V4L/DVB (10335): gspca - all subdrivers: Fix CodingStyle in sd_mod_init function.
[deliverable/linux.git] / drivers / media / video / gspca / sonixb.c
1 /*
2 * sonix sn9c102 (bayer) library
3 * Copyright (C) 2003 2004 Michel Xhaard mxhaard@magic.fr
4 * Add Pas106 Stefano Mozzi (C) 2004
5 *
6 * V4L2 by Jean-Francois Moine <http://moinejf.free.fr>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 */
22
23 /* Some documentation on known sonixb registers:
24
25 Reg Use
26 0x10 high nibble red gain low nibble blue gain
27 0x11 low nibble green gain
28 0x12 hstart
29 0x13 vstart
30 0x15 hsize (hsize = register-value * 16)
31 0x16 vsize (vsize = register-value * 16)
32 0x17 bit 0 toggle compression quality (according to sn9c102 driver)
33 0x18 bit 7 enables compression, bit 4-5 set image down scaling:
34 00 scale 1, 01 scale 1/2, 10, scale 1/4
35 0x19 high-nibble is sensor clock divider, changes exposure on sensors which
36 use a clock generated by the bridge. Some sensors have their own clock.
37 0x1c auto_exposure area (for avg_lum) startx (startx = register-value * 32)
38 0x1d auto_exposure area (for avg_lum) starty (starty = register-value * 32)
39 0x1e auto_exposure area (for avg_lum) stopx (hsize = (0x1e - 0x1c) * 32)
40 0x1f auto_exposure area (for avg_lum) stopy (vsize = (0x1f - 0x1d) * 32)
41 */
42
43 #define MODULE_NAME "sonixb"
44
45 #include "gspca.h"
46
47 MODULE_AUTHOR("Michel Xhaard <mxhaard@users.sourceforge.net>");
48 MODULE_DESCRIPTION("GSPCA/SN9C102 USB Camera Driver");
49 MODULE_LICENSE("GPL");
50
51 /* specific webcam descriptor */
52 struct sd {
53 struct gspca_dev gspca_dev; /* !! must be the first item */
54 atomic_t avg_lum;
55 int prev_avg_lum;
56
57 unsigned char gain;
58 unsigned char exposure;
59 unsigned char brightness;
60 unsigned char autogain;
61 unsigned char autogain_ignore_frames;
62 unsigned char frames_to_drop;
63 unsigned char freq; /* light freq filter setting */
64
65 __u8 bridge; /* Type of bridge */
66 #define BRIDGE_101 0
67 #define BRIDGE_102 0 /* We make no difference between 101 and 102 */
68 #define BRIDGE_103 1
69
70 __u8 sensor; /* Type of image sensor chip */
71 #define SENSOR_HV7131R 0
72 #define SENSOR_OV6650 1
73 #define SENSOR_OV7630 2
74 #define SENSOR_PAS106 3
75 #define SENSOR_PAS202 4
76 #define SENSOR_TAS5110 5
77 #define SENSOR_TAS5130CXX 6
78 __u8 reg11;
79 };
80
81 typedef const __u8 sensor_init_t[8];
82
83 struct sensor_data {
84 const __u8 *bridge_init[2];
85 int bridge_init_size[2];
86 sensor_init_t *sensor_init;
87 int sensor_init_size;
88 sensor_init_t *sensor_bridge_init[2];
89 int sensor_bridge_init_size[2];
90 int flags;
91 unsigned ctrl_dis;
92 __u8 sensor_addr;
93 };
94
95 /* sensor_data flags */
96 #define F_GAIN 0x01 /* has gain */
97 #define F_SIF 0x02 /* sif or vga */
98
99 /* priv field of struct v4l2_pix_format flags (do not use low nibble!) */
100 #define MODE_RAW 0x10 /* raw bayer mode */
101 #define MODE_REDUCED_SIF 0x20 /* vga mode (320x240 / 160x120) on sif cam */
102
103 /* ctrl_dis helper macros */
104 #define NO_EXPO ((1 << EXPOSURE_IDX) | (1 << AUTOGAIN_IDX))
105 #define NO_FREQ (1 << FREQ_IDX)
106 #define NO_BRIGHTNESS (1 << BRIGHTNESS_IDX)
107
108 #define COMP2 0x8f
109 #define COMP 0xc7 /* 0x87 //0x07 */
110 #define COMP1 0xc9 /* 0x89 //0x09 */
111
112 #define MCK_INIT 0x63
113 #define MCK_INIT1 0x20 /*fixme: Bayer - 0x50 for JPEG ??*/
114
115 #define SYS_CLK 0x04
116
117 #define SENS(bridge_1, bridge_3, sensor, sensor_1, \
118 sensor_3, _flags, _ctrl_dis, _sensor_addr) \
119 { \
120 .bridge_init = { bridge_1, bridge_3 }, \
121 .bridge_init_size = { sizeof(bridge_1), sizeof(bridge_3) }, \
122 .sensor_init = sensor, \
123 .sensor_init_size = sizeof(sensor), \
124 .sensor_bridge_init = { sensor_1, sensor_3,}, \
125 .sensor_bridge_init_size = { sizeof(sensor_1), sizeof(sensor_3)}, \
126 .flags = _flags, .ctrl_dis = _ctrl_dis, .sensor_addr = _sensor_addr \
127 }
128
129 /* We calculate the autogain at the end of the transfer of a frame, at this
130 moment a frame with the old settings is being transmitted, and a frame is
131 being captured with the old settings. So if we adjust the autogain we must
132 ignore atleast the 2 next frames for the new settings to come into effect
133 before doing any other adjustments */
134 #define AUTOGAIN_IGNORE_FRAMES 3
135
136 /* V4L2 controls supported by the driver */
137 static int sd_setbrightness(struct gspca_dev *gspca_dev, __s32 val);
138 static int sd_getbrightness(struct gspca_dev *gspca_dev, __s32 *val);
139 static int sd_setgain(struct gspca_dev *gspca_dev, __s32 val);
140 static int sd_getgain(struct gspca_dev *gspca_dev, __s32 *val);
141 static int sd_setexposure(struct gspca_dev *gspca_dev, __s32 val);
142 static int sd_getexposure(struct gspca_dev *gspca_dev, __s32 *val);
143 static int sd_setautogain(struct gspca_dev *gspca_dev, __s32 val);
144 static int sd_getautogain(struct gspca_dev *gspca_dev, __s32 *val);
145 static int sd_setfreq(struct gspca_dev *gspca_dev, __s32 val);
146 static int sd_getfreq(struct gspca_dev *gspca_dev, __s32 *val);
147
148 static struct ctrl sd_ctrls[] = {
149 #define BRIGHTNESS_IDX 0
150 {
151 {
152 .id = V4L2_CID_BRIGHTNESS,
153 .type = V4L2_CTRL_TYPE_INTEGER,
154 .name = "Brightness",
155 .minimum = 0,
156 .maximum = 255,
157 .step = 1,
158 #define BRIGHTNESS_DEF 127
159 .default_value = BRIGHTNESS_DEF,
160 },
161 .set = sd_setbrightness,
162 .get = sd_getbrightness,
163 },
164 #define GAIN_IDX 1
165 {
166 {
167 .id = V4L2_CID_GAIN,
168 .type = V4L2_CTRL_TYPE_INTEGER,
169 .name = "Gain",
170 .minimum = 0,
171 .maximum = 255,
172 .step = 1,
173 #define GAIN_DEF 127
174 #define GAIN_KNEE 200
175 .default_value = GAIN_DEF,
176 },
177 .set = sd_setgain,
178 .get = sd_getgain,
179 },
180 #define EXPOSURE_IDX 2
181 {
182 {
183 .id = V4L2_CID_EXPOSURE,
184 .type = V4L2_CTRL_TYPE_INTEGER,
185 .name = "Exposure",
186 #define EXPOSURE_DEF 16 /* 32 ms / 30 fps */
187 #define EXPOSURE_KNEE 50 /* 100 ms / 10 fps */
188 .minimum = 0,
189 .maximum = 255,
190 .step = 1,
191 .default_value = EXPOSURE_DEF,
192 .flags = 0,
193 },
194 .set = sd_setexposure,
195 .get = sd_getexposure,
196 },
197 #define AUTOGAIN_IDX 3
198 {
199 {
200 .id = V4L2_CID_AUTOGAIN,
201 .type = V4L2_CTRL_TYPE_BOOLEAN,
202 .name = "Automatic Gain (and Exposure)",
203 .minimum = 0,
204 .maximum = 1,
205 .step = 1,
206 #define AUTOGAIN_DEF 1
207 .default_value = AUTOGAIN_DEF,
208 .flags = 0,
209 },
210 .set = sd_setautogain,
211 .get = sd_getautogain,
212 },
213 #define FREQ_IDX 4
214 {
215 {
216 .id = V4L2_CID_POWER_LINE_FREQUENCY,
217 .type = V4L2_CTRL_TYPE_MENU,
218 .name = "Light frequency filter",
219 .minimum = 0,
220 .maximum = 2, /* 0: 0, 1: 50Hz, 2:60Hz */
221 .step = 1,
222 #define FREQ_DEF 1
223 .default_value = FREQ_DEF,
224 },
225 .set = sd_setfreq,
226 .get = sd_getfreq,
227 },
228 };
229
230 static const struct v4l2_pix_format vga_mode[] = {
231 {160, 120, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
232 .bytesperline = 160,
233 .sizeimage = 160 * 120,
234 .colorspace = V4L2_COLORSPACE_SRGB,
235 .priv = 2 | MODE_RAW},
236 {160, 120, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
237 .bytesperline = 160,
238 .sizeimage = 160 * 120 * 5 / 4,
239 .colorspace = V4L2_COLORSPACE_SRGB,
240 .priv = 2},
241 {320, 240, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
242 .bytesperline = 320,
243 .sizeimage = 320 * 240 * 5 / 4,
244 .colorspace = V4L2_COLORSPACE_SRGB,
245 .priv = 1},
246 {640, 480, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
247 .bytesperline = 640,
248 .sizeimage = 640 * 480 * 5 / 4,
249 .colorspace = V4L2_COLORSPACE_SRGB,
250 .priv = 0},
251 };
252 static const struct v4l2_pix_format sif_mode[] = {
253 {160, 120, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
254 .bytesperline = 160,
255 .sizeimage = 160 * 120,
256 .colorspace = V4L2_COLORSPACE_SRGB,
257 .priv = 1 | MODE_RAW | MODE_REDUCED_SIF},
258 {160, 120, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
259 .bytesperline = 160,
260 .sizeimage = 160 * 120 * 5 / 4,
261 .colorspace = V4L2_COLORSPACE_SRGB,
262 .priv = 1 | MODE_REDUCED_SIF},
263 {176, 144, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
264 .bytesperline = 176,
265 .sizeimage = 176 * 144,
266 .colorspace = V4L2_COLORSPACE_SRGB,
267 .priv = 1 | MODE_RAW},
268 {176, 144, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
269 .bytesperline = 176,
270 .sizeimage = 176 * 144 * 5 / 4,
271 .colorspace = V4L2_COLORSPACE_SRGB,
272 .priv = 1},
273 {320, 240, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
274 .bytesperline = 320,
275 .sizeimage = 320 * 240 * 5 / 4,
276 .colorspace = V4L2_COLORSPACE_SRGB,
277 .priv = 0 | MODE_REDUCED_SIF},
278 {352, 288, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
279 .bytesperline = 352,
280 .sizeimage = 352 * 288 * 5 / 4,
281 .colorspace = V4L2_COLORSPACE_SRGB,
282 .priv = 0},
283 };
284
285 static const __u8 initHv7131[] = {
286 0x46, 0x77, 0x00, 0x04, 0x00, 0x00, 0x00, 0x80, 0x11, 0x00, 0x00, 0x00,
287 0x00, 0x00,
288 0x00, 0x00, 0x00, 0x02, 0x01, 0x00,
289 0x28, 0x1e, 0x60, 0x8a, 0x20,
290 0x1d, 0x10, 0x02, 0x03, 0x0f, 0x0c
291 };
292 static const __u8 hv7131_sensor_init[][8] = {
293 {0xc0, 0x11, 0x31, 0x38, 0x2a, 0x2e, 0x00, 0x10},
294 {0xa0, 0x11, 0x01, 0x08, 0x2a, 0x2e, 0x00, 0x10},
295 {0xb0, 0x11, 0x20, 0x00, 0xd0, 0x2e, 0x00, 0x10},
296 {0xc0, 0x11, 0x25, 0x03, 0x0e, 0x28, 0x00, 0x16},
297 {0xa0, 0x11, 0x30, 0x10, 0x0e, 0x28, 0x00, 0x15},
298 };
299 static const __u8 initOv6650[] = {
300 0x44, 0x44, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80,
301 0x60, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
302 0x00, 0x01, 0x01, 0x0a, 0x16, 0x12, 0x68, 0x8b,
303 0x10, 0x1d, 0x10, 0x02, 0x02, 0x09, 0x07
304 };
305 static const __u8 ov6650_sensor_init[][8] =
306 {
307 /* Bright, contrast, etc are set througth SCBB interface.
308 * AVCAP on win2 do not send any data on this controls. */
309 /* Anyway, some registers appears to alter bright and constrat */
310
311 /* Reset sensor */
312 {0xa0, 0x60, 0x12, 0x80, 0x00, 0x00, 0x00, 0x10},
313 /* Set clock register 0x11 low nibble is clock divider */
314 {0xd0, 0x60, 0x11, 0xc0, 0x1b, 0x18, 0xc1, 0x10},
315 /* Next some unknown stuff */
316 {0xb0, 0x60, 0x15, 0x00, 0x02, 0x18, 0xc1, 0x10},
317 /* {0xa0, 0x60, 0x1b, 0x01, 0x02, 0x18, 0xc1, 0x10},
318 * THIS SET GREEN SCREEN
319 * (pixels could be innverted in decode kind of "brg",
320 * but blue wont be there. Avoid this data ... */
321 {0xd0, 0x60, 0x26, 0x01, 0x14, 0xd8, 0xa4, 0x10}, /* format out? */
322 {0xd0, 0x60, 0x26, 0x01, 0x14, 0xd8, 0xa4, 0x10},
323 {0xa0, 0x60, 0x30, 0x3d, 0x0A, 0xd8, 0xa4, 0x10},
324 /* Enable rgb brightness control */
325 {0xa0, 0x60, 0x61, 0x08, 0x00, 0x00, 0x00, 0x10},
326 /* HDG: Note windows uses the line below, which sets both register 0x60
327 and 0x61 I believe these registers of the ov6650 are identical as
328 those of the ov7630, because if this is true the windows settings
329 add a bit additional red gain and a lot additional blue gain, which
330 matches my findings that the windows settings make blue much too
331 blue and red a little too red.
332 {0xb0, 0x60, 0x60, 0x66, 0x68, 0xd8, 0xa4, 0x10}, */
333 /* Some more unknown stuff */
334 {0xa0, 0x60, 0x68, 0x04, 0x68, 0xd8, 0xa4, 0x10},
335 {0xd0, 0x60, 0x17, 0x24, 0xd6, 0x04, 0x94, 0x10}, /* Clipreg */
336 };
337
338 static const __u8 initOv7630[] = {
339 0x04, 0x44, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, /* r01 .. r08 */
340 0x21, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* r09 .. r10 */
341 0x00, 0x01, 0x01, 0x0a, /* r11 .. r14 */
342 0x28, 0x1e, /* H & V sizes r15 .. r16 */
343 0x68, COMP2, MCK_INIT1, /* r17 .. r19 */
344 0x1d, 0x10, 0x02, 0x03, 0x0f, 0x0c /* r1a .. r1f */
345 };
346 static const __u8 initOv7630_3[] = {
347 0x44, 0x44, 0x00, 0x1a, 0x20, 0x20, 0x20, 0x80, /* r01 .. r08 */
348 0x21, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, /* r09 .. r10 */
349 0x00, 0x02, 0x01, 0x0a, /* r11 .. r14 */
350 0x28, 0x1e, /* H & V sizes r15 .. r16 */
351 0x68, 0x8f, MCK_INIT1, /* r17 .. r19 */
352 0x1d, 0x10, 0x02, 0x03, 0x0f, 0x0c, 0x00, /* r1a .. r20 */
353 0x10, 0x20, 0x30, 0x40, 0x50, 0x60, 0x70, 0x80, /* r21 .. r28 */
354 0x90, 0xa0, 0xb0, 0xc0, 0xd0, 0xe0, 0xf0, 0xff /* r29 .. r30 */
355 };
356 static const __u8 ov7630_sensor_init[][8] = {
357 {0xa0, 0x21, 0x12, 0x80, 0x00, 0x00, 0x00, 0x10},
358 {0xb0, 0x21, 0x01, 0x77, 0x3a, 0x00, 0x00, 0x10},
359 /* {0xd0, 0x21, 0x12, 0x7c, 0x01, 0x80, 0x34, 0x10}, jfm */
360 {0xd0, 0x21, 0x12, 0x1c, 0x00, 0x80, 0x34, 0x10}, /* jfm */
361 {0xa0, 0x21, 0x1b, 0x04, 0x00, 0x80, 0x34, 0x10},
362 {0xa0, 0x21, 0x20, 0x44, 0x00, 0x80, 0x34, 0x10},
363 {0xa0, 0x21, 0x23, 0xee, 0x00, 0x80, 0x34, 0x10},
364 {0xd0, 0x21, 0x26, 0xa0, 0x9a, 0xa0, 0x30, 0x10},
365 {0xb0, 0x21, 0x2a, 0x80, 0x00, 0xa0, 0x30, 0x10},
366 {0xb0, 0x21, 0x2f, 0x3d, 0x24, 0xa0, 0x30, 0x10},
367 {0xa0, 0x21, 0x32, 0x86, 0x24, 0xa0, 0x30, 0x10},
368 {0xb0, 0x21, 0x60, 0xa9, 0x4a, 0xa0, 0x30, 0x10},
369 /* {0xb0, 0x21, 0x60, 0xa9, 0x42, 0xa0, 0x30, 0x10}, * jfm */
370 {0xa0, 0x21, 0x65, 0x00, 0x42, 0xa0, 0x30, 0x10},
371 {0xa0, 0x21, 0x69, 0x38, 0x42, 0xa0, 0x30, 0x10},
372 {0xc0, 0x21, 0x6f, 0x88, 0x0b, 0x00, 0x30, 0x10},
373 {0xc0, 0x21, 0x74, 0x21, 0x8e, 0x00, 0x30, 0x10},
374 {0xa0, 0x21, 0x7d, 0xf7, 0x8e, 0x00, 0x30, 0x10},
375 {0xd0, 0x21, 0x17, 0x1c, 0xbd, 0x06, 0xf6, 0x10},
376 };
377
378 static const __u8 ov7630_sensor_init_3[][8] = {
379 {0xa0, 0x21, 0x13, 0x80, 0x00, 0x00, 0x00, 0x10},
380 };
381
382 static const __u8 initPas106[] = {
383 0x04, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x81, 0x40, 0x00, 0x00, 0x00,
384 0x00, 0x00,
385 0x00, 0x00, 0x00, 0x04, 0x01, 0x00,
386 0x16, 0x12, 0x24, COMP1, MCK_INIT1,
387 0x18, 0x10, 0x02, 0x02, 0x09, 0x07
388 };
389 /* compression 0x86 mckinit1 0x2b */
390 static const __u8 pas106_sensor_init[][8] = {
391 /* Pixel Clock Divider 6 */
392 { 0xa1, 0x40, 0x02, 0x04, 0x00, 0x00, 0x00, 0x14 },
393 /* Frame Time MSB (also seen as 0x12) */
394 { 0xa1, 0x40, 0x03, 0x13, 0x00, 0x00, 0x00, 0x14 },
395 /* Frame Time LSB (also seen as 0x05) */
396 { 0xa1, 0x40, 0x04, 0x06, 0x00, 0x00, 0x00, 0x14 },
397 /* Shutter Time Line Offset (also seen as 0x6d) */
398 { 0xa1, 0x40, 0x05, 0x65, 0x00, 0x00, 0x00, 0x14 },
399 /* Shutter Time Pixel Offset (also seen as 0xb1) */
400 { 0xa1, 0x40, 0x06, 0xcd, 0x00, 0x00, 0x00, 0x14 },
401 /* Black Level Subtract Sign (also seen 0x00) */
402 { 0xa1, 0x40, 0x07, 0xc1, 0x00, 0x00, 0x00, 0x14 },
403 /* Black Level Subtract Level (also seen 0x01) */
404 { 0xa1, 0x40, 0x08, 0x06, 0x00, 0x00, 0x00, 0x14 },
405 { 0xa1, 0x40, 0x08, 0x06, 0x00, 0x00, 0x00, 0x14 },
406 /* Color Gain B Pixel 5 a */
407 { 0xa1, 0x40, 0x09, 0x05, 0x00, 0x00, 0x00, 0x14 },
408 /* Color Gain G1 Pixel 1 5 */
409 { 0xa1, 0x40, 0x0a, 0x04, 0x00, 0x00, 0x00, 0x14 },
410 /* Color Gain G2 Pixel 1 0 5 */
411 { 0xa1, 0x40, 0x0b, 0x04, 0x00, 0x00, 0x00, 0x14 },
412 /* Color Gain R Pixel 3 1 */
413 { 0xa1, 0x40, 0x0c, 0x05, 0x00, 0x00, 0x00, 0x14 },
414 /* Color GainH Pixel */
415 { 0xa1, 0x40, 0x0d, 0x00, 0x00, 0x00, 0x00, 0x14 },
416 /* Global Gain */
417 { 0xa1, 0x40, 0x0e, 0x0e, 0x00, 0x00, 0x00, 0x14 },
418 /* Contrast */
419 { 0xa1, 0x40, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x14 },
420 /* H&V synchro polarity */
421 { 0xa1, 0x40, 0x10, 0x06, 0x00, 0x00, 0x00, 0x14 },
422 /* ?default */
423 { 0xa1, 0x40, 0x11, 0x06, 0x00, 0x00, 0x00, 0x14 },
424 /* DAC scale */
425 { 0xa1, 0x40, 0x12, 0x06, 0x00, 0x00, 0x00, 0x14 },
426 /* ?default */
427 { 0xa1, 0x40, 0x14, 0x02, 0x00, 0x00, 0x00, 0x14 },
428 /* Validate Settings */
429 { 0xa1, 0x40, 0x13, 0x01, 0x00, 0x00, 0x00, 0x14 },
430 };
431
432 static const __u8 initPas202[] = {
433 0x44, 0x44, 0x21, 0x30, 0x00, 0x00, 0x00, 0x80, 0x40, 0x00, 0x00, 0x00,
434 0x00, 0x00,
435 0x00, 0x00, 0x00, 0x06, 0x03, 0x0a,
436 0x28, 0x1e, 0x28, 0x89, 0x20,
437 0x00, 0x00, 0x02, 0x03, 0x0f, 0x0c
438 };
439 static const __u8 pas202_sensor_init[][8] = {
440 {0xa0, 0x40, 0x02, 0x03, 0x00, 0x00, 0x00, 0x10},
441 {0xd0, 0x40, 0x04, 0x07, 0x34, 0x00, 0x09, 0x10},
442 {0xd0, 0x40, 0x08, 0x01, 0x00, 0x00, 0x01, 0x10},
443 {0xd0, 0x40, 0x0C, 0x00, 0x0C, 0x00, 0x32, 0x10},
444 {0xd0, 0x40, 0x10, 0x00, 0x01, 0x00, 0x63, 0x10},
445 {0xa0, 0x40, 0x15, 0x70, 0x01, 0x00, 0x63, 0x10},
446 {0xa0, 0x40, 0x18, 0x00, 0x01, 0x00, 0x63, 0x10},
447 {0xa0, 0x40, 0x11, 0x01, 0x01, 0x00, 0x63, 0x10},
448 {0xa0, 0x40, 0x03, 0x56, 0x01, 0x00, 0x63, 0x10},
449 {0xa0, 0x40, 0x11, 0x01, 0x01, 0x00, 0x63, 0x10},
450 {0xb0, 0x40, 0x04, 0x07, 0x2a, 0x00, 0x63, 0x10},
451 {0xb0, 0x40, 0x0e, 0x00, 0x3d, 0x00, 0x63, 0x10},
452
453 {0xa0, 0x40, 0x11, 0x01, 0x3d, 0x00, 0x63, 0x16},
454 {0xa0, 0x40, 0x10, 0x08, 0x3d, 0x00, 0x63, 0x15},
455 {0xa0, 0x40, 0x02, 0x04, 0x3d, 0x00, 0x63, 0x16},
456 {0xa0, 0x40, 0x11, 0x01, 0x3d, 0x00, 0x63, 0x16},
457 {0xb0, 0x40, 0x0e, 0x00, 0x31, 0x00, 0x63, 0x16},
458 {0xa0, 0x40, 0x11, 0x01, 0x31, 0x00, 0x63, 0x16},
459 {0xa0, 0x40, 0x10, 0x0e, 0x31, 0x00, 0x63, 0x15},
460 {0xa0, 0x40, 0x11, 0x01, 0x31, 0x00, 0x63, 0x16},
461 };
462
463 static const __u8 initTas5110[] = {
464 0x44, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x11, 0x00, 0x00, 0x00,
465 0x00, 0x00,
466 0x00, 0x01, 0x00, 0x45, 0x09, 0x0a,
467 0x16, 0x12, 0x60, 0x86, 0x2b,
468 0x14, 0x0a, 0x02, 0x02, 0x09, 0x07
469 };
470 static const __u8 tas5110_sensor_init[][8] = {
471 {0x30, 0x11, 0x00, 0x00, 0x0c, 0x00, 0x00, 0x10},
472 {0x30, 0x11, 0x02, 0x20, 0xa9, 0x00, 0x00, 0x10},
473 {0xa0, 0x61, 0x9a, 0xca, 0x00, 0x00, 0x00, 0x17},
474 };
475
476 static const __u8 initTas5130[] = {
477 0x04, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x11, 0x00, 0x00, 0x00,
478 0x00, 0x00,
479 0x00, 0x01, 0x00, 0x68, 0x0c, 0x0a,
480 0x28, 0x1e, 0x60, COMP, MCK_INIT,
481 0x18, 0x10, 0x04, 0x03, 0x11, 0x0c
482 };
483 static const __u8 tas5130_sensor_init[][8] = {
484 /* {0x30, 0x11, 0x00, 0x40, 0x47, 0x00, 0x00, 0x10},
485 * shutter 0x47 short exposure? */
486 {0x30, 0x11, 0x00, 0x40, 0x01, 0x00, 0x00, 0x10},
487 /* shutter 0x01 long exposure */
488 {0x30, 0x11, 0x02, 0x20, 0x70, 0x00, 0x00, 0x10},
489 };
490
491 static struct sensor_data sensor_data[] = {
492 SENS(initHv7131, NULL, hv7131_sensor_init, NULL, NULL, 0, NO_EXPO|NO_FREQ, 0),
493 SENS(initOv6650, NULL, ov6650_sensor_init, NULL, NULL, F_GAIN|F_SIF, 0, 0x60),
494 SENS(initOv7630, initOv7630_3, ov7630_sensor_init, NULL, ov7630_sensor_init_3,
495 F_GAIN, 0, 0x21),
496 SENS(initPas106, NULL, pas106_sensor_init, NULL, NULL, F_SIF, NO_EXPO|NO_FREQ,
497 0),
498 SENS(initPas202, initPas202, pas202_sensor_init, NULL, NULL, 0,
499 NO_EXPO|NO_FREQ, 0),
500 SENS(initTas5110, NULL, tas5110_sensor_init, NULL, NULL, F_GAIN|F_SIF,
501 NO_BRIGHTNESS|NO_FREQ, 0),
502 SENS(initTas5130, NULL, tas5130_sensor_init, NULL, NULL, 0, NO_EXPO|NO_FREQ,
503 0),
504 };
505
506 /* get one byte in gspca_dev->usb_buf */
507 static void reg_r(struct gspca_dev *gspca_dev,
508 __u16 value)
509 {
510 usb_control_msg(gspca_dev->dev,
511 usb_rcvctrlpipe(gspca_dev->dev, 0),
512 0, /* request */
513 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
514 value,
515 0, /* index */
516 gspca_dev->usb_buf, 1,
517 500);
518 }
519
520 static void reg_w(struct gspca_dev *gspca_dev,
521 __u16 value,
522 const __u8 *buffer,
523 int len)
524 {
525 #ifdef GSPCA_DEBUG
526 if (len > USB_BUF_SZ) {
527 PDEBUG(D_ERR|D_PACK, "reg_w: buffer overflow");
528 return;
529 }
530 #endif
531 memcpy(gspca_dev->usb_buf, buffer, len);
532 usb_control_msg(gspca_dev->dev,
533 usb_sndctrlpipe(gspca_dev->dev, 0),
534 0x08, /* request */
535 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
536 value,
537 0, /* index */
538 gspca_dev->usb_buf, len,
539 500);
540 }
541
542 static int i2c_w(struct gspca_dev *gspca_dev, const __u8 *buffer)
543 {
544 int retry = 60;
545
546 /* is i2c ready */
547 reg_w(gspca_dev, 0x08, buffer, 8);
548 while (retry--) {
549 msleep(10);
550 reg_r(gspca_dev, 0x08);
551 if (gspca_dev->usb_buf[0] & 0x04) {
552 if (gspca_dev->usb_buf[0] & 0x08)
553 return -1;
554 return 0;
555 }
556 }
557 return -1;
558 }
559
560 static void i2c_w_vector(struct gspca_dev *gspca_dev,
561 const __u8 buffer[][8], int len)
562 {
563 for (;;) {
564 reg_w(gspca_dev, 0x08, *buffer, 8);
565 len -= 8;
566 if (len <= 0)
567 break;
568 buffer++;
569 }
570 }
571
572 static void setbrightness(struct gspca_dev *gspca_dev)
573 {
574 struct sd *sd = (struct sd *) gspca_dev;
575 __u8 value;
576
577 switch (sd->sensor) {
578 case SENSOR_OV6650:
579 case SENSOR_OV7630: {
580 __u8 i2cOV[] =
581 {0xa0, 0x00, 0x06, 0x00, 0x00, 0x00, 0x00, 0x10};
582
583 /* change reg 0x06 */
584 i2cOV[1] = sensor_data[sd->sensor].sensor_addr;
585 i2cOV[3] = sd->brightness;
586 if (i2c_w(gspca_dev, i2cOV) < 0)
587 goto err;
588 break;
589 }
590 case SENSOR_PAS106: {
591 __u8 i2c1[] =
592 {0xa1, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x14};
593
594 i2c1[3] = sd->brightness >> 3;
595 i2c1[2] = 0x0e;
596 if (i2c_w(gspca_dev, i2c1) < 0)
597 goto err;
598 i2c1[3] = 0x01;
599 i2c1[2] = 0x13;
600 if (i2c_w(gspca_dev, i2c1) < 0)
601 goto err;
602 break;
603 }
604 case SENSOR_PAS202: {
605 /* __u8 i2cpexpo1[] =
606 {0xb0, 0x40, 0x04, 0x07, 0x2a, 0x00, 0x63, 0x16}; */
607 __u8 i2cpexpo[] =
608 {0xb0, 0x40, 0x0e, 0x01, 0xab, 0x00, 0x63, 0x16};
609 __u8 i2cp202[] =
610 {0xa0, 0x40, 0x10, 0x0e, 0x31, 0x00, 0x63, 0x15};
611 static __u8 i2cpdoit[] =
612 {0xa0, 0x40, 0x11, 0x01, 0x31, 0x00, 0x63, 0x16};
613
614 /* change reg 0x10 */
615 i2cpexpo[4] = 0xff - sd->brightness;
616 /* if(i2c_w(gspca_dev,i2cpexpo1) < 0)
617 goto err; */
618 /* if(i2c_w(gspca_dev,i2cpdoit) < 0)
619 goto err; */
620 if (i2c_w(gspca_dev, i2cpexpo) < 0)
621 goto err;
622 if (i2c_w(gspca_dev, i2cpdoit) < 0)
623 goto err;
624 i2cp202[3] = sd->brightness >> 3;
625 if (i2c_w(gspca_dev, i2cp202) < 0)
626 goto err;
627 if (i2c_w(gspca_dev, i2cpdoit) < 0)
628 goto err;
629 break;
630 }
631 case SENSOR_TAS5130CXX: {
632 __u8 i2c[] =
633 {0x30, 0x11, 0x02, 0x20, 0x70, 0x00, 0x00, 0x10};
634
635 value = 0xff - sd->brightness;
636 i2c[4] = value;
637 PDEBUG(D_CONF, "brightness %d : %d", value, i2c[4]);
638 if (i2c_w(gspca_dev, i2c) < 0)
639 goto err;
640 break;
641 }
642 }
643 return;
644 err:
645 PDEBUG(D_ERR, "i2c error brightness");
646 }
647
648 static void setsensorgain(struct gspca_dev *gspca_dev)
649 {
650 struct sd *sd = (struct sd *) gspca_dev;
651 unsigned char gain = sd->gain;
652
653 switch (sd->sensor) {
654
655 case SENSOR_TAS5110: {
656 __u8 i2c[] =
657 {0x30, 0x11, 0x02, 0x20, 0x70, 0x00, 0x00, 0x10};
658
659 i2c[4] = 255 - gain;
660 if (i2c_w(gspca_dev, i2c) < 0)
661 goto err;
662 break;
663 }
664
665 case SENSOR_OV6650:
666 gain >>= 1;
667 /* fall thru */
668 case SENSOR_OV7630: {
669 __u8 i2c[] = {0xa0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10};
670
671 i2c[1] = sensor_data[sd->sensor].sensor_addr;
672 i2c[3] = gain >> 2;
673 if (i2c_w(gspca_dev, i2c) < 0)
674 goto err;
675 break;
676 }
677 }
678 return;
679 err:
680 PDEBUG(D_ERR, "i2c error gain");
681 }
682
683 static void setgain(struct gspca_dev *gspca_dev)
684 {
685 struct sd *sd = (struct sd *) gspca_dev;
686 __u8 gain;
687 __u8 rgb_value;
688
689 gain = sd->gain >> 4;
690
691 /* red and blue gain */
692 rgb_value = gain << 4 | gain;
693 reg_w(gspca_dev, 0x10, &rgb_value, 1);
694 /* green gain */
695 rgb_value = gain;
696 reg_w(gspca_dev, 0x11, &rgb_value, 1);
697
698 if (sensor_data[sd->sensor].flags & F_GAIN)
699 setsensorgain(gspca_dev);
700 }
701
702 static void setexposure(struct gspca_dev *gspca_dev)
703 {
704 struct sd *sd = (struct sd *) gspca_dev;
705
706 switch (sd->sensor) {
707 case SENSOR_TAS5110: {
708 __u8 reg;
709
710 /* register 19's high nibble contains the sn9c10x clock divider
711 The high nibble configures the no fps according to the
712 formula: 60 / high_nibble. With a maximum of 30 fps */
713 reg = 120 * sd->exposure / 1000;
714 if (reg < 2)
715 reg = 2;
716 else if (reg > 15)
717 reg = 15;
718 reg = (reg << 4) | 0x0b;
719 reg_w(gspca_dev, 0x19, &reg, 1);
720 break;
721 }
722 case SENSOR_OV6650:
723 case SENSOR_OV7630: {
724 /* The ov6650 / ov7630 have 2 registers which both influence
725 exposure, register 11, whose low nibble sets the nr off fps
726 according to: fps = 30 / (low_nibble + 1)
727
728 The fps configures the maximum exposure setting, but it is
729 possible to use less exposure then what the fps maximum
730 allows by setting register 10. register 10 configures the
731 actual exposure as quotient of the full exposure, with 0
732 being no exposure at all (not very usefull) and reg10_max
733 being max exposure possible at that framerate.
734
735 The code maps our 0 - 510 ms exposure ctrl to these 2
736 registers, trying to keep fps as high as possible.
737 */
738 __u8 i2c[] = {0xb0, 0x00, 0x10, 0x00, 0x00, 0x00, 0x00, 0x10};
739 int reg10, reg11, reg10_max;
740
741 /* ov6645 datasheet says reg10_max is 9a, but that uses
742 tline * 2 * reg10 as formula for calculating texpo, the
743 ov6650 probably uses the same formula as the 7730 which uses
744 tline * 4 * reg10, which explains why the reg10max we've
745 found experimentally for the ov6650 is exactly half that of
746 the ov6645. The ov7630 datasheet says the max is 0x41. */
747 if (sd->sensor == SENSOR_OV6650) {
748 reg10_max = 0x4d;
749 i2c[4] = 0xc0; /* OV6650 needs non default vsync pol */
750 } else
751 reg10_max = 0x41;
752
753 reg11 = (60 * sd->exposure + 999) / 1000;
754 if (reg11 < 1)
755 reg11 = 1;
756 else if (reg11 > 16)
757 reg11 = 16;
758
759 /* In 640x480, if the reg11 has less than 3, the image is
760 unstable (not enough bandwidth). */
761 if (gspca_dev->width == 640 && reg11 < 3)
762 reg11 = 3;
763
764 /* frame exposure time in ms = 1000 * reg11 / 30 ->
765 reg10 = sd->exposure * 2 * reg10_max / (1000 * reg11 / 30) */
766 reg10 = (sd->exposure * 60 * reg10_max) / (1000 * reg11);
767
768 /* Don't allow this to get below 10 when using autogain, the
769 steps become very large (relatively) when below 10 causing
770 the image to oscilate from much too dark, to much too bright
771 and back again. */
772 if (sd->autogain && reg10 < 10)
773 reg10 = 10;
774 else if (reg10 > reg10_max)
775 reg10 = reg10_max;
776
777 /* Write reg 10 and reg11 low nibble */
778 i2c[1] = sensor_data[sd->sensor].sensor_addr;
779 i2c[3] = reg10;
780 i2c[4] |= reg11 - 1;
781
782 /* If register 11 didn't change, don't change it */
783 if (sd->reg11 == reg11 )
784 i2c[0] = 0xa0;
785
786 if (i2c_w(gspca_dev, i2c) == 0)
787 sd->reg11 = reg11;
788 else
789 PDEBUG(D_ERR, "i2c error exposure");
790 break;
791 }
792 }
793 }
794
795 static void setfreq(struct gspca_dev *gspca_dev)
796 {
797 struct sd *sd = (struct sd *) gspca_dev;
798
799 switch (sd->sensor) {
800 case SENSOR_OV6650:
801 case SENSOR_OV7630: {
802 /* Framerate adjust register for artificial light 50 hz flicker
803 compensation, for the ov6650 this is identical to ov6630
804 0x2b register, see ov6630 datasheet.
805 0x4f / 0x8a -> (30 fps -> 25 fps), 0x00 -> no adjustment */
806 __u8 i2c[] = {0xa0, 0x00, 0x2b, 0x00, 0x00, 0x00, 0x00, 0x10};
807 switch (sd->freq) {
808 default:
809 /* case 0: * no filter*/
810 /* case 2: * 60 hz */
811 i2c[3] = 0;
812 break;
813 case 1: /* 50 hz */
814 i2c[3] = (sd->sensor == SENSOR_OV6650)
815 ? 0x4f : 0x8a;
816 break;
817 }
818 i2c[1] = sensor_data[sd->sensor].sensor_addr;
819 if (i2c_w(gspca_dev, i2c) < 0)
820 PDEBUG(D_ERR, "i2c error setfreq");
821 break;
822 }
823 }
824 }
825
826 static void do_autogain(struct gspca_dev *gspca_dev)
827 {
828 int deadzone, desired_avg_lum;
829 struct sd *sd = (struct sd *) gspca_dev;
830 int avg_lum = atomic_read(&sd->avg_lum);
831
832 if (avg_lum == -1)
833 return;
834
835 /* SIF / VGA sensors have a different autoexposure area and thus
836 different avg_lum values for the same picture brightness */
837 if (sensor_data[sd->sensor].flags & F_SIF) {
838 deadzone = 1000;
839 desired_avg_lum = 7000;
840 } else {
841 deadzone = 3000;
842 desired_avg_lum = 23000;
843 }
844
845 if (sd->autogain_ignore_frames > 0)
846 sd->autogain_ignore_frames--;
847 else if (gspca_auto_gain_n_exposure(gspca_dev, avg_lum,
848 sd->brightness * desired_avg_lum / 127,
849 deadzone, GAIN_KNEE, EXPOSURE_KNEE)) {
850 PDEBUG(D_FRAM, "autogain: gain changed: gain: %d expo: %d",
851 (int)sd->gain, (int)sd->exposure);
852 sd->autogain_ignore_frames = AUTOGAIN_IGNORE_FRAMES;
853 }
854 }
855
856 /* this function is called at probe time */
857 static int sd_config(struct gspca_dev *gspca_dev,
858 const struct usb_device_id *id)
859 {
860 struct sd *sd = (struct sd *) gspca_dev;
861 struct cam *cam;
862
863 reg_r(gspca_dev, 0x00);
864 if (gspca_dev->usb_buf[0] != 0x10)
865 return -ENODEV;
866
867 /* copy the webcam info from the device id */
868 sd->sensor = id->driver_info >> 8;
869 sd->bridge = id->driver_info & 0xff;
870 gspca_dev->ctrl_dis = sensor_data[sd->sensor].ctrl_dis;
871
872 cam = &gspca_dev->cam;
873 if (!(sensor_data[sd->sensor].flags & F_SIF)) {
874 cam->cam_mode = vga_mode;
875 cam->nmodes = ARRAY_SIZE(vga_mode);
876 } else {
877 cam->cam_mode = sif_mode;
878 cam->nmodes = ARRAY_SIZE(sif_mode);
879 }
880 sd->brightness = BRIGHTNESS_DEF;
881 sd->gain = GAIN_DEF;
882 sd->exposure = EXPOSURE_DEF;
883 if (gspca_dev->ctrl_dis & (1 << AUTOGAIN_IDX))
884 sd->autogain = 0; /* Disable do_autogain callback */
885 else
886 sd->autogain = AUTOGAIN_DEF;
887 sd->freq = FREQ_DEF;
888
889 return 0;
890 }
891
892 /* this function is called at probe and resume time */
893 static int sd_init(struct gspca_dev *gspca_dev)
894 {
895 const __u8 stop = 0x09; /* Disable stream turn of LED */
896
897 reg_w(gspca_dev, 0x01, &stop, 1);
898
899 return 0;
900 }
901
902 /* -- start the camera -- */
903 static int sd_start(struct gspca_dev *gspca_dev)
904 {
905 struct sd *sd = (struct sd *) gspca_dev;
906 struct cam *cam = &gspca_dev->cam;
907 int mode, l;
908 const __u8 *sn9c10x;
909 __u8 reg12_19[8];
910
911 mode = cam->cam_mode[gspca_dev->curr_mode].priv & 0x07;
912 sn9c10x = sensor_data[sd->sensor].bridge_init[sd->bridge];
913 l = sensor_data[sd->sensor].bridge_init_size[sd->bridge];
914 memcpy(reg12_19, &sn9c10x[0x12 - 1], 8);
915 reg12_19[6] = sn9c10x[0x18 - 1] | (mode << 4);
916 /* Special cases where reg 17 and or 19 value depends on mode */
917 switch (sd->sensor) {
918 case SENSOR_PAS202:
919 reg12_19[5] = mode ? 0x24 : 0x20;
920 break;
921 case SENSOR_TAS5130CXX:
922 /* probably not mode specific at all most likely the upper
923 nibble of 0x19 is exposure (clock divider) just as with
924 the tas5110, we need someone to test this. */
925 reg12_19[7] = mode ? 0x23 : 0x43;
926 break;
927 }
928 /* Disable compression when the raw bayer format has been selected */
929 if (cam->cam_mode[gspca_dev->curr_mode].priv & MODE_RAW)
930 reg12_19[6] &= ~0x80;
931
932 /* Vga mode emulation on SIF sensor? */
933 if (cam->cam_mode[gspca_dev->curr_mode].priv & MODE_REDUCED_SIF) {
934 reg12_19[0] += 16; /* 0x12: hstart adjust */
935 reg12_19[1] += 24; /* 0x13: vstart adjust */
936 reg12_19[3] = 320 / 16; /* 0x15: hsize */
937 reg12_19[4] = 240 / 16; /* 0x16: vsize */
938 }
939
940 /* reg 0x01 bit 2 video transfert on */
941 reg_w(gspca_dev, 0x01, &sn9c10x[0x01 - 1], 1);
942 /* reg 0x17 SensorClk enable inv Clk 0x60 */
943 reg_w(gspca_dev, 0x17, &sn9c10x[0x17 - 1], 1);
944 /* Set the registers from the template */
945 reg_w(gspca_dev, 0x01, sn9c10x, l);
946
947 /* Init the sensor */
948 i2c_w_vector(gspca_dev, sensor_data[sd->sensor].sensor_init,
949 sensor_data[sd->sensor].sensor_init_size);
950 if (sensor_data[sd->sensor].sensor_bridge_init[sd->bridge])
951 i2c_w_vector(gspca_dev,
952 sensor_data[sd->sensor].sensor_bridge_init[sd->bridge],
953 sensor_data[sd->sensor].sensor_bridge_init_size[
954 sd->bridge]);
955
956 /* H_size V_size 0x28, 0x1e -> 640x480. 0x16, 0x12 -> 352x288 */
957 reg_w(gspca_dev, 0x15, &reg12_19[3], 2);
958 /* compression register */
959 reg_w(gspca_dev, 0x18, &reg12_19[6], 1);
960 /* H_start */
961 reg_w(gspca_dev, 0x12, &reg12_19[0], 1);
962 /* V_START */
963 reg_w(gspca_dev, 0x13, &reg12_19[1], 1);
964 /* reset 0x17 SensorClk enable inv Clk 0x60 */
965 /*fixme: ov7630 [17]=68 8f (+20 if 102)*/
966 reg_w(gspca_dev, 0x17, &reg12_19[5], 1);
967 /*MCKSIZE ->3 */ /*fixme: not ov7630*/
968 reg_w(gspca_dev, 0x19, &reg12_19[7], 1);
969 /* AE_STRX AE_STRY AE_ENDX AE_ENDY */
970 reg_w(gspca_dev, 0x1c, &sn9c10x[0x1c - 1], 4);
971 /* Enable video transfert */
972 reg_w(gspca_dev, 0x01, &sn9c10x[0], 1);
973 /* Compression */
974 reg_w(gspca_dev, 0x18, &reg12_19[6], 2);
975 msleep(20);
976
977 sd->reg11 = -1;
978
979 setgain(gspca_dev);
980 setbrightness(gspca_dev);
981 setexposure(gspca_dev);
982 setfreq(gspca_dev);
983
984 sd->frames_to_drop = 0;
985 sd->autogain_ignore_frames = 0;
986 atomic_set(&sd->avg_lum, -1);
987 return 0;
988 }
989
990 static void sd_stopN(struct gspca_dev *gspca_dev)
991 {
992 sd_init(gspca_dev);
993 }
994
995 static void sd_pkt_scan(struct gspca_dev *gspca_dev,
996 struct gspca_frame *frame, /* target */
997 unsigned char *data, /* isoc packet */
998 int len) /* iso packet length */
999 {
1000 int i;
1001 struct sd *sd = (struct sd *) gspca_dev;
1002 struct cam *cam = &gspca_dev->cam;
1003
1004 /* frames start with:
1005 * ff ff 00 c4 c4 96 synchro
1006 * 00 (unknown)
1007 * xx (frame sequence / size / compression)
1008 * (xx) (idem - extra byte for sn9c103)
1009 * ll mm brightness sum inside auto exposure
1010 * ll mm brightness sum outside auto exposure
1011 * (xx xx xx xx xx) audio values for snc103
1012 */
1013 if (len > 6 && len < 24) {
1014 for (i = 0; i < len - 6; i++) {
1015 if (data[0 + i] == 0xff
1016 && data[1 + i] == 0xff
1017 && data[2 + i] == 0x00
1018 && data[3 + i] == 0xc4
1019 && data[4 + i] == 0xc4
1020 && data[5 + i] == 0x96) { /* start of frame */
1021 int lum = -1;
1022 int pkt_type = LAST_PACKET;
1023 int fr_h_sz = (sd->bridge == BRIDGE_103) ?
1024 18 : 12;
1025
1026 if (len - i < fr_h_sz) {
1027 PDEBUG(D_STREAM, "packet too short to"
1028 " get avg brightness");
1029 } else if (sd->bridge == BRIDGE_103) {
1030 lum = data[i + 9] +
1031 (data[i + 10] << 8);
1032 } else {
1033 lum = data[i + 8] + (data[i + 9] << 8);
1034 }
1035 /* When exposure changes midway a frame we
1036 get a lum of 0 in this case drop 2 frames
1037 as the frames directly after an exposure
1038 change have an unstable image. Sometimes lum
1039 *really* is 0 (cam used in low light with
1040 low exposure setting), so do not drop frames
1041 if the previous lum was 0 too. */
1042 if (lum == 0 && sd->prev_avg_lum != 0) {
1043 lum = -1;
1044 sd->frames_to_drop = 2;
1045 sd->prev_avg_lum = 0;
1046 } else
1047 sd->prev_avg_lum = lum;
1048 atomic_set(&sd->avg_lum, lum);
1049
1050 if (sd->frames_to_drop) {
1051 sd->frames_to_drop--;
1052 pkt_type = DISCARD_PACKET;
1053 }
1054
1055 frame = gspca_frame_add(gspca_dev, pkt_type,
1056 frame, data, 0);
1057 data += i + fr_h_sz;
1058 len -= i + fr_h_sz;
1059 gspca_frame_add(gspca_dev, FIRST_PACKET,
1060 frame, data, len);
1061 return;
1062 }
1063 }
1064 }
1065
1066 if (cam->cam_mode[gspca_dev->curr_mode].priv & MODE_RAW) {
1067 /* In raw mode we sometimes get some garbage after the frame
1068 ignore this */
1069 int used = frame->data_end - frame->data;
1070 int size = cam->cam_mode[gspca_dev->curr_mode].sizeimage;
1071
1072 if (used + len > size)
1073 len = size - used;
1074 }
1075
1076 gspca_frame_add(gspca_dev, INTER_PACKET,
1077 frame, data, len);
1078 }
1079
1080 static int sd_setbrightness(struct gspca_dev *gspca_dev, __s32 val)
1081 {
1082 struct sd *sd = (struct sd *) gspca_dev;
1083
1084 sd->brightness = val;
1085 if (gspca_dev->streaming)
1086 setbrightness(gspca_dev);
1087 return 0;
1088 }
1089
1090 static int sd_getbrightness(struct gspca_dev *gspca_dev, __s32 *val)
1091 {
1092 struct sd *sd = (struct sd *) gspca_dev;
1093
1094 *val = sd->brightness;
1095 return 0;
1096 }
1097
1098 static int sd_setgain(struct gspca_dev *gspca_dev, __s32 val)
1099 {
1100 struct sd *sd = (struct sd *) gspca_dev;
1101
1102 sd->gain = val;
1103 if (gspca_dev->streaming)
1104 setgain(gspca_dev);
1105 return 0;
1106 }
1107
1108 static int sd_getgain(struct gspca_dev *gspca_dev, __s32 *val)
1109 {
1110 struct sd *sd = (struct sd *) gspca_dev;
1111
1112 *val = sd->gain;
1113 return 0;
1114 }
1115
1116 static int sd_setexposure(struct gspca_dev *gspca_dev, __s32 val)
1117 {
1118 struct sd *sd = (struct sd *) gspca_dev;
1119
1120 sd->exposure = val;
1121 if (gspca_dev->streaming)
1122 setexposure(gspca_dev);
1123 return 0;
1124 }
1125
1126 static int sd_getexposure(struct gspca_dev *gspca_dev, __s32 *val)
1127 {
1128 struct sd *sd = (struct sd *) gspca_dev;
1129
1130 *val = sd->exposure;
1131 return 0;
1132 }
1133
1134 static int sd_setautogain(struct gspca_dev *gspca_dev, __s32 val)
1135 {
1136 struct sd *sd = (struct sd *) gspca_dev;
1137
1138 sd->autogain = val;
1139 /* when switching to autogain set defaults to make sure
1140 we are on a valid point of the autogain gain /
1141 exposure knee graph, and give this change time to
1142 take effect before doing autogain. */
1143 if (sd->autogain) {
1144 sd->exposure = EXPOSURE_DEF;
1145 sd->gain = GAIN_DEF;
1146 if (gspca_dev->streaming) {
1147 sd->autogain_ignore_frames = AUTOGAIN_IGNORE_FRAMES;
1148 setexposure(gspca_dev);
1149 setgain(gspca_dev);
1150 }
1151 }
1152
1153 return 0;
1154 }
1155
1156 static int sd_getautogain(struct gspca_dev *gspca_dev, __s32 *val)
1157 {
1158 struct sd *sd = (struct sd *) gspca_dev;
1159
1160 *val = sd->autogain;
1161 return 0;
1162 }
1163
1164 static int sd_setfreq(struct gspca_dev *gspca_dev, __s32 val)
1165 {
1166 struct sd *sd = (struct sd *) gspca_dev;
1167
1168 sd->freq = val;
1169 if (gspca_dev->streaming)
1170 setfreq(gspca_dev);
1171 return 0;
1172 }
1173
1174 static int sd_getfreq(struct gspca_dev *gspca_dev, __s32 *val)
1175 {
1176 struct sd *sd = (struct sd *) gspca_dev;
1177
1178 *val = sd->freq;
1179 return 0;
1180 }
1181
1182 static int sd_querymenu(struct gspca_dev *gspca_dev,
1183 struct v4l2_querymenu *menu)
1184 {
1185 switch (menu->id) {
1186 case V4L2_CID_POWER_LINE_FREQUENCY:
1187 switch (menu->index) {
1188 case 0: /* V4L2_CID_POWER_LINE_FREQUENCY_DISABLED */
1189 strcpy((char *) menu->name, "NoFliker");
1190 return 0;
1191 case 1: /* V4L2_CID_POWER_LINE_FREQUENCY_50HZ */
1192 strcpy((char *) menu->name, "50 Hz");
1193 return 0;
1194 case 2: /* V4L2_CID_POWER_LINE_FREQUENCY_60HZ */
1195 strcpy((char *) menu->name, "60 Hz");
1196 return 0;
1197 }
1198 break;
1199 }
1200 return -EINVAL;
1201 }
1202
1203 /* sub-driver description */
1204 static const struct sd_desc sd_desc = {
1205 .name = MODULE_NAME,
1206 .ctrls = sd_ctrls,
1207 .nctrls = ARRAY_SIZE(sd_ctrls),
1208 .config = sd_config,
1209 .init = sd_init,
1210 .start = sd_start,
1211 .stopN = sd_stopN,
1212 .pkt_scan = sd_pkt_scan,
1213 .querymenu = sd_querymenu,
1214 .dq_callback = do_autogain,
1215 };
1216
1217 /* -- module initialisation -- */
1218 #define SB(sensor, bridge) \
1219 .driver_info = (SENSOR_ ## sensor << 8) | BRIDGE_ ## bridge
1220
1221
1222 static __devinitdata struct usb_device_id device_table[] = {
1223 {USB_DEVICE(0x0c45, 0x6001), SB(TAS5110, 102)}, /* TAS5110C1B */
1224 {USB_DEVICE(0x0c45, 0x6005), SB(TAS5110, 101)}, /* TAS5110C1B */
1225 #if !defined CONFIG_USB_SN9C102 && !defined CONFIG_USB_SN9C102_MODULE
1226 {USB_DEVICE(0x0c45, 0x6007), SB(TAS5110, 101)}, /* TAS5110D */
1227 {USB_DEVICE(0x0c45, 0x6009), SB(PAS106, 101)},
1228 {USB_DEVICE(0x0c45, 0x600d), SB(PAS106, 101)},
1229 #endif
1230 {USB_DEVICE(0x0c45, 0x6011), SB(OV6650, 101)},
1231 #if !defined CONFIG_USB_SN9C102 && !defined CONFIG_USB_SN9C102_MODULE
1232 {USB_DEVICE(0x0c45, 0x6019), SB(OV7630, 101)},
1233 {USB_DEVICE(0x0c45, 0x6024), SB(TAS5130CXX, 102)},
1234 {USB_DEVICE(0x0c45, 0x6025), SB(TAS5130CXX, 102)},
1235 {USB_DEVICE(0x0c45, 0x6028), SB(PAS202, 102)},
1236 {USB_DEVICE(0x0c45, 0x6029), SB(PAS106, 102)},
1237 #endif
1238 {USB_DEVICE(0x0c45, 0x602c), SB(OV7630, 102)},
1239 {USB_DEVICE(0x0c45, 0x602d), SB(HV7131R, 102)},
1240 #if !defined CONFIG_USB_SN9C102 && !defined CONFIG_USB_SN9C102_MODULE
1241 {USB_DEVICE(0x0c45, 0x602e), SB(OV7630, 102)},
1242 #endif
1243 {USB_DEVICE(0x0c45, 0x608f), SB(OV7630, 103)},
1244 #if !defined CONFIG_USB_SN9C102 && !defined CONFIG_USB_SN9C102_MODULE
1245 {USB_DEVICE(0x0c45, 0x60af), SB(PAS202, 103)},
1246 #endif
1247 {USB_DEVICE(0x0c45, 0x60b0), SB(OV7630, 103)},
1248 {}
1249 };
1250 MODULE_DEVICE_TABLE(usb, device_table);
1251
1252 /* -- device connect -- */
1253 static int sd_probe(struct usb_interface *intf,
1254 const struct usb_device_id *id)
1255 {
1256 return gspca_dev_probe(intf, id, &sd_desc, sizeof(struct sd),
1257 THIS_MODULE);
1258 }
1259
1260 static struct usb_driver sd_driver = {
1261 .name = MODULE_NAME,
1262 .id_table = device_table,
1263 .probe = sd_probe,
1264 .disconnect = gspca_disconnect,
1265 #ifdef CONFIG_PM
1266 .suspend = gspca_suspend,
1267 .resume = gspca_resume,
1268 #endif
1269 };
1270
1271 /* -- module insert / remove -- */
1272 static int __init sd_mod_init(void)
1273 {
1274 int ret;
1275 ret = usb_register(&sd_driver);
1276 if (ret < 0)
1277 return -1;
1278 PDEBUG(D_PROBE, "registered");
1279 return 0;
1280 }
1281 static void __exit sd_mod_exit(void)
1282 {
1283 usb_deregister(&sd_driver);
1284 PDEBUG(D_PROBE, "deregistered");
1285 }
1286
1287 module_init(sd_mod_init);
1288 module_exit(sd_mod_exit);
This page took 0.121419 seconds and 5 git commands to generate.