cfq-iosched: fix use-after-free of cfqq
[deliverable/linux.git] / drivers / media / video / gspca / ov519.c
1 /**
2 * OV519 driver
3 *
4 * Copyright (C) 2008-2011 Jean-François Moine <moinejf@free.fr>
5 * Copyright (C) 2009 Hans de Goede <hdegoede@redhat.com>
6 *
7 * This module is adapted from the ov51x-jpeg package, which itself
8 * was adapted from the ov511 driver.
9 *
10 * Original copyright for the ov511 driver is:
11 *
12 * Copyright (c) 1999-2006 Mark W. McClelland
13 * Support for OV519, OV8610 Copyright (c) 2003 Joerg Heckenbach
14 * Many improvements by Bret Wallach <bwallac1@san.rr.com>
15 * Color fixes by by Orion Sky Lawlor <olawlor@acm.org> (2/26/2000)
16 * OV7620 fixes by Charl P. Botha <cpbotha@ieee.org>
17 * Changes by Claudio Matsuoka <claudio@conectiva.com>
18 *
19 * ov51x-jpeg original copyright is:
20 *
21 * Copyright (c) 2004-2007 Romain Beauxis <toots@rastageeks.org>
22 * Support for OV7670 sensors was contributed by Sam Skipsey <aoanla@yahoo.com>
23 *
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2 of the License, or
27 * any later version.
28 *
29 * This program is distributed in the hope that it will be useful,
30 * but WITHOUT ANY WARRANTY; without even the implied warranty of
31 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
32 * GNU General Public License for more details.
33 *
34 * You should have received a copy of the GNU General Public License
35 * along with this program; if not, write to the Free Software
36 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
37 *
38 */
39
40 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41
42 #define MODULE_NAME "ov519"
43
44 #include <linux/input.h>
45 #include "gspca.h"
46
47 /* The jpeg_hdr is used by w996Xcf only */
48 /* The CONEX_CAM define for jpeg.h needs renaming, now its used here too */
49 #define CONEX_CAM
50 #include "jpeg.h"
51
52 MODULE_AUTHOR("Jean-Francois Moine <http://moinejf.free.fr>");
53 MODULE_DESCRIPTION("OV519 USB Camera Driver");
54 MODULE_LICENSE("GPL");
55
56 /* global parameters */
57 static int frame_rate;
58
59 /* Number of times to retry a failed I2C transaction. Increase this if you
60 * are getting "Failed to read sensor ID..." */
61 static int i2c_detect_tries = 10;
62
63 /* controls */
64 enum e_ctrl {
65 BRIGHTNESS,
66 CONTRAST,
67 EXPOSURE,
68 COLORS,
69 HFLIP,
70 VFLIP,
71 AUTOBRIGHT,
72 AUTOGAIN,
73 FREQ,
74 NCTRL /* number of controls */
75 };
76
77 /* ov519 device descriptor */
78 struct sd {
79 struct gspca_dev gspca_dev; /* !! must be the first item */
80
81 struct gspca_ctrl ctrls[NCTRL];
82
83 u8 packet_nr;
84
85 char bridge;
86 #define BRIDGE_OV511 0
87 #define BRIDGE_OV511PLUS 1
88 #define BRIDGE_OV518 2
89 #define BRIDGE_OV518PLUS 3
90 #define BRIDGE_OV519 4 /* = ov530 */
91 #define BRIDGE_OVFX2 5
92 #define BRIDGE_W9968CF 6
93 #define BRIDGE_MASK 7
94
95 char invert_led;
96 #define BRIDGE_INVERT_LED 8
97
98 char snapshot_pressed;
99 char snapshot_needs_reset;
100
101 /* Determined by sensor type */
102 u8 sif;
103
104 u8 quality;
105 #define QUALITY_MIN 50
106 #define QUALITY_MAX 70
107 #define QUALITY_DEF 50
108
109 u8 stopped; /* Streaming is temporarily paused */
110 u8 first_frame;
111
112 u8 frame_rate; /* current Framerate */
113 u8 clockdiv; /* clockdiv override */
114
115 s8 sensor; /* Type of image sensor chip (SEN_*) */
116
117 u8 sensor_addr;
118 u16 sensor_width;
119 u16 sensor_height;
120 s16 sensor_reg_cache[256];
121
122 u8 jpeg_hdr[JPEG_HDR_SZ];
123 };
124 enum sensors {
125 SEN_OV2610,
126 SEN_OV2610AE,
127 SEN_OV3610,
128 SEN_OV6620,
129 SEN_OV6630,
130 SEN_OV66308AF,
131 SEN_OV7610,
132 SEN_OV7620,
133 SEN_OV7620AE,
134 SEN_OV7640,
135 SEN_OV7648,
136 SEN_OV7660,
137 SEN_OV7670,
138 SEN_OV76BE,
139 SEN_OV8610,
140 SEN_OV9600,
141 };
142
143 /* Note this is a bit of a hack, but the w9968cf driver needs the code for all
144 the ov sensors which is already present here. When we have the time we
145 really should move the sensor drivers to v4l2 sub drivers. */
146 #include "w996Xcf.c"
147
148 /* V4L2 controls supported by the driver */
149 static void setbrightness(struct gspca_dev *gspca_dev);
150 static void setcontrast(struct gspca_dev *gspca_dev);
151 static void setexposure(struct gspca_dev *gspca_dev);
152 static void setcolors(struct gspca_dev *gspca_dev);
153 static void sethvflip(struct gspca_dev *gspca_dev);
154 static void setautobright(struct gspca_dev *gspca_dev);
155 static int sd_setautogain(struct gspca_dev *gspca_dev, __s32 val);
156 static void setfreq(struct gspca_dev *gspca_dev);
157 static void setfreq_i(struct sd *sd);
158
159 static const struct ctrl sd_ctrls[] = {
160 [BRIGHTNESS] = {
161 {
162 .id = V4L2_CID_BRIGHTNESS,
163 .type = V4L2_CTRL_TYPE_INTEGER,
164 .name = "Brightness",
165 .minimum = 0,
166 .maximum = 255,
167 .step = 1,
168 .default_value = 127,
169 },
170 .set_control = setbrightness,
171 },
172 [CONTRAST] = {
173 {
174 .id = V4L2_CID_CONTRAST,
175 .type = V4L2_CTRL_TYPE_INTEGER,
176 .name = "Contrast",
177 .minimum = 0,
178 .maximum = 255,
179 .step = 1,
180 .default_value = 127,
181 },
182 .set_control = setcontrast,
183 },
184 [EXPOSURE] = {
185 {
186 .id = V4L2_CID_EXPOSURE,
187 .type = V4L2_CTRL_TYPE_INTEGER,
188 .name = "Exposure",
189 .minimum = 0,
190 .maximum = 255,
191 .step = 1,
192 .default_value = 127,
193 },
194 .set_control = setexposure,
195 },
196 [COLORS] = {
197 {
198 .id = V4L2_CID_SATURATION,
199 .type = V4L2_CTRL_TYPE_INTEGER,
200 .name = "Color",
201 .minimum = 0,
202 .maximum = 255,
203 .step = 1,
204 .default_value = 127,
205 },
206 .set_control = setcolors,
207 },
208 /* The flip controls work for sensors ov7660 and ov7670 only */
209 [HFLIP] = {
210 {
211 .id = V4L2_CID_HFLIP,
212 .type = V4L2_CTRL_TYPE_BOOLEAN,
213 .name = "Mirror",
214 .minimum = 0,
215 .maximum = 1,
216 .step = 1,
217 .default_value = 0,
218 },
219 .set_control = sethvflip,
220 },
221 [VFLIP] = {
222 {
223 .id = V4L2_CID_VFLIP,
224 .type = V4L2_CTRL_TYPE_BOOLEAN,
225 .name = "Vflip",
226 .minimum = 0,
227 .maximum = 1,
228 .step = 1,
229 .default_value = 0,
230 },
231 .set_control = sethvflip,
232 },
233 [AUTOBRIGHT] = {
234 {
235 .id = V4L2_CID_AUTOBRIGHTNESS,
236 .type = V4L2_CTRL_TYPE_BOOLEAN,
237 .name = "Auto Brightness",
238 .minimum = 0,
239 .maximum = 1,
240 .step = 1,
241 .default_value = 1,
242 },
243 .set_control = setautobright,
244 },
245 [AUTOGAIN] = {
246 {
247 .id = V4L2_CID_AUTOGAIN,
248 .type = V4L2_CTRL_TYPE_BOOLEAN,
249 .name = "Auto Gain",
250 .minimum = 0,
251 .maximum = 1,
252 .step = 1,
253 .default_value = 1,
254 .flags = V4L2_CTRL_FLAG_UPDATE
255 },
256 .set = sd_setautogain,
257 },
258 [FREQ] = {
259 {
260 .id = V4L2_CID_POWER_LINE_FREQUENCY,
261 .type = V4L2_CTRL_TYPE_MENU,
262 .name = "Light frequency filter",
263 .minimum = 0,
264 .maximum = 2, /* 0: no flicker, 1: 50Hz, 2:60Hz, 3: auto */
265 .step = 1,
266 .default_value = 0,
267 },
268 .set_control = setfreq,
269 },
270 };
271
272 /* table of the disabled controls */
273 static const unsigned ctrl_dis[] = {
274 [SEN_OV2610] = ((1 << NCTRL) - 1) /* no control */
275 ^ ((1 << EXPOSURE) /* but exposure */
276 | (1 << AUTOGAIN)), /* and autogain */
277
278 [SEN_OV2610AE] = ((1 << NCTRL) - 1) /* no control */
279 ^ ((1 << EXPOSURE) /* but exposure */
280 | (1 << AUTOGAIN)), /* and autogain */
281
282 [SEN_OV3610] = (1 << NCTRL) - 1, /* no control */
283
284 [SEN_OV6620] = (1 << HFLIP) |
285 (1 << VFLIP) |
286 (1 << EXPOSURE) |
287 (1 << AUTOGAIN),
288
289 [SEN_OV6630] = (1 << HFLIP) |
290 (1 << VFLIP) |
291 (1 << EXPOSURE) |
292 (1 << AUTOGAIN),
293
294 [SEN_OV66308AF] = (1 << HFLIP) |
295 (1 << VFLIP) |
296 (1 << EXPOSURE) |
297 (1 << AUTOGAIN),
298
299 [SEN_OV7610] = (1 << HFLIP) |
300 (1 << VFLIP) |
301 (1 << EXPOSURE) |
302 (1 << AUTOGAIN),
303
304 [SEN_OV7620] = (1 << HFLIP) |
305 (1 << VFLIP) |
306 (1 << EXPOSURE) |
307 (1 << AUTOGAIN),
308
309 [SEN_OV7620AE] = (1 << HFLIP) |
310 (1 << VFLIP) |
311 (1 << EXPOSURE) |
312 (1 << AUTOGAIN),
313
314 [SEN_OV7640] = (1 << HFLIP) |
315 (1 << VFLIP) |
316 (1 << AUTOBRIGHT) |
317 (1 << CONTRAST) |
318 (1 << EXPOSURE) |
319 (1 << AUTOGAIN),
320
321 [SEN_OV7648] = (1 << HFLIP) |
322 (1 << VFLIP) |
323 (1 << AUTOBRIGHT) |
324 (1 << CONTRAST) |
325 (1 << EXPOSURE) |
326 (1 << AUTOGAIN),
327
328 [SEN_OV7660] = (1 << AUTOBRIGHT) |
329 (1 << EXPOSURE) |
330 (1 << AUTOGAIN),
331
332 [SEN_OV7670] = (1 << COLORS) |
333 (1 << AUTOBRIGHT) |
334 (1 << EXPOSURE) |
335 (1 << AUTOGAIN),
336
337 [SEN_OV76BE] = (1 << HFLIP) |
338 (1 << VFLIP) |
339 (1 << EXPOSURE) |
340 (1 << AUTOGAIN),
341
342 [SEN_OV8610] = (1 << HFLIP) |
343 (1 << VFLIP) |
344 (1 << EXPOSURE) |
345 (1 << AUTOGAIN) |
346 (1 << FREQ),
347 [SEN_OV9600] = ((1 << NCTRL) - 1) /* no control */
348 ^ ((1 << EXPOSURE) /* but exposure */
349 | (1 << AUTOGAIN)), /* and autogain */
350
351 };
352
353 static const struct v4l2_pix_format ov519_vga_mode[] = {
354 {320, 240, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
355 .bytesperline = 320,
356 .sizeimage = 320 * 240 * 3 / 8 + 590,
357 .colorspace = V4L2_COLORSPACE_JPEG,
358 .priv = 1},
359 {640, 480, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
360 .bytesperline = 640,
361 .sizeimage = 640 * 480 * 3 / 8 + 590,
362 .colorspace = V4L2_COLORSPACE_JPEG,
363 .priv = 0},
364 };
365 static const struct v4l2_pix_format ov519_sif_mode[] = {
366 {160, 120, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
367 .bytesperline = 160,
368 .sizeimage = 160 * 120 * 3 / 8 + 590,
369 .colorspace = V4L2_COLORSPACE_JPEG,
370 .priv = 3},
371 {176, 144, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
372 .bytesperline = 176,
373 .sizeimage = 176 * 144 * 3 / 8 + 590,
374 .colorspace = V4L2_COLORSPACE_JPEG,
375 .priv = 1},
376 {320, 240, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
377 .bytesperline = 320,
378 .sizeimage = 320 * 240 * 3 / 8 + 590,
379 .colorspace = V4L2_COLORSPACE_JPEG,
380 .priv = 2},
381 {352, 288, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
382 .bytesperline = 352,
383 .sizeimage = 352 * 288 * 3 / 8 + 590,
384 .colorspace = V4L2_COLORSPACE_JPEG,
385 .priv = 0},
386 };
387
388 /* Note some of the sizeimage values for the ov511 / ov518 may seem
389 larger then necessary, however they need to be this big as the ov511 /
390 ov518 always fills the entire isoc frame, using 0 padding bytes when
391 it doesn't have any data. So with low framerates the amount of data
392 transferred can become quite large (libv4l will remove all the 0 padding
393 in userspace). */
394 static const struct v4l2_pix_format ov518_vga_mode[] = {
395 {320, 240, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
396 .bytesperline = 320,
397 .sizeimage = 320 * 240 * 3,
398 .colorspace = V4L2_COLORSPACE_JPEG,
399 .priv = 1},
400 {640, 480, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
401 .bytesperline = 640,
402 .sizeimage = 640 * 480 * 2,
403 .colorspace = V4L2_COLORSPACE_JPEG,
404 .priv = 0},
405 };
406 static const struct v4l2_pix_format ov518_sif_mode[] = {
407 {160, 120, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
408 .bytesperline = 160,
409 .sizeimage = 70000,
410 .colorspace = V4L2_COLORSPACE_JPEG,
411 .priv = 3},
412 {176, 144, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
413 .bytesperline = 176,
414 .sizeimage = 70000,
415 .colorspace = V4L2_COLORSPACE_JPEG,
416 .priv = 1},
417 {320, 240, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
418 .bytesperline = 320,
419 .sizeimage = 320 * 240 * 3,
420 .colorspace = V4L2_COLORSPACE_JPEG,
421 .priv = 2},
422 {352, 288, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
423 .bytesperline = 352,
424 .sizeimage = 352 * 288 * 3,
425 .colorspace = V4L2_COLORSPACE_JPEG,
426 .priv = 0},
427 };
428
429 static const struct v4l2_pix_format ov511_vga_mode[] = {
430 {320, 240, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
431 .bytesperline = 320,
432 .sizeimage = 320 * 240 * 3,
433 .colorspace = V4L2_COLORSPACE_JPEG,
434 .priv = 1},
435 {640, 480, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
436 .bytesperline = 640,
437 .sizeimage = 640 * 480 * 2,
438 .colorspace = V4L2_COLORSPACE_JPEG,
439 .priv = 0},
440 };
441 static const struct v4l2_pix_format ov511_sif_mode[] = {
442 {160, 120, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
443 .bytesperline = 160,
444 .sizeimage = 70000,
445 .colorspace = V4L2_COLORSPACE_JPEG,
446 .priv = 3},
447 {176, 144, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
448 .bytesperline = 176,
449 .sizeimage = 70000,
450 .colorspace = V4L2_COLORSPACE_JPEG,
451 .priv = 1},
452 {320, 240, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
453 .bytesperline = 320,
454 .sizeimage = 320 * 240 * 3,
455 .colorspace = V4L2_COLORSPACE_JPEG,
456 .priv = 2},
457 {352, 288, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
458 .bytesperline = 352,
459 .sizeimage = 352 * 288 * 3,
460 .colorspace = V4L2_COLORSPACE_JPEG,
461 .priv = 0},
462 };
463
464 static const struct v4l2_pix_format ovfx2_vga_mode[] = {
465 {320, 240, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
466 .bytesperline = 320,
467 .sizeimage = 320 * 240,
468 .colorspace = V4L2_COLORSPACE_SRGB,
469 .priv = 1},
470 {640, 480, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
471 .bytesperline = 640,
472 .sizeimage = 640 * 480,
473 .colorspace = V4L2_COLORSPACE_SRGB,
474 .priv = 0},
475 };
476 static const struct v4l2_pix_format ovfx2_cif_mode[] = {
477 {160, 120, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
478 .bytesperline = 160,
479 .sizeimage = 160 * 120,
480 .colorspace = V4L2_COLORSPACE_SRGB,
481 .priv = 3},
482 {176, 144, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
483 .bytesperline = 176,
484 .sizeimage = 176 * 144,
485 .colorspace = V4L2_COLORSPACE_SRGB,
486 .priv = 1},
487 {320, 240, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
488 .bytesperline = 320,
489 .sizeimage = 320 * 240,
490 .colorspace = V4L2_COLORSPACE_SRGB,
491 .priv = 2},
492 {352, 288, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
493 .bytesperline = 352,
494 .sizeimage = 352 * 288,
495 .colorspace = V4L2_COLORSPACE_SRGB,
496 .priv = 0},
497 };
498 static const struct v4l2_pix_format ovfx2_ov2610_mode[] = {
499 {800, 600, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
500 .bytesperline = 800,
501 .sizeimage = 800 * 600,
502 .colorspace = V4L2_COLORSPACE_SRGB,
503 .priv = 1},
504 {1600, 1200, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
505 .bytesperline = 1600,
506 .sizeimage = 1600 * 1200,
507 .colorspace = V4L2_COLORSPACE_SRGB},
508 };
509 static const struct v4l2_pix_format ovfx2_ov3610_mode[] = {
510 {640, 480, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
511 .bytesperline = 640,
512 .sizeimage = 640 * 480,
513 .colorspace = V4L2_COLORSPACE_SRGB,
514 .priv = 1},
515 {800, 600, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
516 .bytesperline = 800,
517 .sizeimage = 800 * 600,
518 .colorspace = V4L2_COLORSPACE_SRGB,
519 .priv = 1},
520 {1024, 768, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
521 .bytesperline = 1024,
522 .sizeimage = 1024 * 768,
523 .colorspace = V4L2_COLORSPACE_SRGB,
524 .priv = 1},
525 {1600, 1200, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
526 .bytesperline = 1600,
527 .sizeimage = 1600 * 1200,
528 .colorspace = V4L2_COLORSPACE_SRGB,
529 .priv = 0},
530 {2048, 1536, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
531 .bytesperline = 2048,
532 .sizeimage = 2048 * 1536,
533 .colorspace = V4L2_COLORSPACE_SRGB,
534 .priv = 0},
535 };
536 static const struct v4l2_pix_format ovfx2_ov9600_mode[] = {
537 {640, 480, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
538 .bytesperline = 640,
539 .sizeimage = 640 * 480,
540 .colorspace = V4L2_COLORSPACE_SRGB,
541 .priv = 1},
542 {1280, 1024, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
543 .bytesperline = 1280,
544 .sizeimage = 1280 * 1024,
545 .colorspace = V4L2_COLORSPACE_SRGB},
546 };
547
548 /* Registers common to OV511 / OV518 */
549 #define R51x_FIFO_PSIZE 0x30 /* 2 bytes wide w/ OV518(+) */
550 #define R51x_SYS_RESET 0x50
551 /* Reset type flags */
552 #define OV511_RESET_OMNICE 0x08
553 #define R51x_SYS_INIT 0x53
554 #define R51x_SYS_SNAP 0x52
555 #define R51x_SYS_CUST_ID 0x5f
556 #define R51x_COMP_LUT_BEGIN 0x80
557
558 /* OV511 Camera interface register numbers */
559 #define R511_CAM_DELAY 0x10
560 #define R511_CAM_EDGE 0x11
561 #define R511_CAM_PXCNT 0x12
562 #define R511_CAM_LNCNT 0x13
563 #define R511_CAM_PXDIV 0x14
564 #define R511_CAM_LNDIV 0x15
565 #define R511_CAM_UV_EN 0x16
566 #define R511_CAM_LINE_MODE 0x17
567 #define R511_CAM_OPTS 0x18
568
569 #define R511_SNAP_FRAME 0x19
570 #define R511_SNAP_PXCNT 0x1a
571 #define R511_SNAP_LNCNT 0x1b
572 #define R511_SNAP_PXDIV 0x1c
573 #define R511_SNAP_LNDIV 0x1d
574 #define R511_SNAP_UV_EN 0x1e
575 #define R511_SNAP_OPTS 0x1f
576
577 #define R511_DRAM_FLOW_CTL 0x20
578 #define R511_FIFO_OPTS 0x31
579 #define R511_I2C_CTL 0x40
580 #define R511_SYS_LED_CTL 0x55 /* OV511+ only */
581 #define R511_COMP_EN 0x78
582 #define R511_COMP_LUT_EN 0x79
583
584 /* OV518 Camera interface register numbers */
585 #define R518_GPIO_OUT 0x56 /* OV518(+) only */
586 #define R518_GPIO_CTL 0x57 /* OV518(+) only */
587
588 /* OV519 Camera interface register numbers */
589 #define OV519_R10_H_SIZE 0x10
590 #define OV519_R11_V_SIZE 0x11
591 #define OV519_R12_X_OFFSETL 0x12
592 #define OV519_R13_X_OFFSETH 0x13
593 #define OV519_R14_Y_OFFSETL 0x14
594 #define OV519_R15_Y_OFFSETH 0x15
595 #define OV519_R16_DIVIDER 0x16
596 #define OV519_R20_DFR 0x20
597 #define OV519_R25_FORMAT 0x25
598
599 /* OV519 System Controller register numbers */
600 #define OV519_R51_RESET1 0x51
601 #define OV519_R54_EN_CLK1 0x54
602 #define OV519_R57_SNAPSHOT 0x57
603
604 #define OV519_GPIO_DATA_OUT0 0x71
605 #define OV519_GPIO_IO_CTRL0 0x72
606
607 /*#define OV511_ENDPOINT_ADDRESS 1 * Isoc endpoint number */
608
609 /*
610 * The FX2 chip does not give us a zero length read at end of frame.
611 * It does, however, give a short read at the end of a frame, if
612 * necessary, rather than run two frames together.
613 *
614 * By choosing the right bulk transfer size, we are guaranteed to always
615 * get a short read for the last read of each frame. Frame sizes are
616 * always a composite number (width * height, or a multiple) so if we
617 * choose a prime number, we are guaranteed that the last read of a
618 * frame will be short.
619 *
620 * But it isn't that easy: the 2.6 kernel requires a multiple of 4KB,
621 * otherwise EOVERFLOW "babbling" errors occur. I have not been able
622 * to figure out why. [PMiller]
623 *
624 * The constant (13 * 4096) is the largest "prime enough" number less than 64KB.
625 *
626 * It isn't enough to know the number of bytes per frame, in case we
627 * have data dropouts or buffer overruns (even though the FX2 double
628 * buffers, there are some pretty strict real time constraints for
629 * isochronous transfer for larger frame sizes).
630 */
631 /*jfm: this value does not work for 800x600 - see isoc_init */
632 #define OVFX2_BULK_SIZE (13 * 4096)
633
634 /* I2C registers */
635 #define R51x_I2C_W_SID 0x41
636 #define R51x_I2C_SADDR_3 0x42
637 #define R51x_I2C_SADDR_2 0x43
638 #define R51x_I2C_R_SID 0x44
639 #define R51x_I2C_DATA 0x45
640 #define R518_I2C_CTL 0x47 /* OV518(+) only */
641 #define OVFX2_I2C_ADDR 0x00
642
643 /* I2C ADDRESSES */
644 #define OV7xx0_SID 0x42
645 #define OV_HIRES_SID 0x60 /* OV9xxx / OV2xxx / OV3xxx */
646 #define OV8xx0_SID 0xa0
647 #define OV6xx0_SID 0xc0
648
649 /* OV7610 registers */
650 #define OV7610_REG_GAIN 0x00 /* gain setting (5:0) */
651 #define OV7610_REG_BLUE 0x01 /* blue channel balance */
652 #define OV7610_REG_RED 0x02 /* red channel balance */
653 #define OV7610_REG_SAT 0x03 /* saturation */
654 #define OV8610_REG_HUE 0x04 /* 04 reserved */
655 #define OV7610_REG_CNT 0x05 /* Y contrast */
656 #define OV7610_REG_BRT 0x06 /* Y brightness */
657 #define OV7610_REG_COM_C 0x14 /* misc common regs */
658 #define OV7610_REG_ID_HIGH 0x1c /* manufacturer ID MSB */
659 #define OV7610_REG_ID_LOW 0x1d /* manufacturer ID LSB */
660 #define OV7610_REG_COM_I 0x29 /* misc settings */
661
662 /* OV7660 and OV7670 registers */
663 #define OV7670_R00_GAIN 0x00 /* Gain lower 8 bits (rest in vref) */
664 #define OV7670_R01_BLUE 0x01 /* blue gain */
665 #define OV7670_R02_RED 0x02 /* red gain */
666 #define OV7670_R03_VREF 0x03 /* Pieces of GAIN, VSTART, VSTOP */
667 #define OV7670_R04_COM1 0x04 /* Control 1 */
668 /*#define OV7670_R07_AECHH 0x07 * AEC MS 5 bits */
669 #define OV7670_R0C_COM3 0x0c /* Control 3 */
670 #define OV7670_R0D_COM4 0x0d /* Control 4 */
671 #define OV7670_R0E_COM5 0x0e /* All "reserved" */
672 #define OV7670_R0F_COM6 0x0f /* Control 6 */
673 #define OV7670_R10_AECH 0x10 /* More bits of AEC value */
674 #define OV7670_R11_CLKRC 0x11 /* Clock control */
675 #define OV7670_R12_COM7 0x12 /* Control 7 */
676 #define OV7670_COM7_FMT_VGA 0x00
677 /*#define OV7670_COM7_YUV 0x00 * YUV */
678 #define OV7670_COM7_FMT_QVGA 0x10 /* QVGA format */
679 #define OV7670_COM7_FMT_MASK 0x38
680 #define OV7670_COM7_RESET 0x80 /* Register reset */
681 #define OV7670_R13_COM8 0x13 /* Control 8 */
682 #define OV7670_COM8_AEC 0x01 /* Auto exposure enable */
683 #define OV7670_COM8_AWB 0x02 /* White balance enable */
684 #define OV7670_COM8_AGC 0x04 /* Auto gain enable */
685 #define OV7670_COM8_BFILT 0x20 /* Band filter enable */
686 #define OV7670_COM8_AECSTEP 0x40 /* Unlimited AEC step size */
687 #define OV7670_COM8_FASTAEC 0x80 /* Enable fast AGC/AEC */
688 #define OV7670_R14_COM9 0x14 /* Control 9 - gain ceiling */
689 #define OV7670_R15_COM10 0x15 /* Control 10 */
690 #define OV7670_R17_HSTART 0x17 /* Horiz start high bits */
691 #define OV7670_R18_HSTOP 0x18 /* Horiz stop high bits */
692 #define OV7670_R19_VSTART 0x19 /* Vert start high bits */
693 #define OV7670_R1A_VSTOP 0x1a /* Vert stop high bits */
694 #define OV7670_R1E_MVFP 0x1e /* Mirror / vflip */
695 #define OV7670_MVFP_VFLIP 0x10 /* vertical flip */
696 #define OV7670_MVFP_MIRROR 0x20 /* Mirror image */
697 #define OV7670_R24_AEW 0x24 /* AGC upper limit */
698 #define OV7670_R25_AEB 0x25 /* AGC lower limit */
699 #define OV7670_R26_VPT 0x26 /* AGC/AEC fast mode op region */
700 #define OV7670_R32_HREF 0x32 /* HREF pieces */
701 #define OV7670_R3A_TSLB 0x3a /* lots of stuff */
702 #define OV7670_R3B_COM11 0x3b /* Control 11 */
703 #define OV7670_COM11_EXP 0x02
704 #define OV7670_COM11_HZAUTO 0x10 /* Auto detect 50/60 Hz */
705 #define OV7670_R3C_COM12 0x3c /* Control 12 */
706 #define OV7670_R3D_COM13 0x3d /* Control 13 */
707 #define OV7670_COM13_GAMMA 0x80 /* Gamma enable */
708 #define OV7670_COM13_UVSAT 0x40 /* UV saturation auto adjustment */
709 #define OV7670_R3E_COM14 0x3e /* Control 14 */
710 #define OV7670_R3F_EDGE 0x3f /* Edge enhancement factor */
711 #define OV7670_R40_COM15 0x40 /* Control 15 */
712 /*#define OV7670_COM15_R00FF 0xc0 * 00 to FF */
713 #define OV7670_R41_COM16 0x41 /* Control 16 */
714 #define OV7670_COM16_AWBGAIN 0x08 /* AWB gain enable */
715 /* end of ov7660 common registers */
716 #define OV7670_R55_BRIGHT 0x55 /* Brightness */
717 #define OV7670_R56_CONTRAS 0x56 /* Contrast control */
718 #define OV7670_R69_GFIX 0x69 /* Fix gain control */
719 /*#define OV7670_R8C_RGB444 0x8c * RGB 444 control */
720 #define OV7670_R9F_HAECC1 0x9f /* Hist AEC/AGC control 1 */
721 #define OV7670_RA0_HAECC2 0xa0 /* Hist AEC/AGC control 2 */
722 #define OV7670_RA5_BD50MAX 0xa5 /* 50hz banding step limit */
723 #define OV7670_RA6_HAECC3 0xa6 /* Hist AEC/AGC control 3 */
724 #define OV7670_RA7_HAECC4 0xa7 /* Hist AEC/AGC control 4 */
725 #define OV7670_RA8_HAECC5 0xa8 /* Hist AEC/AGC control 5 */
726 #define OV7670_RA9_HAECC6 0xa9 /* Hist AEC/AGC control 6 */
727 #define OV7670_RAA_HAECC7 0xaa /* Hist AEC/AGC control 7 */
728 #define OV7670_RAB_BD60MAX 0xab /* 60hz banding step limit */
729
730 struct ov_regvals {
731 u8 reg;
732 u8 val;
733 };
734 struct ov_i2c_regvals {
735 u8 reg;
736 u8 val;
737 };
738
739 /* Settings for OV2610 camera chip */
740 static const struct ov_i2c_regvals norm_2610[] = {
741 { 0x12, 0x80 }, /* reset */
742 };
743
744 static const struct ov_i2c_regvals norm_2610ae[] = {
745 {0x12, 0x80}, /* reset */
746 {0x13, 0xcd},
747 {0x09, 0x01},
748 {0x0d, 0x00},
749 {0x11, 0x80},
750 {0x12, 0x20}, /* 1600x1200 */
751 {0x33, 0x0c},
752 {0x35, 0x90},
753 {0x36, 0x37},
754 /* ms-win traces */
755 {0x11, 0x83}, /* clock / 3 ? */
756 {0x2d, 0x00}, /* 60 Hz filter */
757 {0x24, 0xb0}, /* normal colors */
758 {0x25, 0x90},
759 {0x10, 0x43},
760 };
761
762 static const struct ov_i2c_regvals norm_3620b[] = {
763 /*
764 * From the datasheet: "Note that after writing to register COMH
765 * (0x12) to change the sensor mode, registers related to the
766 * sensor’s cropping window will be reset back to their default
767 * values."
768 *
769 * "wait 4096 external clock ... to make sure the sensor is
770 * stable and ready to access registers" i.e. 160us at 24MHz
771 */
772 { 0x12, 0x80 }, /* COMH reset */
773 { 0x12, 0x00 }, /* QXGA, master */
774
775 /*
776 * 11 CLKRC "Clock Rate Control"
777 * [7] internal frequency doublers: on
778 * [6] video port mode: master
779 * [5:0] clock divider: 1
780 */
781 { 0x11, 0x80 },
782
783 /*
784 * 13 COMI "Common Control I"
785 * = 192 (0xC0) 11000000
786 * COMI[7] "AEC speed selection"
787 * = 1 (0x01) 1....... "Faster AEC correction"
788 * COMI[6] "AEC speed step selection"
789 * = 1 (0x01) .1...... "Big steps, fast"
790 * COMI[5] "Banding filter on off"
791 * = 0 (0x00) ..0..... "Off"
792 * COMI[4] "Banding filter option"
793 * = 0 (0x00) ...0.... "Main clock is 48 MHz and
794 * the PLL is ON"
795 * COMI[3] "Reserved"
796 * = 0 (0x00) ....0...
797 * COMI[2] "AGC auto manual control selection"
798 * = 0 (0x00) .....0.. "Manual"
799 * COMI[1] "AWB auto manual control selection"
800 * = 0 (0x00) ......0. "Manual"
801 * COMI[0] "Exposure control"
802 * = 0 (0x00) .......0 "Manual"
803 */
804 { 0x13, 0xc0 },
805
806 /*
807 * 09 COMC "Common Control C"
808 * = 8 (0x08) 00001000
809 * COMC[7:5] "Reserved"
810 * = 0 (0x00) 000.....
811 * COMC[4] "Sleep Mode Enable"
812 * = 0 (0x00) ...0.... "Normal mode"
813 * COMC[3:2] "Sensor sampling reset timing selection"
814 * = 2 (0x02) ....10.. "Longer reset time"
815 * COMC[1:0] "Output drive current select"
816 * = 0 (0x00) ......00 "Weakest"
817 */
818 { 0x09, 0x08 },
819
820 /*
821 * 0C COMD "Common Control D"
822 * = 8 (0x08) 00001000
823 * COMD[7] "Reserved"
824 * = 0 (0x00) 0.......
825 * COMD[6] "Swap MSB and LSB at the output port"
826 * = 0 (0x00) .0...... "False"
827 * COMD[5:3] "Reserved"
828 * = 1 (0x01) ..001...
829 * COMD[2] "Output Average On Off"
830 * = 0 (0x00) .....0.. "Output Normal"
831 * COMD[1] "Sensor precharge voltage selection"
832 * = 0 (0x00) ......0. "Selects internal
833 * reference precharge
834 * voltage"
835 * COMD[0] "Snapshot option"
836 * = 0 (0x00) .......0 "Enable live video output
837 * after snapshot sequence"
838 */
839 { 0x0c, 0x08 },
840
841 /*
842 * 0D COME "Common Control E"
843 * = 161 (0xA1) 10100001
844 * COME[7] "Output average option"
845 * = 1 (0x01) 1....... "Output average of 4 pixels"
846 * COME[6] "Anti-blooming control"
847 * = 0 (0x00) .0...... "Off"
848 * COME[5:3] "Reserved"
849 * = 4 (0x04) ..100...
850 * COME[2] "Clock output power down pin status"
851 * = 0 (0x00) .....0.. "Tri-state data output pin
852 * on power down"
853 * COME[1] "Data output pin status selection at power down"
854 * = 0 (0x00) ......0. "Tri-state VSYNC, PCLK,
855 * HREF, and CHSYNC pins on
856 * power down"
857 * COME[0] "Auto zero circuit select"
858 * = 1 (0x01) .......1 "On"
859 */
860 { 0x0d, 0xa1 },
861
862 /*
863 * 0E COMF "Common Control F"
864 * = 112 (0x70) 01110000
865 * COMF[7] "System clock selection"
866 * = 0 (0x00) 0....... "Use 24 MHz system clock"
867 * COMF[6:4] "Reserved"
868 * = 7 (0x07) .111....
869 * COMF[3] "Manual auto negative offset canceling selection"
870 * = 0 (0x00) ....0... "Auto detect negative
871 * offset and cancel it"
872 * COMF[2:0] "Reserved"
873 * = 0 (0x00) .....000
874 */
875 { 0x0e, 0x70 },
876
877 /*
878 * 0F COMG "Common Control G"
879 * = 66 (0x42) 01000010
880 * COMG[7] "Optical black output selection"
881 * = 0 (0x00) 0....... "Disable"
882 * COMG[6] "Black level calibrate selection"
883 * = 1 (0x01) .1...... "Use optical black pixels
884 * to calibrate"
885 * COMG[5:4] "Reserved"
886 * = 0 (0x00) ..00....
887 * COMG[3] "Channel offset adjustment"
888 * = 0 (0x00) ....0... "Disable offset adjustment"
889 * COMG[2] "ADC black level calibration option"
890 * = 0 (0x00) .....0.. "Use B/G line and G/R
891 * line to calibrate each
892 * channel's black level"
893 * COMG[1] "Reserved"
894 * = 1 (0x01) ......1.
895 * COMG[0] "ADC black level calibration enable"
896 * = 0 (0x00) .......0 "Disable"
897 */
898 { 0x0f, 0x42 },
899
900 /*
901 * 14 COMJ "Common Control J"
902 * = 198 (0xC6) 11000110
903 * COMJ[7:6] "AGC gain ceiling"
904 * = 3 (0x03) 11...... "8x"
905 * COMJ[5:4] "Reserved"
906 * = 0 (0x00) ..00....
907 * COMJ[3] "Auto banding filter"
908 * = 0 (0x00) ....0... "Banding filter is always
909 * on off depending on
910 * COMI[5] setting"
911 * COMJ[2] "VSYNC drop option"
912 * = 1 (0x01) .....1.. "SYNC is dropped if frame
913 * data is dropped"
914 * COMJ[1] "Frame data drop"
915 * = 1 (0x01) ......1. "Drop frame data if
916 * exposure is not within
917 * tolerance. In AEC mode,
918 * data is normally dropped
919 * when data is out of
920 * range."
921 * COMJ[0] "Reserved"
922 * = 0 (0x00) .......0
923 */
924 { 0x14, 0xc6 },
925
926 /*
927 * 15 COMK "Common Control K"
928 * = 2 (0x02) 00000010
929 * COMK[7] "CHSYNC pin output swap"
930 * = 0 (0x00) 0....... "CHSYNC"
931 * COMK[6] "HREF pin output swap"
932 * = 0 (0x00) .0...... "HREF"
933 * COMK[5] "PCLK output selection"
934 * = 0 (0x00) ..0..... "PCLK always output"
935 * COMK[4] "PCLK edge selection"
936 * = 0 (0x00) ...0.... "Data valid on falling edge"
937 * COMK[3] "HREF output polarity"
938 * = 0 (0x00) ....0... "positive"
939 * COMK[2] "Reserved"
940 * = 0 (0x00) .....0..
941 * COMK[1] "VSYNC polarity"
942 * = 1 (0x01) ......1. "negative"
943 * COMK[0] "HSYNC polarity"
944 * = 0 (0x00) .......0 "positive"
945 */
946 { 0x15, 0x02 },
947
948 /*
949 * 33 CHLF "Current Control"
950 * = 9 (0x09) 00001001
951 * CHLF[7:6] "Sensor current control"
952 * = 0 (0x00) 00......
953 * CHLF[5] "Sensor current range control"
954 * = 0 (0x00) ..0..... "normal range"
955 * CHLF[4] "Sensor current"
956 * = 0 (0x00) ...0.... "normal current"
957 * CHLF[3] "Sensor buffer current control"
958 * = 1 (0x01) ....1... "half current"
959 * CHLF[2] "Column buffer current control"
960 * = 0 (0x00) .....0.. "normal current"
961 * CHLF[1] "Analog DSP current control"
962 * = 0 (0x00) ......0. "normal current"
963 * CHLF[1] "ADC current control"
964 * = 0 (0x00) ......0. "normal current"
965 */
966 { 0x33, 0x09 },
967
968 /*
969 * 34 VBLM "Blooming Control"
970 * = 80 (0x50) 01010000
971 * VBLM[7] "Hard soft reset switch"
972 * = 0 (0x00) 0....... "Hard reset"
973 * VBLM[6:4] "Blooming voltage selection"
974 * = 5 (0x05) .101....
975 * VBLM[3:0] "Sensor current control"
976 * = 0 (0x00) ....0000
977 */
978 { 0x34, 0x50 },
979
980 /*
981 * 36 VCHG "Sensor Precharge Voltage Control"
982 * = 0 (0x00) 00000000
983 * VCHG[7] "Reserved"
984 * = 0 (0x00) 0.......
985 * VCHG[6:4] "Sensor precharge voltage control"
986 * = 0 (0x00) .000....
987 * VCHG[3:0] "Sensor array common reference"
988 * = 0 (0x00) ....0000
989 */
990 { 0x36, 0x00 },
991
992 /*
993 * 37 ADC "ADC Reference Control"
994 * = 4 (0x04) 00000100
995 * ADC[7:4] "Reserved"
996 * = 0 (0x00) 0000....
997 * ADC[3] "ADC input signal range"
998 * = 0 (0x00) ....0... "Input signal 1.0x"
999 * ADC[2:0] "ADC range control"
1000 * = 4 (0x04) .....100
1001 */
1002 { 0x37, 0x04 },
1003
1004 /*
1005 * 38 ACOM "Analog Common Ground"
1006 * = 82 (0x52) 01010010
1007 * ACOM[7] "Analog gain control"
1008 * = 0 (0x00) 0....... "Gain 1x"
1009 * ACOM[6] "Analog black level calibration"
1010 * = 1 (0x01) .1...... "On"
1011 * ACOM[5:0] "Reserved"
1012 * = 18 (0x12) ..010010
1013 */
1014 { 0x38, 0x52 },
1015
1016 /*
1017 * 3A FREFA "Internal Reference Adjustment"
1018 * = 0 (0x00) 00000000
1019 * FREFA[7:0] "Range"
1020 * = 0 (0x00) 00000000
1021 */
1022 { 0x3a, 0x00 },
1023
1024 /*
1025 * 3C FVOPT "Internal Reference Adjustment"
1026 * = 31 (0x1F) 00011111
1027 * FVOPT[7:0] "Range"
1028 * = 31 (0x1F) 00011111
1029 */
1030 { 0x3c, 0x1f },
1031
1032 /*
1033 * 44 Undocumented = 0 (0x00) 00000000
1034 * 44[7:0] "It's a secret"
1035 * = 0 (0x00) 00000000
1036 */
1037 { 0x44, 0x00 },
1038
1039 /*
1040 * 40 Undocumented = 0 (0x00) 00000000
1041 * 40[7:0] "It's a secret"
1042 * = 0 (0x00) 00000000
1043 */
1044 { 0x40, 0x00 },
1045
1046 /*
1047 * 41 Undocumented = 0 (0x00) 00000000
1048 * 41[7:0] "It's a secret"
1049 * = 0 (0x00) 00000000
1050 */
1051 { 0x41, 0x00 },
1052
1053 /*
1054 * 42 Undocumented = 0 (0x00) 00000000
1055 * 42[7:0] "It's a secret"
1056 * = 0 (0x00) 00000000
1057 */
1058 { 0x42, 0x00 },
1059
1060 /*
1061 * 43 Undocumented = 0 (0x00) 00000000
1062 * 43[7:0] "It's a secret"
1063 * = 0 (0x00) 00000000
1064 */
1065 { 0x43, 0x00 },
1066
1067 /*
1068 * 45 Undocumented = 128 (0x80) 10000000
1069 * 45[7:0] "It's a secret"
1070 * = 128 (0x80) 10000000
1071 */
1072 { 0x45, 0x80 },
1073
1074 /*
1075 * 48 Undocumented = 192 (0xC0) 11000000
1076 * 48[7:0] "It's a secret"
1077 * = 192 (0xC0) 11000000
1078 */
1079 { 0x48, 0xc0 },
1080
1081 /*
1082 * 49 Undocumented = 25 (0x19) 00011001
1083 * 49[7:0] "It's a secret"
1084 * = 25 (0x19) 00011001
1085 */
1086 { 0x49, 0x19 },
1087
1088 /*
1089 * 4B Undocumented = 128 (0x80) 10000000
1090 * 4B[7:0] "It's a secret"
1091 * = 128 (0x80) 10000000
1092 */
1093 { 0x4b, 0x80 },
1094
1095 /*
1096 * 4D Undocumented = 196 (0xC4) 11000100
1097 * 4D[7:0] "It's a secret"
1098 * = 196 (0xC4) 11000100
1099 */
1100 { 0x4d, 0xc4 },
1101
1102 /*
1103 * 35 VREF "Reference Voltage Control"
1104 * = 76 (0x4c) 01001100
1105 * VREF[7:5] "Column high reference control"
1106 * = 2 (0x02) 010..... "higher voltage"
1107 * VREF[4:2] "Column low reference control"
1108 * = 3 (0x03) ...011.. "Highest voltage"
1109 * VREF[1:0] "Reserved"
1110 * = 0 (0x00) ......00
1111 */
1112 { 0x35, 0x4c },
1113
1114 /*
1115 * 3D Undocumented = 0 (0x00) 00000000
1116 * 3D[7:0] "It's a secret"
1117 * = 0 (0x00) 00000000
1118 */
1119 { 0x3d, 0x00 },
1120
1121 /*
1122 * 3E Undocumented = 0 (0x00) 00000000
1123 * 3E[7:0] "It's a secret"
1124 * = 0 (0x00) 00000000
1125 */
1126 { 0x3e, 0x00 },
1127
1128 /*
1129 * 3B FREFB "Internal Reference Adjustment"
1130 * = 24 (0x18) 00011000
1131 * FREFB[7:0] "Range"
1132 * = 24 (0x18) 00011000
1133 */
1134 { 0x3b, 0x18 },
1135
1136 /*
1137 * 33 CHLF "Current Control"
1138 * = 25 (0x19) 00011001
1139 * CHLF[7:6] "Sensor current control"
1140 * = 0 (0x00) 00......
1141 * CHLF[5] "Sensor current range control"
1142 * = 0 (0x00) ..0..... "normal range"
1143 * CHLF[4] "Sensor current"
1144 * = 1 (0x01) ...1.... "double current"
1145 * CHLF[3] "Sensor buffer current control"
1146 * = 1 (0x01) ....1... "half current"
1147 * CHLF[2] "Column buffer current control"
1148 * = 0 (0x00) .....0.. "normal current"
1149 * CHLF[1] "Analog DSP current control"
1150 * = 0 (0x00) ......0. "normal current"
1151 * CHLF[1] "ADC current control"
1152 * = 0 (0x00) ......0. "normal current"
1153 */
1154 { 0x33, 0x19 },
1155
1156 /*
1157 * 34 VBLM "Blooming Control"
1158 * = 90 (0x5A) 01011010
1159 * VBLM[7] "Hard soft reset switch"
1160 * = 0 (0x00) 0....... "Hard reset"
1161 * VBLM[6:4] "Blooming voltage selection"
1162 * = 5 (0x05) .101....
1163 * VBLM[3:0] "Sensor current control"
1164 * = 10 (0x0A) ....1010
1165 */
1166 { 0x34, 0x5a },
1167
1168 /*
1169 * 3B FREFB "Internal Reference Adjustment"
1170 * = 0 (0x00) 00000000
1171 * FREFB[7:0] "Range"
1172 * = 0 (0x00) 00000000
1173 */
1174 { 0x3b, 0x00 },
1175
1176 /*
1177 * 33 CHLF "Current Control"
1178 * = 9 (0x09) 00001001
1179 * CHLF[7:6] "Sensor current control"
1180 * = 0 (0x00) 00......
1181 * CHLF[5] "Sensor current range control"
1182 * = 0 (0x00) ..0..... "normal range"
1183 * CHLF[4] "Sensor current"
1184 * = 0 (0x00) ...0.... "normal current"
1185 * CHLF[3] "Sensor buffer current control"
1186 * = 1 (0x01) ....1... "half current"
1187 * CHLF[2] "Column buffer current control"
1188 * = 0 (0x00) .....0.. "normal current"
1189 * CHLF[1] "Analog DSP current control"
1190 * = 0 (0x00) ......0. "normal current"
1191 * CHLF[1] "ADC current control"
1192 * = 0 (0x00) ......0. "normal current"
1193 */
1194 { 0x33, 0x09 },
1195
1196 /*
1197 * 34 VBLM "Blooming Control"
1198 * = 80 (0x50) 01010000
1199 * VBLM[7] "Hard soft reset switch"
1200 * = 0 (0x00) 0....... "Hard reset"
1201 * VBLM[6:4] "Blooming voltage selection"
1202 * = 5 (0x05) .101....
1203 * VBLM[3:0] "Sensor current control"
1204 * = 0 (0x00) ....0000
1205 */
1206 { 0x34, 0x50 },
1207
1208 /*
1209 * 12 COMH "Common Control H"
1210 * = 64 (0x40) 01000000
1211 * COMH[7] "SRST"
1212 * = 0 (0x00) 0....... "No-op"
1213 * COMH[6:4] "Resolution selection"
1214 * = 4 (0x04) .100.... "XGA"
1215 * COMH[3] "Master slave selection"
1216 * = 0 (0x00) ....0... "Master mode"
1217 * COMH[2] "Internal B/R channel option"
1218 * = 0 (0x00) .....0.. "B/R use same channel"
1219 * COMH[1] "Color bar test pattern"
1220 * = 0 (0x00) ......0. "Off"
1221 * COMH[0] "Reserved"
1222 * = 0 (0x00) .......0
1223 */
1224 { 0x12, 0x40 },
1225
1226 /*
1227 * 17 HREFST "Horizontal window start"
1228 * = 31 (0x1F) 00011111
1229 * HREFST[7:0] "Horizontal window start, 8 MSBs"
1230 * = 31 (0x1F) 00011111
1231 */
1232 { 0x17, 0x1f },
1233
1234 /*
1235 * 18 HREFEND "Horizontal window end"
1236 * = 95 (0x5F) 01011111
1237 * HREFEND[7:0] "Horizontal Window End, 8 MSBs"
1238 * = 95 (0x5F) 01011111
1239 */
1240 { 0x18, 0x5f },
1241
1242 /*
1243 * 19 VSTRT "Vertical window start"
1244 * = 0 (0x00) 00000000
1245 * VSTRT[7:0] "Vertical Window Start, 8 MSBs"
1246 * = 0 (0x00) 00000000
1247 */
1248 { 0x19, 0x00 },
1249
1250 /*
1251 * 1A VEND "Vertical window end"
1252 * = 96 (0x60) 01100000
1253 * VEND[7:0] "Vertical Window End, 8 MSBs"
1254 * = 96 (0x60) 01100000
1255 */
1256 { 0x1a, 0x60 },
1257
1258 /*
1259 * 32 COMM "Common Control M"
1260 * = 18 (0x12) 00010010
1261 * COMM[7:6] "Pixel clock divide option"
1262 * = 0 (0x00) 00...... "/1"
1263 * COMM[5:3] "Horizontal window end position, 3 LSBs"
1264 * = 2 (0x02) ..010...
1265 * COMM[2:0] "Horizontal window start position, 3 LSBs"
1266 * = 2 (0x02) .....010
1267 */
1268 { 0x32, 0x12 },
1269
1270 /*
1271 * 03 COMA "Common Control A"
1272 * = 74 (0x4A) 01001010
1273 * COMA[7:4] "AWB Update Threshold"
1274 * = 4 (0x04) 0100....
1275 * COMA[3:2] "Vertical window end line control 2 LSBs"
1276 * = 2 (0x02) ....10..
1277 * COMA[1:0] "Vertical window start line control 2 LSBs"
1278 * = 2 (0x02) ......10
1279 */
1280 { 0x03, 0x4a },
1281
1282 /*
1283 * 11 CLKRC "Clock Rate Control"
1284 * = 128 (0x80) 10000000
1285 * CLKRC[7] "Internal frequency doublers on off seclection"
1286 * = 1 (0x01) 1....... "On"
1287 * CLKRC[6] "Digital video master slave selection"
1288 * = 0 (0x00) .0...... "Master mode, sensor
1289 * provides PCLK"
1290 * CLKRC[5:0] "Clock divider { CLK = PCLK/(1+CLKRC[5:0]) }"
1291 * = 0 (0x00) ..000000
1292 */
1293 { 0x11, 0x80 },
1294
1295 /*
1296 * 12 COMH "Common Control H"
1297 * = 0 (0x00) 00000000
1298 * COMH[7] "SRST"
1299 * = 0 (0x00) 0....... "No-op"
1300 * COMH[6:4] "Resolution selection"
1301 * = 0 (0x00) .000.... "QXGA"
1302 * COMH[3] "Master slave selection"
1303 * = 0 (0x00) ....0... "Master mode"
1304 * COMH[2] "Internal B/R channel option"
1305 * = 0 (0x00) .....0.. "B/R use same channel"
1306 * COMH[1] "Color bar test pattern"
1307 * = 0 (0x00) ......0. "Off"
1308 * COMH[0] "Reserved"
1309 * = 0 (0x00) .......0
1310 */
1311 { 0x12, 0x00 },
1312
1313 /*
1314 * 12 COMH "Common Control H"
1315 * = 64 (0x40) 01000000
1316 * COMH[7] "SRST"
1317 * = 0 (0x00) 0....... "No-op"
1318 * COMH[6:4] "Resolution selection"
1319 * = 4 (0x04) .100.... "XGA"
1320 * COMH[3] "Master slave selection"
1321 * = 0 (0x00) ....0... "Master mode"
1322 * COMH[2] "Internal B/R channel option"
1323 * = 0 (0x00) .....0.. "B/R use same channel"
1324 * COMH[1] "Color bar test pattern"
1325 * = 0 (0x00) ......0. "Off"
1326 * COMH[0] "Reserved"
1327 * = 0 (0x00) .......0
1328 */
1329 { 0x12, 0x40 },
1330
1331 /*
1332 * 17 HREFST "Horizontal window start"
1333 * = 31 (0x1F) 00011111
1334 * HREFST[7:0] "Horizontal window start, 8 MSBs"
1335 * = 31 (0x1F) 00011111
1336 */
1337 { 0x17, 0x1f },
1338
1339 /*
1340 * 18 HREFEND "Horizontal window end"
1341 * = 95 (0x5F) 01011111
1342 * HREFEND[7:0] "Horizontal Window End, 8 MSBs"
1343 * = 95 (0x5F) 01011111
1344 */
1345 { 0x18, 0x5f },
1346
1347 /*
1348 * 19 VSTRT "Vertical window start"
1349 * = 0 (0x00) 00000000
1350 * VSTRT[7:0] "Vertical Window Start, 8 MSBs"
1351 * = 0 (0x00) 00000000
1352 */
1353 { 0x19, 0x00 },
1354
1355 /*
1356 * 1A VEND "Vertical window end"
1357 * = 96 (0x60) 01100000
1358 * VEND[7:0] "Vertical Window End, 8 MSBs"
1359 * = 96 (0x60) 01100000
1360 */
1361 { 0x1a, 0x60 },
1362
1363 /*
1364 * 32 COMM "Common Control M"
1365 * = 18 (0x12) 00010010
1366 * COMM[7:6] "Pixel clock divide option"
1367 * = 0 (0x00) 00...... "/1"
1368 * COMM[5:3] "Horizontal window end position, 3 LSBs"
1369 * = 2 (0x02) ..010...
1370 * COMM[2:0] "Horizontal window start position, 3 LSBs"
1371 * = 2 (0x02) .....010
1372 */
1373 { 0x32, 0x12 },
1374
1375 /*
1376 * 03 COMA "Common Control A"
1377 * = 74 (0x4A) 01001010
1378 * COMA[7:4] "AWB Update Threshold"
1379 * = 4 (0x04) 0100....
1380 * COMA[3:2] "Vertical window end line control 2 LSBs"
1381 * = 2 (0x02) ....10..
1382 * COMA[1:0] "Vertical window start line control 2 LSBs"
1383 * = 2 (0x02) ......10
1384 */
1385 { 0x03, 0x4a },
1386
1387 /*
1388 * 02 RED "Red Gain Control"
1389 * = 175 (0xAF) 10101111
1390 * RED[7] "Action"
1391 * = 1 (0x01) 1....... "gain = 1/(1+bitrev([6:0]))"
1392 * RED[6:0] "Value"
1393 * = 47 (0x2F) .0101111
1394 */
1395 { 0x02, 0xaf },
1396
1397 /*
1398 * 2D ADDVSL "VSYNC Pulse Width"
1399 * = 210 (0xD2) 11010010
1400 * ADDVSL[7:0] "VSYNC pulse width, LSB"
1401 * = 210 (0xD2) 11010010
1402 */
1403 { 0x2d, 0xd2 },
1404
1405 /*
1406 * 00 GAIN = 24 (0x18) 00011000
1407 * GAIN[7:6] "Reserved"
1408 * = 0 (0x00) 00......
1409 * GAIN[5] "Double"
1410 * = 0 (0x00) ..0..... "False"
1411 * GAIN[4] "Double"
1412 * = 1 (0x01) ...1.... "True"
1413 * GAIN[3:0] "Range"
1414 * = 8 (0x08) ....1000
1415 */
1416 { 0x00, 0x18 },
1417
1418 /*
1419 * 01 BLUE "Blue Gain Control"
1420 * = 240 (0xF0) 11110000
1421 * BLUE[7] "Action"
1422 * = 1 (0x01) 1....... "gain = 1/(1+bitrev([6:0]))"
1423 * BLUE[6:0] "Value"
1424 * = 112 (0x70) .1110000
1425 */
1426 { 0x01, 0xf0 },
1427
1428 /*
1429 * 10 AEC "Automatic Exposure Control"
1430 * = 10 (0x0A) 00001010
1431 * AEC[7:0] "Automatic Exposure Control, 8 MSBs"
1432 * = 10 (0x0A) 00001010
1433 */
1434 { 0x10, 0x0a },
1435
1436 { 0xe1, 0x67 },
1437 { 0xe3, 0x03 },
1438 { 0xe4, 0x26 },
1439 { 0xe5, 0x3e },
1440 { 0xf8, 0x01 },
1441 { 0xff, 0x01 },
1442 };
1443
1444 static const struct ov_i2c_regvals norm_6x20[] = {
1445 { 0x12, 0x80 }, /* reset */
1446 { 0x11, 0x01 },
1447 { 0x03, 0x60 },
1448 { 0x05, 0x7f }, /* For when autoadjust is off */
1449 { 0x07, 0xa8 },
1450 /* The ratio of 0x0c and 0x0d controls the white point */
1451 { 0x0c, 0x24 },
1452 { 0x0d, 0x24 },
1453 { 0x0f, 0x15 }, /* COMS */
1454 { 0x10, 0x75 }, /* AEC Exposure time */
1455 { 0x12, 0x24 }, /* Enable AGC */
1456 { 0x14, 0x04 },
1457 /* 0x16: 0x06 helps frame stability with moving objects */
1458 { 0x16, 0x06 },
1459 /* { 0x20, 0x30 }, * Aperture correction enable */
1460 { 0x26, 0xb2 }, /* BLC enable */
1461 /* 0x28: 0x05 Selects RGB format if RGB on */
1462 { 0x28, 0x05 },
1463 { 0x2a, 0x04 }, /* Disable framerate adjust */
1464 /* { 0x2b, 0xac }, * Framerate; Set 2a[7] first */
1465 { 0x2d, 0x85 },
1466 { 0x33, 0xa0 }, /* Color Processing Parameter */
1467 { 0x34, 0xd2 }, /* Max A/D range */
1468 { 0x38, 0x8b },
1469 { 0x39, 0x40 },
1470
1471 { 0x3c, 0x39 }, /* Enable AEC mode changing */
1472 { 0x3c, 0x3c }, /* Change AEC mode */
1473 { 0x3c, 0x24 }, /* Disable AEC mode changing */
1474
1475 { 0x3d, 0x80 },
1476 /* These next two registers (0x4a, 0x4b) are undocumented.
1477 * They control the color balance */
1478 { 0x4a, 0x80 },
1479 { 0x4b, 0x80 },
1480 { 0x4d, 0xd2 }, /* This reduces noise a bit */
1481 { 0x4e, 0xc1 },
1482 { 0x4f, 0x04 },
1483 /* Do 50-53 have any effect? */
1484 /* Toggle 0x12[2] off and on here? */
1485 };
1486
1487 static const struct ov_i2c_regvals norm_6x30[] = {
1488 { 0x12, 0x80 }, /* Reset */
1489 { 0x00, 0x1f }, /* Gain */
1490 { 0x01, 0x99 }, /* Blue gain */
1491 { 0x02, 0x7c }, /* Red gain */
1492 { 0x03, 0xc0 }, /* Saturation */
1493 { 0x05, 0x0a }, /* Contrast */
1494 { 0x06, 0x95 }, /* Brightness */
1495 { 0x07, 0x2d }, /* Sharpness */
1496 { 0x0c, 0x20 },
1497 { 0x0d, 0x20 },
1498 { 0x0e, 0xa0 }, /* Was 0x20, bit7 enables a 2x gain which we need */
1499 { 0x0f, 0x05 },
1500 { 0x10, 0x9a },
1501 { 0x11, 0x00 }, /* Pixel clock = fastest */
1502 { 0x12, 0x24 }, /* Enable AGC and AWB */
1503 { 0x13, 0x21 },
1504 { 0x14, 0x80 },
1505 { 0x15, 0x01 },
1506 { 0x16, 0x03 },
1507 { 0x17, 0x38 },
1508 { 0x18, 0xea },
1509 { 0x19, 0x04 },
1510 { 0x1a, 0x93 },
1511 { 0x1b, 0x00 },
1512 { 0x1e, 0xc4 },
1513 { 0x1f, 0x04 },
1514 { 0x20, 0x20 },
1515 { 0x21, 0x10 },
1516 { 0x22, 0x88 },
1517 { 0x23, 0xc0 }, /* Crystal circuit power level */
1518 { 0x25, 0x9a }, /* Increase AEC black ratio */
1519 { 0x26, 0xb2 }, /* BLC enable */
1520 { 0x27, 0xa2 },
1521 { 0x28, 0x00 },
1522 { 0x29, 0x00 },
1523 { 0x2a, 0x84 }, /* 60 Hz power */
1524 { 0x2b, 0xa8 }, /* 60 Hz power */
1525 { 0x2c, 0xa0 },
1526 { 0x2d, 0x95 }, /* Enable auto-brightness */
1527 { 0x2e, 0x88 },
1528 { 0x33, 0x26 },
1529 { 0x34, 0x03 },
1530 { 0x36, 0x8f },
1531 { 0x37, 0x80 },
1532 { 0x38, 0x83 },
1533 { 0x39, 0x80 },
1534 { 0x3a, 0x0f },
1535 { 0x3b, 0x3c },
1536 { 0x3c, 0x1a },
1537 { 0x3d, 0x80 },
1538 { 0x3e, 0x80 },
1539 { 0x3f, 0x0e },
1540 { 0x40, 0x00 }, /* White bal */
1541 { 0x41, 0x00 }, /* White bal */
1542 { 0x42, 0x80 },
1543 { 0x43, 0x3f }, /* White bal */
1544 { 0x44, 0x80 },
1545 { 0x45, 0x20 },
1546 { 0x46, 0x20 },
1547 { 0x47, 0x80 },
1548 { 0x48, 0x7f },
1549 { 0x49, 0x00 },
1550 { 0x4a, 0x00 },
1551 { 0x4b, 0x80 },
1552 { 0x4c, 0xd0 },
1553 { 0x4d, 0x10 }, /* U = 0.563u, V = 0.714v */
1554 { 0x4e, 0x40 },
1555 { 0x4f, 0x07 }, /* UV avg., col. killer: max */
1556 { 0x50, 0xff },
1557 { 0x54, 0x23 }, /* Max AGC gain: 18dB */
1558 { 0x55, 0xff },
1559 { 0x56, 0x12 },
1560 { 0x57, 0x81 },
1561 { 0x58, 0x75 },
1562 { 0x59, 0x01 }, /* AGC dark current comp.: +1 */
1563 { 0x5a, 0x2c },
1564 { 0x5b, 0x0f }, /* AWB chrominance levels */
1565 { 0x5c, 0x10 },
1566 { 0x3d, 0x80 },
1567 { 0x27, 0xa6 },
1568 { 0x12, 0x20 }, /* Toggle AWB */
1569 { 0x12, 0x24 },
1570 };
1571
1572 /* Lawrence Glaister <lg@jfm.bc.ca> reports:
1573 *
1574 * Register 0x0f in the 7610 has the following effects:
1575 *
1576 * 0x85 (AEC method 1): Best overall, good contrast range
1577 * 0x45 (AEC method 2): Very overexposed
1578 * 0xa5 (spec sheet default): Ok, but the black level is
1579 * shifted resulting in loss of contrast
1580 * 0x05 (old driver setting): very overexposed, too much
1581 * contrast
1582 */
1583 static const struct ov_i2c_regvals norm_7610[] = {
1584 { 0x10, 0xff },
1585 { 0x16, 0x06 },
1586 { 0x28, 0x24 },
1587 { 0x2b, 0xac },
1588 { 0x12, 0x00 },
1589 { 0x38, 0x81 },
1590 { 0x28, 0x24 }, /* 0c */
1591 { 0x0f, 0x85 }, /* lg's setting */
1592 { 0x15, 0x01 },
1593 { 0x20, 0x1c },
1594 { 0x23, 0x2a },
1595 { 0x24, 0x10 },
1596 { 0x25, 0x8a },
1597 { 0x26, 0xa2 },
1598 { 0x27, 0xc2 },
1599 { 0x2a, 0x04 },
1600 { 0x2c, 0xfe },
1601 { 0x2d, 0x93 },
1602 { 0x30, 0x71 },
1603 { 0x31, 0x60 },
1604 { 0x32, 0x26 },
1605 { 0x33, 0x20 },
1606 { 0x34, 0x48 },
1607 { 0x12, 0x24 },
1608 { 0x11, 0x01 },
1609 { 0x0c, 0x24 },
1610 { 0x0d, 0x24 },
1611 };
1612
1613 static const struct ov_i2c_regvals norm_7620[] = {
1614 { 0x12, 0x80 }, /* reset */
1615 { 0x00, 0x00 }, /* gain */
1616 { 0x01, 0x80 }, /* blue gain */
1617 { 0x02, 0x80 }, /* red gain */
1618 { 0x03, 0xc0 }, /* OV7670_R03_VREF */
1619 { 0x06, 0x60 },
1620 { 0x07, 0x00 },
1621 { 0x0c, 0x24 },
1622 { 0x0c, 0x24 },
1623 { 0x0d, 0x24 },
1624 { 0x11, 0x01 },
1625 { 0x12, 0x24 },
1626 { 0x13, 0x01 },
1627 { 0x14, 0x84 },
1628 { 0x15, 0x01 },
1629 { 0x16, 0x03 },
1630 { 0x17, 0x2f },
1631 { 0x18, 0xcf },
1632 { 0x19, 0x06 },
1633 { 0x1a, 0xf5 },
1634 { 0x1b, 0x00 },
1635 { 0x20, 0x18 },
1636 { 0x21, 0x80 },
1637 { 0x22, 0x80 },
1638 { 0x23, 0x00 },
1639 { 0x26, 0xa2 },
1640 { 0x27, 0xea },
1641 { 0x28, 0x22 }, /* Was 0x20, bit1 enables a 2x gain which we need */
1642 { 0x29, 0x00 },
1643 { 0x2a, 0x10 },
1644 { 0x2b, 0x00 },
1645 { 0x2c, 0x88 },
1646 { 0x2d, 0x91 },
1647 { 0x2e, 0x80 },
1648 { 0x2f, 0x44 },
1649 { 0x60, 0x27 },
1650 { 0x61, 0x02 },
1651 { 0x62, 0x5f },
1652 { 0x63, 0xd5 },
1653 { 0x64, 0x57 },
1654 { 0x65, 0x83 },
1655 { 0x66, 0x55 },
1656 { 0x67, 0x92 },
1657 { 0x68, 0xcf },
1658 { 0x69, 0x76 },
1659 { 0x6a, 0x22 },
1660 { 0x6b, 0x00 },
1661 { 0x6c, 0x02 },
1662 { 0x6d, 0x44 },
1663 { 0x6e, 0x80 },
1664 { 0x6f, 0x1d },
1665 { 0x70, 0x8b },
1666 { 0x71, 0x00 },
1667 { 0x72, 0x14 },
1668 { 0x73, 0x54 },
1669 { 0x74, 0x00 },
1670 { 0x75, 0x8e },
1671 { 0x76, 0x00 },
1672 { 0x77, 0xff },
1673 { 0x78, 0x80 },
1674 { 0x79, 0x80 },
1675 { 0x7a, 0x80 },
1676 { 0x7b, 0xe2 },
1677 { 0x7c, 0x00 },
1678 };
1679
1680 /* 7640 and 7648. The defaults should be OK for most registers. */
1681 static const struct ov_i2c_regvals norm_7640[] = {
1682 { 0x12, 0x80 },
1683 { 0x12, 0x14 },
1684 };
1685
1686 static const struct ov_regvals init_519_ov7660[] = {
1687 { 0x5d, 0x03 }, /* Turn off suspend mode */
1688 { 0x53, 0x9b }, /* 0x9f enables the (unused) microcontroller */
1689 { 0x54, 0x0f }, /* bit2 (jpeg enable) */
1690 { 0xa2, 0x20 }, /* a2-a5 are undocumented */
1691 { 0xa3, 0x18 },
1692 { 0xa4, 0x04 },
1693 { 0xa5, 0x28 },
1694 { 0x37, 0x00 }, /* SetUsbInit */
1695 { 0x55, 0x02 }, /* 4.096 Mhz audio clock */
1696 /* Enable both fields, YUV Input, disable defect comp (why?) */
1697 { 0x20, 0x0c }, /* 0x0d does U <-> V swap */
1698 { 0x21, 0x38 },
1699 { 0x22, 0x1d },
1700 { 0x17, 0x50 }, /* undocumented */
1701 { 0x37, 0x00 }, /* undocumented */
1702 { 0x40, 0xff }, /* I2C timeout counter */
1703 { 0x46, 0x00 }, /* I2C clock prescaler */
1704 };
1705 static const struct ov_i2c_regvals norm_7660[] = {
1706 {OV7670_R12_COM7, OV7670_COM7_RESET},
1707 {OV7670_R11_CLKRC, 0x81},
1708 {0x92, 0x00}, /* DM_LNL */
1709 {0x93, 0x00}, /* DM_LNH */
1710 {0x9d, 0x4c}, /* BD50ST */
1711 {0x9e, 0x3f}, /* BD60ST */
1712 {OV7670_R3B_COM11, 0x02},
1713 {OV7670_R13_COM8, 0xf5},
1714 {OV7670_R10_AECH, 0x00},
1715 {OV7670_R00_GAIN, 0x00},
1716 {OV7670_R01_BLUE, 0x7c},
1717 {OV7670_R02_RED, 0x9d},
1718 {OV7670_R12_COM7, 0x00},
1719 {OV7670_R04_COM1, 00},
1720 {OV7670_R18_HSTOP, 0x01},
1721 {OV7670_R17_HSTART, 0x13},
1722 {OV7670_R32_HREF, 0x92},
1723 {OV7670_R19_VSTART, 0x02},
1724 {OV7670_R1A_VSTOP, 0x7a},
1725 {OV7670_R03_VREF, 0x00},
1726 {OV7670_R0E_COM5, 0x04},
1727 {OV7670_R0F_COM6, 0x62},
1728 {OV7670_R15_COM10, 0x00},
1729 {0x16, 0x02}, /* RSVD */
1730 {0x1b, 0x00}, /* PSHFT */
1731 {OV7670_R1E_MVFP, 0x01},
1732 {0x29, 0x3c}, /* RSVD */
1733 {0x33, 0x00}, /* CHLF */
1734 {0x34, 0x07}, /* ARBLM */
1735 {0x35, 0x84}, /* RSVD */
1736 {0x36, 0x00}, /* RSVD */
1737 {0x37, 0x04}, /* ADC */
1738 {0x39, 0x43}, /* OFON */
1739 {OV7670_R3A_TSLB, 0x00},
1740 {OV7670_R3C_COM12, 0x6c},
1741 {OV7670_R3D_COM13, 0x98},
1742 {OV7670_R3F_EDGE, 0x23},
1743 {OV7670_R40_COM15, 0xc1},
1744 {OV7670_R41_COM16, 0x22},
1745 {0x6b, 0x0a}, /* DBLV */
1746 {0xa1, 0x08}, /* RSVD */
1747 {0x69, 0x80}, /* HV */
1748 {0x43, 0xf0}, /* RSVD.. */
1749 {0x44, 0x10},
1750 {0x45, 0x78},
1751 {0x46, 0xa8},
1752 {0x47, 0x60},
1753 {0x48, 0x80},
1754 {0x59, 0xba},
1755 {0x5a, 0x9a},
1756 {0x5b, 0x22},
1757 {0x5c, 0xb9},
1758 {0x5d, 0x9b},
1759 {0x5e, 0x10},
1760 {0x5f, 0xe0},
1761 {0x60, 0x85},
1762 {0x61, 0x60},
1763 {0x9f, 0x9d}, /* RSVD */
1764 {0xa0, 0xa0}, /* DSPC2 */
1765 {0x4f, 0x60}, /* matrix */
1766 {0x50, 0x64},
1767 {0x51, 0x04},
1768 {0x52, 0x18},
1769 {0x53, 0x3c},
1770 {0x54, 0x54},
1771 {0x55, 0x40},
1772 {0x56, 0x40},
1773 {0x57, 0x40},
1774 {0x58, 0x0d}, /* matrix sign */
1775 {0x8b, 0xcc}, /* RSVD */
1776 {0x8c, 0xcc},
1777 {0x8d, 0xcf},
1778 {0x6c, 0x40}, /* gamma curve */
1779 {0x6d, 0xe0},
1780 {0x6e, 0xa0},
1781 {0x6f, 0x80},
1782 {0x70, 0x70},
1783 {0x71, 0x80},
1784 {0x72, 0x60},
1785 {0x73, 0x60},
1786 {0x74, 0x50},
1787 {0x75, 0x40},
1788 {0x76, 0x38},
1789 {0x77, 0x3c},
1790 {0x78, 0x32},
1791 {0x79, 0x1a},
1792 {0x7a, 0x28},
1793 {0x7b, 0x24},
1794 {0x7c, 0x04}, /* gamma curve */
1795 {0x7d, 0x12},
1796 {0x7e, 0x26},
1797 {0x7f, 0x46},
1798 {0x80, 0x54},
1799 {0x81, 0x64},
1800 {0x82, 0x70},
1801 {0x83, 0x7c},
1802 {0x84, 0x86},
1803 {0x85, 0x8e},
1804 {0x86, 0x9c},
1805 {0x87, 0xab},
1806 {0x88, 0xc4},
1807 {0x89, 0xd1},
1808 {0x8a, 0xe5},
1809 {OV7670_R14_COM9, 0x1e},
1810 {OV7670_R24_AEW, 0x80},
1811 {OV7670_R25_AEB, 0x72},
1812 {OV7670_R26_VPT, 0xb3},
1813 {0x62, 0x80}, /* LCC1 */
1814 {0x63, 0x80}, /* LCC2 */
1815 {0x64, 0x06}, /* LCC3 */
1816 {0x65, 0x00}, /* LCC4 */
1817 {0x66, 0x01}, /* LCC5 */
1818 {0x94, 0x0e}, /* RSVD.. */
1819 {0x95, 0x14},
1820 {OV7670_R13_COM8, OV7670_COM8_FASTAEC
1821 | OV7670_COM8_AECSTEP
1822 | OV7670_COM8_BFILT
1823 | 0x10
1824 | OV7670_COM8_AGC
1825 | OV7670_COM8_AWB
1826 | OV7670_COM8_AEC},
1827 {0xa1, 0xc8}
1828 };
1829 static const struct ov_i2c_regvals norm_9600[] = {
1830 {0x12, 0x80},
1831 {0x0c, 0x28},
1832 {0x11, 0x80},
1833 {0x13, 0xb5},
1834 {0x14, 0x3e},
1835 {0x1b, 0x04},
1836 {0x24, 0xb0},
1837 {0x25, 0x90},
1838 {0x26, 0x94},
1839 {0x35, 0x90},
1840 {0x37, 0x07},
1841 {0x38, 0x08},
1842 {0x01, 0x8e},
1843 {0x02, 0x85}
1844 };
1845
1846 /* 7670. Defaults taken from OmniVision provided data,
1847 * as provided by Jonathan Corbet of OLPC */
1848 static const struct ov_i2c_regvals norm_7670[] = {
1849 { OV7670_R12_COM7, OV7670_COM7_RESET },
1850 { OV7670_R3A_TSLB, 0x04 }, /* OV */
1851 { OV7670_R12_COM7, OV7670_COM7_FMT_VGA }, /* VGA */
1852 { OV7670_R11_CLKRC, 0x01 },
1853 /*
1854 * Set the hardware window. These values from OV don't entirely
1855 * make sense - hstop is less than hstart. But they work...
1856 */
1857 { OV7670_R17_HSTART, 0x13 },
1858 { OV7670_R18_HSTOP, 0x01 },
1859 { OV7670_R32_HREF, 0xb6 },
1860 { OV7670_R19_VSTART, 0x02 },
1861 { OV7670_R1A_VSTOP, 0x7a },
1862 { OV7670_R03_VREF, 0x0a },
1863
1864 { OV7670_R0C_COM3, 0x00 },
1865 { OV7670_R3E_COM14, 0x00 },
1866 /* Mystery scaling numbers */
1867 { 0x70, 0x3a },
1868 { 0x71, 0x35 },
1869 { 0x72, 0x11 },
1870 { 0x73, 0xf0 },
1871 { 0xa2, 0x02 },
1872 /* { OV7670_R15_COM10, 0x0 }, */
1873
1874 /* Gamma curve values */
1875 { 0x7a, 0x20 },
1876 { 0x7b, 0x10 },
1877 { 0x7c, 0x1e },
1878 { 0x7d, 0x35 },
1879 { 0x7e, 0x5a },
1880 { 0x7f, 0x69 },
1881 { 0x80, 0x76 },
1882 { 0x81, 0x80 },
1883 { 0x82, 0x88 },
1884 { 0x83, 0x8f },
1885 { 0x84, 0x96 },
1886 { 0x85, 0xa3 },
1887 { 0x86, 0xaf },
1888 { 0x87, 0xc4 },
1889 { 0x88, 0xd7 },
1890 { 0x89, 0xe8 },
1891
1892 /* AGC and AEC parameters. Note we start by disabling those features,
1893 then turn them only after tweaking the values. */
1894 { OV7670_R13_COM8, OV7670_COM8_FASTAEC
1895 | OV7670_COM8_AECSTEP
1896 | OV7670_COM8_BFILT },
1897 { OV7670_R00_GAIN, 0x00 },
1898 { OV7670_R10_AECH, 0x00 },
1899 { OV7670_R0D_COM4, 0x40 }, /* magic reserved bit */
1900 { OV7670_R14_COM9, 0x18 }, /* 4x gain + magic rsvd bit */
1901 { OV7670_RA5_BD50MAX, 0x05 },
1902 { OV7670_RAB_BD60MAX, 0x07 },
1903 { OV7670_R24_AEW, 0x95 },
1904 { OV7670_R25_AEB, 0x33 },
1905 { OV7670_R26_VPT, 0xe3 },
1906 { OV7670_R9F_HAECC1, 0x78 },
1907 { OV7670_RA0_HAECC2, 0x68 },
1908 { 0xa1, 0x03 }, /* magic */
1909 { OV7670_RA6_HAECC3, 0xd8 },
1910 { OV7670_RA7_HAECC4, 0xd8 },
1911 { OV7670_RA8_HAECC5, 0xf0 },
1912 { OV7670_RA9_HAECC6, 0x90 },
1913 { OV7670_RAA_HAECC7, 0x94 },
1914 { OV7670_R13_COM8, OV7670_COM8_FASTAEC
1915 | OV7670_COM8_AECSTEP
1916 | OV7670_COM8_BFILT
1917 | OV7670_COM8_AGC
1918 | OV7670_COM8_AEC },
1919
1920 /* Almost all of these are magic "reserved" values. */
1921 { OV7670_R0E_COM5, 0x61 },
1922 { OV7670_R0F_COM6, 0x4b },
1923 { 0x16, 0x02 },
1924 { OV7670_R1E_MVFP, 0x07 },
1925 { 0x21, 0x02 },
1926 { 0x22, 0x91 },
1927 { 0x29, 0x07 },
1928 { 0x33, 0x0b },
1929 { 0x35, 0x0b },
1930 { 0x37, 0x1d },
1931 { 0x38, 0x71 },
1932 { 0x39, 0x2a },
1933 { OV7670_R3C_COM12, 0x78 },
1934 { 0x4d, 0x40 },
1935 { 0x4e, 0x20 },
1936 { OV7670_R69_GFIX, 0x00 },
1937 { 0x6b, 0x4a },
1938 { 0x74, 0x10 },
1939 { 0x8d, 0x4f },
1940 { 0x8e, 0x00 },
1941 { 0x8f, 0x00 },
1942 { 0x90, 0x00 },
1943 { 0x91, 0x00 },
1944 { 0x96, 0x00 },
1945 { 0x9a, 0x00 },
1946 { 0xb0, 0x84 },
1947 { 0xb1, 0x0c },
1948 { 0xb2, 0x0e },
1949 { 0xb3, 0x82 },
1950 { 0xb8, 0x0a },
1951
1952 /* More reserved magic, some of which tweaks white balance */
1953 { 0x43, 0x0a },
1954 { 0x44, 0xf0 },
1955 { 0x45, 0x34 },
1956 { 0x46, 0x58 },
1957 { 0x47, 0x28 },
1958 { 0x48, 0x3a },
1959 { 0x59, 0x88 },
1960 { 0x5a, 0x88 },
1961 { 0x5b, 0x44 },
1962 { 0x5c, 0x67 },
1963 { 0x5d, 0x49 },
1964 { 0x5e, 0x0e },
1965 { 0x6c, 0x0a },
1966 { 0x6d, 0x55 },
1967 { 0x6e, 0x11 },
1968 { 0x6f, 0x9f }, /* "9e for advance AWB" */
1969 { 0x6a, 0x40 },
1970 { OV7670_R01_BLUE, 0x40 },
1971 { OV7670_R02_RED, 0x60 },
1972 { OV7670_R13_COM8, OV7670_COM8_FASTAEC
1973 | OV7670_COM8_AECSTEP
1974 | OV7670_COM8_BFILT
1975 | OV7670_COM8_AGC
1976 | OV7670_COM8_AEC
1977 | OV7670_COM8_AWB },
1978
1979 /* Matrix coefficients */
1980 { 0x4f, 0x80 },
1981 { 0x50, 0x80 },
1982 { 0x51, 0x00 },
1983 { 0x52, 0x22 },
1984 { 0x53, 0x5e },
1985 { 0x54, 0x80 },
1986 { 0x58, 0x9e },
1987
1988 { OV7670_R41_COM16, OV7670_COM16_AWBGAIN },
1989 { OV7670_R3F_EDGE, 0x00 },
1990 { 0x75, 0x05 },
1991 { 0x76, 0xe1 },
1992 { 0x4c, 0x00 },
1993 { 0x77, 0x01 },
1994 { OV7670_R3D_COM13, OV7670_COM13_GAMMA
1995 | OV7670_COM13_UVSAT
1996 | 2}, /* was 3 */
1997 { 0x4b, 0x09 },
1998 { 0xc9, 0x60 },
1999 { OV7670_R41_COM16, 0x38 },
2000 { 0x56, 0x40 },
2001
2002 { 0x34, 0x11 },
2003 { OV7670_R3B_COM11, OV7670_COM11_EXP|OV7670_COM11_HZAUTO },
2004 { 0xa4, 0x88 },
2005 { 0x96, 0x00 },
2006 { 0x97, 0x30 },
2007 { 0x98, 0x20 },
2008 { 0x99, 0x30 },
2009 { 0x9a, 0x84 },
2010 { 0x9b, 0x29 },
2011 { 0x9c, 0x03 },
2012 { 0x9d, 0x4c },
2013 { 0x9e, 0x3f },
2014 { 0x78, 0x04 },
2015
2016 /* Extra-weird stuff. Some sort of multiplexor register */
2017 { 0x79, 0x01 },
2018 { 0xc8, 0xf0 },
2019 { 0x79, 0x0f },
2020 { 0xc8, 0x00 },
2021 { 0x79, 0x10 },
2022 { 0xc8, 0x7e },
2023 { 0x79, 0x0a },
2024 { 0xc8, 0x80 },
2025 { 0x79, 0x0b },
2026 { 0xc8, 0x01 },
2027 { 0x79, 0x0c },
2028 { 0xc8, 0x0f },
2029 { 0x79, 0x0d },
2030 { 0xc8, 0x20 },
2031 { 0x79, 0x09 },
2032 { 0xc8, 0x80 },
2033 { 0x79, 0x02 },
2034 { 0xc8, 0xc0 },
2035 { 0x79, 0x03 },
2036 { 0xc8, 0x40 },
2037 { 0x79, 0x05 },
2038 { 0xc8, 0x30 },
2039 { 0x79, 0x26 },
2040 };
2041
2042 static const struct ov_i2c_regvals norm_8610[] = {
2043 { 0x12, 0x80 },
2044 { 0x00, 0x00 },
2045 { 0x01, 0x80 },
2046 { 0x02, 0x80 },
2047 { 0x03, 0xc0 },
2048 { 0x04, 0x30 },
2049 { 0x05, 0x30 }, /* was 0x10, new from windrv 090403 */
2050 { 0x06, 0x70 }, /* was 0x80, new from windrv 090403 */
2051 { 0x0a, 0x86 },
2052 { 0x0b, 0xb0 },
2053 { 0x0c, 0x20 },
2054 { 0x0d, 0x20 },
2055 { 0x11, 0x01 },
2056 { 0x12, 0x25 },
2057 { 0x13, 0x01 },
2058 { 0x14, 0x04 },
2059 { 0x15, 0x01 }, /* Lin and Win think different about UV order */
2060 { 0x16, 0x03 },
2061 { 0x17, 0x38 }, /* was 0x2f, new from windrv 090403 */
2062 { 0x18, 0xea }, /* was 0xcf, new from windrv 090403 */
2063 { 0x19, 0x02 }, /* was 0x06, new from windrv 090403 */
2064 { 0x1a, 0xf5 },
2065 { 0x1b, 0x00 },
2066 { 0x20, 0xd0 }, /* was 0x90, new from windrv 090403 */
2067 { 0x23, 0xc0 }, /* was 0x00, new from windrv 090403 */
2068 { 0x24, 0x30 }, /* was 0x1d, new from windrv 090403 */
2069 { 0x25, 0x50 }, /* was 0x57, new from windrv 090403 */
2070 { 0x26, 0xa2 },
2071 { 0x27, 0xea },
2072 { 0x28, 0x00 },
2073 { 0x29, 0x00 },
2074 { 0x2a, 0x80 },
2075 { 0x2b, 0xc8 }, /* was 0xcc, new from windrv 090403 */
2076 { 0x2c, 0xac },
2077 { 0x2d, 0x45 }, /* was 0xd5, new from windrv 090403 */
2078 { 0x2e, 0x80 },
2079 { 0x2f, 0x14 }, /* was 0x01, new from windrv 090403 */
2080 { 0x4c, 0x00 },
2081 { 0x4d, 0x30 }, /* was 0x10, new from windrv 090403 */
2082 { 0x60, 0x02 }, /* was 0x01, new from windrv 090403 */
2083 { 0x61, 0x00 }, /* was 0x09, new from windrv 090403 */
2084 { 0x62, 0x5f }, /* was 0xd7, new from windrv 090403 */
2085 { 0x63, 0xff },
2086 { 0x64, 0x53 }, /* new windrv 090403 says 0x57,
2087 * maybe thats wrong */
2088 { 0x65, 0x00 },
2089 { 0x66, 0x55 },
2090 { 0x67, 0xb0 },
2091 { 0x68, 0xc0 }, /* was 0xaf, new from windrv 090403 */
2092 { 0x69, 0x02 },
2093 { 0x6a, 0x22 },
2094 { 0x6b, 0x00 },
2095 { 0x6c, 0x99 }, /* was 0x80, old windrv says 0x00, but
2096 * deleting bit7 colors the first images red */
2097 { 0x6d, 0x11 }, /* was 0x00, new from windrv 090403 */
2098 { 0x6e, 0x11 }, /* was 0x00, new from windrv 090403 */
2099 { 0x6f, 0x01 },
2100 { 0x70, 0x8b },
2101 { 0x71, 0x00 },
2102 { 0x72, 0x14 },
2103 { 0x73, 0x54 },
2104 { 0x74, 0x00 },/* 0x60? - was 0x00, new from windrv 090403 */
2105 { 0x75, 0x0e },
2106 { 0x76, 0x02 }, /* was 0x02, new from windrv 090403 */
2107 { 0x77, 0xff },
2108 { 0x78, 0x80 },
2109 { 0x79, 0x80 },
2110 { 0x7a, 0x80 },
2111 { 0x7b, 0x10 }, /* was 0x13, new from windrv 090403 */
2112 { 0x7c, 0x00 },
2113 { 0x7d, 0x08 }, /* was 0x09, new from windrv 090403 */
2114 { 0x7e, 0x08 }, /* was 0xc0, new from windrv 090403 */
2115 { 0x7f, 0xfb },
2116 { 0x80, 0x28 },
2117 { 0x81, 0x00 },
2118 { 0x82, 0x23 },
2119 { 0x83, 0x0b },
2120 { 0x84, 0x00 },
2121 { 0x85, 0x62 }, /* was 0x61, new from windrv 090403 */
2122 { 0x86, 0xc9 },
2123 { 0x87, 0x00 },
2124 { 0x88, 0x00 },
2125 { 0x89, 0x01 },
2126 { 0x12, 0x20 },
2127 { 0x12, 0x25 }, /* was 0x24, new from windrv 090403 */
2128 };
2129
2130 static unsigned char ov7670_abs_to_sm(unsigned char v)
2131 {
2132 if (v > 127)
2133 return v & 0x7f;
2134 return (128 - v) | 0x80;
2135 }
2136
2137 /* Write a OV519 register */
2138 static void reg_w(struct sd *sd, u16 index, u16 value)
2139 {
2140 int ret, req = 0;
2141
2142 if (sd->gspca_dev.usb_err < 0)
2143 return;
2144
2145 switch (sd->bridge) {
2146 case BRIDGE_OV511:
2147 case BRIDGE_OV511PLUS:
2148 req = 2;
2149 break;
2150 case BRIDGE_OVFX2:
2151 req = 0x0a;
2152 /* fall through */
2153 case BRIDGE_W9968CF:
2154 PDEBUG(D_USBO, "SET %02x %04x %04x",
2155 req, value, index);
2156 ret = usb_control_msg(sd->gspca_dev.dev,
2157 usb_sndctrlpipe(sd->gspca_dev.dev, 0),
2158 req,
2159 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2160 value, index, NULL, 0, 500);
2161 goto leave;
2162 default:
2163 req = 1;
2164 }
2165
2166 PDEBUG(D_USBO, "SET %02x 0000 %04x %02x",
2167 req, index, value);
2168 sd->gspca_dev.usb_buf[0] = value;
2169 ret = usb_control_msg(sd->gspca_dev.dev,
2170 usb_sndctrlpipe(sd->gspca_dev.dev, 0),
2171 req,
2172 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2173 0, index,
2174 sd->gspca_dev.usb_buf, 1, 500);
2175 leave:
2176 if (ret < 0) {
2177 pr_err("reg_w %02x failed %d\n", index, ret);
2178 sd->gspca_dev.usb_err = ret;
2179 return;
2180 }
2181 }
2182
2183 /* Read from a OV519 register, note not valid for the w9968cf!! */
2184 /* returns: negative is error, pos or zero is data */
2185 static int reg_r(struct sd *sd, u16 index)
2186 {
2187 int ret;
2188 int req;
2189
2190 if (sd->gspca_dev.usb_err < 0)
2191 return -1;
2192
2193 switch (sd->bridge) {
2194 case BRIDGE_OV511:
2195 case BRIDGE_OV511PLUS:
2196 req = 3;
2197 break;
2198 case BRIDGE_OVFX2:
2199 req = 0x0b;
2200 break;
2201 default:
2202 req = 1;
2203 }
2204
2205 ret = usb_control_msg(sd->gspca_dev.dev,
2206 usb_rcvctrlpipe(sd->gspca_dev.dev, 0),
2207 req,
2208 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2209 0, index, sd->gspca_dev.usb_buf, 1, 500);
2210
2211 if (ret >= 0) {
2212 ret = sd->gspca_dev.usb_buf[0];
2213 PDEBUG(D_USBI, "GET %02x 0000 %04x %02x",
2214 req, index, ret);
2215 } else {
2216 pr_err("reg_r %02x failed %d\n", index, ret);
2217 sd->gspca_dev.usb_err = ret;
2218 }
2219
2220 return ret;
2221 }
2222
2223 /* Read 8 values from a OV519 register */
2224 static int reg_r8(struct sd *sd,
2225 u16 index)
2226 {
2227 int ret;
2228
2229 if (sd->gspca_dev.usb_err < 0)
2230 return -1;
2231
2232 ret = usb_control_msg(sd->gspca_dev.dev,
2233 usb_rcvctrlpipe(sd->gspca_dev.dev, 0),
2234 1, /* REQ_IO */
2235 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2236 0, index, sd->gspca_dev.usb_buf, 8, 500);
2237
2238 if (ret >= 0) {
2239 ret = sd->gspca_dev.usb_buf[0];
2240 } else {
2241 pr_err("reg_r8 %02x failed %d\n", index, ret);
2242 sd->gspca_dev.usb_err = ret;
2243 }
2244
2245 return ret;
2246 }
2247
2248 /*
2249 * Writes bits at positions specified by mask to an OV51x reg. Bits that are in
2250 * the same position as 1's in "mask" are cleared and set to "value". Bits
2251 * that are in the same position as 0's in "mask" are preserved, regardless
2252 * of their respective state in "value".
2253 */
2254 static void reg_w_mask(struct sd *sd,
2255 u16 index,
2256 u8 value,
2257 u8 mask)
2258 {
2259 int ret;
2260 u8 oldval;
2261
2262 if (mask != 0xff) {
2263 value &= mask; /* Enforce mask on value */
2264 ret = reg_r(sd, index);
2265 if (ret < 0)
2266 return;
2267
2268 oldval = ret & ~mask; /* Clear the masked bits */
2269 value |= oldval; /* Set the desired bits */
2270 }
2271 reg_w(sd, index, value);
2272 }
2273
2274 /*
2275 * Writes multiple (n) byte value to a single register. Only valid with certain
2276 * registers (0x30 and 0xc4 - 0xce).
2277 */
2278 static void ov518_reg_w32(struct sd *sd, u16 index, u32 value, int n)
2279 {
2280 int ret;
2281
2282 if (sd->gspca_dev.usb_err < 0)
2283 return;
2284
2285 *((__le32 *) sd->gspca_dev.usb_buf) = __cpu_to_le32(value);
2286
2287 ret = usb_control_msg(sd->gspca_dev.dev,
2288 usb_sndctrlpipe(sd->gspca_dev.dev, 0),
2289 1 /* REG_IO */,
2290 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2291 0, index,
2292 sd->gspca_dev.usb_buf, n, 500);
2293 if (ret < 0) {
2294 pr_err("reg_w32 %02x failed %d\n", index, ret);
2295 sd->gspca_dev.usb_err = ret;
2296 }
2297 }
2298
2299 static void ov511_i2c_w(struct sd *sd, u8 reg, u8 value)
2300 {
2301 int rc, retries;
2302
2303 PDEBUG(D_USBO, "ov511_i2c_w %02x %02x", reg, value);
2304
2305 /* Three byte write cycle */
2306 for (retries = 6; ; ) {
2307 /* Select camera register */
2308 reg_w(sd, R51x_I2C_SADDR_3, reg);
2309
2310 /* Write "value" to I2C data port of OV511 */
2311 reg_w(sd, R51x_I2C_DATA, value);
2312
2313 /* Initiate 3-byte write cycle */
2314 reg_w(sd, R511_I2C_CTL, 0x01);
2315
2316 do {
2317 rc = reg_r(sd, R511_I2C_CTL);
2318 } while (rc > 0 && ((rc & 1) == 0)); /* Retry until idle */
2319
2320 if (rc < 0)
2321 return;
2322
2323 if ((rc & 2) == 0) /* Ack? */
2324 break;
2325 if (--retries < 0) {
2326 PDEBUG(D_USBO, "i2c write retries exhausted");
2327 return;
2328 }
2329 }
2330 }
2331
2332 static int ov511_i2c_r(struct sd *sd, u8 reg)
2333 {
2334 int rc, value, retries;
2335
2336 /* Two byte write cycle */
2337 for (retries = 6; ; ) {
2338 /* Select camera register */
2339 reg_w(sd, R51x_I2C_SADDR_2, reg);
2340
2341 /* Initiate 2-byte write cycle */
2342 reg_w(sd, R511_I2C_CTL, 0x03);
2343
2344 do {
2345 rc = reg_r(sd, R511_I2C_CTL);
2346 } while (rc > 0 && ((rc & 1) == 0)); /* Retry until idle */
2347
2348 if (rc < 0)
2349 return rc;
2350
2351 if ((rc & 2) == 0) /* Ack? */
2352 break;
2353
2354 /* I2C abort */
2355 reg_w(sd, R511_I2C_CTL, 0x10);
2356
2357 if (--retries < 0) {
2358 PDEBUG(D_USBI, "i2c write retries exhausted");
2359 return -1;
2360 }
2361 }
2362
2363 /* Two byte read cycle */
2364 for (retries = 6; ; ) {
2365 /* Initiate 2-byte read cycle */
2366 reg_w(sd, R511_I2C_CTL, 0x05);
2367
2368 do {
2369 rc = reg_r(sd, R511_I2C_CTL);
2370 } while (rc > 0 && ((rc & 1) == 0)); /* Retry until idle */
2371
2372 if (rc < 0)
2373 return rc;
2374
2375 if ((rc & 2) == 0) /* Ack? */
2376 break;
2377
2378 /* I2C abort */
2379 reg_w(sd, R511_I2C_CTL, 0x10);
2380
2381 if (--retries < 0) {
2382 PDEBUG(D_USBI, "i2c read retries exhausted");
2383 return -1;
2384 }
2385 }
2386
2387 value = reg_r(sd, R51x_I2C_DATA);
2388
2389 PDEBUG(D_USBI, "ov511_i2c_r %02x %02x", reg, value);
2390
2391 /* This is needed to make i2c_w() work */
2392 reg_w(sd, R511_I2C_CTL, 0x05);
2393
2394 return value;
2395 }
2396
2397 /*
2398 * The OV518 I2C I/O procedure is different, hence, this function.
2399 * This is normally only called from i2c_w(). Note that this function
2400 * always succeeds regardless of whether the sensor is present and working.
2401 */
2402 static void ov518_i2c_w(struct sd *sd,
2403 u8 reg,
2404 u8 value)
2405 {
2406 PDEBUG(D_USBO, "ov518_i2c_w %02x %02x", reg, value);
2407
2408 /* Select camera register */
2409 reg_w(sd, R51x_I2C_SADDR_3, reg);
2410
2411 /* Write "value" to I2C data port of OV511 */
2412 reg_w(sd, R51x_I2C_DATA, value);
2413
2414 /* Initiate 3-byte write cycle */
2415 reg_w(sd, R518_I2C_CTL, 0x01);
2416
2417 /* wait for write complete */
2418 msleep(4);
2419 reg_r8(sd, R518_I2C_CTL);
2420 }
2421
2422 /*
2423 * returns: negative is error, pos or zero is data
2424 *
2425 * The OV518 I2C I/O procedure is different, hence, this function.
2426 * This is normally only called from i2c_r(). Note that this function
2427 * always succeeds regardless of whether the sensor is present and working.
2428 */
2429 static int ov518_i2c_r(struct sd *sd, u8 reg)
2430 {
2431 int value;
2432
2433 /* Select camera register */
2434 reg_w(sd, R51x_I2C_SADDR_2, reg);
2435
2436 /* Initiate 2-byte write cycle */
2437 reg_w(sd, R518_I2C_CTL, 0x03);
2438 reg_r8(sd, R518_I2C_CTL);
2439
2440 /* Initiate 2-byte read cycle */
2441 reg_w(sd, R518_I2C_CTL, 0x05);
2442 reg_r8(sd, R518_I2C_CTL);
2443
2444 value = reg_r(sd, R51x_I2C_DATA);
2445 PDEBUG(D_USBI, "ov518_i2c_r %02x %02x", reg, value);
2446 return value;
2447 }
2448
2449 static void ovfx2_i2c_w(struct sd *sd, u8 reg, u8 value)
2450 {
2451 int ret;
2452
2453 if (sd->gspca_dev.usb_err < 0)
2454 return;
2455
2456 ret = usb_control_msg(sd->gspca_dev.dev,
2457 usb_sndctrlpipe(sd->gspca_dev.dev, 0),
2458 0x02,
2459 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2460 (u16) value, (u16) reg, NULL, 0, 500);
2461
2462 if (ret < 0) {
2463 pr_err("ovfx2_i2c_w %02x failed %d\n", reg, ret);
2464 sd->gspca_dev.usb_err = ret;
2465 }
2466
2467 PDEBUG(D_USBO, "ovfx2_i2c_w %02x %02x", reg, value);
2468 }
2469
2470 static int ovfx2_i2c_r(struct sd *sd, u8 reg)
2471 {
2472 int ret;
2473
2474 if (sd->gspca_dev.usb_err < 0)
2475 return -1;
2476
2477 ret = usb_control_msg(sd->gspca_dev.dev,
2478 usb_rcvctrlpipe(sd->gspca_dev.dev, 0),
2479 0x03,
2480 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2481 0, (u16) reg, sd->gspca_dev.usb_buf, 1, 500);
2482
2483 if (ret >= 0) {
2484 ret = sd->gspca_dev.usb_buf[0];
2485 PDEBUG(D_USBI, "ovfx2_i2c_r %02x %02x", reg, ret);
2486 } else {
2487 pr_err("ovfx2_i2c_r %02x failed %d\n", reg, ret);
2488 sd->gspca_dev.usb_err = ret;
2489 }
2490
2491 return ret;
2492 }
2493
2494 static void i2c_w(struct sd *sd, u8 reg, u8 value)
2495 {
2496 if (sd->sensor_reg_cache[reg] == value)
2497 return;
2498
2499 switch (sd->bridge) {
2500 case BRIDGE_OV511:
2501 case BRIDGE_OV511PLUS:
2502 ov511_i2c_w(sd, reg, value);
2503 break;
2504 case BRIDGE_OV518:
2505 case BRIDGE_OV518PLUS:
2506 case BRIDGE_OV519:
2507 ov518_i2c_w(sd, reg, value);
2508 break;
2509 case BRIDGE_OVFX2:
2510 ovfx2_i2c_w(sd, reg, value);
2511 break;
2512 case BRIDGE_W9968CF:
2513 w9968cf_i2c_w(sd, reg, value);
2514 break;
2515 }
2516
2517 if (sd->gspca_dev.usb_err >= 0) {
2518 /* Up on sensor reset empty the register cache */
2519 if (reg == 0x12 && (value & 0x80))
2520 memset(sd->sensor_reg_cache, -1,
2521 sizeof(sd->sensor_reg_cache));
2522 else
2523 sd->sensor_reg_cache[reg] = value;
2524 }
2525 }
2526
2527 static int i2c_r(struct sd *sd, u8 reg)
2528 {
2529 int ret = -1;
2530
2531 if (sd->sensor_reg_cache[reg] != -1)
2532 return sd->sensor_reg_cache[reg];
2533
2534 switch (sd->bridge) {
2535 case BRIDGE_OV511:
2536 case BRIDGE_OV511PLUS:
2537 ret = ov511_i2c_r(sd, reg);
2538 break;
2539 case BRIDGE_OV518:
2540 case BRIDGE_OV518PLUS:
2541 case BRIDGE_OV519:
2542 ret = ov518_i2c_r(sd, reg);
2543 break;
2544 case BRIDGE_OVFX2:
2545 ret = ovfx2_i2c_r(sd, reg);
2546 break;
2547 case BRIDGE_W9968CF:
2548 ret = w9968cf_i2c_r(sd, reg);
2549 break;
2550 }
2551
2552 if (ret >= 0)
2553 sd->sensor_reg_cache[reg] = ret;
2554
2555 return ret;
2556 }
2557
2558 /* Writes bits at positions specified by mask to an I2C reg. Bits that are in
2559 * the same position as 1's in "mask" are cleared and set to "value". Bits
2560 * that are in the same position as 0's in "mask" are preserved, regardless
2561 * of their respective state in "value".
2562 */
2563 static void i2c_w_mask(struct sd *sd,
2564 u8 reg,
2565 u8 value,
2566 u8 mask)
2567 {
2568 int rc;
2569 u8 oldval;
2570
2571 value &= mask; /* Enforce mask on value */
2572 rc = i2c_r(sd, reg);
2573 if (rc < 0)
2574 return;
2575 oldval = rc & ~mask; /* Clear the masked bits */
2576 value |= oldval; /* Set the desired bits */
2577 i2c_w(sd, reg, value);
2578 }
2579
2580 /* Temporarily stops OV511 from functioning. Must do this before changing
2581 * registers while the camera is streaming */
2582 static inline void ov51x_stop(struct sd *sd)
2583 {
2584 PDEBUG(D_STREAM, "stopping");
2585 sd->stopped = 1;
2586 switch (sd->bridge) {
2587 case BRIDGE_OV511:
2588 case BRIDGE_OV511PLUS:
2589 reg_w(sd, R51x_SYS_RESET, 0x3d);
2590 break;
2591 case BRIDGE_OV518:
2592 case BRIDGE_OV518PLUS:
2593 reg_w_mask(sd, R51x_SYS_RESET, 0x3a, 0x3a);
2594 break;
2595 case BRIDGE_OV519:
2596 reg_w(sd, OV519_R51_RESET1, 0x0f);
2597 reg_w(sd, OV519_R51_RESET1, 0x00);
2598 reg_w(sd, 0x22, 0x00); /* FRAR */
2599 break;
2600 case BRIDGE_OVFX2:
2601 reg_w_mask(sd, 0x0f, 0x00, 0x02);
2602 break;
2603 case BRIDGE_W9968CF:
2604 reg_w(sd, 0x3c, 0x0a05); /* stop USB transfer */
2605 break;
2606 }
2607 }
2608
2609 /* Restarts OV511 after ov511_stop() is called. Has no effect if it is not
2610 * actually stopped (for performance). */
2611 static inline void ov51x_restart(struct sd *sd)
2612 {
2613 PDEBUG(D_STREAM, "restarting");
2614 if (!sd->stopped)
2615 return;
2616 sd->stopped = 0;
2617
2618 /* Reinitialize the stream */
2619 switch (sd->bridge) {
2620 case BRIDGE_OV511:
2621 case BRIDGE_OV511PLUS:
2622 reg_w(sd, R51x_SYS_RESET, 0x00);
2623 break;
2624 case BRIDGE_OV518:
2625 case BRIDGE_OV518PLUS:
2626 reg_w(sd, 0x2f, 0x80);
2627 reg_w(sd, R51x_SYS_RESET, 0x00);
2628 break;
2629 case BRIDGE_OV519:
2630 reg_w(sd, OV519_R51_RESET1, 0x0f);
2631 reg_w(sd, OV519_R51_RESET1, 0x00);
2632 reg_w(sd, 0x22, 0x1d); /* FRAR */
2633 break;
2634 case BRIDGE_OVFX2:
2635 reg_w_mask(sd, 0x0f, 0x02, 0x02);
2636 break;
2637 case BRIDGE_W9968CF:
2638 reg_w(sd, 0x3c, 0x8a05); /* USB FIFO enable */
2639 break;
2640 }
2641 }
2642
2643 static void ov51x_set_slave_ids(struct sd *sd, u8 slave);
2644
2645 /* This does an initial reset of an OmniVision sensor and ensures that I2C
2646 * is synchronized. Returns <0 on failure.
2647 */
2648 static int init_ov_sensor(struct sd *sd, u8 slave)
2649 {
2650 int i;
2651
2652 ov51x_set_slave_ids(sd, slave);
2653
2654 /* Reset the sensor */
2655 i2c_w(sd, 0x12, 0x80);
2656
2657 /* Wait for it to initialize */
2658 msleep(150);
2659
2660 for (i = 0; i < i2c_detect_tries; i++) {
2661 if (i2c_r(sd, OV7610_REG_ID_HIGH) == 0x7f &&
2662 i2c_r(sd, OV7610_REG_ID_LOW) == 0xa2) {
2663 PDEBUG(D_PROBE, "I2C synced in %d attempt(s)", i);
2664 return 0;
2665 }
2666
2667 /* Reset the sensor */
2668 i2c_w(sd, 0x12, 0x80);
2669
2670 /* Wait for it to initialize */
2671 msleep(150);
2672
2673 /* Dummy read to sync I2C */
2674 if (i2c_r(sd, 0x00) < 0)
2675 return -1;
2676 }
2677 return -1;
2678 }
2679
2680 /* Set the read and write slave IDs. The "slave" argument is the write slave,
2681 * and the read slave will be set to (slave + 1).
2682 * This should not be called from outside the i2c I/O functions.
2683 * Sets I2C read and write slave IDs. Returns <0 for error
2684 */
2685 static void ov51x_set_slave_ids(struct sd *sd,
2686 u8 slave)
2687 {
2688 switch (sd->bridge) {
2689 case BRIDGE_OVFX2:
2690 reg_w(sd, OVFX2_I2C_ADDR, slave);
2691 return;
2692 case BRIDGE_W9968CF:
2693 sd->sensor_addr = slave;
2694 return;
2695 }
2696
2697 reg_w(sd, R51x_I2C_W_SID, slave);
2698 reg_w(sd, R51x_I2C_R_SID, slave + 1);
2699 }
2700
2701 static void write_regvals(struct sd *sd,
2702 const struct ov_regvals *regvals,
2703 int n)
2704 {
2705 while (--n >= 0) {
2706 reg_w(sd, regvals->reg, regvals->val);
2707 regvals++;
2708 }
2709 }
2710
2711 static void write_i2c_regvals(struct sd *sd,
2712 const struct ov_i2c_regvals *regvals,
2713 int n)
2714 {
2715 while (--n >= 0) {
2716 i2c_w(sd, regvals->reg, regvals->val);
2717 regvals++;
2718 }
2719 }
2720
2721 /****************************************************************************
2722 *
2723 * OV511 and sensor configuration
2724 *
2725 ***************************************************************************/
2726
2727 /* This initializes the OV2x10 / OV3610 / OV3620 / OV9600 */
2728 static void ov_hires_configure(struct sd *sd)
2729 {
2730 int high, low;
2731
2732 if (sd->bridge != BRIDGE_OVFX2) {
2733 pr_err("error hires sensors only supported with ovfx2\n");
2734 return;
2735 }
2736
2737 PDEBUG(D_PROBE, "starting ov hires configuration");
2738
2739 /* Detect sensor (sub)type */
2740 high = i2c_r(sd, 0x0a);
2741 low = i2c_r(sd, 0x0b);
2742 /* info("%x, %x", high, low); */
2743 switch (high) {
2744 case 0x96:
2745 switch (low) {
2746 case 0x40:
2747 PDEBUG(D_PROBE, "Sensor is a OV2610");
2748 sd->sensor = SEN_OV2610;
2749 return;
2750 case 0x41:
2751 PDEBUG(D_PROBE, "Sensor is a OV2610AE");
2752 sd->sensor = SEN_OV2610AE;
2753 return;
2754 case 0xb1:
2755 PDEBUG(D_PROBE, "Sensor is a OV9600");
2756 sd->sensor = SEN_OV9600;
2757 return;
2758 }
2759 break;
2760 case 0x36:
2761 if ((low & 0x0f) == 0x00) {
2762 PDEBUG(D_PROBE, "Sensor is a OV3610");
2763 sd->sensor = SEN_OV3610;
2764 return;
2765 }
2766 break;
2767 }
2768 pr_err("Error unknown sensor type: %02x%02x\n", high, low);
2769 }
2770
2771 /* This initializes the OV8110, OV8610 sensor. The OV8110 uses
2772 * the same register settings as the OV8610, since they are very similar.
2773 */
2774 static void ov8xx0_configure(struct sd *sd)
2775 {
2776 int rc;
2777
2778 PDEBUG(D_PROBE, "starting ov8xx0 configuration");
2779
2780 /* Detect sensor (sub)type */
2781 rc = i2c_r(sd, OV7610_REG_COM_I);
2782 if (rc < 0) {
2783 PDEBUG(D_ERR, "Error detecting sensor type");
2784 return;
2785 }
2786 if ((rc & 3) == 1)
2787 sd->sensor = SEN_OV8610;
2788 else
2789 pr_err("Unknown image sensor version: %d\n", rc & 3);
2790 }
2791
2792 /* This initializes the OV7610, OV7620, or OV76BE sensor. The OV76BE uses
2793 * the same register settings as the OV7610, since they are very similar.
2794 */
2795 static void ov7xx0_configure(struct sd *sd)
2796 {
2797 int rc, high, low;
2798
2799 PDEBUG(D_PROBE, "starting OV7xx0 configuration");
2800
2801 /* Detect sensor (sub)type */
2802 rc = i2c_r(sd, OV7610_REG_COM_I);
2803
2804 /* add OV7670 here
2805 * it appears to be wrongly detected as a 7610 by default */
2806 if (rc < 0) {
2807 PDEBUG(D_ERR, "Error detecting sensor type");
2808 return;
2809 }
2810 if ((rc & 3) == 3) {
2811 /* quick hack to make OV7670s work */
2812 high = i2c_r(sd, 0x0a);
2813 low = i2c_r(sd, 0x0b);
2814 /* info("%x, %x", high, low); */
2815 if (high == 0x76 && (low & 0xf0) == 0x70) {
2816 PDEBUG(D_PROBE, "Sensor is an OV76%02x", low);
2817 sd->sensor = SEN_OV7670;
2818 } else {
2819 PDEBUG(D_PROBE, "Sensor is an OV7610");
2820 sd->sensor = SEN_OV7610;
2821 }
2822 } else if ((rc & 3) == 1) {
2823 /* I don't know what's different about the 76BE yet. */
2824 if (i2c_r(sd, 0x15) & 1) {
2825 PDEBUG(D_PROBE, "Sensor is an OV7620AE");
2826 sd->sensor = SEN_OV7620AE;
2827 } else {
2828 PDEBUG(D_PROBE, "Sensor is an OV76BE");
2829 sd->sensor = SEN_OV76BE;
2830 }
2831 } else if ((rc & 3) == 0) {
2832 /* try to read product id registers */
2833 high = i2c_r(sd, 0x0a);
2834 if (high < 0) {
2835 PDEBUG(D_ERR, "Error detecting camera chip PID");
2836 return;
2837 }
2838 low = i2c_r(sd, 0x0b);
2839 if (low < 0) {
2840 PDEBUG(D_ERR, "Error detecting camera chip VER");
2841 return;
2842 }
2843 if (high == 0x76) {
2844 switch (low) {
2845 case 0x30:
2846 pr_err("Sensor is an OV7630/OV7635\n");
2847 pr_err("7630 is not supported by this driver\n");
2848 return;
2849 case 0x40:
2850 PDEBUG(D_PROBE, "Sensor is an OV7645");
2851 sd->sensor = SEN_OV7640; /* FIXME */
2852 break;
2853 case 0x45:
2854 PDEBUG(D_PROBE, "Sensor is an OV7645B");
2855 sd->sensor = SEN_OV7640; /* FIXME */
2856 break;
2857 case 0x48:
2858 PDEBUG(D_PROBE, "Sensor is an OV7648");
2859 sd->sensor = SEN_OV7648;
2860 break;
2861 case 0x60:
2862 PDEBUG(D_PROBE, "Sensor is a OV7660");
2863 sd->sensor = SEN_OV7660;
2864 break;
2865 default:
2866 PDEBUG(D_PROBE, "Unknown sensor: 0x76%x", low);
2867 return;
2868 }
2869 } else {
2870 PDEBUG(D_PROBE, "Sensor is an OV7620");
2871 sd->sensor = SEN_OV7620;
2872 }
2873 } else {
2874 pr_err("Unknown image sensor version: %d\n", rc & 3);
2875 }
2876 }
2877
2878 /* This initializes the OV6620, OV6630, OV6630AE, or OV6630AF sensor. */
2879 static void ov6xx0_configure(struct sd *sd)
2880 {
2881 int rc;
2882 PDEBUG(D_PROBE, "starting OV6xx0 configuration");
2883
2884 /* Detect sensor (sub)type */
2885 rc = i2c_r(sd, OV7610_REG_COM_I);
2886 if (rc < 0) {
2887 PDEBUG(D_ERR, "Error detecting sensor type");
2888 return;
2889 }
2890
2891 /* Ugh. The first two bits are the version bits, but
2892 * the entire register value must be used. I guess OVT
2893 * underestimated how many variants they would make. */
2894 switch (rc) {
2895 case 0x00:
2896 sd->sensor = SEN_OV6630;
2897 pr_warn("WARNING: Sensor is an OV66308. Your camera may have been misdetected in previous driver versions.\n");
2898 break;
2899 case 0x01:
2900 sd->sensor = SEN_OV6620;
2901 PDEBUG(D_PROBE, "Sensor is an OV6620");
2902 break;
2903 case 0x02:
2904 sd->sensor = SEN_OV6630;
2905 PDEBUG(D_PROBE, "Sensor is an OV66308AE");
2906 break;
2907 case 0x03:
2908 sd->sensor = SEN_OV66308AF;
2909 PDEBUG(D_PROBE, "Sensor is an OV66308AF");
2910 break;
2911 case 0x90:
2912 sd->sensor = SEN_OV6630;
2913 pr_warn("WARNING: Sensor is an OV66307. Your camera may have been misdetected in previous driver versions.\n");
2914 break;
2915 default:
2916 pr_err("FATAL: Unknown sensor version: 0x%02x\n", rc);
2917 return;
2918 }
2919
2920 /* Set sensor-specific vars */
2921 sd->sif = 1;
2922 }
2923
2924 /* Turns on or off the LED. Only has an effect with OV511+/OV518(+)/OV519 */
2925 static void ov51x_led_control(struct sd *sd, int on)
2926 {
2927 if (sd->invert_led)
2928 on = !on;
2929
2930 switch (sd->bridge) {
2931 /* OV511 has no LED control */
2932 case BRIDGE_OV511PLUS:
2933 reg_w(sd, R511_SYS_LED_CTL, on);
2934 break;
2935 case BRIDGE_OV518:
2936 case BRIDGE_OV518PLUS:
2937 reg_w_mask(sd, R518_GPIO_OUT, 0x02 * on, 0x02);
2938 break;
2939 case BRIDGE_OV519:
2940 reg_w_mask(sd, OV519_GPIO_DATA_OUT0, on, 1);
2941 break;
2942 }
2943 }
2944
2945 static void sd_reset_snapshot(struct gspca_dev *gspca_dev)
2946 {
2947 struct sd *sd = (struct sd *) gspca_dev;
2948
2949 if (!sd->snapshot_needs_reset)
2950 return;
2951
2952 /* Note it is important that we clear sd->snapshot_needs_reset,
2953 before actually clearing the snapshot state in the bridge
2954 otherwise we might race with the pkt_scan interrupt handler */
2955 sd->snapshot_needs_reset = 0;
2956
2957 switch (sd->bridge) {
2958 case BRIDGE_OV511:
2959 case BRIDGE_OV511PLUS:
2960 reg_w(sd, R51x_SYS_SNAP, 0x02);
2961 reg_w(sd, R51x_SYS_SNAP, 0x00);
2962 break;
2963 case BRIDGE_OV518:
2964 case BRIDGE_OV518PLUS:
2965 reg_w(sd, R51x_SYS_SNAP, 0x02); /* Reset */
2966 reg_w(sd, R51x_SYS_SNAP, 0x01); /* Enable */
2967 break;
2968 case BRIDGE_OV519:
2969 reg_w(sd, R51x_SYS_RESET, 0x40);
2970 reg_w(sd, R51x_SYS_RESET, 0x00);
2971 break;
2972 }
2973 }
2974
2975 static void ov51x_upload_quan_tables(struct sd *sd)
2976 {
2977 const unsigned char yQuanTable511[] = {
2978 0, 1, 1, 2, 2, 3, 3, 4,
2979 1, 1, 1, 2, 2, 3, 4, 4,
2980 1, 1, 2, 2, 3, 4, 4, 4,
2981 2, 2, 2, 3, 4, 4, 4, 4,
2982 2, 2, 3, 4, 4, 5, 5, 5,
2983 3, 3, 4, 4, 5, 5, 5, 5,
2984 3, 4, 4, 4, 5, 5, 5, 5,
2985 4, 4, 4, 4, 5, 5, 5, 5
2986 };
2987
2988 const unsigned char uvQuanTable511[] = {
2989 0, 2, 2, 3, 4, 4, 4, 4,
2990 2, 2, 2, 4, 4, 4, 4, 4,
2991 2, 2, 3, 4, 4, 4, 4, 4,
2992 3, 4, 4, 4, 4, 4, 4, 4,
2993 4, 4, 4, 4, 4, 4, 4, 4,
2994 4, 4, 4, 4, 4, 4, 4, 4,
2995 4, 4, 4, 4, 4, 4, 4, 4,
2996 4, 4, 4, 4, 4, 4, 4, 4
2997 };
2998
2999 /* OV518 quantization tables are 8x4 (instead of 8x8) */
3000 const unsigned char yQuanTable518[] = {
3001 5, 4, 5, 6, 6, 7, 7, 7,
3002 5, 5, 5, 5, 6, 7, 7, 7,
3003 6, 6, 6, 6, 7, 7, 7, 8,
3004 7, 7, 6, 7, 7, 7, 8, 8
3005 };
3006 const unsigned char uvQuanTable518[] = {
3007 6, 6, 6, 7, 7, 7, 7, 7,
3008 6, 6, 6, 7, 7, 7, 7, 7,
3009 6, 6, 6, 7, 7, 7, 7, 8,
3010 7, 7, 7, 7, 7, 7, 8, 8
3011 };
3012
3013 const unsigned char *pYTable, *pUVTable;
3014 unsigned char val0, val1;
3015 int i, size, reg = R51x_COMP_LUT_BEGIN;
3016
3017 PDEBUG(D_PROBE, "Uploading quantization tables");
3018
3019 if (sd->bridge == BRIDGE_OV511 || sd->bridge == BRIDGE_OV511PLUS) {
3020 pYTable = yQuanTable511;
3021 pUVTable = uvQuanTable511;
3022 size = 32;
3023 } else {
3024 pYTable = yQuanTable518;
3025 pUVTable = uvQuanTable518;
3026 size = 16;
3027 }
3028
3029 for (i = 0; i < size; i++) {
3030 val0 = *pYTable++;
3031 val1 = *pYTable++;
3032 val0 &= 0x0f;
3033 val1 &= 0x0f;
3034 val0 |= val1 << 4;
3035 reg_w(sd, reg, val0);
3036
3037 val0 = *pUVTable++;
3038 val1 = *pUVTable++;
3039 val0 &= 0x0f;
3040 val1 &= 0x0f;
3041 val0 |= val1 << 4;
3042 reg_w(sd, reg + size, val0);
3043
3044 reg++;
3045 }
3046 }
3047
3048 /* This initializes the OV511/OV511+ and the sensor */
3049 static void ov511_configure(struct gspca_dev *gspca_dev)
3050 {
3051 struct sd *sd = (struct sd *) gspca_dev;
3052
3053 /* For 511 and 511+ */
3054 const struct ov_regvals init_511[] = {
3055 { R51x_SYS_RESET, 0x7f },
3056 { R51x_SYS_INIT, 0x01 },
3057 { R51x_SYS_RESET, 0x7f },
3058 { R51x_SYS_INIT, 0x01 },
3059 { R51x_SYS_RESET, 0x3f },
3060 { R51x_SYS_INIT, 0x01 },
3061 { R51x_SYS_RESET, 0x3d },
3062 };
3063
3064 const struct ov_regvals norm_511[] = {
3065 { R511_DRAM_FLOW_CTL, 0x01 },
3066 { R51x_SYS_SNAP, 0x00 },
3067 { R51x_SYS_SNAP, 0x02 },
3068 { R51x_SYS_SNAP, 0x00 },
3069 { R511_FIFO_OPTS, 0x1f },
3070 { R511_COMP_EN, 0x00 },
3071 { R511_COMP_LUT_EN, 0x03 },
3072 };
3073
3074 const struct ov_regvals norm_511_p[] = {
3075 { R511_DRAM_FLOW_CTL, 0xff },
3076 { R51x_SYS_SNAP, 0x00 },
3077 { R51x_SYS_SNAP, 0x02 },
3078 { R51x_SYS_SNAP, 0x00 },
3079 { R511_FIFO_OPTS, 0xff },
3080 { R511_COMP_EN, 0x00 },
3081 { R511_COMP_LUT_EN, 0x03 },
3082 };
3083
3084 const struct ov_regvals compress_511[] = {
3085 { 0x70, 0x1f },
3086 { 0x71, 0x05 },
3087 { 0x72, 0x06 },
3088 { 0x73, 0x06 },
3089 { 0x74, 0x14 },
3090 { 0x75, 0x03 },
3091 { 0x76, 0x04 },
3092 { 0x77, 0x04 },
3093 };
3094
3095 PDEBUG(D_PROBE, "Device custom id %x", reg_r(sd, R51x_SYS_CUST_ID));
3096
3097 write_regvals(sd, init_511, ARRAY_SIZE(init_511));
3098
3099 switch (sd->bridge) {
3100 case BRIDGE_OV511:
3101 write_regvals(sd, norm_511, ARRAY_SIZE(norm_511));
3102 break;
3103 case BRIDGE_OV511PLUS:
3104 write_regvals(sd, norm_511_p, ARRAY_SIZE(norm_511_p));
3105 break;
3106 }
3107
3108 /* Init compression */
3109 write_regvals(sd, compress_511, ARRAY_SIZE(compress_511));
3110
3111 ov51x_upload_quan_tables(sd);
3112 }
3113
3114 /* This initializes the OV518/OV518+ and the sensor */
3115 static void ov518_configure(struct gspca_dev *gspca_dev)
3116 {
3117 struct sd *sd = (struct sd *) gspca_dev;
3118
3119 /* For 518 and 518+ */
3120 const struct ov_regvals init_518[] = {
3121 { R51x_SYS_RESET, 0x40 },
3122 { R51x_SYS_INIT, 0xe1 },
3123 { R51x_SYS_RESET, 0x3e },
3124 { R51x_SYS_INIT, 0xe1 },
3125 { R51x_SYS_RESET, 0x00 },
3126 { R51x_SYS_INIT, 0xe1 },
3127 { 0x46, 0x00 },
3128 { 0x5d, 0x03 },
3129 };
3130
3131 const struct ov_regvals norm_518[] = {
3132 { R51x_SYS_SNAP, 0x02 }, /* Reset */
3133 { R51x_SYS_SNAP, 0x01 }, /* Enable */
3134 { 0x31, 0x0f },
3135 { 0x5d, 0x03 },
3136 { 0x24, 0x9f },
3137 { 0x25, 0x90 },
3138 { 0x20, 0x00 },
3139 { 0x51, 0x04 },
3140 { 0x71, 0x19 },
3141 { 0x2f, 0x80 },
3142 };
3143
3144 const struct ov_regvals norm_518_p[] = {
3145 { R51x_SYS_SNAP, 0x02 }, /* Reset */
3146 { R51x_SYS_SNAP, 0x01 }, /* Enable */
3147 { 0x31, 0x0f },
3148 { 0x5d, 0x03 },
3149 { 0x24, 0x9f },
3150 { 0x25, 0x90 },
3151 { 0x20, 0x60 },
3152 { 0x51, 0x02 },
3153 { 0x71, 0x19 },
3154 { 0x40, 0xff },
3155 { 0x41, 0x42 },
3156 { 0x46, 0x00 },
3157 { 0x33, 0x04 },
3158 { 0x21, 0x19 },
3159 { 0x3f, 0x10 },
3160 { 0x2f, 0x80 },
3161 };
3162
3163 /* First 5 bits of custom ID reg are a revision ID on OV518 */
3164 PDEBUG(D_PROBE, "Device revision %d",
3165 0x1f & reg_r(sd, R51x_SYS_CUST_ID));
3166
3167 write_regvals(sd, init_518, ARRAY_SIZE(init_518));
3168
3169 /* Set LED GPIO pin to output mode */
3170 reg_w_mask(sd, R518_GPIO_CTL, 0x00, 0x02);
3171
3172 switch (sd->bridge) {
3173 case BRIDGE_OV518:
3174 write_regvals(sd, norm_518, ARRAY_SIZE(norm_518));
3175 break;
3176 case BRIDGE_OV518PLUS:
3177 write_regvals(sd, norm_518_p, ARRAY_SIZE(norm_518_p));
3178 break;
3179 }
3180
3181 ov51x_upload_quan_tables(sd);
3182
3183 reg_w(sd, 0x2f, 0x80);
3184 }
3185
3186 static void ov519_configure(struct sd *sd)
3187 {
3188 static const struct ov_regvals init_519[] = {
3189 { 0x5a, 0x6d }, /* EnableSystem */
3190 { 0x53, 0x9b }, /* don't enable the microcontroller */
3191 { OV519_R54_EN_CLK1, 0xff }, /* set bit2 to enable jpeg */
3192 { 0x5d, 0x03 },
3193 { 0x49, 0x01 },
3194 { 0x48, 0x00 },
3195 /* Set LED pin to output mode. Bit 4 must be cleared or sensor
3196 * detection will fail. This deserves further investigation. */
3197 { OV519_GPIO_IO_CTRL0, 0xee },
3198 { OV519_R51_RESET1, 0x0f },
3199 { OV519_R51_RESET1, 0x00 },
3200 { 0x22, 0x00 },
3201 /* windows reads 0x55 at this point*/
3202 };
3203
3204 write_regvals(sd, init_519, ARRAY_SIZE(init_519));
3205 }
3206
3207 static void ovfx2_configure(struct sd *sd)
3208 {
3209 static const struct ov_regvals init_fx2[] = {
3210 { 0x00, 0x60 },
3211 { 0x02, 0x01 },
3212 { 0x0f, 0x1d },
3213 { 0xe9, 0x82 },
3214 { 0xea, 0xc7 },
3215 { 0xeb, 0x10 },
3216 { 0xec, 0xf6 },
3217 };
3218
3219 sd->stopped = 1;
3220
3221 write_regvals(sd, init_fx2, ARRAY_SIZE(init_fx2));
3222 }
3223
3224 /* set the mode */
3225 /* This function works for ov7660 only */
3226 static void ov519_set_mode(struct sd *sd)
3227 {
3228 static const struct ov_regvals bridge_ov7660[2][10] = {
3229 {{0x10, 0x14}, {0x11, 0x1e}, {0x12, 0x00}, {0x13, 0x00},
3230 {0x14, 0x00}, {0x15, 0x00}, {0x16, 0x00}, {0x20, 0x0c},
3231 {0x25, 0x01}, {0x26, 0x00}},
3232 {{0x10, 0x28}, {0x11, 0x3c}, {0x12, 0x00}, {0x13, 0x00},
3233 {0x14, 0x00}, {0x15, 0x00}, {0x16, 0x00}, {0x20, 0x0c},
3234 {0x25, 0x03}, {0x26, 0x00}}
3235 };
3236 static const struct ov_i2c_regvals sensor_ov7660[2][3] = {
3237 {{0x12, 0x00}, {0x24, 0x00}, {0x0c, 0x0c}},
3238 {{0x12, 0x00}, {0x04, 0x00}, {0x0c, 0x00}}
3239 };
3240 static const struct ov_i2c_regvals sensor_ov7660_2[] = {
3241 {OV7670_R17_HSTART, 0x13},
3242 {OV7670_R18_HSTOP, 0x01},
3243 {OV7670_R32_HREF, 0x92},
3244 {OV7670_R19_VSTART, 0x02},
3245 {OV7670_R1A_VSTOP, 0x7a},
3246 {OV7670_R03_VREF, 0x00},
3247 /* {0x33, 0x00}, */
3248 /* {0x34, 0x07}, */
3249 /* {0x36, 0x00}, */
3250 /* {0x6b, 0x0a}, */
3251 };
3252
3253 write_regvals(sd, bridge_ov7660[sd->gspca_dev.curr_mode],
3254 ARRAY_SIZE(bridge_ov7660[0]));
3255 write_i2c_regvals(sd, sensor_ov7660[sd->gspca_dev.curr_mode],
3256 ARRAY_SIZE(sensor_ov7660[0]));
3257 write_i2c_regvals(sd, sensor_ov7660_2,
3258 ARRAY_SIZE(sensor_ov7660_2));
3259 }
3260
3261 /* set the frame rate */
3262 /* This function works for sensors ov7640, ov7648 ov7660 and ov7670 only */
3263 static void ov519_set_fr(struct sd *sd)
3264 {
3265 int fr;
3266 u8 clock;
3267 /* frame rate table with indices:
3268 * - mode = 0: 320x240, 1: 640x480
3269 * - fr rate = 0: 30, 1: 25, 2: 20, 3: 15, 4: 10, 5: 5
3270 * - reg = 0: bridge a4, 1: bridge 23, 2: sensor 11 (clock)
3271 */
3272 static const u8 fr_tb[2][6][3] = {
3273 {{0x04, 0xff, 0x00},
3274 {0x04, 0x1f, 0x00},
3275 {0x04, 0x1b, 0x00},
3276 {0x04, 0x15, 0x00},
3277 {0x04, 0x09, 0x00},
3278 {0x04, 0x01, 0x00}},
3279 {{0x0c, 0xff, 0x00},
3280 {0x0c, 0x1f, 0x00},
3281 {0x0c, 0x1b, 0x00},
3282 {0x04, 0xff, 0x01},
3283 {0x04, 0x1f, 0x01},
3284 {0x04, 0x1b, 0x01}},
3285 };
3286
3287 if (frame_rate > 0)
3288 sd->frame_rate = frame_rate;
3289 if (sd->frame_rate >= 30)
3290 fr = 0;
3291 else if (sd->frame_rate >= 25)
3292 fr = 1;
3293 else if (sd->frame_rate >= 20)
3294 fr = 2;
3295 else if (sd->frame_rate >= 15)
3296 fr = 3;
3297 else if (sd->frame_rate >= 10)
3298 fr = 4;
3299 else
3300 fr = 5;
3301 reg_w(sd, 0xa4, fr_tb[sd->gspca_dev.curr_mode][fr][0]);
3302 reg_w(sd, 0x23, fr_tb[sd->gspca_dev.curr_mode][fr][1]);
3303 clock = fr_tb[sd->gspca_dev.curr_mode][fr][2];
3304 if (sd->sensor == SEN_OV7660)
3305 clock |= 0x80; /* enable double clock */
3306 ov518_i2c_w(sd, OV7670_R11_CLKRC, clock);
3307 }
3308
3309 static void setautogain(struct gspca_dev *gspca_dev)
3310 {
3311 struct sd *sd = (struct sd *) gspca_dev;
3312
3313 i2c_w_mask(sd, 0x13, sd->ctrls[AUTOGAIN].val ? 0x05 : 0x00, 0x05);
3314 }
3315
3316 /* this function is called at probe time */
3317 static int sd_config(struct gspca_dev *gspca_dev,
3318 const struct usb_device_id *id)
3319 {
3320 struct sd *sd = (struct sd *) gspca_dev;
3321 struct cam *cam = &gspca_dev->cam;
3322
3323 sd->bridge = id->driver_info & BRIDGE_MASK;
3324 sd->invert_led = (id->driver_info & BRIDGE_INVERT_LED) != 0;
3325
3326 switch (sd->bridge) {
3327 case BRIDGE_OV511:
3328 case BRIDGE_OV511PLUS:
3329 cam->cam_mode = ov511_vga_mode;
3330 cam->nmodes = ARRAY_SIZE(ov511_vga_mode);
3331 break;
3332 case BRIDGE_OV518:
3333 case BRIDGE_OV518PLUS:
3334 cam->cam_mode = ov518_vga_mode;
3335 cam->nmodes = ARRAY_SIZE(ov518_vga_mode);
3336 break;
3337 case BRIDGE_OV519:
3338 cam->cam_mode = ov519_vga_mode;
3339 cam->nmodes = ARRAY_SIZE(ov519_vga_mode);
3340 break;
3341 case BRIDGE_OVFX2:
3342 cam->cam_mode = ov519_vga_mode;
3343 cam->nmodes = ARRAY_SIZE(ov519_vga_mode);
3344 cam->bulk_size = OVFX2_BULK_SIZE;
3345 cam->bulk_nurbs = MAX_NURBS;
3346 cam->bulk = 1;
3347 break;
3348 case BRIDGE_W9968CF:
3349 cam->cam_mode = w9968cf_vga_mode;
3350 cam->nmodes = ARRAY_SIZE(w9968cf_vga_mode);
3351 cam->reverse_alts = 1;
3352 break;
3353 }
3354
3355 gspca_dev->cam.ctrls = sd->ctrls;
3356 sd->quality = QUALITY_DEF;
3357 sd->frame_rate = 15;
3358
3359 return 0;
3360 }
3361
3362 /* this function is called at probe and resume time */
3363 static int sd_init(struct gspca_dev *gspca_dev)
3364 {
3365 struct sd *sd = (struct sd *) gspca_dev;
3366 struct cam *cam = &gspca_dev->cam;
3367
3368 switch (sd->bridge) {
3369 case BRIDGE_OV511:
3370 case BRIDGE_OV511PLUS:
3371 ov511_configure(gspca_dev);
3372 break;
3373 case BRIDGE_OV518:
3374 case BRIDGE_OV518PLUS:
3375 ov518_configure(gspca_dev);
3376 break;
3377 case BRIDGE_OV519:
3378 ov519_configure(sd);
3379 break;
3380 case BRIDGE_OVFX2:
3381 ovfx2_configure(sd);
3382 break;
3383 case BRIDGE_W9968CF:
3384 w9968cf_configure(sd);
3385 break;
3386 }
3387
3388 /* The OV519 must be more aggressive about sensor detection since
3389 * I2C write will never fail if the sensor is not present. We have
3390 * to try to initialize the sensor to detect its presence */
3391 sd->sensor = -1;
3392
3393 /* Test for 76xx */
3394 if (init_ov_sensor(sd, OV7xx0_SID) >= 0) {
3395 ov7xx0_configure(sd);
3396
3397 /* Test for 6xx0 */
3398 } else if (init_ov_sensor(sd, OV6xx0_SID) >= 0) {
3399 ov6xx0_configure(sd);
3400
3401 /* Test for 8xx0 */
3402 } else if (init_ov_sensor(sd, OV8xx0_SID) >= 0) {
3403 ov8xx0_configure(sd);
3404
3405 /* Test for 3xxx / 2xxx */
3406 } else if (init_ov_sensor(sd, OV_HIRES_SID) >= 0) {
3407 ov_hires_configure(sd);
3408 } else {
3409 pr_err("Can't determine sensor slave IDs\n");
3410 goto error;
3411 }
3412
3413 if (sd->sensor < 0)
3414 goto error;
3415
3416 ov51x_led_control(sd, 0); /* turn LED off */
3417
3418 switch (sd->bridge) {
3419 case BRIDGE_OV511:
3420 case BRIDGE_OV511PLUS:
3421 if (sd->sif) {
3422 cam->cam_mode = ov511_sif_mode;
3423 cam->nmodes = ARRAY_SIZE(ov511_sif_mode);
3424 }
3425 break;
3426 case BRIDGE_OV518:
3427 case BRIDGE_OV518PLUS:
3428 if (sd->sif) {
3429 cam->cam_mode = ov518_sif_mode;
3430 cam->nmodes = ARRAY_SIZE(ov518_sif_mode);
3431 }
3432 break;
3433 case BRIDGE_OV519:
3434 if (sd->sif) {
3435 cam->cam_mode = ov519_sif_mode;
3436 cam->nmodes = ARRAY_SIZE(ov519_sif_mode);
3437 }
3438 break;
3439 case BRIDGE_OVFX2:
3440 switch (sd->sensor) {
3441 case SEN_OV2610:
3442 case SEN_OV2610AE:
3443 cam->cam_mode = ovfx2_ov2610_mode;
3444 cam->nmodes = ARRAY_SIZE(ovfx2_ov2610_mode);
3445 break;
3446 case SEN_OV3610:
3447 cam->cam_mode = ovfx2_ov3610_mode;
3448 cam->nmodes = ARRAY_SIZE(ovfx2_ov3610_mode);
3449 break;
3450 case SEN_OV9600:
3451 cam->cam_mode = ovfx2_ov9600_mode;
3452 cam->nmodes = ARRAY_SIZE(ovfx2_ov9600_mode);
3453 break;
3454 default:
3455 if (sd->sif) {
3456 cam->cam_mode = ov519_sif_mode;
3457 cam->nmodes = ARRAY_SIZE(ov519_sif_mode);
3458 }
3459 break;
3460 }
3461 break;
3462 case BRIDGE_W9968CF:
3463 if (sd->sif)
3464 cam->nmodes = ARRAY_SIZE(w9968cf_vga_mode) - 1;
3465
3466 /* w9968cf needs initialisation once the sensor is known */
3467 w9968cf_init(sd);
3468 break;
3469 }
3470
3471 gspca_dev->ctrl_dis = ctrl_dis[sd->sensor];
3472
3473 /* initialize the sensor */
3474 switch (sd->sensor) {
3475 case SEN_OV2610:
3476 write_i2c_regvals(sd, norm_2610, ARRAY_SIZE(norm_2610));
3477
3478 /* Enable autogain, autoexpo, awb, bandfilter */
3479 i2c_w_mask(sd, 0x13, 0x27, 0x27);
3480 break;
3481 case SEN_OV2610AE:
3482 write_i2c_regvals(sd, norm_2610ae, ARRAY_SIZE(norm_2610ae));
3483
3484 /* enable autoexpo */
3485 i2c_w_mask(sd, 0x13, 0x05, 0x05);
3486 break;
3487 case SEN_OV3610:
3488 write_i2c_regvals(sd, norm_3620b, ARRAY_SIZE(norm_3620b));
3489
3490 /* Enable autogain, autoexpo, awb, bandfilter */
3491 i2c_w_mask(sd, 0x13, 0x27, 0x27);
3492 break;
3493 case SEN_OV6620:
3494 write_i2c_regvals(sd, norm_6x20, ARRAY_SIZE(norm_6x20));
3495 break;
3496 case SEN_OV6630:
3497 case SEN_OV66308AF:
3498 sd->ctrls[CONTRAST].def = 200;
3499 /* The default is too low for the ov6630 */
3500 write_i2c_regvals(sd, norm_6x30, ARRAY_SIZE(norm_6x30));
3501 break;
3502 default:
3503 /* case SEN_OV7610: */
3504 /* case SEN_OV76BE: */
3505 write_i2c_regvals(sd, norm_7610, ARRAY_SIZE(norm_7610));
3506 i2c_w_mask(sd, 0x0e, 0x00, 0x40);
3507 break;
3508 case SEN_OV7620:
3509 case SEN_OV7620AE:
3510 write_i2c_regvals(sd, norm_7620, ARRAY_SIZE(norm_7620));
3511 break;
3512 case SEN_OV7640:
3513 case SEN_OV7648:
3514 write_i2c_regvals(sd, norm_7640, ARRAY_SIZE(norm_7640));
3515 break;
3516 case SEN_OV7660:
3517 i2c_w(sd, OV7670_R12_COM7, OV7670_COM7_RESET);
3518 msleep(14);
3519 reg_w(sd, OV519_R57_SNAPSHOT, 0x23);
3520 write_regvals(sd, init_519_ov7660,
3521 ARRAY_SIZE(init_519_ov7660));
3522 write_i2c_regvals(sd, norm_7660, ARRAY_SIZE(norm_7660));
3523 sd->gspca_dev.curr_mode = 1; /* 640x480 */
3524 ov519_set_mode(sd);
3525 ov519_set_fr(sd);
3526 sd->ctrls[COLORS].max = 4; /* 0..4 */
3527 sd->ctrls[COLORS].val =
3528 sd->ctrls[COLORS].def = 2;
3529 setcolors(gspca_dev);
3530 sd->ctrls[CONTRAST].max = 6; /* 0..6 */
3531 sd->ctrls[CONTRAST].val =
3532 sd->ctrls[CONTRAST].def = 3;
3533 setcontrast(gspca_dev);
3534 sd->ctrls[BRIGHTNESS].max = 6; /* 0..6 */
3535 sd->ctrls[BRIGHTNESS].val =
3536 sd->ctrls[BRIGHTNESS].def = 3;
3537 setbrightness(gspca_dev);
3538 sd_reset_snapshot(gspca_dev);
3539 ov51x_restart(sd);
3540 ov51x_stop(sd); /* not in win traces */
3541 ov51x_led_control(sd, 0);
3542 break;
3543 case SEN_OV7670:
3544 sd->ctrls[FREQ].max = 3; /* auto */
3545 sd->ctrls[FREQ].def = 3;
3546 write_i2c_regvals(sd, norm_7670, ARRAY_SIZE(norm_7670));
3547 break;
3548 case SEN_OV8610:
3549 write_i2c_regvals(sd, norm_8610, ARRAY_SIZE(norm_8610));
3550 break;
3551 case SEN_OV9600:
3552 write_i2c_regvals(sd, norm_9600, ARRAY_SIZE(norm_9600));
3553
3554 /* enable autoexpo */
3555 /* i2c_w_mask(sd, 0x13, 0x05, 0x05); */
3556 break;
3557 }
3558 return gspca_dev->usb_err;
3559 error:
3560 PDEBUG(D_ERR, "OV519 Config failed");
3561 return -EINVAL;
3562 }
3563
3564 /* function called at start time before URB creation */
3565 static int sd_isoc_init(struct gspca_dev *gspca_dev)
3566 {
3567 struct sd *sd = (struct sd *) gspca_dev;
3568
3569 switch (sd->bridge) {
3570 case BRIDGE_OVFX2:
3571 if (gspca_dev->width != 800)
3572 gspca_dev->cam.bulk_size = OVFX2_BULK_SIZE;
3573 else
3574 gspca_dev->cam.bulk_size = 7 * 4096;
3575 break;
3576 }
3577 return 0;
3578 }
3579
3580 /* Set up the OV511/OV511+ with the given image parameters.
3581 *
3582 * Do not put any sensor-specific code in here (including I2C I/O functions)
3583 */
3584 static void ov511_mode_init_regs(struct sd *sd)
3585 {
3586 int hsegs, vsegs, packet_size, fps, needed;
3587 int interlaced = 0;
3588 struct usb_host_interface *alt;
3589 struct usb_interface *intf;
3590
3591 intf = usb_ifnum_to_if(sd->gspca_dev.dev, sd->gspca_dev.iface);
3592 alt = usb_altnum_to_altsetting(intf, sd->gspca_dev.alt);
3593 if (!alt) {
3594 pr_err("Couldn't get altsetting\n");
3595 sd->gspca_dev.usb_err = -EIO;
3596 return;
3597 }
3598
3599 packet_size = le16_to_cpu(alt->endpoint[0].desc.wMaxPacketSize);
3600 reg_w(sd, R51x_FIFO_PSIZE, packet_size >> 5);
3601
3602 reg_w(sd, R511_CAM_UV_EN, 0x01);
3603 reg_w(sd, R511_SNAP_UV_EN, 0x01);
3604 reg_w(sd, R511_SNAP_OPTS, 0x03);
3605
3606 /* Here I'm assuming that snapshot size == image size.
3607 * I hope that's always true. --claudio
3608 */
3609 hsegs = (sd->gspca_dev.width >> 3) - 1;
3610 vsegs = (sd->gspca_dev.height >> 3) - 1;
3611
3612 reg_w(sd, R511_CAM_PXCNT, hsegs);
3613 reg_w(sd, R511_CAM_LNCNT, vsegs);
3614 reg_w(sd, R511_CAM_PXDIV, 0x00);
3615 reg_w(sd, R511_CAM_LNDIV, 0x00);
3616
3617 /* YUV420, low pass filter on */
3618 reg_w(sd, R511_CAM_OPTS, 0x03);
3619
3620 /* Snapshot additions */
3621 reg_w(sd, R511_SNAP_PXCNT, hsegs);
3622 reg_w(sd, R511_SNAP_LNCNT, vsegs);
3623 reg_w(sd, R511_SNAP_PXDIV, 0x00);
3624 reg_w(sd, R511_SNAP_LNDIV, 0x00);
3625
3626 /******** Set the framerate ********/
3627 if (frame_rate > 0)
3628 sd->frame_rate = frame_rate;
3629
3630 switch (sd->sensor) {
3631 case SEN_OV6620:
3632 /* No framerate control, doesn't like higher rates yet */
3633 sd->clockdiv = 3;
3634 break;
3635
3636 /* Note once the FIXME's in mode_init_ov_sensor_regs() are fixed
3637 for more sensors we need to do this for them too */
3638 case SEN_OV7620:
3639 case SEN_OV7620AE:
3640 case SEN_OV7640:
3641 case SEN_OV7648:
3642 case SEN_OV76BE:
3643 if (sd->gspca_dev.width == 320)
3644 interlaced = 1;
3645 /* Fall through */
3646 case SEN_OV6630:
3647 case SEN_OV7610:
3648 case SEN_OV7670:
3649 switch (sd->frame_rate) {
3650 case 30:
3651 case 25:
3652 /* Not enough bandwidth to do 640x480 @ 30 fps */
3653 if (sd->gspca_dev.width != 640) {
3654 sd->clockdiv = 0;
3655 break;
3656 }
3657 /* Fall through for 640x480 case */
3658 default:
3659 /* case 20: */
3660 /* case 15: */
3661 sd->clockdiv = 1;
3662 break;
3663 case 10:
3664 sd->clockdiv = 2;
3665 break;
3666 case 5:
3667 sd->clockdiv = 5;
3668 break;
3669 }
3670 if (interlaced) {
3671 sd->clockdiv = (sd->clockdiv + 1) * 2 - 1;
3672 /* Higher then 10 does not work */
3673 if (sd->clockdiv > 10)
3674 sd->clockdiv = 10;
3675 }
3676 break;
3677
3678 case SEN_OV8610:
3679 /* No framerate control ?? */
3680 sd->clockdiv = 0;
3681 break;
3682 }
3683
3684 /* Check if we have enough bandwidth to disable compression */
3685 fps = (interlaced ? 60 : 30) / (sd->clockdiv + 1) + 1;
3686 needed = fps * sd->gspca_dev.width * sd->gspca_dev.height * 3 / 2;
3687 /* 1400 is a conservative estimate of the max nr of isoc packets/sec */
3688 if (needed > 1400 * packet_size) {
3689 /* Enable Y and UV quantization and compression */
3690 reg_w(sd, R511_COMP_EN, 0x07);
3691 reg_w(sd, R511_COMP_LUT_EN, 0x03);
3692 } else {
3693 reg_w(sd, R511_COMP_EN, 0x06);
3694 reg_w(sd, R511_COMP_LUT_EN, 0x00);
3695 }
3696
3697 reg_w(sd, R51x_SYS_RESET, OV511_RESET_OMNICE);
3698 reg_w(sd, R51x_SYS_RESET, 0);
3699 }
3700
3701 /* Sets up the OV518/OV518+ with the given image parameters
3702 *
3703 * OV518 needs a completely different approach, until we can figure out what
3704 * the individual registers do. Also, only 15 FPS is supported now.
3705 *
3706 * Do not put any sensor-specific code in here (including I2C I/O functions)
3707 */
3708 static void ov518_mode_init_regs(struct sd *sd)
3709 {
3710 int hsegs, vsegs, packet_size;
3711 struct usb_host_interface *alt;
3712 struct usb_interface *intf;
3713
3714 intf = usb_ifnum_to_if(sd->gspca_dev.dev, sd->gspca_dev.iface);
3715 alt = usb_altnum_to_altsetting(intf, sd->gspca_dev.alt);
3716 if (!alt) {
3717 pr_err("Couldn't get altsetting\n");
3718 sd->gspca_dev.usb_err = -EIO;
3719 return;
3720 }
3721
3722 packet_size = le16_to_cpu(alt->endpoint[0].desc.wMaxPacketSize);
3723 ov518_reg_w32(sd, R51x_FIFO_PSIZE, packet_size & ~7, 2);
3724
3725 /******** Set the mode ********/
3726 reg_w(sd, 0x2b, 0);
3727 reg_w(sd, 0x2c, 0);
3728 reg_w(sd, 0x2d, 0);
3729 reg_w(sd, 0x2e, 0);
3730 reg_w(sd, 0x3b, 0);
3731 reg_w(sd, 0x3c, 0);
3732 reg_w(sd, 0x3d, 0);
3733 reg_w(sd, 0x3e, 0);
3734
3735 if (sd->bridge == BRIDGE_OV518) {
3736 /* Set 8-bit (YVYU) input format */
3737 reg_w_mask(sd, 0x20, 0x08, 0x08);
3738
3739 /* Set 12-bit (4:2:0) output format */
3740 reg_w_mask(sd, 0x28, 0x80, 0xf0);
3741 reg_w_mask(sd, 0x38, 0x80, 0xf0);
3742 } else {
3743 reg_w(sd, 0x28, 0x80);
3744 reg_w(sd, 0x38, 0x80);
3745 }
3746
3747 hsegs = sd->gspca_dev.width / 16;
3748 vsegs = sd->gspca_dev.height / 4;
3749
3750 reg_w(sd, 0x29, hsegs);
3751 reg_w(sd, 0x2a, vsegs);
3752
3753 reg_w(sd, 0x39, hsegs);
3754 reg_w(sd, 0x3a, vsegs);
3755
3756 /* Windows driver does this here; who knows why */
3757 reg_w(sd, 0x2f, 0x80);
3758
3759 /******** Set the framerate ********/
3760 sd->clockdiv = 1;
3761
3762 /* Mode independent, but framerate dependent, regs */
3763 /* 0x51: Clock divider; Only works on some cams which use 2 crystals */
3764 reg_w(sd, 0x51, 0x04);
3765 reg_w(sd, 0x22, 0x18);
3766 reg_w(sd, 0x23, 0xff);
3767
3768 if (sd->bridge == BRIDGE_OV518PLUS) {
3769 switch (sd->sensor) {
3770 case SEN_OV7620AE:
3771 if (sd->gspca_dev.width == 320) {
3772 reg_w(sd, 0x20, 0x00);
3773 reg_w(sd, 0x21, 0x19);
3774 } else {
3775 reg_w(sd, 0x20, 0x60);
3776 reg_w(sd, 0x21, 0x1f);
3777 }
3778 break;
3779 case SEN_OV7620:
3780 reg_w(sd, 0x20, 0x00);
3781 reg_w(sd, 0x21, 0x19);
3782 break;
3783 default:
3784 reg_w(sd, 0x21, 0x19);
3785 }
3786 } else
3787 reg_w(sd, 0x71, 0x17); /* Compression-related? */
3788
3789 /* FIXME: Sensor-specific */
3790 /* Bit 5 is what matters here. Of course, it is "reserved" */
3791 i2c_w(sd, 0x54, 0x23);
3792
3793 reg_w(sd, 0x2f, 0x80);
3794
3795 if (sd->bridge == BRIDGE_OV518PLUS) {
3796 reg_w(sd, 0x24, 0x94);
3797 reg_w(sd, 0x25, 0x90);
3798 ov518_reg_w32(sd, 0xc4, 400, 2); /* 190h */
3799 ov518_reg_w32(sd, 0xc6, 540, 2); /* 21ch */
3800 ov518_reg_w32(sd, 0xc7, 540, 2); /* 21ch */
3801 ov518_reg_w32(sd, 0xc8, 108, 2); /* 6ch */
3802 ov518_reg_w32(sd, 0xca, 131098, 3); /* 2001ah */
3803 ov518_reg_w32(sd, 0xcb, 532, 2); /* 214h */
3804 ov518_reg_w32(sd, 0xcc, 2400, 2); /* 960h */
3805 ov518_reg_w32(sd, 0xcd, 32, 2); /* 20h */
3806 ov518_reg_w32(sd, 0xce, 608, 2); /* 260h */
3807 } else {
3808 reg_w(sd, 0x24, 0x9f);
3809 reg_w(sd, 0x25, 0x90);
3810 ov518_reg_w32(sd, 0xc4, 400, 2); /* 190h */
3811 ov518_reg_w32(sd, 0xc6, 381, 2); /* 17dh */
3812 ov518_reg_w32(sd, 0xc7, 381, 2); /* 17dh */
3813 ov518_reg_w32(sd, 0xc8, 128, 2); /* 80h */
3814 ov518_reg_w32(sd, 0xca, 183331, 3); /* 2cc23h */
3815 ov518_reg_w32(sd, 0xcb, 746, 2); /* 2eah */
3816 ov518_reg_w32(sd, 0xcc, 1750, 2); /* 6d6h */
3817 ov518_reg_w32(sd, 0xcd, 45, 2); /* 2dh */
3818 ov518_reg_w32(sd, 0xce, 851, 2); /* 353h */
3819 }
3820
3821 reg_w(sd, 0x2f, 0x80);
3822 }
3823
3824 /* Sets up the OV519 with the given image parameters
3825 *
3826 * OV519 needs a completely different approach, until we can figure out what
3827 * the individual registers do.
3828 *
3829 * Do not put any sensor-specific code in here (including I2C I/O functions)
3830 */
3831 static void ov519_mode_init_regs(struct sd *sd)
3832 {
3833 static const struct ov_regvals mode_init_519_ov7670[] = {
3834 { 0x5d, 0x03 }, /* Turn off suspend mode */
3835 { 0x53, 0x9f }, /* was 9b in 1.65-1.08 */
3836 { OV519_R54_EN_CLK1, 0x0f }, /* bit2 (jpeg enable) */
3837 { 0xa2, 0x20 }, /* a2-a5 are undocumented */
3838 { 0xa3, 0x18 },
3839 { 0xa4, 0x04 },
3840 { 0xa5, 0x28 },
3841 { 0x37, 0x00 }, /* SetUsbInit */
3842 { 0x55, 0x02 }, /* 4.096 Mhz audio clock */
3843 /* Enable both fields, YUV Input, disable defect comp (why?) */
3844 { 0x20, 0x0c },
3845 { 0x21, 0x38 },
3846 { 0x22, 0x1d },
3847 { 0x17, 0x50 }, /* undocumented */
3848 { 0x37, 0x00 }, /* undocumented */
3849 { 0x40, 0xff }, /* I2C timeout counter */
3850 { 0x46, 0x00 }, /* I2C clock prescaler */
3851 { 0x59, 0x04 }, /* new from windrv 090403 */
3852 { 0xff, 0x00 }, /* undocumented */
3853 /* windows reads 0x55 at this point, why? */
3854 };
3855
3856 static const struct ov_regvals mode_init_519[] = {
3857 { 0x5d, 0x03 }, /* Turn off suspend mode */
3858 { 0x53, 0x9f }, /* was 9b in 1.65-1.08 */
3859 { OV519_R54_EN_CLK1, 0x0f }, /* bit2 (jpeg enable) */
3860 { 0xa2, 0x20 }, /* a2-a5 are undocumented */
3861 { 0xa3, 0x18 },
3862 { 0xa4, 0x04 },
3863 { 0xa5, 0x28 },
3864 { 0x37, 0x00 }, /* SetUsbInit */
3865 { 0x55, 0x02 }, /* 4.096 Mhz audio clock */
3866 /* Enable both fields, YUV Input, disable defect comp (why?) */
3867 { 0x22, 0x1d },
3868 { 0x17, 0x50 }, /* undocumented */
3869 { 0x37, 0x00 }, /* undocumented */
3870 { 0x40, 0xff }, /* I2C timeout counter */
3871 { 0x46, 0x00 }, /* I2C clock prescaler */
3872 { 0x59, 0x04 }, /* new from windrv 090403 */
3873 { 0xff, 0x00 }, /* undocumented */
3874 /* windows reads 0x55 at this point, why? */
3875 };
3876
3877 /******** Set the mode ********/
3878 switch (sd->sensor) {
3879 default:
3880 write_regvals(sd, mode_init_519, ARRAY_SIZE(mode_init_519));
3881 if (sd->sensor == SEN_OV7640 ||
3882 sd->sensor == SEN_OV7648) {
3883 /* Select 8-bit input mode */
3884 reg_w_mask(sd, OV519_R20_DFR, 0x10, 0x10);
3885 }
3886 break;
3887 case SEN_OV7660:
3888 return; /* done by ov519_set_mode/fr() */
3889 case SEN_OV7670:
3890 write_regvals(sd, mode_init_519_ov7670,
3891 ARRAY_SIZE(mode_init_519_ov7670));
3892 break;
3893 }
3894
3895 reg_w(sd, OV519_R10_H_SIZE, sd->gspca_dev.width >> 4);
3896 reg_w(sd, OV519_R11_V_SIZE, sd->gspca_dev.height >> 3);
3897 if (sd->sensor == SEN_OV7670 &&
3898 sd->gspca_dev.cam.cam_mode[sd->gspca_dev.curr_mode].priv)
3899 reg_w(sd, OV519_R12_X_OFFSETL, 0x04);
3900 else if (sd->sensor == SEN_OV7648 &&
3901 sd->gspca_dev.cam.cam_mode[sd->gspca_dev.curr_mode].priv)
3902 reg_w(sd, OV519_R12_X_OFFSETL, 0x01);
3903 else
3904 reg_w(sd, OV519_R12_X_OFFSETL, 0x00);
3905 reg_w(sd, OV519_R13_X_OFFSETH, 0x00);
3906 reg_w(sd, OV519_R14_Y_OFFSETL, 0x00);
3907 reg_w(sd, OV519_R15_Y_OFFSETH, 0x00);
3908 reg_w(sd, OV519_R16_DIVIDER, 0x00);
3909 reg_w(sd, OV519_R25_FORMAT, 0x03); /* YUV422 */
3910 reg_w(sd, 0x26, 0x00); /* Undocumented */
3911
3912 /******** Set the framerate ********/
3913 if (frame_rate > 0)
3914 sd->frame_rate = frame_rate;
3915
3916 /* FIXME: These are only valid at the max resolution. */
3917 sd->clockdiv = 0;
3918 switch (sd->sensor) {
3919 case SEN_OV7640:
3920 case SEN_OV7648:
3921 switch (sd->frame_rate) {
3922 default:
3923 /* case 30: */
3924 reg_w(sd, 0xa4, 0x0c);
3925 reg_w(sd, 0x23, 0xff);
3926 break;
3927 case 25:
3928 reg_w(sd, 0xa4, 0x0c);
3929 reg_w(sd, 0x23, 0x1f);
3930 break;
3931 case 20:
3932 reg_w(sd, 0xa4, 0x0c);
3933 reg_w(sd, 0x23, 0x1b);
3934 break;
3935 case 15:
3936 reg_w(sd, 0xa4, 0x04);
3937 reg_w(sd, 0x23, 0xff);
3938 sd->clockdiv = 1;
3939 break;
3940 case 10:
3941 reg_w(sd, 0xa4, 0x04);
3942 reg_w(sd, 0x23, 0x1f);
3943 sd->clockdiv = 1;
3944 break;
3945 case 5:
3946 reg_w(sd, 0xa4, 0x04);
3947 reg_w(sd, 0x23, 0x1b);
3948 sd->clockdiv = 1;
3949 break;
3950 }
3951 break;
3952 case SEN_OV8610:
3953 switch (sd->frame_rate) {
3954 default: /* 15 fps */
3955 /* case 15: */
3956 reg_w(sd, 0xa4, 0x06);
3957 reg_w(sd, 0x23, 0xff);
3958 break;
3959 case 10:
3960 reg_w(sd, 0xa4, 0x06);
3961 reg_w(sd, 0x23, 0x1f);
3962 break;
3963 case 5:
3964 reg_w(sd, 0xa4, 0x06);
3965 reg_w(sd, 0x23, 0x1b);
3966 break;
3967 }
3968 break;
3969 case SEN_OV7670: /* guesses, based on 7640 */
3970 PDEBUG(D_STREAM, "Setting framerate to %d fps",
3971 (sd->frame_rate == 0) ? 15 : sd->frame_rate);
3972 reg_w(sd, 0xa4, 0x10);
3973 switch (sd->frame_rate) {
3974 case 30:
3975 reg_w(sd, 0x23, 0xff);
3976 break;
3977 case 20:
3978 reg_w(sd, 0x23, 0x1b);
3979 break;
3980 default:
3981 /* case 15: */
3982 reg_w(sd, 0x23, 0xff);
3983 sd->clockdiv = 1;
3984 break;
3985 }
3986 break;
3987 }
3988 }
3989
3990 static void mode_init_ov_sensor_regs(struct sd *sd)
3991 {
3992 struct gspca_dev *gspca_dev;
3993 int qvga, xstart, xend, ystart, yend;
3994 u8 v;
3995
3996 gspca_dev = &sd->gspca_dev;
3997 qvga = gspca_dev->cam.cam_mode[gspca_dev->curr_mode].priv & 1;
3998
3999 /******** Mode (VGA/QVGA) and sensor specific regs ********/
4000 switch (sd->sensor) {
4001 case SEN_OV2610:
4002 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
4003 i2c_w_mask(sd, 0x28, qvga ? 0x00 : 0x20, 0x20);
4004 i2c_w(sd, 0x24, qvga ? 0x20 : 0x3a);
4005 i2c_w(sd, 0x25, qvga ? 0x30 : 0x60);
4006 i2c_w_mask(sd, 0x2d, qvga ? 0x40 : 0x00, 0x40);
4007 i2c_w_mask(sd, 0x67, qvga ? 0xf0 : 0x90, 0xf0);
4008 i2c_w_mask(sd, 0x74, qvga ? 0x20 : 0x00, 0x20);
4009 return;
4010 case SEN_OV2610AE: {
4011 u8 v;
4012
4013 /* frame rates:
4014 * 10fps / 5 fps for 1600x1200
4015 * 40fps / 20fps for 800x600
4016 */
4017 v = 80;
4018 if (qvga) {
4019 if (sd->frame_rate < 25)
4020 v = 0x81;
4021 } else {
4022 if (sd->frame_rate < 10)
4023 v = 0x81;
4024 }
4025 i2c_w(sd, 0x11, v);
4026 i2c_w(sd, 0x12, qvga ? 0x60 : 0x20);
4027 return;
4028 }
4029 case SEN_OV3610:
4030 if (qvga) {
4031 xstart = (1040 - gspca_dev->width) / 2 + (0x1f << 4);
4032 ystart = (776 - gspca_dev->height) / 2;
4033 } else {
4034 xstart = (2076 - gspca_dev->width) / 2 + (0x10 << 4);
4035 ystart = (1544 - gspca_dev->height) / 2;
4036 }
4037 xend = xstart + gspca_dev->width;
4038 yend = ystart + gspca_dev->height;
4039 /* Writing to the COMH register resets the other windowing regs
4040 to their default values, so we must do this first. */
4041 i2c_w_mask(sd, 0x12, qvga ? 0x40 : 0x00, 0xf0);
4042 i2c_w_mask(sd, 0x32,
4043 (((xend >> 1) & 7) << 3) | ((xstart >> 1) & 7),
4044 0x3f);
4045 i2c_w_mask(sd, 0x03,
4046 (((yend >> 1) & 3) << 2) | ((ystart >> 1) & 3),
4047 0x0f);
4048 i2c_w(sd, 0x17, xstart >> 4);
4049 i2c_w(sd, 0x18, xend >> 4);
4050 i2c_w(sd, 0x19, ystart >> 3);
4051 i2c_w(sd, 0x1a, yend >> 3);
4052 return;
4053 case SEN_OV8610:
4054 /* For OV8610 qvga means qsvga */
4055 i2c_w_mask(sd, OV7610_REG_COM_C, qvga ? (1 << 5) : 0, 1 << 5);
4056 i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
4057 i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
4058 i2c_w_mask(sd, 0x2d, 0x00, 0x40); /* from windrv 090403 */
4059 i2c_w_mask(sd, 0x28, 0x20, 0x20); /* progressive mode on */
4060 break;
4061 case SEN_OV7610:
4062 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
4063 i2c_w(sd, 0x35, qvga ? 0x1e : 0x9e);
4064 i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
4065 i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
4066 break;
4067 case SEN_OV7620:
4068 case SEN_OV7620AE:
4069 case SEN_OV76BE:
4070 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
4071 i2c_w_mask(sd, 0x28, qvga ? 0x00 : 0x20, 0x20);
4072 i2c_w(sd, 0x24, qvga ? 0x20 : 0x3a);
4073 i2c_w(sd, 0x25, qvga ? 0x30 : 0x60);
4074 i2c_w_mask(sd, 0x2d, qvga ? 0x40 : 0x00, 0x40);
4075 i2c_w_mask(sd, 0x67, qvga ? 0xb0 : 0x90, 0xf0);
4076 i2c_w_mask(sd, 0x74, qvga ? 0x20 : 0x00, 0x20);
4077 i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
4078 i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
4079 if (sd->sensor == SEN_OV76BE)
4080 i2c_w(sd, 0x35, qvga ? 0x1e : 0x9e);
4081 break;
4082 case SEN_OV7640:
4083 case SEN_OV7648:
4084 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
4085 i2c_w_mask(sd, 0x28, qvga ? 0x00 : 0x20, 0x20);
4086 /* Setting this undocumented bit in qvga mode removes a very
4087 annoying vertical shaking of the image */
4088 i2c_w_mask(sd, 0x2d, qvga ? 0x40 : 0x00, 0x40);
4089 /* Unknown */
4090 i2c_w_mask(sd, 0x67, qvga ? 0xf0 : 0x90, 0xf0);
4091 /* Allow higher automatic gain (to allow higher framerates) */
4092 i2c_w_mask(sd, 0x74, qvga ? 0x20 : 0x00, 0x20);
4093 i2c_w_mask(sd, 0x12, 0x04, 0x04); /* AWB: 1 */
4094 break;
4095 case SEN_OV7670:
4096 /* set COM7_FMT_VGA or COM7_FMT_QVGA
4097 * do we need to set anything else?
4098 * HSTART etc are set in set_ov_sensor_window itself */
4099 i2c_w_mask(sd, OV7670_R12_COM7,
4100 qvga ? OV7670_COM7_FMT_QVGA : OV7670_COM7_FMT_VGA,
4101 OV7670_COM7_FMT_MASK);
4102 i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
4103 i2c_w_mask(sd, OV7670_R13_COM8, OV7670_COM8_AWB,
4104 OV7670_COM8_AWB);
4105 if (qvga) { /* QVGA from ov7670.c by
4106 * Jonathan Corbet */
4107 xstart = 164;
4108 xend = 28;
4109 ystart = 14;
4110 yend = 494;
4111 } else { /* VGA */
4112 xstart = 158;
4113 xend = 14;
4114 ystart = 10;
4115 yend = 490;
4116 }
4117 /* OV7670 hardware window registers are split across
4118 * multiple locations */
4119 i2c_w(sd, OV7670_R17_HSTART, xstart >> 3);
4120 i2c_w(sd, OV7670_R18_HSTOP, xend >> 3);
4121 v = i2c_r(sd, OV7670_R32_HREF);
4122 v = (v & 0xc0) | ((xend & 0x7) << 3) | (xstart & 0x07);
4123 msleep(10); /* need to sleep between read and write to
4124 * same reg! */
4125 i2c_w(sd, OV7670_R32_HREF, v);
4126
4127 i2c_w(sd, OV7670_R19_VSTART, ystart >> 2);
4128 i2c_w(sd, OV7670_R1A_VSTOP, yend >> 2);
4129 v = i2c_r(sd, OV7670_R03_VREF);
4130 v = (v & 0xc0) | ((yend & 0x3) << 2) | (ystart & 0x03);
4131 msleep(10); /* need to sleep between read and write to
4132 * same reg! */
4133 i2c_w(sd, OV7670_R03_VREF, v);
4134 break;
4135 case SEN_OV6620:
4136 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
4137 i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
4138 i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
4139 break;
4140 case SEN_OV6630:
4141 case SEN_OV66308AF:
4142 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
4143 i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
4144 break;
4145 case SEN_OV9600: {
4146 const struct ov_i2c_regvals *vals;
4147 static const struct ov_i2c_regvals sxga_15[] = {
4148 {0x11, 0x80}, {0x14, 0x3e}, {0x24, 0x85}, {0x25, 0x75}
4149 };
4150 static const struct ov_i2c_regvals sxga_7_5[] = {
4151 {0x11, 0x81}, {0x14, 0x3e}, {0x24, 0x85}, {0x25, 0x75}
4152 };
4153 static const struct ov_i2c_regvals vga_30[] = {
4154 {0x11, 0x81}, {0x14, 0x7e}, {0x24, 0x70}, {0x25, 0x60}
4155 };
4156 static const struct ov_i2c_regvals vga_15[] = {
4157 {0x11, 0x83}, {0x14, 0x3e}, {0x24, 0x80}, {0x25, 0x70}
4158 };
4159
4160 /* frame rates:
4161 * 15fps / 7.5 fps for 1280x1024
4162 * 30fps / 15fps for 640x480
4163 */
4164 i2c_w_mask(sd, 0x12, qvga ? 0x40 : 0x00, 0x40);
4165 if (qvga)
4166 vals = sd->frame_rate < 30 ? vga_15 : vga_30;
4167 else
4168 vals = sd->frame_rate < 15 ? sxga_7_5 : sxga_15;
4169 write_i2c_regvals(sd, vals, ARRAY_SIZE(sxga_15));
4170 return;
4171 }
4172 default:
4173 return;
4174 }
4175
4176 /******** Clock programming ********/
4177 i2c_w(sd, 0x11, sd->clockdiv);
4178 }
4179
4180 /* this function works for bridge ov519 and sensors ov7660 and ov7670 only */
4181 static void sethvflip(struct gspca_dev *gspca_dev)
4182 {
4183 struct sd *sd = (struct sd *) gspca_dev;
4184
4185 if (sd->gspca_dev.streaming)
4186 reg_w(sd, OV519_R51_RESET1, 0x0f); /* block stream */
4187 i2c_w_mask(sd, OV7670_R1E_MVFP,
4188 OV7670_MVFP_MIRROR * sd->ctrls[HFLIP].val
4189 | OV7670_MVFP_VFLIP * sd->ctrls[VFLIP].val,
4190 OV7670_MVFP_MIRROR | OV7670_MVFP_VFLIP);
4191 if (sd->gspca_dev.streaming)
4192 reg_w(sd, OV519_R51_RESET1, 0x00); /* restart stream */
4193 }
4194
4195 static void set_ov_sensor_window(struct sd *sd)
4196 {
4197 struct gspca_dev *gspca_dev;
4198 int qvga, crop;
4199 int hwsbase, hwebase, vwsbase, vwebase, hwscale, vwscale;
4200
4201 /* mode setup is fully handled in mode_init_ov_sensor_regs for these */
4202 switch (sd->sensor) {
4203 case SEN_OV2610:
4204 case SEN_OV2610AE:
4205 case SEN_OV3610:
4206 case SEN_OV7670:
4207 case SEN_OV9600:
4208 mode_init_ov_sensor_regs(sd);
4209 return;
4210 case SEN_OV7660:
4211 ov519_set_mode(sd);
4212 ov519_set_fr(sd);
4213 return;
4214 }
4215
4216 gspca_dev = &sd->gspca_dev;
4217 qvga = gspca_dev->cam.cam_mode[gspca_dev->curr_mode].priv & 1;
4218 crop = gspca_dev->cam.cam_mode[gspca_dev->curr_mode].priv & 2;
4219
4220 /* The different sensor ICs handle setting up of window differently.
4221 * IF YOU SET IT WRONG, YOU WILL GET ALL ZERO ISOC DATA FROM OV51x!! */
4222 switch (sd->sensor) {
4223 case SEN_OV8610:
4224 hwsbase = 0x1e;
4225 hwebase = 0x1e;
4226 vwsbase = 0x02;
4227 vwebase = 0x02;
4228 break;
4229 case SEN_OV7610:
4230 case SEN_OV76BE:
4231 hwsbase = 0x38;
4232 hwebase = 0x3a;
4233 vwsbase = vwebase = 0x05;
4234 break;
4235 case SEN_OV6620:
4236 case SEN_OV6630:
4237 case SEN_OV66308AF:
4238 hwsbase = 0x38;
4239 hwebase = 0x3a;
4240 vwsbase = 0x05;
4241 vwebase = 0x06;
4242 if (sd->sensor == SEN_OV66308AF && qvga)
4243 /* HDG: this fixes U and V getting swapped */
4244 hwsbase++;
4245 if (crop) {
4246 hwsbase += 8;
4247 hwebase += 8;
4248 vwsbase += 11;
4249 vwebase += 11;
4250 }
4251 break;
4252 case SEN_OV7620:
4253 case SEN_OV7620AE:
4254 hwsbase = 0x2f; /* From 7620.SET (spec is wrong) */
4255 hwebase = 0x2f;
4256 vwsbase = vwebase = 0x05;
4257 break;
4258 case SEN_OV7640:
4259 case SEN_OV7648:
4260 hwsbase = 0x1a;
4261 hwebase = 0x1a;
4262 vwsbase = vwebase = 0x03;
4263 break;
4264 default:
4265 return;
4266 }
4267
4268 switch (sd->sensor) {
4269 case SEN_OV6620:
4270 case SEN_OV6630:
4271 case SEN_OV66308AF:
4272 if (qvga) { /* QCIF */
4273 hwscale = 0;
4274 vwscale = 0;
4275 } else { /* CIF */
4276 hwscale = 1;
4277 vwscale = 1; /* The datasheet says 0;
4278 * it's wrong */
4279 }
4280 break;
4281 case SEN_OV8610:
4282 if (qvga) { /* QSVGA */
4283 hwscale = 1;
4284 vwscale = 1;
4285 } else { /* SVGA */
4286 hwscale = 2;
4287 vwscale = 2;
4288 }
4289 break;
4290 default: /* SEN_OV7xx0 */
4291 if (qvga) { /* QVGA */
4292 hwscale = 1;
4293 vwscale = 0;
4294 } else { /* VGA */
4295 hwscale = 2;
4296 vwscale = 1;
4297 }
4298 }
4299
4300 mode_init_ov_sensor_regs(sd);
4301
4302 i2c_w(sd, 0x17, hwsbase);
4303 i2c_w(sd, 0x18, hwebase + (sd->sensor_width >> hwscale));
4304 i2c_w(sd, 0x19, vwsbase);
4305 i2c_w(sd, 0x1a, vwebase + (sd->sensor_height >> vwscale));
4306 }
4307
4308 /* -- start the camera -- */
4309 static int sd_start(struct gspca_dev *gspca_dev)
4310 {
4311 struct sd *sd = (struct sd *) gspca_dev;
4312
4313 /* Default for most bridges, allow bridge_mode_init_regs to override */
4314 sd->sensor_width = sd->gspca_dev.width;
4315 sd->sensor_height = sd->gspca_dev.height;
4316
4317 switch (sd->bridge) {
4318 case BRIDGE_OV511:
4319 case BRIDGE_OV511PLUS:
4320 ov511_mode_init_regs(sd);
4321 break;
4322 case BRIDGE_OV518:
4323 case BRIDGE_OV518PLUS:
4324 ov518_mode_init_regs(sd);
4325 break;
4326 case BRIDGE_OV519:
4327 ov519_mode_init_regs(sd);
4328 break;
4329 /* case BRIDGE_OVFX2: nothing to do */
4330 case BRIDGE_W9968CF:
4331 w9968cf_mode_init_regs(sd);
4332 break;
4333 }
4334
4335 set_ov_sensor_window(sd);
4336
4337 if (!(sd->gspca_dev.ctrl_dis & (1 << CONTRAST)))
4338 setcontrast(gspca_dev);
4339 if (!(sd->gspca_dev.ctrl_dis & (1 << BRIGHTNESS)))
4340 setbrightness(gspca_dev);
4341 if (!(sd->gspca_dev.ctrl_dis & (1 << EXPOSURE)))
4342 setexposure(gspca_dev);
4343 if (!(sd->gspca_dev.ctrl_dis & (1 << COLORS)))
4344 setcolors(gspca_dev);
4345 if (!(sd->gspca_dev.ctrl_dis & ((1 << HFLIP) | (1 << VFLIP))))
4346 sethvflip(gspca_dev);
4347 if (!(sd->gspca_dev.ctrl_dis & (1 << AUTOBRIGHT)))
4348 setautobright(gspca_dev);
4349 if (!(sd->gspca_dev.ctrl_dis & (1 << AUTOGAIN)))
4350 setautogain(gspca_dev);
4351 if (!(sd->gspca_dev.ctrl_dis & (1 << FREQ)))
4352 setfreq_i(sd);
4353
4354 /* Force clear snapshot state in case the snapshot button was
4355 pressed while we weren't streaming */
4356 sd->snapshot_needs_reset = 1;
4357 sd_reset_snapshot(gspca_dev);
4358
4359 sd->first_frame = 3;
4360
4361 ov51x_restart(sd);
4362 ov51x_led_control(sd, 1);
4363 return gspca_dev->usb_err;
4364 }
4365
4366 static void sd_stopN(struct gspca_dev *gspca_dev)
4367 {
4368 struct sd *sd = (struct sd *) gspca_dev;
4369
4370 ov51x_stop(sd);
4371 ov51x_led_control(sd, 0);
4372 }
4373
4374 static void sd_stop0(struct gspca_dev *gspca_dev)
4375 {
4376 struct sd *sd = (struct sd *) gspca_dev;
4377
4378 if (!sd->gspca_dev.present)
4379 return;
4380 if (sd->bridge == BRIDGE_W9968CF)
4381 w9968cf_stop0(sd);
4382
4383 #if defined(CONFIG_INPUT) || defined(CONFIG_INPUT_MODULE)
4384 /* If the last button state is pressed, release it now! */
4385 if (sd->snapshot_pressed) {
4386 input_report_key(gspca_dev->input_dev, KEY_CAMERA, 0);
4387 input_sync(gspca_dev->input_dev);
4388 sd->snapshot_pressed = 0;
4389 }
4390 #endif
4391 if (sd->bridge == BRIDGE_OV519)
4392 reg_w(sd, OV519_R57_SNAPSHOT, 0x23);
4393 }
4394
4395 static void ov51x_handle_button(struct gspca_dev *gspca_dev, u8 state)
4396 {
4397 struct sd *sd = (struct sd *) gspca_dev;
4398
4399 if (sd->snapshot_pressed != state) {
4400 #if defined(CONFIG_INPUT) || defined(CONFIG_INPUT_MODULE)
4401 input_report_key(gspca_dev->input_dev, KEY_CAMERA, state);
4402 input_sync(gspca_dev->input_dev);
4403 #endif
4404 if (state)
4405 sd->snapshot_needs_reset = 1;
4406
4407 sd->snapshot_pressed = state;
4408 } else {
4409 /* On the ov511 / ov519 we need to reset the button state
4410 multiple times, as resetting does not work as long as the
4411 button stays pressed */
4412 switch (sd->bridge) {
4413 case BRIDGE_OV511:
4414 case BRIDGE_OV511PLUS:
4415 case BRIDGE_OV519:
4416 if (state)
4417 sd->snapshot_needs_reset = 1;
4418 break;
4419 }
4420 }
4421 }
4422
4423 static void ov511_pkt_scan(struct gspca_dev *gspca_dev,
4424 u8 *in, /* isoc packet */
4425 int len) /* iso packet length */
4426 {
4427 struct sd *sd = (struct sd *) gspca_dev;
4428
4429 /* SOF/EOF packets have 1st to 8th bytes zeroed and the 9th
4430 * byte non-zero. The EOF packet has image width/height in the
4431 * 10th and 11th bytes. The 9th byte is given as follows:
4432 *
4433 * bit 7: EOF
4434 * 6: compression enabled
4435 * 5: 422/420/400 modes
4436 * 4: 422/420/400 modes
4437 * 3: 1
4438 * 2: snapshot button on
4439 * 1: snapshot frame
4440 * 0: even/odd field
4441 */
4442 if (!(in[0] | in[1] | in[2] | in[3] | in[4] | in[5] | in[6] | in[7]) &&
4443 (in[8] & 0x08)) {
4444 ov51x_handle_button(gspca_dev, (in[8] >> 2) & 1);
4445 if (in[8] & 0x80) {
4446 /* Frame end */
4447 if ((in[9] + 1) * 8 != gspca_dev->width ||
4448 (in[10] + 1) * 8 != gspca_dev->height) {
4449 PDEBUG(D_ERR, "Invalid frame size, got: %dx%d,"
4450 " requested: %dx%d\n",
4451 (in[9] + 1) * 8, (in[10] + 1) * 8,
4452 gspca_dev->width, gspca_dev->height);
4453 gspca_dev->last_packet_type = DISCARD_PACKET;
4454 return;
4455 }
4456 /* Add 11 byte footer to frame, might be useful */
4457 gspca_frame_add(gspca_dev, LAST_PACKET, in, 11);
4458 return;
4459 } else {
4460 /* Frame start */
4461 gspca_frame_add(gspca_dev, FIRST_PACKET, in, 0);
4462 sd->packet_nr = 0;
4463 }
4464 }
4465
4466 /* Ignore the packet number */
4467 len--;
4468
4469 /* intermediate packet */
4470 gspca_frame_add(gspca_dev, INTER_PACKET, in, len);
4471 }
4472
4473 static void ov518_pkt_scan(struct gspca_dev *gspca_dev,
4474 u8 *data, /* isoc packet */
4475 int len) /* iso packet length */
4476 {
4477 struct sd *sd = (struct sd *) gspca_dev;
4478
4479 /* A false positive here is likely, until OVT gives me
4480 * the definitive SOF/EOF format */
4481 if ((!(data[0] | data[1] | data[2] | data[3] | data[5])) && data[6]) {
4482 ov51x_handle_button(gspca_dev, (data[6] >> 1) & 1);
4483 gspca_frame_add(gspca_dev, LAST_PACKET, NULL, 0);
4484 gspca_frame_add(gspca_dev, FIRST_PACKET, NULL, 0);
4485 sd->packet_nr = 0;
4486 }
4487
4488 if (gspca_dev->last_packet_type == DISCARD_PACKET)
4489 return;
4490
4491 /* Does this device use packet numbers ? */
4492 if (len & 7) {
4493 len--;
4494 if (sd->packet_nr == data[len])
4495 sd->packet_nr++;
4496 /* The last few packets of the frame (which are all 0's
4497 except that they may contain part of the footer), are
4498 numbered 0 */
4499 else if (sd->packet_nr == 0 || data[len]) {
4500 PDEBUG(D_ERR, "Invalid packet nr: %d (expect: %d)",
4501 (int)data[len], (int)sd->packet_nr);
4502 gspca_dev->last_packet_type = DISCARD_PACKET;
4503 return;
4504 }
4505 }
4506
4507 /* intermediate packet */
4508 gspca_frame_add(gspca_dev, INTER_PACKET, data, len);
4509 }
4510
4511 static void ov519_pkt_scan(struct gspca_dev *gspca_dev,
4512 u8 *data, /* isoc packet */
4513 int len) /* iso packet length */
4514 {
4515 /* Header of ov519 is 16 bytes:
4516 * Byte Value Description
4517 * 0 0xff magic
4518 * 1 0xff magic
4519 * 2 0xff magic
4520 * 3 0xXX 0x50 = SOF, 0x51 = EOF
4521 * 9 0xXX 0x01 initial frame without data,
4522 * 0x00 standard frame with image
4523 * 14 Lo in EOF: length of image data / 8
4524 * 15 Hi
4525 */
4526
4527 if (data[0] == 0xff && data[1] == 0xff && data[2] == 0xff) {
4528 switch (data[3]) {
4529 case 0x50: /* start of frame */
4530 /* Don't check the button state here, as the state
4531 usually (always ?) changes at EOF and checking it
4532 here leads to unnecessary snapshot state resets. */
4533 #define HDRSZ 16
4534 data += HDRSZ;
4535 len -= HDRSZ;
4536 #undef HDRSZ
4537 if (data[0] == 0xff || data[1] == 0xd8)
4538 gspca_frame_add(gspca_dev, FIRST_PACKET,
4539 data, len);
4540 else
4541 gspca_dev->last_packet_type = DISCARD_PACKET;
4542 return;
4543 case 0x51: /* end of frame */
4544 ov51x_handle_button(gspca_dev, data[11] & 1);
4545 if (data[9] != 0)
4546 gspca_dev->last_packet_type = DISCARD_PACKET;
4547 gspca_frame_add(gspca_dev, LAST_PACKET,
4548 NULL, 0);
4549 return;
4550 }
4551 }
4552
4553 /* intermediate packet */
4554 gspca_frame_add(gspca_dev, INTER_PACKET, data, len);
4555 }
4556
4557 static void ovfx2_pkt_scan(struct gspca_dev *gspca_dev,
4558 u8 *data, /* isoc packet */
4559 int len) /* iso packet length */
4560 {
4561 struct sd *sd = (struct sd *) gspca_dev;
4562
4563 gspca_frame_add(gspca_dev, INTER_PACKET, data, len);
4564
4565 /* A short read signals EOF */
4566 if (len < gspca_dev->cam.bulk_size) {
4567 /* If the frame is short, and it is one of the first ones
4568 the sensor and bridge are still syncing, so drop it. */
4569 if (sd->first_frame) {
4570 sd->first_frame--;
4571 if (gspca_dev->image_len <
4572 sd->gspca_dev.width * sd->gspca_dev.height)
4573 gspca_dev->last_packet_type = DISCARD_PACKET;
4574 }
4575 gspca_frame_add(gspca_dev, LAST_PACKET, NULL, 0);
4576 gspca_frame_add(gspca_dev, FIRST_PACKET, NULL, 0);
4577 }
4578 }
4579
4580 static void sd_pkt_scan(struct gspca_dev *gspca_dev,
4581 u8 *data, /* isoc packet */
4582 int len) /* iso packet length */
4583 {
4584 struct sd *sd = (struct sd *) gspca_dev;
4585
4586 switch (sd->bridge) {
4587 case BRIDGE_OV511:
4588 case BRIDGE_OV511PLUS:
4589 ov511_pkt_scan(gspca_dev, data, len);
4590 break;
4591 case BRIDGE_OV518:
4592 case BRIDGE_OV518PLUS:
4593 ov518_pkt_scan(gspca_dev, data, len);
4594 break;
4595 case BRIDGE_OV519:
4596 ov519_pkt_scan(gspca_dev, data, len);
4597 break;
4598 case BRIDGE_OVFX2:
4599 ovfx2_pkt_scan(gspca_dev, data, len);
4600 break;
4601 case BRIDGE_W9968CF:
4602 w9968cf_pkt_scan(gspca_dev, data, len);
4603 break;
4604 }
4605 }
4606
4607 /* -- management routines -- */
4608
4609 static void setbrightness(struct gspca_dev *gspca_dev)
4610 {
4611 struct sd *sd = (struct sd *) gspca_dev;
4612 int val;
4613 static const struct ov_i2c_regvals brit_7660[][7] = {
4614 {{0x0f, 0x6a}, {0x24, 0x40}, {0x25, 0x2b}, {0x26, 0x90},
4615 {0x27, 0xe0}, {0x28, 0xe0}, {0x2c, 0xe0}},
4616 {{0x0f, 0x6a}, {0x24, 0x50}, {0x25, 0x40}, {0x26, 0xa1},
4617 {0x27, 0xc0}, {0x28, 0xc0}, {0x2c, 0xc0}},
4618 {{0x0f, 0x6a}, {0x24, 0x68}, {0x25, 0x58}, {0x26, 0xc2},
4619 {0x27, 0xa0}, {0x28, 0xa0}, {0x2c, 0xa0}},
4620 {{0x0f, 0x6a}, {0x24, 0x70}, {0x25, 0x68}, {0x26, 0xd3},
4621 {0x27, 0x80}, {0x28, 0x80}, {0x2c, 0x80}},
4622 {{0x0f, 0x6a}, {0x24, 0x80}, {0x25, 0x70}, {0x26, 0xd3},
4623 {0x27, 0x20}, {0x28, 0x20}, {0x2c, 0x20}},
4624 {{0x0f, 0x6a}, {0x24, 0x88}, {0x25, 0x78}, {0x26, 0xd3},
4625 {0x27, 0x40}, {0x28, 0x40}, {0x2c, 0x40}},
4626 {{0x0f, 0x6a}, {0x24, 0x90}, {0x25, 0x80}, {0x26, 0xd4},
4627 {0x27, 0x60}, {0x28, 0x60}, {0x2c, 0x60}}
4628 };
4629
4630 val = sd->ctrls[BRIGHTNESS].val;
4631 switch (sd->sensor) {
4632 case SEN_OV8610:
4633 case SEN_OV7610:
4634 case SEN_OV76BE:
4635 case SEN_OV6620:
4636 case SEN_OV6630:
4637 case SEN_OV66308AF:
4638 case SEN_OV7640:
4639 case SEN_OV7648:
4640 i2c_w(sd, OV7610_REG_BRT, val);
4641 break;
4642 case SEN_OV7620:
4643 case SEN_OV7620AE:
4644 /* 7620 doesn't like manual changes when in auto mode */
4645 if (!sd->ctrls[AUTOBRIGHT].val)
4646 i2c_w(sd, OV7610_REG_BRT, val);
4647 break;
4648 case SEN_OV7660:
4649 write_i2c_regvals(sd, brit_7660[val],
4650 ARRAY_SIZE(brit_7660[0]));
4651 break;
4652 case SEN_OV7670:
4653 /*win trace
4654 * i2c_w_mask(sd, OV7670_R13_COM8, 0, OV7670_COM8_AEC); */
4655 i2c_w(sd, OV7670_R55_BRIGHT, ov7670_abs_to_sm(val));
4656 break;
4657 }
4658 }
4659
4660 static void setcontrast(struct gspca_dev *gspca_dev)
4661 {
4662 struct sd *sd = (struct sd *) gspca_dev;
4663 int val;
4664 static const struct ov_i2c_regvals contrast_7660[][31] = {
4665 {{0x6c, 0xf0}, {0x6d, 0xf0}, {0x6e, 0xf8}, {0x6f, 0xa0},
4666 {0x70, 0x58}, {0x71, 0x38}, {0x72, 0x30}, {0x73, 0x30},
4667 {0x74, 0x28}, {0x75, 0x28}, {0x76, 0x24}, {0x77, 0x24},
4668 {0x78, 0x22}, {0x79, 0x28}, {0x7a, 0x2a}, {0x7b, 0x34},
4669 {0x7c, 0x0f}, {0x7d, 0x1e}, {0x7e, 0x3d}, {0x7f, 0x65},
4670 {0x80, 0x70}, {0x81, 0x77}, {0x82, 0x7d}, {0x83, 0x83},
4671 {0x84, 0x88}, {0x85, 0x8d}, {0x86, 0x96}, {0x87, 0x9f},
4672 {0x88, 0xb0}, {0x89, 0xc4}, {0x8a, 0xd9}},
4673 {{0x6c, 0xf0}, {0x6d, 0xf0}, {0x6e, 0xf8}, {0x6f, 0x94},
4674 {0x70, 0x58}, {0x71, 0x40}, {0x72, 0x30}, {0x73, 0x30},
4675 {0x74, 0x30}, {0x75, 0x30}, {0x76, 0x2c}, {0x77, 0x24},
4676 {0x78, 0x22}, {0x79, 0x28}, {0x7a, 0x2a}, {0x7b, 0x31},
4677 {0x7c, 0x0f}, {0x7d, 0x1e}, {0x7e, 0x3d}, {0x7f, 0x62},
4678 {0x80, 0x6d}, {0x81, 0x75}, {0x82, 0x7b}, {0x83, 0x81},
4679 {0x84, 0x87}, {0x85, 0x8d}, {0x86, 0x98}, {0x87, 0xa1},
4680 {0x88, 0xb2}, {0x89, 0xc6}, {0x8a, 0xdb}},
4681 {{0x6c, 0xf0}, {0x6d, 0xf0}, {0x6e, 0xf0}, {0x6f, 0x84},
4682 {0x70, 0x58}, {0x71, 0x48}, {0x72, 0x40}, {0x73, 0x40},
4683 {0x74, 0x28}, {0x75, 0x28}, {0x76, 0x28}, {0x77, 0x24},
4684 {0x78, 0x26}, {0x79, 0x28}, {0x7a, 0x28}, {0x7b, 0x34},
4685 {0x7c, 0x0f}, {0x7d, 0x1e}, {0x7e, 0x3c}, {0x7f, 0x5d},
4686 {0x80, 0x68}, {0x81, 0x71}, {0x82, 0x79}, {0x83, 0x81},
4687 {0x84, 0x86}, {0x85, 0x8b}, {0x86, 0x95}, {0x87, 0x9e},
4688 {0x88, 0xb1}, {0x89, 0xc5}, {0x8a, 0xd9}},
4689 {{0x6c, 0xf0}, {0x6d, 0xf0}, {0x6e, 0xf0}, {0x6f, 0x70},
4690 {0x70, 0x58}, {0x71, 0x58}, {0x72, 0x48}, {0x73, 0x48},
4691 {0x74, 0x38}, {0x75, 0x40}, {0x76, 0x34}, {0x77, 0x34},
4692 {0x78, 0x2e}, {0x79, 0x28}, {0x7a, 0x24}, {0x7b, 0x22},
4693 {0x7c, 0x0f}, {0x7d, 0x1e}, {0x7e, 0x3c}, {0x7f, 0x58},
4694 {0x80, 0x63}, {0x81, 0x6e}, {0x82, 0x77}, {0x83, 0x80},
4695 {0x84, 0x87}, {0x85, 0x8f}, {0x86, 0x9c}, {0x87, 0xa9},
4696 {0x88, 0xc0}, {0x89, 0xd4}, {0x8a, 0xe6}},
4697 {{0x6c, 0xa0}, {0x6d, 0xf0}, {0x6e, 0x90}, {0x6f, 0x80},
4698 {0x70, 0x70}, {0x71, 0x80}, {0x72, 0x60}, {0x73, 0x60},
4699 {0x74, 0x58}, {0x75, 0x60}, {0x76, 0x4c}, {0x77, 0x38},
4700 {0x78, 0x38}, {0x79, 0x2a}, {0x7a, 0x20}, {0x7b, 0x0e},
4701 {0x7c, 0x0a}, {0x7d, 0x14}, {0x7e, 0x26}, {0x7f, 0x46},
4702 {0x80, 0x54}, {0x81, 0x64}, {0x82, 0x70}, {0x83, 0x7c},
4703 {0x84, 0x87}, {0x85, 0x93}, {0x86, 0xa6}, {0x87, 0xb4},
4704 {0x88, 0xd0}, {0x89, 0xe5}, {0x8a, 0xf5}},
4705 {{0x6c, 0x60}, {0x6d, 0x80}, {0x6e, 0x60}, {0x6f, 0x80},
4706 {0x70, 0x80}, {0x71, 0x80}, {0x72, 0x88}, {0x73, 0x30},
4707 {0x74, 0x70}, {0x75, 0x68}, {0x76, 0x64}, {0x77, 0x50},
4708 {0x78, 0x3c}, {0x79, 0x22}, {0x7a, 0x10}, {0x7b, 0x08},
4709 {0x7c, 0x06}, {0x7d, 0x0e}, {0x7e, 0x1a}, {0x7f, 0x3a},
4710 {0x80, 0x4a}, {0x81, 0x5a}, {0x82, 0x6b}, {0x83, 0x7b},
4711 {0x84, 0x89}, {0x85, 0x96}, {0x86, 0xaf}, {0x87, 0xc3},
4712 {0x88, 0xe1}, {0x89, 0xf2}, {0x8a, 0xfa}},
4713 {{0x6c, 0x20}, {0x6d, 0x40}, {0x6e, 0x20}, {0x6f, 0x60},
4714 {0x70, 0x88}, {0x71, 0xc8}, {0x72, 0xc0}, {0x73, 0xb8},
4715 {0x74, 0xa8}, {0x75, 0xb8}, {0x76, 0x80}, {0x77, 0x5c},
4716 {0x78, 0x26}, {0x79, 0x10}, {0x7a, 0x08}, {0x7b, 0x04},
4717 {0x7c, 0x02}, {0x7d, 0x06}, {0x7e, 0x0a}, {0x7f, 0x22},
4718 {0x80, 0x33}, {0x81, 0x4c}, {0x82, 0x64}, {0x83, 0x7b},
4719 {0x84, 0x90}, {0x85, 0xa7}, {0x86, 0xc7}, {0x87, 0xde},
4720 {0x88, 0xf1}, {0x89, 0xf9}, {0x8a, 0xfd}},
4721 };
4722
4723 val = sd->ctrls[CONTRAST].val;
4724 switch (sd->sensor) {
4725 case SEN_OV7610:
4726 case SEN_OV6620:
4727 i2c_w(sd, OV7610_REG_CNT, val);
4728 break;
4729 case SEN_OV6630:
4730 case SEN_OV66308AF:
4731 i2c_w_mask(sd, OV7610_REG_CNT, val >> 4, 0x0f);
4732 break;
4733 case SEN_OV8610: {
4734 static const u8 ctab[] = {
4735 0x03, 0x09, 0x0b, 0x0f, 0x53, 0x6f, 0x35, 0x7f
4736 };
4737
4738 /* Use Y gamma control instead. Bit 0 enables it. */
4739 i2c_w(sd, 0x64, ctab[val >> 5]);
4740 break;
4741 }
4742 case SEN_OV7620:
4743 case SEN_OV7620AE: {
4744 static const u8 ctab[] = {
4745 0x01, 0x05, 0x09, 0x11, 0x15, 0x35, 0x37, 0x57,
4746 0x5b, 0xa5, 0xa7, 0xc7, 0xc9, 0xcf, 0xef, 0xff
4747 };
4748
4749 /* Use Y gamma control instead. Bit 0 enables it. */
4750 i2c_w(sd, 0x64, ctab[val >> 4]);
4751 break;
4752 }
4753 case SEN_OV7660:
4754 write_i2c_regvals(sd, contrast_7660[val],
4755 ARRAY_SIZE(contrast_7660[0]));
4756 break;
4757 case SEN_OV7670:
4758 /* check that this isn't just the same as ov7610 */
4759 i2c_w(sd, OV7670_R56_CONTRAS, val >> 1);
4760 break;
4761 }
4762 }
4763
4764 static void setexposure(struct gspca_dev *gspca_dev)
4765 {
4766 struct sd *sd = (struct sd *) gspca_dev;
4767
4768 if (!sd->ctrls[AUTOGAIN].val)
4769 i2c_w(sd, 0x10, sd->ctrls[EXPOSURE].val);
4770 }
4771
4772 static void setcolors(struct gspca_dev *gspca_dev)
4773 {
4774 struct sd *sd = (struct sd *) gspca_dev;
4775 int val;
4776 static const struct ov_i2c_regvals colors_7660[][6] = {
4777 {{0x4f, 0x28}, {0x50, 0x2a}, {0x51, 0x02}, {0x52, 0x0a},
4778 {0x53, 0x19}, {0x54, 0x23}},
4779 {{0x4f, 0x47}, {0x50, 0x4a}, {0x51, 0x03}, {0x52, 0x11},
4780 {0x53, 0x2c}, {0x54, 0x3e}},
4781 {{0x4f, 0x66}, {0x50, 0x6b}, {0x51, 0x05}, {0x52, 0x19},
4782 {0x53, 0x40}, {0x54, 0x59}},
4783 {{0x4f, 0x84}, {0x50, 0x8b}, {0x51, 0x06}, {0x52, 0x20},
4784 {0x53, 0x53}, {0x54, 0x73}},
4785 {{0x4f, 0xa3}, {0x50, 0xab}, {0x51, 0x08}, {0x52, 0x28},
4786 {0x53, 0x66}, {0x54, 0x8e}},
4787 };
4788
4789 val = sd->ctrls[COLORS].val;
4790 switch (sd->sensor) {
4791 case SEN_OV8610:
4792 case SEN_OV7610:
4793 case SEN_OV76BE:
4794 case SEN_OV6620:
4795 case SEN_OV6630:
4796 case SEN_OV66308AF:
4797 i2c_w(sd, OV7610_REG_SAT, val);
4798 break;
4799 case SEN_OV7620:
4800 case SEN_OV7620AE:
4801 /* Use UV gamma control instead. Bits 0 & 7 are reserved. */
4802 /* rc = ov_i2c_write(sd->dev, 0x62, (val >> 9) & 0x7e);
4803 if (rc < 0)
4804 goto out; */
4805 i2c_w(sd, OV7610_REG_SAT, val);
4806 break;
4807 case SEN_OV7640:
4808 case SEN_OV7648:
4809 i2c_w(sd, OV7610_REG_SAT, val & 0xf0);
4810 break;
4811 case SEN_OV7660:
4812 write_i2c_regvals(sd, colors_7660[val],
4813 ARRAY_SIZE(colors_7660[0]));
4814 break;
4815 case SEN_OV7670:
4816 /* supported later once I work out how to do it
4817 * transparently fail now! */
4818 /* set REG_COM13 values for UV sat auto mode */
4819 break;
4820 }
4821 }
4822
4823 static void setautobright(struct gspca_dev *gspca_dev)
4824 {
4825 struct sd *sd = (struct sd *) gspca_dev;
4826
4827 i2c_w_mask(sd, 0x2d, sd->ctrls[AUTOBRIGHT].val ? 0x10 : 0x00, 0x10);
4828 }
4829
4830 static int sd_setautogain(struct gspca_dev *gspca_dev, __s32 val)
4831 {
4832 struct sd *sd = (struct sd *) gspca_dev;
4833
4834 sd->ctrls[AUTOGAIN].val = val;
4835 if (val) {
4836 gspca_dev->ctrl_inac |= (1 << EXPOSURE);
4837 } else {
4838 gspca_dev->ctrl_inac &= ~(1 << EXPOSURE);
4839 sd->ctrls[EXPOSURE].val = i2c_r(sd, 0x10);
4840 }
4841 if (gspca_dev->streaming)
4842 setautogain(gspca_dev);
4843 return gspca_dev->usb_err;
4844 }
4845
4846 static void setfreq_i(struct sd *sd)
4847 {
4848 if (sd->sensor == SEN_OV7660
4849 || sd->sensor == SEN_OV7670) {
4850 switch (sd->ctrls[FREQ].val) {
4851 case 0: /* Banding filter disabled */
4852 i2c_w_mask(sd, OV7670_R13_COM8, 0, OV7670_COM8_BFILT);
4853 break;
4854 case 1: /* 50 hz */
4855 i2c_w_mask(sd, OV7670_R13_COM8, OV7670_COM8_BFILT,
4856 OV7670_COM8_BFILT);
4857 i2c_w_mask(sd, OV7670_R3B_COM11, 0x08, 0x18);
4858 break;
4859 case 2: /* 60 hz */
4860 i2c_w_mask(sd, OV7670_R13_COM8, OV7670_COM8_BFILT,
4861 OV7670_COM8_BFILT);
4862 i2c_w_mask(sd, OV7670_R3B_COM11, 0x00, 0x18);
4863 break;
4864 case 3: /* Auto hz - ov7670 only */
4865 i2c_w_mask(sd, OV7670_R13_COM8, OV7670_COM8_BFILT,
4866 OV7670_COM8_BFILT);
4867 i2c_w_mask(sd, OV7670_R3B_COM11, OV7670_COM11_HZAUTO,
4868 0x18);
4869 break;
4870 }
4871 } else {
4872 switch (sd->ctrls[FREQ].val) {
4873 case 0: /* Banding filter disabled */
4874 i2c_w_mask(sd, 0x2d, 0x00, 0x04);
4875 i2c_w_mask(sd, 0x2a, 0x00, 0x80);
4876 break;
4877 case 1: /* 50 hz (filter on and framerate adj) */
4878 i2c_w_mask(sd, 0x2d, 0x04, 0x04);
4879 i2c_w_mask(sd, 0x2a, 0x80, 0x80);
4880 /* 20 fps -> 16.667 fps */
4881 if (sd->sensor == SEN_OV6620 ||
4882 sd->sensor == SEN_OV6630 ||
4883 sd->sensor == SEN_OV66308AF)
4884 i2c_w(sd, 0x2b, 0x5e);
4885 else
4886 i2c_w(sd, 0x2b, 0xac);
4887 break;
4888 case 2: /* 60 hz (filter on, ...) */
4889 i2c_w_mask(sd, 0x2d, 0x04, 0x04);
4890 if (sd->sensor == SEN_OV6620 ||
4891 sd->sensor == SEN_OV6630 ||
4892 sd->sensor == SEN_OV66308AF) {
4893 /* 20 fps -> 15 fps */
4894 i2c_w_mask(sd, 0x2a, 0x80, 0x80);
4895 i2c_w(sd, 0x2b, 0xa8);
4896 } else {
4897 /* no framerate adj. */
4898 i2c_w_mask(sd, 0x2a, 0x00, 0x80);
4899 }
4900 break;
4901 }
4902 }
4903 }
4904 static void setfreq(struct gspca_dev *gspca_dev)
4905 {
4906 struct sd *sd = (struct sd *) gspca_dev;
4907
4908 setfreq_i(sd);
4909
4910 /* Ugly but necessary */
4911 if (sd->bridge == BRIDGE_W9968CF)
4912 w9968cf_set_crop_window(sd);
4913 }
4914
4915 static int sd_querymenu(struct gspca_dev *gspca_dev,
4916 struct v4l2_querymenu *menu)
4917 {
4918 struct sd *sd = (struct sd *) gspca_dev;
4919
4920 switch (menu->id) {
4921 case V4L2_CID_POWER_LINE_FREQUENCY:
4922 switch (menu->index) {
4923 case 0: /* V4L2_CID_POWER_LINE_FREQUENCY_DISABLED */
4924 strcpy((char *) menu->name, "NoFliker");
4925 return 0;
4926 case 1: /* V4L2_CID_POWER_LINE_FREQUENCY_50HZ */
4927 strcpy((char *) menu->name, "50 Hz");
4928 return 0;
4929 case 2: /* V4L2_CID_POWER_LINE_FREQUENCY_60HZ */
4930 strcpy((char *) menu->name, "60 Hz");
4931 return 0;
4932 case 3:
4933 if (sd->sensor != SEN_OV7670)
4934 return -EINVAL;
4935
4936 strcpy((char *) menu->name, "Automatic");
4937 return 0;
4938 }
4939 break;
4940 }
4941 return -EINVAL;
4942 }
4943
4944 static int sd_get_jcomp(struct gspca_dev *gspca_dev,
4945 struct v4l2_jpegcompression *jcomp)
4946 {
4947 struct sd *sd = (struct sd *) gspca_dev;
4948
4949 if (sd->bridge != BRIDGE_W9968CF)
4950 return -EINVAL;
4951
4952 memset(jcomp, 0, sizeof *jcomp);
4953 jcomp->quality = sd->quality;
4954 jcomp->jpeg_markers = V4L2_JPEG_MARKER_DHT | V4L2_JPEG_MARKER_DQT |
4955 V4L2_JPEG_MARKER_DRI;
4956 return 0;
4957 }
4958
4959 static int sd_set_jcomp(struct gspca_dev *gspca_dev,
4960 struct v4l2_jpegcompression *jcomp)
4961 {
4962 struct sd *sd = (struct sd *) gspca_dev;
4963
4964 if (sd->bridge != BRIDGE_W9968CF)
4965 return -EINVAL;
4966
4967 if (gspca_dev->streaming)
4968 return -EBUSY;
4969
4970 if (jcomp->quality < QUALITY_MIN)
4971 sd->quality = QUALITY_MIN;
4972 else if (jcomp->quality > QUALITY_MAX)
4973 sd->quality = QUALITY_MAX;
4974 else
4975 sd->quality = jcomp->quality;
4976
4977 /* Return resulting jcomp params to app */
4978 sd_get_jcomp(gspca_dev, jcomp);
4979
4980 return 0;
4981 }
4982
4983 /* sub-driver description */
4984 static const struct sd_desc sd_desc = {
4985 .name = MODULE_NAME,
4986 .ctrls = sd_ctrls,
4987 .nctrls = ARRAY_SIZE(sd_ctrls),
4988 .config = sd_config,
4989 .init = sd_init,
4990 .isoc_init = sd_isoc_init,
4991 .start = sd_start,
4992 .stopN = sd_stopN,
4993 .stop0 = sd_stop0,
4994 .pkt_scan = sd_pkt_scan,
4995 .dq_callback = sd_reset_snapshot,
4996 .querymenu = sd_querymenu,
4997 .get_jcomp = sd_get_jcomp,
4998 .set_jcomp = sd_set_jcomp,
4999 #if defined(CONFIG_INPUT) || defined(CONFIG_INPUT_MODULE)
5000 .other_input = 1,
5001 #endif
5002 };
5003
5004 /* -- module initialisation -- */
5005 static const struct usb_device_id device_table[] = {
5006 {USB_DEVICE(0x041e, 0x4003), .driver_info = BRIDGE_W9968CF },
5007 {USB_DEVICE(0x041e, 0x4052),
5008 .driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED },
5009 {USB_DEVICE(0x041e, 0x405f), .driver_info = BRIDGE_OV519 },
5010 {USB_DEVICE(0x041e, 0x4060), .driver_info = BRIDGE_OV519 },
5011 {USB_DEVICE(0x041e, 0x4061), .driver_info = BRIDGE_OV519 },
5012 {USB_DEVICE(0x041e, 0x4064), .driver_info = BRIDGE_OV519 },
5013 {USB_DEVICE(0x041e, 0x4067), .driver_info = BRIDGE_OV519 },
5014 {USB_DEVICE(0x041e, 0x4068), .driver_info = BRIDGE_OV519 },
5015 {USB_DEVICE(0x045e, 0x028c),
5016 .driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED },
5017 {USB_DEVICE(0x054c, 0x0154), .driver_info = BRIDGE_OV519 },
5018 {USB_DEVICE(0x054c, 0x0155), .driver_info = BRIDGE_OV519 },
5019 {USB_DEVICE(0x05a9, 0x0511), .driver_info = BRIDGE_OV511 },
5020 {USB_DEVICE(0x05a9, 0x0518), .driver_info = BRIDGE_OV518 },
5021 {USB_DEVICE(0x05a9, 0x0519),
5022 .driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED },
5023 {USB_DEVICE(0x05a9, 0x0530),
5024 .driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED },
5025 {USB_DEVICE(0x05a9, 0x2800), .driver_info = BRIDGE_OVFX2 },
5026 {USB_DEVICE(0x05a9, 0x4519), .driver_info = BRIDGE_OV519 },
5027 {USB_DEVICE(0x05a9, 0x8519), .driver_info = BRIDGE_OV519 },
5028 {USB_DEVICE(0x05a9, 0xa511), .driver_info = BRIDGE_OV511PLUS },
5029 {USB_DEVICE(0x05a9, 0xa518), .driver_info = BRIDGE_OV518PLUS },
5030 {USB_DEVICE(0x0813, 0x0002), .driver_info = BRIDGE_OV511PLUS },
5031 {USB_DEVICE(0x0b62, 0x0059), .driver_info = BRIDGE_OVFX2 },
5032 {USB_DEVICE(0x0e96, 0xc001), .driver_info = BRIDGE_OVFX2 },
5033 {USB_DEVICE(0x1046, 0x9967), .driver_info = BRIDGE_W9968CF },
5034 {USB_DEVICE(0x8020, 0xef04), .driver_info = BRIDGE_OVFX2 },
5035 {}
5036 };
5037
5038 MODULE_DEVICE_TABLE(usb, device_table);
5039
5040 /* -- device connect -- */
5041 static int sd_probe(struct usb_interface *intf,
5042 const struct usb_device_id *id)
5043 {
5044 return gspca_dev_probe(intf, id, &sd_desc, sizeof(struct sd),
5045 THIS_MODULE);
5046 }
5047
5048 static struct usb_driver sd_driver = {
5049 .name = MODULE_NAME,
5050 .id_table = device_table,
5051 .probe = sd_probe,
5052 .disconnect = gspca_disconnect,
5053 #ifdef CONFIG_PM
5054 .suspend = gspca_suspend,
5055 .resume = gspca_resume,
5056 #endif
5057 };
5058
5059 module_usb_driver(sd_driver);
5060
5061 module_param(frame_rate, int, 0644);
5062 MODULE_PARM_DESC(frame_rate, "Frame rate (5, 10, 15, 20 or 30 fps)");
This page took 0.140624 seconds and 5 git commands to generate.