Merge branch 'x86-debug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / drivers / media / video / gspca / ov534.c
1 /*
2 * ov534-ov7xxx gspca driver
3 *
4 * Copyright (C) 2008 Antonio Ospite <ospite@studenti.unina.it>
5 * Copyright (C) 2008 Jim Paris <jim@jtan.com>
6 * Copyright (C) 2009 Jean-Francois Moine http://moinejf.free.fr
7 *
8 * Based on a prototype written by Mark Ferrell <majortrips@gmail.com>
9 * USB protocol reverse engineered by Jim Paris <jim@jtan.com>
10 * https://jim.sh/svn/jim/devl/playstation/ps3/eye/test/
11 *
12 * PS3 Eye camera enhanced by Richard Kaswy http://kaswy.free.fr
13 * PS3 Eye camera - brightness, contrast, awb, agc, aec controls
14 * added by Max Thrun <bear24rw@gmail.com>
15 *
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License as published by
18 * the Free Software Foundation; either version 2 of the License, or
19 * any later version.
20 *
21 * This program is distributed in the hope that it will be useful,
22 * but WITHOUT ANY WARRANTY; without even the implied warranty of
23 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 * GNU General Public License for more details.
25 *
26 * You should have received a copy of the GNU General Public License
27 * along with this program; if not, write to the Free Software
28 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
29 */
30
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33 #define MODULE_NAME "ov534"
34
35 #include "gspca.h"
36
37 #include <linux/fixp-arith.h>
38
39 #define OV534_REG_ADDRESS 0xf1 /* sensor address */
40 #define OV534_REG_SUBADDR 0xf2
41 #define OV534_REG_WRITE 0xf3
42 #define OV534_REG_READ 0xf4
43 #define OV534_REG_OPERATION 0xf5
44 #define OV534_REG_STATUS 0xf6
45
46 #define OV534_OP_WRITE_3 0x37
47 #define OV534_OP_WRITE_2 0x33
48 #define OV534_OP_READ_2 0xf9
49
50 #define CTRL_TIMEOUT 500
51
52 MODULE_AUTHOR("Antonio Ospite <ospite@studenti.unina.it>");
53 MODULE_DESCRIPTION("GSPCA/OV534 USB Camera Driver");
54 MODULE_LICENSE("GPL");
55
56 /* controls */
57 enum e_ctrl {
58 HUE,
59 SATURATION,
60 BRIGHTNESS,
61 CONTRAST,
62 GAIN,
63 EXPOSURE,
64 AGC,
65 AWB,
66 AEC,
67 SHARPNESS,
68 HFLIP,
69 VFLIP,
70 LIGHTFREQ,
71 NCTRLS /* number of controls */
72 };
73
74 /* specific webcam descriptor */
75 struct sd {
76 struct gspca_dev gspca_dev; /* !! must be the first item */
77
78 struct gspca_ctrl ctrls[NCTRLS];
79
80 __u32 last_pts;
81 u16 last_fid;
82 u8 frame_rate;
83
84 u8 sensor;
85 };
86 enum sensors {
87 SENSOR_OV767x,
88 SENSOR_OV772x,
89 NSENSORS
90 };
91
92 /* V4L2 controls supported by the driver */
93 static void sethue(struct gspca_dev *gspca_dev);
94 static void setsaturation(struct gspca_dev *gspca_dev);
95 static void setbrightness(struct gspca_dev *gspca_dev);
96 static void setcontrast(struct gspca_dev *gspca_dev);
97 static void setgain(struct gspca_dev *gspca_dev);
98 static void setexposure(struct gspca_dev *gspca_dev);
99 static void setagc(struct gspca_dev *gspca_dev);
100 static void setawb(struct gspca_dev *gspca_dev);
101 static void setaec(struct gspca_dev *gspca_dev);
102 static void setsharpness(struct gspca_dev *gspca_dev);
103 static void sethvflip(struct gspca_dev *gspca_dev);
104 static void setlightfreq(struct gspca_dev *gspca_dev);
105
106 static int sd_start(struct gspca_dev *gspca_dev);
107 static void sd_stopN(struct gspca_dev *gspca_dev);
108
109 static const struct ctrl sd_ctrls[] = {
110 [HUE] = {
111 {
112 .id = V4L2_CID_HUE,
113 .type = V4L2_CTRL_TYPE_INTEGER,
114 .name = "Hue",
115 .minimum = -90,
116 .maximum = 90,
117 .step = 1,
118 .default_value = 0,
119 },
120 .set_control = sethue
121 },
122 [SATURATION] = {
123 {
124 .id = V4L2_CID_SATURATION,
125 .type = V4L2_CTRL_TYPE_INTEGER,
126 .name = "Saturation",
127 .minimum = 0,
128 .maximum = 255,
129 .step = 1,
130 .default_value = 64,
131 },
132 .set_control = setsaturation
133 },
134 [BRIGHTNESS] = {
135 {
136 .id = V4L2_CID_BRIGHTNESS,
137 .type = V4L2_CTRL_TYPE_INTEGER,
138 .name = "Brightness",
139 .minimum = 0,
140 .maximum = 255,
141 .step = 1,
142 .default_value = 0,
143 },
144 .set_control = setbrightness
145 },
146 [CONTRAST] = {
147 {
148 .id = V4L2_CID_CONTRAST,
149 .type = V4L2_CTRL_TYPE_INTEGER,
150 .name = "Contrast",
151 .minimum = 0,
152 .maximum = 255,
153 .step = 1,
154 .default_value = 32,
155 },
156 .set_control = setcontrast
157 },
158 [GAIN] = {
159 {
160 .id = V4L2_CID_GAIN,
161 .type = V4L2_CTRL_TYPE_INTEGER,
162 .name = "Main Gain",
163 .minimum = 0,
164 .maximum = 63,
165 .step = 1,
166 .default_value = 20,
167 },
168 .set_control = setgain
169 },
170 [EXPOSURE] = {
171 {
172 .id = V4L2_CID_EXPOSURE,
173 .type = V4L2_CTRL_TYPE_INTEGER,
174 .name = "Exposure",
175 .minimum = 0,
176 .maximum = 255,
177 .step = 1,
178 .default_value = 120,
179 },
180 .set_control = setexposure
181 },
182 [AGC] = {
183 {
184 .id = V4L2_CID_AUTOGAIN,
185 .type = V4L2_CTRL_TYPE_BOOLEAN,
186 .name = "Auto Gain",
187 .minimum = 0,
188 .maximum = 1,
189 .step = 1,
190 .default_value = 1,
191 },
192 .set_control = setagc
193 },
194 [AWB] = {
195 {
196 .id = V4L2_CID_AUTO_WHITE_BALANCE,
197 .type = V4L2_CTRL_TYPE_BOOLEAN,
198 .name = "Auto White Balance",
199 .minimum = 0,
200 .maximum = 1,
201 .step = 1,
202 .default_value = 1,
203 },
204 .set_control = setawb
205 },
206 [AEC] = {
207 {
208 .id = V4L2_CID_EXPOSURE_AUTO,
209 .type = V4L2_CTRL_TYPE_BOOLEAN,
210 .name = "Auto Exposure",
211 .minimum = 0,
212 .maximum = 1,
213 .step = 1,
214 .default_value = 1,
215 },
216 .set_control = setaec
217 },
218 [SHARPNESS] = {
219 {
220 .id = V4L2_CID_SHARPNESS,
221 .type = V4L2_CTRL_TYPE_INTEGER,
222 .name = "Sharpness",
223 .minimum = 0,
224 .maximum = 63,
225 .step = 1,
226 .default_value = 0,
227 },
228 .set_control = setsharpness
229 },
230 [HFLIP] = {
231 {
232 .id = V4L2_CID_HFLIP,
233 .type = V4L2_CTRL_TYPE_BOOLEAN,
234 .name = "HFlip",
235 .minimum = 0,
236 .maximum = 1,
237 .step = 1,
238 .default_value = 0,
239 },
240 .set_control = sethvflip
241 },
242 [VFLIP] = {
243 {
244 .id = V4L2_CID_VFLIP,
245 .type = V4L2_CTRL_TYPE_BOOLEAN,
246 .name = "VFlip",
247 .minimum = 0,
248 .maximum = 1,
249 .step = 1,
250 .default_value = 0,
251 },
252 .set_control = sethvflip
253 },
254 [LIGHTFREQ] = {
255 {
256 .id = V4L2_CID_POWER_LINE_FREQUENCY,
257 .type = V4L2_CTRL_TYPE_MENU,
258 .name = "Light Frequency Filter",
259 .minimum = 0,
260 .maximum = 1,
261 .step = 1,
262 .default_value = 0,
263 },
264 .set_control = setlightfreq
265 },
266 };
267
268 static const struct v4l2_pix_format ov772x_mode[] = {
269 {320, 240, V4L2_PIX_FMT_YUYV, V4L2_FIELD_NONE,
270 .bytesperline = 320 * 2,
271 .sizeimage = 320 * 240 * 2,
272 .colorspace = V4L2_COLORSPACE_SRGB,
273 .priv = 1},
274 {640, 480, V4L2_PIX_FMT_YUYV, V4L2_FIELD_NONE,
275 .bytesperline = 640 * 2,
276 .sizeimage = 640 * 480 * 2,
277 .colorspace = V4L2_COLORSPACE_SRGB,
278 .priv = 0},
279 };
280 static const struct v4l2_pix_format ov767x_mode[] = {
281 {320, 240, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
282 .bytesperline = 320,
283 .sizeimage = 320 * 240 * 3 / 8 + 590,
284 .colorspace = V4L2_COLORSPACE_JPEG},
285 {640, 480, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
286 .bytesperline = 640,
287 .sizeimage = 640 * 480 * 3 / 8 + 590,
288 .colorspace = V4L2_COLORSPACE_JPEG},
289 };
290
291 static const u8 qvga_rates[] = {125, 100, 75, 60, 50, 40, 30};
292 static const u8 vga_rates[] = {60, 50, 40, 30, 15};
293
294 static const struct framerates ov772x_framerates[] = {
295 { /* 320x240 */
296 .rates = qvga_rates,
297 .nrates = ARRAY_SIZE(qvga_rates),
298 },
299 { /* 640x480 */
300 .rates = vga_rates,
301 .nrates = ARRAY_SIZE(vga_rates),
302 },
303 };
304
305 struct reg_array {
306 const u8 (*val)[2];
307 int len;
308 };
309
310 static const u8 bridge_init_767x[][2] = {
311 /* comments from the ms-win file apollo7670.set */
312 /* str1 */
313 {0xf1, 0x42},
314 {0x88, 0xf8},
315 {0x89, 0xff},
316 {0x76, 0x03},
317 {0x92, 0x03},
318 {0x95, 0x10},
319 {0xe2, 0x00},
320 {0xe7, 0x3e},
321 {0x8d, 0x1c},
322 {0x8e, 0x00},
323 {0x8f, 0x00},
324 {0x1f, 0x00},
325 {0xc3, 0xf9},
326 {0x89, 0xff},
327 {0x88, 0xf8},
328 {0x76, 0x03},
329 {0x92, 0x01},
330 {0x93, 0x18},
331 {0x1c, 0x00},
332 {0x1d, 0x48},
333 {0x1d, 0x00},
334 {0x1d, 0xff},
335 {0x1d, 0x02},
336 {0x1d, 0x58},
337 {0x1d, 0x00},
338 {0x1c, 0x0a},
339 {0x1d, 0x0a},
340 {0x1d, 0x0e},
341 {0xc0, 0x50}, /* HSize 640 */
342 {0xc1, 0x3c}, /* VSize 480 */
343 {0x34, 0x05}, /* enable Audio Suspend mode */
344 {0xc2, 0x0c}, /* Input YUV */
345 {0xc3, 0xf9}, /* enable PRE */
346 {0x34, 0x05}, /* enable Audio Suspend mode */
347 {0xe7, 0x2e}, /* this solves failure of "SuspendResumeTest" */
348 {0x31, 0xf9}, /* enable 1.8V Suspend */
349 {0x35, 0x02}, /* turn on JPEG */
350 {0xd9, 0x10},
351 {0x25, 0x42}, /* GPIO[8]:Input */
352 {0x94, 0x11}, /* If the default setting is loaded when
353 * system boots up, this flag is closed here */
354 };
355 static const u8 sensor_init_767x[][2] = {
356 {0x12, 0x80},
357 {0x11, 0x03},
358 {0x3a, 0x04},
359 {0x12, 0x00},
360 {0x17, 0x13},
361 {0x18, 0x01},
362 {0x32, 0xb6},
363 {0x19, 0x02},
364 {0x1a, 0x7a},
365 {0x03, 0x0a},
366 {0x0c, 0x00},
367 {0x3e, 0x00},
368 {0x70, 0x3a},
369 {0x71, 0x35},
370 {0x72, 0x11},
371 {0x73, 0xf0},
372 {0xa2, 0x02},
373 {0x7a, 0x2a}, /* set Gamma=1.6 below */
374 {0x7b, 0x12},
375 {0x7c, 0x1d},
376 {0x7d, 0x2d},
377 {0x7e, 0x45},
378 {0x7f, 0x50},
379 {0x80, 0x59},
380 {0x81, 0x62},
381 {0x82, 0x6b},
382 {0x83, 0x73},
383 {0x84, 0x7b},
384 {0x85, 0x8a},
385 {0x86, 0x98},
386 {0x87, 0xb2},
387 {0x88, 0xca},
388 {0x89, 0xe0},
389 {0x13, 0xe0},
390 {0x00, 0x00},
391 {0x10, 0x00},
392 {0x0d, 0x40},
393 {0x14, 0x38}, /* gain max 16x */
394 {0xa5, 0x05},
395 {0xab, 0x07},
396 {0x24, 0x95},
397 {0x25, 0x33},
398 {0x26, 0xe3},
399 {0x9f, 0x78},
400 {0xa0, 0x68},
401 {0xa1, 0x03},
402 {0xa6, 0xd8},
403 {0xa7, 0xd8},
404 {0xa8, 0xf0},
405 {0xa9, 0x90},
406 {0xaa, 0x94},
407 {0x13, 0xe5},
408 {0x0e, 0x61},
409 {0x0f, 0x4b},
410 {0x16, 0x02},
411 {0x21, 0x02},
412 {0x22, 0x91},
413 {0x29, 0x07},
414 {0x33, 0x0b},
415 {0x35, 0x0b},
416 {0x37, 0x1d},
417 {0x38, 0x71},
418 {0x39, 0x2a},
419 {0x3c, 0x78},
420 {0x4d, 0x40},
421 {0x4e, 0x20},
422 {0x69, 0x00},
423 {0x6b, 0x4a},
424 {0x74, 0x10},
425 {0x8d, 0x4f},
426 {0x8e, 0x00},
427 {0x8f, 0x00},
428 {0x90, 0x00},
429 {0x91, 0x00},
430 {0x96, 0x00},
431 {0x9a, 0x80},
432 {0xb0, 0x84},
433 {0xb1, 0x0c},
434 {0xb2, 0x0e},
435 {0xb3, 0x82},
436 {0xb8, 0x0a},
437 {0x43, 0x0a},
438 {0x44, 0xf0},
439 {0x45, 0x34},
440 {0x46, 0x58},
441 {0x47, 0x28},
442 {0x48, 0x3a},
443 {0x59, 0x88},
444 {0x5a, 0x88},
445 {0x5b, 0x44},
446 {0x5c, 0x67},
447 {0x5d, 0x49},
448 {0x5e, 0x0e},
449 {0x6c, 0x0a},
450 {0x6d, 0x55},
451 {0x6e, 0x11},
452 {0x6f, 0x9f},
453 {0x6a, 0x40},
454 {0x01, 0x40},
455 {0x02, 0x40},
456 {0x13, 0xe7},
457 {0x4f, 0x80},
458 {0x50, 0x80},
459 {0x51, 0x00},
460 {0x52, 0x22},
461 {0x53, 0x5e},
462 {0x54, 0x80},
463 {0x58, 0x9e},
464 {0x41, 0x08},
465 {0x3f, 0x00},
466 {0x75, 0x04},
467 {0x76, 0xe1},
468 {0x4c, 0x00},
469 {0x77, 0x01},
470 {0x3d, 0xc2},
471 {0x4b, 0x09},
472 {0xc9, 0x60},
473 {0x41, 0x38}, /* jfm: auto sharpness + auto de-noise */
474 {0x56, 0x40},
475 {0x34, 0x11},
476 {0x3b, 0xc2},
477 {0xa4, 0x8a}, /* Night mode trigger point */
478 {0x96, 0x00},
479 {0x97, 0x30},
480 {0x98, 0x20},
481 {0x99, 0x20},
482 {0x9a, 0x84},
483 {0x9b, 0x29},
484 {0x9c, 0x03},
485 {0x9d, 0x4c},
486 {0x9e, 0x3f},
487 {0x78, 0x04},
488 {0x79, 0x01},
489 {0xc8, 0xf0},
490 {0x79, 0x0f},
491 {0xc8, 0x00},
492 {0x79, 0x10},
493 {0xc8, 0x7e},
494 {0x79, 0x0a},
495 {0xc8, 0x80},
496 {0x79, 0x0b},
497 {0xc8, 0x01},
498 {0x79, 0x0c},
499 {0xc8, 0x0f},
500 {0x79, 0x0d},
501 {0xc8, 0x20},
502 {0x79, 0x09},
503 {0xc8, 0x80},
504 {0x79, 0x02},
505 {0xc8, 0xc0},
506 {0x79, 0x03},
507 {0xc8, 0x20},
508 {0x79, 0x26},
509 };
510 static const u8 bridge_start_vga_767x[][2] = {
511 /* str59 JPG */
512 {0x94, 0xaa},
513 {0xf1, 0x42},
514 {0xe5, 0x04},
515 {0xc0, 0x50},
516 {0xc1, 0x3c},
517 {0xc2, 0x0c},
518 {0x35, 0x02}, /* turn on JPEG */
519 {0xd9, 0x10},
520 {0xda, 0x00}, /* for higher clock rate(30fps) */
521 {0x34, 0x05}, /* enable Audio Suspend mode */
522 {0xc3, 0xf9}, /* enable PRE */
523 {0x8c, 0x00}, /* CIF VSize LSB[2:0] */
524 {0x8d, 0x1c}, /* output YUV */
525 /* {0x34, 0x05}, * enable Audio Suspend mode (?) */
526 {0x50, 0x00}, /* H/V divider=0 */
527 {0x51, 0xa0}, /* input H=640/4 */
528 {0x52, 0x3c}, /* input V=480/4 */
529 {0x53, 0x00}, /* offset X=0 */
530 {0x54, 0x00}, /* offset Y=0 */
531 {0x55, 0x00}, /* H/V size[8]=0 */
532 {0x57, 0x00}, /* H-size[9]=0 */
533 {0x5c, 0x00}, /* output size[9:8]=0 */
534 {0x5a, 0xa0}, /* output H=640/4 */
535 {0x5b, 0x78}, /* output V=480/4 */
536 {0x1c, 0x0a},
537 {0x1d, 0x0a},
538 {0x94, 0x11},
539 };
540 static const u8 sensor_start_vga_767x[][2] = {
541 {0x11, 0x01},
542 {0x1e, 0x04},
543 {0x19, 0x02},
544 {0x1a, 0x7a},
545 };
546 static const u8 bridge_start_qvga_767x[][2] = {
547 /* str86 JPG */
548 {0x94, 0xaa},
549 {0xf1, 0x42},
550 {0xe5, 0x04},
551 {0xc0, 0x80},
552 {0xc1, 0x60},
553 {0xc2, 0x0c},
554 {0x35, 0x02}, /* turn on JPEG */
555 {0xd9, 0x10},
556 {0xc0, 0x50}, /* CIF HSize 640 */
557 {0xc1, 0x3c}, /* CIF VSize 480 */
558 {0x8c, 0x00}, /* CIF VSize LSB[2:0] */
559 {0x8d, 0x1c}, /* output YUV */
560 {0x34, 0x05}, /* enable Audio Suspend mode */
561 {0xc2, 0x4c}, /* output YUV and Enable DCW */
562 {0xc3, 0xf9}, /* enable PRE */
563 {0x1c, 0x00}, /* indirect addressing */
564 {0x1d, 0x48}, /* output YUV422 */
565 {0x50, 0x89}, /* H/V divider=/2; plus DCW AVG */
566 {0x51, 0xa0}, /* DCW input H=640/4 */
567 {0x52, 0x78}, /* DCW input V=480/4 */
568 {0x53, 0x00}, /* offset X=0 */
569 {0x54, 0x00}, /* offset Y=0 */
570 {0x55, 0x00}, /* H/V size[8]=0 */
571 {0x57, 0x00}, /* H-size[9]=0 */
572 {0x5c, 0x00}, /* DCW output size[9:8]=0 */
573 {0x5a, 0x50}, /* DCW output H=320/4 */
574 {0x5b, 0x3c}, /* DCW output V=240/4 */
575 {0x1c, 0x0a},
576 {0x1d, 0x0a},
577 {0x94, 0x11},
578 };
579 static const u8 sensor_start_qvga_767x[][2] = {
580 {0x11, 0x01},
581 {0x1e, 0x04},
582 {0x19, 0x02},
583 {0x1a, 0x7a},
584 };
585
586 static const u8 bridge_init_772x[][2] = {
587 { 0xc2, 0x0c },
588 { 0x88, 0xf8 },
589 { 0xc3, 0x69 },
590 { 0x89, 0xff },
591 { 0x76, 0x03 },
592 { 0x92, 0x01 },
593 { 0x93, 0x18 },
594 { 0x94, 0x10 },
595 { 0x95, 0x10 },
596 { 0xe2, 0x00 },
597 { 0xe7, 0x3e },
598
599 { 0x96, 0x00 },
600
601 { 0x97, 0x20 },
602 { 0x97, 0x20 },
603 { 0x97, 0x20 },
604 { 0x97, 0x0a },
605 { 0x97, 0x3f },
606 { 0x97, 0x4a },
607 { 0x97, 0x20 },
608 { 0x97, 0x15 },
609 { 0x97, 0x0b },
610
611 { 0x8e, 0x40 },
612 { 0x1f, 0x81 },
613 { 0x34, 0x05 },
614 { 0xe3, 0x04 },
615 { 0x88, 0x00 },
616 { 0x89, 0x00 },
617 { 0x76, 0x00 },
618 { 0xe7, 0x2e },
619 { 0x31, 0xf9 },
620 { 0x25, 0x42 },
621 { 0x21, 0xf0 },
622
623 { 0x1c, 0x00 },
624 { 0x1d, 0x40 },
625 { 0x1d, 0x02 }, /* payload size 0x0200 * 4 = 2048 bytes */
626 { 0x1d, 0x00 }, /* payload size */
627
628 { 0x1d, 0x02 }, /* frame size 0x025800 * 4 = 614400 */
629 { 0x1d, 0x58 }, /* frame size */
630 { 0x1d, 0x00 }, /* frame size */
631
632 { 0x1c, 0x0a },
633 { 0x1d, 0x08 }, /* turn on UVC header */
634 { 0x1d, 0x0e }, /* .. */
635
636 { 0x8d, 0x1c },
637 { 0x8e, 0x80 },
638 { 0xe5, 0x04 },
639
640 { 0xc0, 0x50 },
641 { 0xc1, 0x3c },
642 { 0xc2, 0x0c },
643 };
644 static const u8 sensor_init_772x[][2] = {
645 { 0x12, 0x80 },
646 { 0x11, 0x01 },
647 /*fixme: better have a delay?*/
648 { 0x11, 0x01 },
649 { 0x11, 0x01 },
650 { 0x11, 0x01 },
651 { 0x11, 0x01 },
652 { 0x11, 0x01 },
653 { 0x11, 0x01 },
654 { 0x11, 0x01 },
655 { 0x11, 0x01 },
656 { 0x11, 0x01 },
657 { 0x11, 0x01 },
658
659 { 0x3d, 0x03 },
660 { 0x17, 0x26 },
661 { 0x18, 0xa0 },
662 { 0x19, 0x07 },
663 { 0x1a, 0xf0 },
664 { 0x32, 0x00 },
665 { 0x29, 0xa0 },
666 { 0x2c, 0xf0 },
667 { 0x65, 0x20 },
668 { 0x11, 0x01 },
669 { 0x42, 0x7f },
670 { 0x63, 0xaa }, /* AWB - was e0 */
671 { 0x64, 0xff },
672 { 0x66, 0x00 },
673 { 0x13, 0xf0 }, /* com8 */
674 { 0x0d, 0x41 },
675 { 0x0f, 0xc5 },
676 { 0x14, 0x11 },
677
678 { 0x22, 0x7f },
679 { 0x23, 0x03 },
680 { 0x24, 0x40 },
681 { 0x25, 0x30 },
682 { 0x26, 0xa1 },
683 { 0x2a, 0x00 },
684 { 0x2b, 0x00 },
685 { 0x6b, 0xaa },
686 { 0x13, 0xff }, /* AWB */
687
688 { 0x90, 0x05 },
689 { 0x91, 0x01 },
690 { 0x92, 0x03 },
691 { 0x93, 0x00 },
692 { 0x94, 0x60 },
693 { 0x95, 0x3c },
694 { 0x96, 0x24 },
695 { 0x97, 0x1e },
696 { 0x98, 0x62 },
697 { 0x99, 0x80 },
698 { 0x9a, 0x1e },
699 { 0x9b, 0x08 },
700 { 0x9c, 0x20 },
701 { 0x9e, 0x81 },
702
703 { 0xa6, 0x07 },
704 { 0x7e, 0x0c },
705 { 0x7f, 0x16 },
706 { 0x80, 0x2a },
707 { 0x81, 0x4e },
708 { 0x82, 0x61 },
709 { 0x83, 0x6f },
710 { 0x84, 0x7b },
711 { 0x85, 0x86 },
712 { 0x86, 0x8e },
713 { 0x87, 0x97 },
714 { 0x88, 0xa4 },
715 { 0x89, 0xaf },
716 { 0x8a, 0xc5 },
717 { 0x8b, 0xd7 },
718 { 0x8c, 0xe8 },
719 { 0x8d, 0x20 },
720
721 { 0x0c, 0x90 },
722
723 { 0x2b, 0x00 },
724 { 0x22, 0x7f },
725 { 0x23, 0x03 },
726 { 0x11, 0x01 },
727 { 0x0c, 0xd0 },
728 { 0x64, 0xff },
729 { 0x0d, 0x41 },
730
731 { 0x14, 0x41 },
732 { 0x0e, 0xcd },
733 { 0xac, 0xbf },
734 { 0x8e, 0x00 }, /* De-noise threshold */
735 { 0x0c, 0xd0 }
736 };
737 static const u8 bridge_start_vga_772x[][2] = {
738 {0x1c, 0x00},
739 {0x1d, 0x40},
740 {0x1d, 0x02},
741 {0x1d, 0x00},
742 {0x1d, 0x02},
743 {0x1d, 0x58},
744 {0x1d, 0x00},
745 {0xc0, 0x50},
746 {0xc1, 0x3c},
747 };
748 static const u8 sensor_start_vga_772x[][2] = {
749 {0x12, 0x00},
750 {0x17, 0x26},
751 {0x18, 0xa0},
752 {0x19, 0x07},
753 {0x1a, 0xf0},
754 {0x29, 0xa0},
755 {0x2c, 0xf0},
756 {0x65, 0x20},
757 };
758 static const u8 bridge_start_qvga_772x[][2] = {
759 {0x1c, 0x00},
760 {0x1d, 0x40},
761 {0x1d, 0x02},
762 {0x1d, 0x00},
763 {0x1d, 0x01},
764 {0x1d, 0x4b},
765 {0x1d, 0x00},
766 {0xc0, 0x28},
767 {0xc1, 0x1e},
768 };
769 static const u8 sensor_start_qvga_772x[][2] = {
770 {0x12, 0x40},
771 {0x17, 0x3f},
772 {0x18, 0x50},
773 {0x19, 0x03},
774 {0x1a, 0x78},
775 {0x29, 0x50},
776 {0x2c, 0x78},
777 {0x65, 0x2f},
778 };
779
780 static void ov534_reg_write(struct gspca_dev *gspca_dev, u16 reg, u8 val)
781 {
782 struct usb_device *udev = gspca_dev->dev;
783 int ret;
784
785 if (gspca_dev->usb_err < 0)
786 return;
787
788 PDEBUG(D_USBO, "SET 01 0000 %04x %02x", reg, val);
789 gspca_dev->usb_buf[0] = val;
790 ret = usb_control_msg(udev,
791 usb_sndctrlpipe(udev, 0),
792 0x01,
793 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
794 0x00, reg, gspca_dev->usb_buf, 1, CTRL_TIMEOUT);
795 if (ret < 0) {
796 pr_err("write failed %d\n", ret);
797 gspca_dev->usb_err = ret;
798 }
799 }
800
801 static u8 ov534_reg_read(struct gspca_dev *gspca_dev, u16 reg)
802 {
803 struct usb_device *udev = gspca_dev->dev;
804 int ret;
805
806 if (gspca_dev->usb_err < 0)
807 return 0;
808 ret = usb_control_msg(udev,
809 usb_rcvctrlpipe(udev, 0),
810 0x01,
811 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
812 0x00, reg, gspca_dev->usb_buf, 1, CTRL_TIMEOUT);
813 PDEBUG(D_USBI, "GET 01 0000 %04x %02x", reg, gspca_dev->usb_buf[0]);
814 if (ret < 0) {
815 pr_err("read failed %d\n", ret);
816 gspca_dev->usb_err = ret;
817 }
818 return gspca_dev->usb_buf[0];
819 }
820
821 /* Two bits control LED: 0x21 bit 7 and 0x23 bit 7.
822 * (direction and output)? */
823 static void ov534_set_led(struct gspca_dev *gspca_dev, int status)
824 {
825 u8 data;
826
827 PDEBUG(D_CONF, "led status: %d", status);
828
829 data = ov534_reg_read(gspca_dev, 0x21);
830 data |= 0x80;
831 ov534_reg_write(gspca_dev, 0x21, data);
832
833 data = ov534_reg_read(gspca_dev, 0x23);
834 if (status)
835 data |= 0x80;
836 else
837 data &= ~0x80;
838
839 ov534_reg_write(gspca_dev, 0x23, data);
840
841 if (!status) {
842 data = ov534_reg_read(gspca_dev, 0x21);
843 data &= ~0x80;
844 ov534_reg_write(gspca_dev, 0x21, data);
845 }
846 }
847
848 static int sccb_check_status(struct gspca_dev *gspca_dev)
849 {
850 u8 data;
851 int i;
852
853 for (i = 0; i < 5; i++) {
854 msleep(10);
855 data = ov534_reg_read(gspca_dev, OV534_REG_STATUS);
856
857 switch (data) {
858 case 0x00:
859 return 1;
860 case 0x04:
861 return 0;
862 case 0x03:
863 break;
864 default:
865 PDEBUG(D_ERR, "sccb status 0x%02x, attempt %d/5",
866 data, i + 1);
867 }
868 }
869 return 0;
870 }
871
872 static void sccb_reg_write(struct gspca_dev *gspca_dev, u8 reg, u8 val)
873 {
874 PDEBUG(D_USBO, "sccb write: %02x %02x", reg, val);
875 ov534_reg_write(gspca_dev, OV534_REG_SUBADDR, reg);
876 ov534_reg_write(gspca_dev, OV534_REG_WRITE, val);
877 ov534_reg_write(gspca_dev, OV534_REG_OPERATION, OV534_OP_WRITE_3);
878
879 if (!sccb_check_status(gspca_dev)) {
880 pr_err("sccb_reg_write failed\n");
881 gspca_dev->usb_err = -EIO;
882 }
883 }
884
885 static u8 sccb_reg_read(struct gspca_dev *gspca_dev, u16 reg)
886 {
887 ov534_reg_write(gspca_dev, OV534_REG_SUBADDR, reg);
888 ov534_reg_write(gspca_dev, OV534_REG_OPERATION, OV534_OP_WRITE_2);
889 if (!sccb_check_status(gspca_dev))
890 pr_err("sccb_reg_read failed 1\n");
891
892 ov534_reg_write(gspca_dev, OV534_REG_OPERATION, OV534_OP_READ_2);
893 if (!sccb_check_status(gspca_dev))
894 pr_err("sccb_reg_read failed 2\n");
895
896 return ov534_reg_read(gspca_dev, OV534_REG_READ);
897 }
898
899 /* output a bridge sequence (reg - val) */
900 static void reg_w_array(struct gspca_dev *gspca_dev,
901 const u8 (*data)[2], int len)
902 {
903 while (--len >= 0) {
904 ov534_reg_write(gspca_dev, (*data)[0], (*data)[1]);
905 data++;
906 }
907 }
908
909 /* output a sensor sequence (reg - val) */
910 static void sccb_w_array(struct gspca_dev *gspca_dev,
911 const u8 (*data)[2], int len)
912 {
913 while (--len >= 0) {
914 if ((*data)[0] != 0xff) {
915 sccb_reg_write(gspca_dev, (*data)[0], (*data)[1]);
916 } else {
917 sccb_reg_read(gspca_dev, (*data)[1]);
918 sccb_reg_write(gspca_dev, 0xff, 0x00);
919 }
920 data++;
921 }
922 }
923
924 /* ov772x specific controls */
925 static void set_frame_rate(struct gspca_dev *gspca_dev)
926 {
927 struct sd *sd = (struct sd *) gspca_dev;
928 int i;
929 struct rate_s {
930 u8 fps;
931 u8 r11;
932 u8 r0d;
933 u8 re5;
934 };
935 const struct rate_s *r;
936 static const struct rate_s rate_0[] = { /* 640x480 */
937 {60, 0x01, 0xc1, 0x04},
938 {50, 0x01, 0x41, 0x02},
939 {40, 0x02, 0xc1, 0x04},
940 {30, 0x04, 0x81, 0x02},
941 {15, 0x03, 0x41, 0x04},
942 };
943 static const struct rate_s rate_1[] = { /* 320x240 */
944 {125, 0x02, 0x81, 0x02},
945 {100, 0x02, 0xc1, 0x04},
946 {75, 0x03, 0xc1, 0x04},
947 {60, 0x04, 0xc1, 0x04},
948 {50, 0x02, 0x41, 0x04},
949 {40, 0x03, 0x41, 0x04},
950 {30, 0x04, 0x41, 0x04},
951 };
952
953 if (sd->sensor != SENSOR_OV772x)
954 return;
955 if (gspca_dev->cam.cam_mode[gspca_dev->curr_mode].priv == 0) {
956 r = rate_0;
957 i = ARRAY_SIZE(rate_0);
958 } else {
959 r = rate_1;
960 i = ARRAY_SIZE(rate_1);
961 }
962 while (--i > 0) {
963 if (sd->frame_rate >= r->fps)
964 break;
965 r++;
966 }
967
968 sccb_reg_write(gspca_dev, 0x11, r->r11);
969 sccb_reg_write(gspca_dev, 0x0d, r->r0d);
970 ov534_reg_write(gspca_dev, 0xe5, r->re5);
971
972 PDEBUG(D_PROBE, "frame_rate: %d", r->fps);
973 }
974
975 static void sethue(struct gspca_dev *gspca_dev)
976 {
977 struct sd *sd = (struct sd *) gspca_dev;
978 int val;
979
980 val = sd->ctrls[HUE].val;
981 if (sd->sensor == SENSOR_OV767x) {
982 /* TBD */
983 } else {
984 s16 huesin;
985 s16 huecos;
986
987 /* fixp_sin and fixp_cos accept only positive values, while
988 * our val is between -90 and 90
989 */
990 val += 360;
991
992 /* According to the datasheet the registers expect HUESIN and
993 * HUECOS to be the result of the trigonometric functions,
994 * scaled by 0x80.
995 *
996 * The 0x100 here represents the maximun absolute value
997 * returned byt fixp_sin and fixp_cos, so the scaling will
998 * consider the result like in the interval [-1.0, 1.0].
999 */
1000 huesin = fixp_sin(val) * 0x80 / 0x100;
1001 huecos = fixp_cos(val) * 0x80 / 0x100;
1002
1003 if (huesin < 0) {
1004 sccb_reg_write(gspca_dev, 0xab,
1005 sccb_reg_read(gspca_dev, 0xab) | 0x2);
1006 huesin = -huesin;
1007 } else {
1008 sccb_reg_write(gspca_dev, 0xab,
1009 sccb_reg_read(gspca_dev, 0xab) & ~0x2);
1010
1011 }
1012 sccb_reg_write(gspca_dev, 0xa9, (u8)huecos);
1013 sccb_reg_write(gspca_dev, 0xaa, (u8)huesin);
1014 }
1015 }
1016
1017 static void setsaturation(struct gspca_dev *gspca_dev)
1018 {
1019 struct sd *sd = (struct sd *) gspca_dev;
1020 int val;
1021
1022 val = sd->ctrls[SATURATION].val;
1023 if (sd->sensor == SENSOR_OV767x) {
1024 int i;
1025 static u8 color_tb[][6] = {
1026 {0x42, 0x42, 0x00, 0x11, 0x30, 0x41},
1027 {0x52, 0x52, 0x00, 0x16, 0x3c, 0x52},
1028 {0x66, 0x66, 0x00, 0x1b, 0x4b, 0x66},
1029 {0x80, 0x80, 0x00, 0x22, 0x5e, 0x80},
1030 {0x9a, 0x9a, 0x00, 0x29, 0x71, 0x9a},
1031 {0xb8, 0xb8, 0x00, 0x31, 0x87, 0xb8},
1032 {0xdd, 0xdd, 0x00, 0x3b, 0xa2, 0xdd},
1033 };
1034
1035 for (i = 0; i < ARRAY_SIZE(color_tb[0]); i++)
1036 sccb_reg_write(gspca_dev, 0x4f + i, color_tb[val][i]);
1037 } else {
1038 sccb_reg_write(gspca_dev, 0xa7, val); /* U saturation */
1039 sccb_reg_write(gspca_dev, 0xa8, val); /* V saturation */
1040 }
1041 }
1042
1043 static void setbrightness(struct gspca_dev *gspca_dev)
1044 {
1045 struct sd *sd = (struct sd *) gspca_dev;
1046 int val;
1047
1048 val = sd->ctrls[BRIGHTNESS].val;
1049 if (sd->sensor == SENSOR_OV767x) {
1050 if (val < 0)
1051 val = 0x80 - val;
1052 sccb_reg_write(gspca_dev, 0x55, val); /* bright */
1053 } else {
1054 sccb_reg_write(gspca_dev, 0x9b, val);
1055 }
1056 }
1057
1058 static void setcontrast(struct gspca_dev *gspca_dev)
1059 {
1060 struct sd *sd = (struct sd *) gspca_dev;
1061 u8 val;
1062
1063 val = sd->ctrls[CONTRAST].val;
1064 if (sd->sensor == SENSOR_OV767x)
1065 sccb_reg_write(gspca_dev, 0x56, val); /* contras */
1066 else
1067 sccb_reg_write(gspca_dev, 0x9c, val);
1068 }
1069
1070 static void setgain(struct gspca_dev *gspca_dev)
1071 {
1072 struct sd *sd = (struct sd *) gspca_dev;
1073 u8 val;
1074
1075 if (sd->ctrls[AGC].val)
1076 return;
1077
1078 val = sd->ctrls[GAIN].val;
1079 switch (val & 0x30) {
1080 case 0x00:
1081 val &= 0x0f;
1082 break;
1083 case 0x10:
1084 val &= 0x0f;
1085 val |= 0x30;
1086 break;
1087 case 0x20:
1088 val &= 0x0f;
1089 val |= 0x70;
1090 break;
1091 default:
1092 /* case 0x30: */
1093 val &= 0x0f;
1094 val |= 0xf0;
1095 break;
1096 }
1097 sccb_reg_write(gspca_dev, 0x00, val);
1098 }
1099
1100 static void setexposure(struct gspca_dev *gspca_dev)
1101 {
1102 struct sd *sd = (struct sd *) gspca_dev;
1103 u8 val;
1104
1105 if (sd->ctrls[AEC].val)
1106 return;
1107
1108 val = sd->ctrls[EXPOSURE].val;
1109 if (sd->sensor == SENSOR_OV767x) {
1110
1111 /* set only aec[9:2] */
1112 sccb_reg_write(gspca_dev, 0x10, val); /* aech */
1113 } else {
1114
1115 /* 'val' is one byte and represents half of the exposure value
1116 * we are going to set into registers, a two bytes value:
1117 *
1118 * MSB: ((u16) val << 1) >> 8 == val >> 7
1119 * LSB: ((u16) val << 1) & 0xff == val << 1
1120 */
1121 sccb_reg_write(gspca_dev, 0x08, val >> 7);
1122 sccb_reg_write(gspca_dev, 0x10, val << 1);
1123 }
1124 }
1125
1126 static void setagc(struct gspca_dev *gspca_dev)
1127 {
1128 struct sd *sd = (struct sd *) gspca_dev;
1129
1130 if (sd->ctrls[AGC].val) {
1131 sccb_reg_write(gspca_dev, 0x13,
1132 sccb_reg_read(gspca_dev, 0x13) | 0x04);
1133 sccb_reg_write(gspca_dev, 0x64,
1134 sccb_reg_read(gspca_dev, 0x64) | 0x03);
1135 } else {
1136 sccb_reg_write(gspca_dev, 0x13,
1137 sccb_reg_read(gspca_dev, 0x13) & ~0x04);
1138 sccb_reg_write(gspca_dev, 0x64,
1139 sccb_reg_read(gspca_dev, 0x64) & ~0x03);
1140
1141 setgain(gspca_dev);
1142 }
1143 }
1144
1145 static void setawb(struct gspca_dev *gspca_dev)
1146 {
1147 struct sd *sd = (struct sd *) gspca_dev;
1148
1149 if (sd->ctrls[AWB].val) {
1150 sccb_reg_write(gspca_dev, 0x13,
1151 sccb_reg_read(gspca_dev, 0x13) | 0x02);
1152 if (sd->sensor == SENSOR_OV772x)
1153 sccb_reg_write(gspca_dev, 0x63,
1154 sccb_reg_read(gspca_dev, 0x63) | 0xc0);
1155 } else {
1156 sccb_reg_write(gspca_dev, 0x13,
1157 sccb_reg_read(gspca_dev, 0x13) & ~0x02);
1158 if (sd->sensor == SENSOR_OV772x)
1159 sccb_reg_write(gspca_dev, 0x63,
1160 sccb_reg_read(gspca_dev, 0x63) & ~0xc0);
1161 }
1162 }
1163
1164 static void setaec(struct gspca_dev *gspca_dev)
1165 {
1166 struct sd *sd = (struct sd *) gspca_dev;
1167 u8 data;
1168
1169 data = sd->sensor == SENSOR_OV767x ?
1170 0x05 : /* agc + aec */
1171 0x01; /* agc */
1172 if (sd->ctrls[AEC].val)
1173 sccb_reg_write(gspca_dev, 0x13,
1174 sccb_reg_read(gspca_dev, 0x13) | data);
1175 else {
1176 sccb_reg_write(gspca_dev, 0x13,
1177 sccb_reg_read(gspca_dev, 0x13) & ~data);
1178 if (sd->sensor == SENSOR_OV767x)
1179 sd->ctrls[EXPOSURE].val =
1180 sccb_reg_read(gspca_dev, 10); /* aech */
1181 else
1182 setexposure(gspca_dev);
1183 }
1184 }
1185
1186 static void setsharpness(struct gspca_dev *gspca_dev)
1187 {
1188 struct sd *sd = (struct sd *) gspca_dev;
1189 u8 val;
1190
1191 val = sd->ctrls[SHARPNESS].val;
1192 sccb_reg_write(gspca_dev, 0x91, val); /* Auto de-noise threshold */
1193 sccb_reg_write(gspca_dev, 0x8e, val); /* De-noise threshold */
1194 }
1195
1196 static void sethvflip(struct gspca_dev *gspca_dev)
1197 {
1198 struct sd *sd = (struct sd *) gspca_dev;
1199 u8 val;
1200
1201 if (sd->sensor == SENSOR_OV767x) {
1202 val = sccb_reg_read(gspca_dev, 0x1e); /* mvfp */
1203 val &= ~0x30;
1204 if (sd->ctrls[HFLIP].val)
1205 val |= 0x20;
1206 if (sd->ctrls[VFLIP].val)
1207 val |= 0x10;
1208 sccb_reg_write(gspca_dev, 0x1e, val);
1209 } else {
1210 val = sccb_reg_read(gspca_dev, 0x0c);
1211 val &= ~0xc0;
1212 if (sd->ctrls[HFLIP].val == 0)
1213 val |= 0x40;
1214 if (sd->ctrls[VFLIP].val == 0)
1215 val |= 0x80;
1216 sccb_reg_write(gspca_dev, 0x0c, val);
1217 }
1218 }
1219
1220 static void setlightfreq(struct gspca_dev *gspca_dev)
1221 {
1222 struct sd *sd = (struct sd *) gspca_dev;
1223 u8 val;
1224
1225 val = sd->ctrls[LIGHTFREQ].val ? 0x9e : 0x00;
1226 if (sd->sensor == SENSOR_OV767x) {
1227 sccb_reg_write(gspca_dev, 0x2a, 0x00);
1228 if (val)
1229 val = 0x9d; /* insert dummy to 25fps for 50Hz */
1230 }
1231 sccb_reg_write(gspca_dev, 0x2b, val);
1232 }
1233
1234
1235 /* this function is called at probe time */
1236 static int sd_config(struct gspca_dev *gspca_dev,
1237 const struct usb_device_id *id)
1238 {
1239 struct sd *sd = (struct sd *) gspca_dev;
1240 struct cam *cam;
1241
1242 cam = &gspca_dev->cam;
1243
1244 cam->ctrls = sd->ctrls;
1245
1246 cam->cam_mode = ov772x_mode;
1247 cam->nmodes = ARRAY_SIZE(ov772x_mode);
1248
1249 sd->frame_rate = 30;
1250
1251 return 0;
1252 }
1253
1254 /* this function is called at probe and resume time */
1255 static int sd_init(struct gspca_dev *gspca_dev)
1256 {
1257 struct sd *sd = (struct sd *) gspca_dev;
1258 u16 sensor_id;
1259 static const struct reg_array bridge_init[NSENSORS] = {
1260 [SENSOR_OV767x] = {bridge_init_767x, ARRAY_SIZE(bridge_init_767x)},
1261 [SENSOR_OV772x] = {bridge_init_772x, ARRAY_SIZE(bridge_init_772x)},
1262 };
1263 static const struct reg_array sensor_init[NSENSORS] = {
1264 [SENSOR_OV767x] = {sensor_init_767x, ARRAY_SIZE(sensor_init_767x)},
1265 [SENSOR_OV772x] = {sensor_init_772x, ARRAY_SIZE(sensor_init_772x)},
1266 };
1267
1268 /* reset bridge */
1269 ov534_reg_write(gspca_dev, 0xe7, 0x3a);
1270 ov534_reg_write(gspca_dev, 0xe0, 0x08);
1271 msleep(100);
1272
1273 /* initialize the sensor address */
1274 ov534_reg_write(gspca_dev, OV534_REG_ADDRESS, 0x42);
1275
1276 /* reset sensor */
1277 sccb_reg_write(gspca_dev, 0x12, 0x80);
1278 msleep(10);
1279
1280 /* probe the sensor */
1281 sccb_reg_read(gspca_dev, 0x0a);
1282 sensor_id = sccb_reg_read(gspca_dev, 0x0a) << 8;
1283 sccb_reg_read(gspca_dev, 0x0b);
1284 sensor_id |= sccb_reg_read(gspca_dev, 0x0b);
1285 PDEBUG(D_PROBE, "Sensor ID: %04x", sensor_id);
1286
1287 if ((sensor_id & 0xfff0) == 0x7670) {
1288 sd->sensor = SENSOR_OV767x;
1289 gspca_dev->ctrl_dis = (1 << HUE) |
1290 (1 << GAIN) |
1291 (1 << AGC) |
1292 (1 << SHARPNESS); /* auto */
1293 sd->ctrls[SATURATION].min = 0,
1294 sd->ctrls[SATURATION].max = 6,
1295 sd->ctrls[SATURATION].def = 3,
1296 sd->ctrls[BRIGHTNESS].min = -127;
1297 sd->ctrls[BRIGHTNESS].max = 127;
1298 sd->ctrls[BRIGHTNESS].def = 0;
1299 sd->ctrls[CONTRAST].max = 0x80;
1300 sd->ctrls[CONTRAST].def = 0x40;
1301 sd->ctrls[EXPOSURE].min = 0x08;
1302 sd->ctrls[EXPOSURE].max = 0x60;
1303 sd->ctrls[EXPOSURE].def = 0x13;
1304 sd->ctrls[SHARPNESS].max = 9;
1305 sd->ctrls[SHARPNESS].def = 4;
1306 sd->ctrls[HFLIP].def = 1;
1307 gspca_dev->cam.cam_mode = ov767x_mode;
1308 gspca_dev->cam.nmodes = ARRAY_SIZE(ov767x_mode);
1309 } else {
1310 sd->sensor = SENSOR_OV772x;
1311 gspca_dev->cam.bulk = 1;
1312 gspca_dev->cam.bulk_size = 16384;
1313 gspca_dev->cam.bulk_nurbs = 2;
1314 gspca_dev->cam.mode_framerates = ov772x_framerates;
1315 }
1316
1317 /* initialize */
1318 reg_w_array(gspca_dev, bridge_init[sd->sensor].val,
1319 bridge_init[sd->sensor].len);
1320 ov534_set_led(gspca_dev, 1);
1321 sccb_w_array(gspca_dev, sensor_init[sd->sensor].val,
1322 sensor_init[sd->sensor].len);
1323 if (sd->sensor == SENSOR_OV767x)
1324 sd_start(gspca_dev);
1325 sd_stopN(gspca_dev);
1326 /* set_frame_rate(gspca_dev); */
1327
1328 return gspca_dev->usb_err;
1329 }
1330
1331 static int sd_start(struct gspca_dev *gspca_dev)
1332 {
1333 struct sd *sd = (struct sd *) gspca_dev;
1334 int mode;
1335 static const struct reg_array bridge_start[NSENSORS][2] = {
1336 [SENSOR_OV767x] = {{bridge_start_qvga_767x,
1337 ARRAY_SIZE(bridge_start_qvga_767x)},
1338 {bridge_start_vga_767x,
1339 ARRAY_SIZE(bridge_start_vga_767x)}},
1340 [SENSOR_OV772x] = {{bridge_start_qvga_772x,
1341 ARRAY_SIZE(bridge_start_qvga_772x)},
1342 {bridge_start_vga_772x,
1343 ARRAY_SIZE(bridge_start_vga_772x)}},
1344 };
1345 static const struct reg_array sensor_start[NSENSORS][2] = {
1346 [SENSOR_OV767x] = {{sensor_start_qvga_767x,
1347 ARRAY_SIZE(sensor_start_qvga_767x)},
1348 {sensor_start_vga_767x,
1349 ARRAY_SIZE(sensor_start_vga_767x)}},
1350 [SENSOR_OV772x] = {{sensor_start_qvga_772x,
1351 ARRAY_SIZE(sensor_start_qvga_772x)},
1352 {sensor_start_vga_772x,
1353 ARRAY_SIZE(sensor_start_vga_772x)}},
1354 };
1355
1356 /* (from ms-win trace) */
1357 if (sd->sensor == SENSOR_OV767x)
1358 sccb_reg_write(gspca_dev, 0x1e, 0x04);
1359 /* black sun enable ? */
1360
1361 mode = gspca_dev->curr_mode; /* 0: 320x240, 1: 640x480 */
1362 reg_w_array(gspca_dev, bridge_start[sd->sensor][mode].val,
1363 bridge_start[sd->sensor][mode].len);
1364 sccb_w_array(gspca_dev, sensor_start[sd->sensor][mode].val,
1365 sensor_start[sd->sensor][mode].len);
1366
1367 set_frame_rate(gspca_dev);
1368
1369 if (!(gspca_dev->ctrl_dis & (1 << HUE)))
1370 sethue(gspca_dev);
1371 setsaturation(gspca_dev);
1372 if (!(gspca_dev->ctrl_dis & (1 << AGC)))
1373 setagc(gspca_dev);
1374 setawb(gspca_dev);
1375 setaec(gspca_dev);
1376 if (!(gspca_dev->ctrl_dis & (1 << GAIN)))
1377 setgain(gspca_dev);
1378 setexposure(gspca_dev);
1379 setbrightness(gspca_dev);
1380 setcontrast(gspca_dev);
1381 if (!(gspca_dev->ctrl_dis & (1 << SHARPNESS)))
1382 setsharpness(gspca_dev);
1383 sethvflip(gspca_dev);
1384 setlightfreq(gspca_dev);
1385
1386 ov534_set_led(gspca_dev, 1);
1387 ov534_reg_write(gspca_dev, 0xe0, 0x00);
1388 return gspca_dev->usb_err;
1389 }
1390
1391 static void sd_stopN(struct gspca_dev *gspca_dev)
1392 {
1393 ov534_reg_write(gspca_dev, 0xe0, 0x09);
1394 ov534_set_led(gspca_dev, 0);
1395 }
1396
1397 /* Values for bmHeaderInfo (Video and Still Image Payload Headers, 2.4.3.3) */
1398 #define UVC_STREAM_EOH (1 << 7)
1399 #define UVC_STREAM_ERR (1 << 6)
1400 #define UVC_STREAM_STI (1 << 5)
1401 #define UVC_STREAM_RES (1 << 4)
1402 #define UVC_STREAM_SCR (1 << 3)
1403 #define UVC_STREAM_PTS (1 << 2)
1404 #define UVC_STREAM_EOF (1 << 1)
1405 #define UVC_STREAM_FID (1 << 0)
1406
1407 static void sd_pkt_scan(struct gspca_dev *gspca_dev,
1408 u8 *data, int len)
1409 {
1410 struct sd *sd = (struct sd *) gspca_dev;
1411 __u32 this_pts;
1412 u16 this_fid;
1413 int remaining_len = len;
1414 int payload_len;
1415
1416 payload_len = gspca_dev->cam.bulk ? 2048 : 2040;
1417 do {
1418 len = min(remaining_len, payload_len);
1419
1420 /* Payloads are prefixed with a UVC-style header. We
1421 consider a frame to start when the FID toggles, or the PTS
1422 changes. A frame ends when EOF is set, and we've received
1423 the correct number of bytes. */
1424
1425 /* Verify UVC header. Header length is always 12 */
1426 if (data[0] != 12 || len < 12) {
1427 PDEBUG(D_PACK, "bad header");
1428 goto discard;
1429 }
1430
1431 /* Check errors */
1432 if (data[1] & UVC_STREAM_ERR) {
1433 PDEBUG(D_PACK, "payload error");
1434 goto discard;
1435 }
1436
1437 /* Extract PTS and FID */
1438 if (!(data[1] & UVC_STREAM_PTS)) {
1439 PDEBUG(D_PACK, "PTS not present");
1440 goto discard;
1441 }
1442 this_pts = (data[5] << 24) | (data[4] << 16)
1443 | (data[3] << 8) | data[2];
1444 this_fid = (data[1] & UVC_STREAM_FID) ? 1 : 0;
1445
1446 /* If PTS or FID has changed, start a new frame. */
1447 if (this_pts != sd->last_pts || this_fid != sd->last_fid) {
1448 if (gspca_dev->last_packet_type == INTER_PACKET)
1449 gspca_frame_add(gspca_dev, LAST_PACKET,
1450 NULL, 0);
1451 sd->last_pts = this_pts;
1452 sd->last_fid = this_fid;
1453 gspca_frame_add(gspca_dev, FIRST_PACKET,
1454 data + 12, len - 12);
1455 /* If this packet is marked as EOF, end the frame */
1456 } else if (data[1] & UVC_STREAM_EOF) {
1457 sd->last_pts = 0;
1458 if (gspca_dev->pixfmt == V4L2_PIX_FMT_YUYV
1459 && gspca_dev->image_len + len - 12 !=
1460 gspca_dev->width * gspca_dev->height * 2) {
1461 PDEBUG(D_PACK, "wrong sized frame");
1462 goto discard;
1463 }
1464 gspca_frame_add(gspca_dev, LAST_PACKET,
1465 data + 12, len - 12);
1466 } else {
1467
1468 /* Add the data from this payload */
1469 gspca_frame_add(gspca_dev, INTER_PACKET,
1470 data + 12, len - 12);
1471 }
1472
1473 /* Done this payload */
1474 goto scan_next;
1475
1476 discard:
1477 /* Discard data until a new frame starts. */
1478 gspca_dev->last_packet_type = DISCARD_PACKET;
1479
1480 scan_next:
1481 remaining_len -= len;
1482 data += len;
1483 } while (remaining_len > 0);
1484 }
1485
1486 static int sd_querymenu(struct gspca_dev *gspca_dev,
1487 struct v4l2_querymenu *menu)
1488 {
1489 switch (menu->id) {
1490 case V4L2_CID_POWER_LINE_FREQUENCY:
1491 switch (menu->index) {
1492 case 0: /* V4L2_CID_POWER_LINE_FREQUENCY_DISABLED */
1493 strcpy((char *) menu->name, "Disabled");
1494 return 0;
1495 case 1: /* V4L2_CID_POWER_LINE_FREQUENCY_50HZ */
1496 strcpy((char *) menu->name, "50 Hz");
1497 return 0;
1498 }
1499 break;
1500 }
1501
1502 return -EINVAL;
1503 }
1504
1505 /* get stream parameters (framerate) */
1506 static void sd_get_streamparm(struct gspca_dev *gspca_dev,
1507 struct v4l2_streamparm *parm)
1508 {
1509 struct v4l2_captureparm *cp = &parm->parm.capture;
1510 struct v4l2_fract *tpf = &cp->timeperframe;
1511 struct sd *sd = (struct sd *) gspca_dev;
1512
1513 cp->capability |= V4L2_CAP_TIMEPERFRAME;
1514 tpf->numerator = 1;
1515 tpf->denominator = sd->frame_rate;
1516 }
1517
1518 /* set stream parameters (framerate) */
1519 static void sd_set_streamparm(struct gspca_dev *gspca_dev,
1520 struct v4l2_streamparm *parm)
1521 {
1522 struct v4l2_captureparm *cp = &parm->parm.capture;
1523 struct v4l2_fract *tpf = &cp->timeperframe;
1524 struct sd *sd = (struct sd *) gspca_dev;
1525
1526 /* Set requested framerate */
1527 sd->frame_rate = tpf->denominator / tpf->numerator;
1528 if (gspca_dev->streaming)
1529 set_frame_rate(gspca_dev);
1530
1531 /* Return the actual framerate */
1532 tpf->numerator = 1;
1533 tpf->denominator = sd->frame_rate;
1534 }
1535
1536 /* sub-driver description */
1537 static const struct sd_desc sd_desc = {
1538 .name = MODULE_NAME,
1539 .ctrls = sd_ctrls,
1540 .nctrls = ARRAY_SIZE(sd_ctrls),
1541 .config = sd_config,
1542 .init = sd_init,
1543 .start = sd_start,
1544 .stopN = sd_stopN,
1545 .pkt_scan = sd_pkt_scan,
1546 .querymenu = sd_querymenu,
1547 .get_streamparm = sd_get_streamparm,
1548 .set_streamparm = sd_set_streamparm,
1549 };
1550
1551 /* -- module initialisation -- */
1552 static const struct usb_device_id device_table[] = {
1553 {USB_DEVICE(0x1415, 0x2000)},
1554 {USB_DEVICE(0x06f8, 0x3002)},
1555 {}
1556 };
1557
1558 MODULE_DEVICE_TABLE(usb, device_table);
1559
1560 /* -- device connect -- */
1561 static int sd_probe(struct usb_interface *intf, const struct usb_device_id *id)
1562 {
1563 return gspca_dev_probe(intf, id, &sd_desc, sizeof(struct sd),
1564 THIS_MODULE);
1565 }
1566
1567 static struct usb_driver sd_driver = {
1568 .name = MODULE_NAME,
1569 .id_table = device_table,
1570 .probe = sd_probe,
1571 .disconnect = gspca_disconnect,
1572 #ifdef CONFIG_PM
1573 .suspend = gspca_suspend,
1574 .resume = gspca_resume,
1575 #endif
1576 };
1577
1578 module_usb_driver(sd_driver);
This page took 0.062946 seconds and 5 git commands to generate.