeimage = pix->height * pix->bytesperline;
1569 return ret;
1570 }
1571
1572 static int cafe_vidioc_s_fmt_vid_cap(struct file *filp, void *priv,
1573 struct v4l2_format *fmt)
1574 {
1575 struct cafe_camera *cam = priv;
1576 struct cafe_format_struct *f;
1577 int ret;
1578
1579 /*
1580 * Can't do anything if the device is not idle
1581 * Also can't if there are streaming buffers in place.
1582 */
1583 if (cam->state != S_IDLE || cam->n_sbufs > 0)
1584 return -EBUSY;
1585
1586 f = cafe_find_format(fmt->fmt.pix.pixelformat);
1587
1588 /*
1589 * See if the formatting works in principle.
1590 */
1591 ret = cafe_vidioc_try_fmt_vid_cap(filp, priv, fmt);
1592 if (ret)
1593 return ret;
1594 /*
1595 * Now we start to change things for real, so let's do it
1596 * under lock.
1597 */
1598 mutex_lock(&cam->s_mutex);
1599 cam->pix_format = fmt->fmt.pix;
1600 cam->mbus_code = f->mbus_code;
1601
1602 /*
1603 * Make sure we have appropriate DMA buffers.
1604 */
1605 ret = -ENOMEM;
1606 if (cam->nbufs > 0 && cam->dma_buf_size < cam->pix_format.sizeimage)
1607 cafe_free_dma_bufs(cam);
1608 if (cam->nbufs == 0) {
1609 if (cafe_alloc_dma_bufs(cam, 0))
1610 goto out;
1611 }
1612 /*
1613 * It looks like this might work, so let's program the sensor.
1614 */
1615 ret = cafe_cam_configure(cam);
1616 if (! ret)
1617 ret = cafe_ctlr_configure(cam);
1618 out:
1619 mutex_unlock(&cam->s_mutex);
1620 return ret;
1621 }
1622
1623 /*
1624 * Return our stored notion of how the camera is/should be configured.
1625 * The V4l2 spec wants us to be smarter, and actually get this from
1626 * the camera (and not mess with it at open time). Someday.
1627 */
1628 static int cafe_vidioc_g_fmt_vid_cap(struct file *filp, void *priv,
1629 struct v4l2_format *f)
1630 {
1631 struct cafe_camera *cam = priv;
1632
1633 f->fmt.pix = cam->pix_format;
1634 return 0;
1635 }
1636
1637 /*
1638 * We only have one input - the sensor - so minimize the nonsense here.
1639 */
1640 static int cafe_vidioc_enum_input(struct file *filp, void *priv,
1641 struct v4l2_input *input)
1642 {
1643 if (input->index != 0)
1644 return -EINVAL;
1645
1646 input->type = V4L2_INPUT_TYPE_CAMERA;
1647 input->std = V4L2_STD_ALL; /* Not sure what should go here */
1648 strcpy(input->name, "Camera");
1649 return 0;
1650 }
1651
1652 static int cafe_vidioc_g_input(struct file *filp, void *priv, unsigned int *i)
1653 {
1654 *i = 0;
1655 return 0;
1656 }
1657
1658 static int cafe_vidioc_s_input(struct file *filp, void *priv, unsigned int i)
1659 {
1660 if (i != 0)
1661 return -EINVAL;
1662 return 0;
1663 }
1664
1665 /* from vivi.c */
1666 static int cafe_vidioc_s_std(struct file *filp, void *priv, v4l2_std_id *a)
1667 {
1668 return 0;
1669 }
1670
1671 /*
1672 * G/S_PARM. Most of this is done by the sensor, but we are
1673 * the level which controls the number of read buffers.
1674 */
1675 static int cafe_vidioc_g_parm(struct file *filp, void *priv,
1676 struct v4l2_streamparm *parms)
1677 {
1678 struct cafe_camera *cam = priv;
1679 int ret;
1680
1681 mutex_lock(&cam->s_mutex);
1682 ret = sensor_call(cam, video, g_parm, parms);
1683 mutex_unlock(&cam->s_mutex);
1684 parms->parm.capture.readbuffers = n_dma_bufs;
1685 return ret;
1686 }
1687
1688 static int cafe_vidioc_s_parm(struct file *filp, void *priv,
1689 struct v4l2_streamparm *parms)
1690 {
1691 struct cafe_camera *cam = priv;
1692 int ret;
1693
1694 mutex_lock(&cam->s_mutex);
1695 ret = sensor_call(cam, video, s_parm, parms);
1696 mutex_unlock(&cam->s_mutex);
1697 parms->parm.capture.readbuffers = n_dma_bufs;
1698 return ret;
1699 }
1700
1701 static int cafe_vidioc_g_chip_ident(struct file *file, void *priv,
1702 struct v4l2_dbg_chip_ident *chip)
1703 {
1704 struct cafe_camera *cam = priv;
1705
1706 chip->ident = V4L2_IDENT_NONE;
1707 chip->revision = 0;
1708 if (v4l2_chip_match_host(&chip->match)) {
1709 chip->ident = V4L2_IDENT_CAFE;
1710 return 0;
1711 }
1712 return sensor_call(cam, core, g_chip_ident, chip);
1713 }
1714
1715 static int cafe_vidioc_enum_framesizes(struct file *filp, void *priv,
1716 struct v4l2_frmsizeenum *sizes)
1717 {
1718 struct cafe_camera *cam = priv;
1719 int ret;
1720
1721 mutex_lock(&cam->s_mutex);
1722 ret = sensor_call(cam, video, enum_framesizes, sizes);
1723 mutex_unlock(&cam->s_mutex);
1724 return ret;
1725 }
1726
1727 static int cafe_vidioc_enum_frameintervals(struct file *filp, void *priv,
1728 struct v4l2_frmivalenum *interval)
1729 {
1730 struct cafe_camera *cam = priv;
1731 int ret;
1732
1733 mutex_lock(&cam->s_mutex);
1734 ret = sensor_call(cam, video, enum_frameintervals, interval);
1735 mutex_unlock(&cam->s_mutex);
1736 return ret;
1737 }
1738
1739 #ifdef CONFIG_VIDEO_ADV_DEBUG
1740 static int cafe_vidioc_g_register(struct file *file, void *priv,
1741 struct v4l2_dbg_register *reg)
1742 {
1743 struct cafe_camera *cam = priv;
1744
1745 if (v4l2_chip_match_host(&reg->match)) {
1746 reg->val = cafe_reg_read(cam, reg->reg);
1747 reg->size = 4;
1748 return 0;
1749 }
1750 return sensor_call(cam, core, g_register, reg);
1751 }
1752
1753 static int cafe_vidioc_s_register(struct file *file, void *priv,
1754 struct v4l2_dbg_register *reg)
1755 {
1756 struct cafe_camera *cam = priv;
1757
1758 if (v4l2_chip_match_host(&reg->match)) {
1759 cafe_reg_write(cam, reg->reg, reg->val);
1760 return 0;
1761 }
1762 return sensor_call(cam, core, s_register, reg);
1763 }
1764 #endif
1765
1766 /*
1767 * This template device holds all of those v4l2 methods; we
1768 * clone it for specific real devices.
1769 */
1770
1771 static const struct v4l2_file_operations cafe_v4l_fops = {
1772 .owner = THIS_MODULE,
1773 .open = cafe_v4l_open,
1774 .release = cafe_v4l_release,
1775 .read = cafe_v4l_read,
1776 .poll = cafe_v4l_poll,
1777 .mmap = cafe_v4l_mmap,
1778 .ioctl = video_ioctl2,
1779 };
1780
1781 static const struct v4l2_ioctl_ops cafe_v4l_ioctl_ops = {
1782 .vidioc_querycap = cafe_vidioc_querycap,
1783 .vidioc_enum_fmt_vid_cap = cafe_vidioc_enum_fmt_vid_cap,
1784 .vidioc_try_fmt_vid_cap = cafe_vidioc_try_fmt_vid_cap,
1785 .vidioc_s_fmt_vid_cap = cafe_vidioc_s_fmt_vid_cap,
1786 .vidioc_g_fmt_vid_cap = cafe_vidioc_g_fmt_vid_cap,
1787 .vidioc_enum_input = cafe_vidioc_enum_input,
1788 .vidioc_g_input = cafe_vidioc_g_input,
1789 .vidioc_s_input = cafe_vidioc_s_input,
1790 .vidioc_s_std = cafe_vidioc_s_std,
1791 .vidioc_reqbufs = cafe_vidioc_reqbufs,
1792 .vidioc_querybuf = cafe_vidioc_querybuf,
1793 .vidioc_qbuf = cafe_vidioc_qbuf,
1794 .vidioc_dqbuf = cafe_vidioc_dqbuf,
1795 .vidioc_streamon = cafe_vidioc_streamon,
1796 .vidioc_streamoff = cafe_vidioc_streamoff,
1797 .vidioc_queryctrl = cafe_vidioc_queryctrl,
1798 .vidioc_g_ctrl = cafe_vidioc_g_ctrl,
1799 .vidioc_s_ctrl = cafe_vidioc_s_ctrl,
1800 .vidioc_g_parm = cafe_vidioc_g_parm,
1801 .vidioc_s_parm = cafe_vidioc_s_parm,
1802 .vidioc_enum_framesizes = cafe_vidioc_enum_framesizes,
1803 .vidioc_enum_frameintervals = cafe_vidioc_enum_frameintervals,
1804 .vidioc_g_chip_ident = cafe_vidioc_g_chip_ident,
1805 #ifdef CONFIG_VIDEO_ADV_DEBUG
1806 .vidioc_g_register = cafe_vidioc_g_register,
1807 .vidioc_s_register = cafe_vidioc_s_register,
1808 #endif
1809 };
1810
1811 static struct video_device cafe_v4l_template = {
1812 .name = "cafe",
1813 .tvnorms = V4L2_STD_NTSC_M,
1814 .current_norm = V4L2_STD_NTSC_M, /* make mplayer happy */
1815
1816 .fops = &cafe_v4l_fops,
1817 .ioctl_ops = &cafe_v4l_ioctl_ops,
1818 .release = video_device_release_empty,
1819 };
1820
1821
1822 /* ---------------------------------------------------------------------- */
1823 /*
1824 * Interrupt handler stuff
1825 */
1826
1827
1828
1829 static void cafe_frame_tasklet(unsigned long data)
1830 {
1831 struct cafe_camera *cam = (struct cafe_camera *) data;
1832 int i;
1833 unsigned long flags;
1834 struct cafe_sio_buffer *sbuf;
1835
1836 spin_lock_irqsave(&cam->dev_lock, flags);
1837 for (i = 0; i < cam->nbufs; i++) {
1838 int bufno = cam->next_buf;
1839 if (bufno < 0) { /* "will never happen" */
1840 cam_err(cam, "No valid bufs in tasklet!\n");
1841 break;
1842 }
1843 if (++(cam->next_buf) >= cam->nbufs)
1844 cam->next_buf = 0;
1845 if (! test_bit(bufno, &cam->flags))
1846 continue;
1847 if (list_empty(&cam->sb_avail))
1848 break; /* Leave it valid, hope for better later */
1849 clear_bit(bufno, &cam->flags);
1850 sbuf = list_entry(cam->sb_avail.next,
1851 struct cafe_sio_buffer, list);
1852 /*
1853 * Drop the lock during the big copy. This *should* be safe...
1854 */
1855 spin_unlock_irqrestore(&cam->dev_lock, flags);
1856 memcpy(sbuf->buffer, cam->dma_bufs[bufno],
1857 cam->pix_format.sizeimage);
1858 sbuf->v4lbuf.bytesused = cam->pix_format.sizeimage;
1859 sbuf->v4lbuf.sequence = cam->buf_seq[bufno];
1860 sbuf->v4lbuf.flags &= ~V4L2_BUF_FLAG_QUEUED;
1861 sbuf->v4lbuf.flags |= V4L2_BUF_FLAG_DONE;
1862 spin_lock_irqsave(&cam->dev_lock, flags);
1863 list_move_tail(&sbuf->list, &cam->sb_full);
1864 }
1865 if (! list_empty(&cam->sb_full))
1866 wake_up(&cam->iowait);
1867 spin_unlock_irqrestore(&cam->dev_lock, flags);
1868 }
1869
1870
1871
1872 static void cafe_frame_complete(struct cafe_camera *cam, int frame)
1873 {
1874 /*
1875 * Basic frame housekeeping.
1876 */
1877 if (test_bit(frame, &cam->flags) && printk_ratelimit())
1878 cam_err(cam, "Frame overrun on %d, frames lost\n", frame);
1879 set_bit(frame, &cam->flags);
1880 clear_bit(CF_DMA_ACTIVE, &cam->flags);
1881 if (cam->next_buf < 0)
1882 cam->next_buf = frame;
1883 cam->buf_seq[frame] = ++(cam->sequence);
1884
1885 switch (cam->state) {
1886 /*
1887 * If in single read mode, try going speculative.
1888 */
1889 case S_SINGLEREAD:
1890 cam->state = S_SPECREAD;
1891 cam->specframes = 0;
1892 wake_up(&cam->iowait);
1893 break;
1894
1895 /*
1896 * If we are already doing speculative reads, and nobody is
1897 * reading them, just stop.
1898 */
1899 case S_SPECREAD:
1900 if (++(cam->specframes) >= cam->nbufs) {
1901 cafe_ctlr_stop(cam);
1902 cafe_ctlr_irq_disable(cam);
1903 cam->state = S_IDLE;
1904 }
1905 wake_up(&cam->iowait);
1906 break;
1907 /*
1908 * For the streaming case, we defer the real work to the
1909 * camera tasklet.
1910 *
1911 * FIXME: if the application is not consuming the buffers,
1912 * we should eventually put things on hold and restart in
1913 * vidioc_dqbuf().
1914 */
1915 case S_STREAMING:
1916 tasklet_schedule(&cam->s_tasklet);
1917 break;
1918
1919 default:
1920 cam_err(cam, "Frame interrupt in non-operational state\n");
1921 break;
1922 }
1923 }
1924
1925
1926
1927
1928 static void cafe_frame_irq(struct cafe_camera *cam, unsigned int irqs)
1929 {
1930 unsigned int frame;
1931
1932 cafe_reg_write(cam, REG_IRQSTAT, FRAMEIRQS); /* Clear'em all */
1933 /*
1934 * Handle any frame completions. There really should
1935 * not be more than one of these, or we have fallen
1936 * far behind.
1937 */
1938 for (frame = 0; frame < cam->nbufs; frame++)
1939 if (irqs & (IRQ_EOF0 << frame))
1940 cafe_frame_complete(cam, frame);
1941 /*
1942 * If a frame starts, note that we have DMA active. This
1943 * code assumes that we won't get multiple frame interrupts
1944 * at once; may want to rethink that.
1945 */
1946 if (irqs & (IRQ_SOF0 | IRQ_SOF1 | IRQ_SOF2))
1947 set_bit(CF_DMA_ACTIVE, &cam->flags);
1948 }
1949
1950
1951
1952 static irqreturn_t cafe_irq(int irq, void *data)
1953 {
1954 struct cafe_camera *cam = data;
1955 unsigned int irqs;
1956
1957 spin_lock(&cam->dev_lock);
1958 irqs = cafe_reg_read(cam, REG_IRQSTAT);
1959 if ((irqs & ALLIRQS) == 0) {
1960 spin_unlock(&cam->dev_lock);
1961 return IRQ_NONE;
1962 }
1963 if (irqs & FRAMEIRQS)
1964 cafe_frame_irq(cam, irqs);
1965 if (irqs & TWSIIRQS) {
1966 cafe_reg_write(cam, REG_IRQSTAT, TWSIIRQS);
1967 wake_up(&cam->smbus_wait);
1968 }
1969 spin_unlock(&cam->dev_lock);
1970 return IRQ_HANDLED;
1971 }
1972
1973
1974 /* -------------------------------------------------------------------------- */
1975 /*
1976 * PCI interface stuff.
1977 */
1978
1979 static const struct dmi_system_id olpc_xo1_dmi[] = {
1980 {
1981 .matches = {
1982 DMI_MATCH(DMI_SYS_VENDOR, "OLPC"),
1983 DMI_MATCH(DMI_PRODUCT_NAME, "XO"),
1984 DMI_MATCH(DMI_PRODUCT_VERSION, "1"),
1985 },
1986 },
1987 { }
1988 };
1989
1990 static int cafe_pci_probe(struct pci_dev *pdev,
1991 const struct pci_device_id *id)
1992 {
1993 int ret;
1994 struct cafe_camera *cam;
1995 struct ov7670_config sensor_cfg = {
1996 /* This controller only does SMBUS */
1997 .use_smbus = true,
1998
1999 /*
2000 * Exclude QCIF mode, because it only captures a tiny portion
2001 * of the sensor FOV
2002 */
2003 .min_width = 320,
2004 .min_height = 240,
2005 };
2006
2007 /*
2008 * Start putting together one of our big camera structures.
2009 */
2010 ret = -ENOMEM;
2011 cam = kzalloc(sizeof(struct cafe_camera), GFP_KERNEL);
2012 if (cam == NULL)
2013 goto out;
2014 ret = v4l2_device_register(&pdev->dev, &cam->v4l2_dev);
2015 if (ret)
2016 goto out_free;
2017
2018 mutex_init(&cam->s_mutex);
2019 spin_lock_init(&cam->dev_lock);
2020 cam->state = S_NOTREADY;
2021 cafe_set_config_needed(cam, 1);
2022 init_waitqueue_head(&cam->smbus_wait);
2023 init_waitqueue_head(&cam->iowait);
2024 cam->pdev = pdev;
2025 cam->pix_format = cafe_def_pix_format;
2026 cam->mbus_code = cafe_def_mbus_code;
2027 INIT_LIST_HEAD(&cam->dev_list);
2028 INIT_LIST_HEAD(&cam->sb_avail);
2029 INIT_LIST_HEAD(&cam->sb_full);
2030 tasklet_init(&cam->s_tasklet, cafe_frame_tasklet, (unsigned long) cam);
2031 /*
2032 * Get set up on the PCI bus.
2033 */
2034 ret = pci_enable_device(pdev);
2035 if (ret)
2036 goto out_unreg;
2037 pci_set_master(pdev);
2038
2039 ret = -EIO;
2040 cam->regs = pci_iomap(pdev, 0, 0);
2041 if (! cam->regs) {
2042 printk(KERN_ERR "Unable to ioremap cafe-ccic regs\n");
2043 goto out_unreg;
2044 }
2045 ret = request_irq(pdev->irq, cafe_irq, IRQF_SHARED, "cafe-ccic", cam);
2046 if (ret)
2047 goto out_iounmap;
2048 /*
2049 * Initialize the controller and leave it powered up. It will
2050 * stay that way until the sensor driver shows up.
2051 */
2052 cafe_ctlr_init(cam);
2053 cafe_ctlr_power_up(cam);
2054 /*
2055 * Set up I2C/SMBUS communications. We have to drop the mutex here
2056 * because the sensor could attach in this call chain, leading to
2057 * unsightly deadlocks.
2058 */
2059 ret = cafe_smbus_setup(cam);
2060 if (ret)
2061 goto out_freeirq;
2062
2063 /* Apply XO-1 clock speed */
2064 if (dmi_check_system(olpc_xo1_dmi))
2065 sensor_cfg.clock_speed = 45;
2066
2067 cam->sensor_addr = 0x42;
2068 cam->sensor = v4l2_i2c_new_subdev(&cam->v4l2_dev, &cam->i2c_adapter,
2069 NULL, "ov7670", cam->sensor_addr, NULL);
2070 if (cam->sensor == NULL) {
2071 ret = -ENODEV;
2072 goto out_smbus;
2073 }
2074
2075 ret = cafe_cam_init(cam);
2076 if (ret)
2077 goto out_smbus;
2078
2079 /*
2080 * Get the v4l2 setup done.
2081 */
2082 mutex_lock(&cam->s_mutex);
2083 cam->vdev = cafe_v4l_template;
2084 cam->vdev.debug = 0;
2085 /* cam->vdev.debug = V4L2_DEBUG_IOCTL_ARG;*/
2086 cam->vdev.v4l2_dev = &cam->v4l2_dev;
2087 ret = video_register_device(&cam->vdev, VFL_TYPE_GRABBER, -1);
2088 if (ret)
2089 goto out_unlock;
2090 video_set_drvdata(&cam->vdev, cam);
2091
2092 /*
2093 * If so requested, try to get our DMA buffers now.
2094 */
2095 if (!alloc_bufs_at_read) {
2096 if (cafe_alloc_dma_bufs(cam, 1))
2097 cam_warn(cam, "Unable to alloc DMA buffers at load"
2098 " will try again later.");
2099 }
2100
2101 mutex_unlock(&cam->s_mutex);
2102 return 0;
2103
2104 out_unlock:
2105 mutex_unlock(&cam->s_mutex);
2106 out_smbus:
2107 cafe_smbus_shutdown(cam);
2108 out_freeirq:
2109 cafe_ctlr_power_down(cam);
2110 free_irq(pdev->irq, cam);
2111 out_iounmap:
2112 pci_iounmap(pdev, cam->regs);
2113 out_free:
2114 v4l2_device_unregister(&cam->v4l2_dev);
2115 out_unreg:
2116 kfree(cam);
2117 out:
2118 return ret;
2119 }
2120
2121
2122 /*
2123 * Shut down an initialized device
2124 */
2125 static void cafe_shutdown(struct cafe_camera *cam)
2126 {
2127 /* FIXME: Make sure we take care of everything here */
2128 if (cam->n_sbufs > 0)
2129 /* What if they are still mapped? Shouldn't be, but... */
2130 cafe_free_sio_buffers(cam);
2131 cafe_ctlr_stop_dma(cam);
2132 cafe_ctlr_power_down(cam);
2133 cafe_smbus_shutdown(cam);
2134 cafe_free_dma_bufs(cam);
2135 free_irq(cam->pdev->irq, cam);
2136 pci_iounmap(cam->pdev, cam->regs);
2137 video_unregister_device(&cam->vdev);
2138 }
2139
2140
2141 static void cafe_pci_remove(struct pci_dev *pdev)
2142 {
2143 struct v4l2_device *v4l2_dev = dev_get_drvdata(&pdev->dev);
2144 struct cafe_camera *cam = to_cam(v4l2_dev);
2145
2146 if (cam == NULL) {
2147 printk(KERN_WARNING "pci_remove on unknown pdev %p\n", pdev);
2148 return;
2149 }
2150 mutex_lock(&cam->s_mutex);
2151 if (cam->users > 0)
2152 cam_warn(cam, "Removing a device with users!\n");
2153 cafe_shutdown(cam);
2154 v4l2_device_unregister(&cam->v4l2_dev);
2155 kfree(cam);
2156 /* No unlock - it no longer exists */
2157 }
2158
2159
2160 #ifdef CONFIG_PM
2161 /*
2162 * Basic power management.
2163 */
2164 static int cafe_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2165 {
2166 struct v4l2_device *v4l2_dev = dev_get_drvdata(&pdev->dev);
2167 struct cafe_camera *cam = to_cam(v4l2_dev);
2168 int ret;
2169 enum cafe_state cstate;
2170
2171 ret = pci_save_state(pdev);
2172 if (ret)
2173 return ret;
2174 cstate = cam->state; /* HACK - stop_dma sets to idle */
2175 cafe_ctlr_stop_dma(cam);
2176 cafe_ctlr_power_down(cam);
2177 pci_disable_device(pdev);
2178 cam->state = cstate;
2179 return 0;
2180 }
2181
2182
2183 static int cafe_pci_resume(struct pci_dev *pdev)
2184 {
2185 struct v4l2_device *v4l2_dev = dev_get_drvdata(&pdev->dev);
2186 struct cafe_camera *cam = to_cam(v4l2_dev);
2187 int ret = 0;
2188
2189 ret = pci_restore_state(pdev);
2190 if (ret)
2191 return ret;
2192 ret = pci_enable_device(pdev);
2193
2194 if (ret) {
2195 cam_warn(cam, "Unable to re-enable device on resume!\n");
2196 return ret;
2197 }
2198 cafe_ctlr_init(cam);
2199 cafe_ctlr_power_down(cam);
2200
2201 mutex_lock(&cam->s_mutex);
2202 if (cam->users > 0) {
2203 cafe_ctlr_power_up(cam);
2204 __cafe_cam_reset(cam);
2205 }
2206 mutex_unlock(&cam->s_mutex);
2207
2208 set_bit(CF_CONFIG_NEEDED, &cam->flags);
2209 if (cam->state == S_SPECREAD)
2210 cam->state = S_IDLE; /* Don't bother restarting */
2211 else if (cam->state == S_SINGLEREAD || cam->state == S_STREAMING)
2212 ret = cafe_read_setup(cam, cam->state);
2213 return ret;
2214 }
2215
2216 #endif /* CONFIG_PM */
2217
2218
2219 static struct pci_device_id cafe_ids[] = {
2220 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL,
2221 PCI_DEVICE_ID_MARVELL_88ALP01_CCIC) },
2222 { 0, }
2223 };
2224
2225 MODULE_DEVICE_TABLE(pci, cafe_ids);
2226
2227 static struct pci_driver cafe_pci_driver = {
2228 .name = "cafe1000-ccic",
2229 .id_table = cafe_ids,
2230 .probe = cafe_pci_probe,
2231 .remove = cafe_pci_remove,
2232 #ifdef CONFIG_PM
2233 .suspend = cafe_pci_suspend,
2234 .resume = cafe_pci_resume,
2235 #endif
2236 };
2237
2238
2239
2240
2241 static int __init cafe_init(void)
2242 {
2243 int ret;
2244
2245 printk(KERN_NOTICE "Marvell M88ALP01 'CAFE' Camera Controller version %d\n",
2246 CAFE_VERSION);
2247 ret = pci_register_driver(&cafe_pci_driver);
2248 if (ret) {
2249 printk(KERN_ERR "Unable to register cafe_ccic driver\n");
2250 goto out;
2251 }
2252 ret = 0;
2253
2254 out:
2255 return ret;
2256 }
2257
2258
2259 static void __exit cafe_exit(void)
2260 {
2261 pci_unregister_driver(&cafe_pci_driver);
2262 }
2263
2264 module_init(cafe_init);
2265 module_exit(cafe_exit);
This page took 0.089389 seconds and 5 git commands to generate.