Merge tag 'stable/frontswap.v16-tag' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / drivers / media / video / smiapp / smiapp-core.c
1 /*
2 * drivers/media/video/smiapp/smiapp-core.c
3 *
4 * Generic driver for SMIA/SMIA++ compliant camera modules
5 *
6 * Copyright (C) 2010--2012 Nokia Corporation
7 * Contact: Sakari Ailus <sakari.ailus@maxwell.research.nokia.com>
8 *
9 * Based on smiapp driver by Vimarsh Zutshi
10 * Based on jt8ev1.c by Vimarsh Zutshi
11 * Based on smia-sensor.c by Tuukka Toivonen <tuukkat76@gmail.com>
12 *
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License
15 * version 2 as published by the Free Software Foundation.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
25 * 02110-1301 USA
26 *
27 */
28
29 #include <linux/clk.h>
30 #include <linux/delay.h>
31 #include <linux/device.h>
32 #include <linux/gpio.h>
33 #include <linux/module.h>
34 #include <linux/regulator/consumer.h>
35 #include <linux/v4l2-mediabus.h>
36 #include <media/v4l2-device.h>
37
38 #include "smiapp.h"
39
40 #define SMIAPP_ALIGN_DIM(dim, flags) \
41 ((flags) & V4L2_SUBDEV_SEL_FLAG_SIZE_GE \
42 ? ALIGN((dim), 2) \
43 : (dim) & ~1)
44
45 /*
46 * smiapp_module_idents - supported camera modules
47 */
48 static const struct smiapp_module_ident smiapp_module_idents[] = {
49 SMIAPP_IDENT_L(0x01, 0x022b, -1, "vs6555"),
50 SMIAPP_IDENT_L(0x01, 0x022e, -1, "vw6558"),
51 SMIAPP_IDENT_L(0x07, 0x7698, -1, "ovm7698"),
52 SMIAPP_IDENT_L(0x0b, 0x4242, -1, "smiapp-003"),
53 SMIAPP_IDENT_L(0x0c, 0x208a, -1, "tcm8330md"),
54 SMIAPP_IDENT_LQ(0x0c, 0x2134, -1, "tcm8500md", &smiapp_tcm8500md_quirk),
55 SMIAPP_IDENT_L(0x0c, 0x213e, -1, "et8en2"),
56 SMIAPP_IDENT_L(0x0c, 0x2184, -1, "tcm8580md"),
57 SMIAPP_IDENT_LQ(0x0c, 0x560f, -1, "jt8ew9", &smiapp_jt8ew9_quirk),
58 SMIAPP_IDENT_LQ(0x10, 0x4141, -1, "jt8ev1", &smiapp_jt8ev1_quirk),
59 SMIAPP_IDENT_LQ(0x10, 0x4241, -1, "imx125es", &smiapp_imx125es_quirk),
60 };
61
62 /*
63 *
64 * Dynamic Capability Identification
65 *
66 */
67
68 static int smiapp_read_frame_fmt(struct smiapp_sensor *sensor)
69 {
70 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
71 u32 fmt_model_type, fmt_model_subtype, ncol_desc, nrow_desc;
72 unsigned int i;
73 int rval;
74 int line_count = 0;
75 int embedded_start = -1, embedded_end = -1;
76 int image_start = 0;
77
78 rval = smiapp_read(sensor, SMIAPP_REG_U8_FRAME_FORMAT_MODEL_TYPE,
79 &fmt_model_type);
80 if (rval)
81 return rval;
82
83 rval = smiapp_read(sensor, SMIAPP_REG_U8_FRAME_FORMAT_MODEL_SUBTYPE,
84 &fmt_model_subtype);
85 if (rval)
86 return rval;
87
88 ncol_desc = (fmt_model_subtype
89 & SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NCOLS_MASK)
90 >> SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NCOLS_SHIFT;
91 nrow_desc = fmt_model_subtype
92 & SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NROWS_MASK;
93
94 dev_dbg(&client->dev, "format_model_type %s\n",
95 fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_2BYTE
96 ? "2 byte" :
97 fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_4BYTE
98 ? "4 byte" : "is simply bad");
99
100 for (i = 0; i < ncol_desc + nrow_desc; i++) {
101 u32 desc;
102 u32 pixelcode;
103 u32 pixels;
104 char *which;
105 char *what;
106
107 if (fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_2BYTE) {
108 rval = smiapp_read(
109 sensor,
110 SMIAPP_REG_U16_FRAME_FORMAT_DESCRIPTOR_2(i),
111 &desc);
112 if (rval)
113 return rval;
114
115 pixelcode =
116 (desc
117 & SMIAPP_FRAME_FORMAT_DESC_2_PIXELCODE_MASK)
118 >> SMIAPP_FRAME_FORMAT_DESC_2_PIXELCODE_SHIFT;
119 pixels = desc & SMIAPP_FRAME_FORMAT_DESC_2_PIXELS_MASK;
120 } else if (fmt_model_type
121 == SMIAPP_FRAME_FORMAT_MODEL_TYPE_4BYTE) {
122 rval = smiapp_read(
123 sensor,
124 SMIAPP_REG_U32_FRAME_FORMAT_DESCRIPTOR_4(i),
125 &desc);
126 if (rval)
127 return rval;
128
129 pixelcode =
130 (desc
131 & SMIAPP_FRAME_FORMAT_DESC_4_PIXELCODE_MASK)
132 >> SMIAPP_FRAME_FORMAT_DESC_4_PIXELCODE_SHIFT;
133 pixels = desc & SMIAPP_FRAME_FORMAT_DESC_4_PIXELS_MASK;
134 } else {
135 dev_dbg(&client->dev,
136 "invalid frame format model type %d\n",
137 fmt_model_type);
138 return -EINVAL;
139 }
140
141 if (i < ncol_desc)
142 which = "columns";
143 else
144 which = "rows";
145
146 switch (pixelcode) {
147 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_EMBEDDED:
148 what = "embedded";
149 break;
150 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_DUMMY:
151 what = "dummy";
152 break;
153 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_BLACK:
154 what = "black";
155 break;
156 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_DARK:
157 what = "dark";
158 break;
159 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_VISIBLE:
160 what = "visible";
161 break;
162 default:
163 what = "invalid";
164 dev_dbg(&client->dev, "pixelcode %d\n", pixelcode);
165 break;
166 }
167
168 dev_dbg(&client->dev, "%s pixels: %d %s\n",
169 what, pixels, which);
170
171 if (i < ncol_desc)
172 continue;
173
174 /* Handle row descriptors */
175 if (pixelcode
176 == SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_EMBEDDED) {
177 embedded_start = line_count;
178 } else {
179 if (pixelcode == SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_VISIBLE
180 || pixels >= sensor->limits[SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES] / 2)
181 image_start = line_count;
182 if (embedded_start != -1 && embedded_end == -1)
183 embedded_end = line_count;
184 }
185 line_count += pixels;
186 }
187
188 if (embedded_start == -1 || embedded_end == -1) {
189 embedded_start = 0;
190 embedded_end = 0;
191 }
192
193 dev_dbg(&client->dev, "embedded data from lines %d to %d\n",
194 embedded_start, embedded_end);
195 dev_dbg(&client->dev, "image data starts at line %d\n", image_start);
196
197 return 0;
198 }
199
200 static int smiapp_pll_configure(struct smiapp_sensor *sensor)
201 {
202 struct smiapp_pll *pll = &sensor->pll;
203 int rval;
204
205 rval = smiapp_write(
206 sensor, SMIAPP_REG_U16_VT_PIX_CLK_DIV, pll->vt_pix_clk_div);
207 if (rval < 0)
208 return rval;
209
210 rval = smiapp_write(
211 sensor, SMIAPP_REG_U16_VT_SYS_CLK_DIV, pll->vt_sys_clk_div);
212 if (rval < 0)
213 return rval;
214
215 rval = smiapp_write(
216 sensor, SMIAPP_REG_U16_PRE_PLL_CLK_DIV, pll->pre_pll_clk_div);
217 if (rval < 0)
218 return rval;
219
220 rval = smiapp_write(
221 sensor, SMIAPP_REG_U16_PLL_MULTIPLIER, pll->pll_multiplier);
222 if (rval < 0)
223 return rval;
224
225 /* Lane op clock ratio does not apply here. */
226 rval = smiapp_write(
227 sensor, SMIAPP_REG_U32_REQUESTED_LINK_BIT_RATE_MBPS,
228 DIV_ROUND_UP(pll->op_sys_clk_freq_hz, 1000000 / 256 / 256));
229 if (rval < 0 || sensor->minfo.smiapp_profile == SMIAPP_PROFILE_0)
230 return rval;
231
232 rval = smiapp_write(
233 sensor, SMIAPP_REG_U16_OP_PIX_CLK_DIV, pll->op_pix_clk_div);
234 if (rval < 0)
235 return rval;
236
237 return smiapp_write(
238 sensor, SMIAPP_REG_U16_OP_SYS_CLK_DIV, pll->op_sys_clk_div);
239 }
240
241 static int smiapp_pll_update(struct smiapp_sensor *sensor)
242 {
243 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
244 struct smiapp_pll_limits lim = {
245 .min_pre_pll_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_PRE_PLL_CLK_DIV],
246 .max_pre_pll_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_PRE_PLL_CLK_DIV],
247 .min_pll_ip_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_PLL_IP_FREQ_HZ],
248 .max_pll_ip_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_PLL_IP_FREQ_HZ],
249 .min_pll_multiplier = sensor->limits[SMIAPP_LIMIT_MIN_PLL_MULTIPLIER],
250 .max_pll_multiplier = sensor->limits[SMIAPP_LIMIT_MAX_PLL_MULTIPLIER],
251 .min_pll_op_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_PLL_OP_FREQ_HZ],
252 .max_pll_op_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_PLL_OP_FREQ_HZ],
253
254 .min_op_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_OP_SYS_CLK_DIV],
255 .max_op_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_OP_SYS_CLK_DIV],
256 .min_op_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_OP_PIX_CLK_DIV],
257 .max_op_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_OP_PIX_CLK_DIV],
258 .min_op_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_OP_SYS_CLK_FREQ_HZ],
259 .max_op_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_OP_SYS_CLK_FREQ_HZ],
260 .min_op_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_OP_PIX_CLK_FREQ_HZ],
261 .max_op_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_OP_PIX_CLK_FREQ_HZ],
262
263 .min_vt_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_VT_SYS_CLK_DIV],
264 .max_vt_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_VT_SYS_CLK_DIV],
265 .min_vt_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_VT_PIX_CLK_DIV],
266 .max_vt_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_VT_PIX_CLK_DIV],
267 .min_vt_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_VT_SYS_CLK_FREQ_HZ],
268 .max_vt_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_VT_SYS_CLK_FREQ_HZ],
269 .min_vt_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_VT_PIX_CLK_FREQ_HZ],
270 .max_vt_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_VT_PIX_CLK_FREQ_HZ],
271
272 .min_line_length_pck_bin = sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN],
273 .min_line_length_pck = sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK],
274 };
275 struct smiapp_pll *pll = &sensor->pll;
276 int rval;
277
278 memset(&sensor->pll, 0, sizeof(sensor->pll));
279
280 pll->lanes = sensor->platform_data->lanes;
281 pll->ext_clk_freq_hz = sensor->platform_data->ext_clk;
282
283 if (sensor->minfo.smiapp_profile == SMIAPP_PROFILE_0) {
284 /*
285 * Fill in operational clock divisors limits from the
286 * video timing ones. On profile 0 sensors the
287 * requirements regarding them are essentially the
288 * same as on VT ones.
289 */
290 lim.min_op_sys_clk_div = lim.min_vt_sys_clk_div;
291 lim.max_op_sys_clk_div = lim.max_vt_sys_clk_div;
292 lim.min_op_pix_clk_div = lim.min_vt_pix_clk_div;
293 lim.max_op_pix_clk_div = lim.max_vt_pix_clk_div;
294 lim.min_op_sys_clk_freq_hz = lim.min_vt_sys_clk_freq_hz;
295 lim.max_op_sys_clk_freq_hz = lim.max_vt_sys_clk_freq_hz;
296 lim.min_op_pix_clk_freq_hz = lim.min_vt_pix_clk_freq_hz;
297 lim.max_op_pix_clk_freq_hz = lim.max_vt_pix_clk_freq_hz;
298 /* Profile 0 sensors have no separate OP clock branch. */
299 pll->flags |= SMIAPP_PLL_FLAG_NO_OP_CLOCKS;
300 }
301
302 if (smiapp_needs_quirk(sensor,
303 SMIAPP_QUIRK_FLAG_OP_PIX_CLOCK_PER_LANE))
304 pll->flags |= SMIAPP_PLL_FLAG_OP_PIX_CLOCK_PER_LANE;
305
306 pll->binning_horizontal = sensor->binning_horizontal;
307 pll->binning_vertical = sensor->binning_vertical;
308 pll->link_freq =
309 sensor->link_freq->qmenu_int[sensor->link_freq->val];
310 pll->scale_m = sensor->scale_m;
311 pll->scale_n = sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN];
312 pll->bits_per_pixel = sensor->csi_format->compressed;
313
314 rval = smiapp_pll_calculate(&client->dev, &lim, pll);
315 if (rval < 0)
316 return rval;
317
318 sensor->pixel_rate_parray->cur.val64 = pll->vt_pix_clk_freq_hz;
319 sensor->pixel_rate_csi->cur.val64 = pll->pixel_rate_csi;
320
321 return 0;
322 }
323
324
325 /*
326 *
327 * V4L2 Controls handling
328 *
329 */
330
331 static void __smiapp_update_exposure_limits(struct smiapp_sensor *sensor)
332 {
333 struct v4l2_ctrl *ctrl = sensor->exposure;
334 int max;
335
336 max = sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height
337 + sensor->vblank->val
338 - sensor->limits[SMIAPP_LIMIT_COARSE_INTEGRATION_TIME_MAX_MARGIN];
339
340 ctrl->maximum = max;
341 if (ctrl->default_value > max)
342 ctrl->default_value = max;
343 if (ctrl->val > max)
344 ctrl->val = max;
345 if (ctrl->cur.val > max)
346 ctrl->cur.val = max;
347 }
348
349 /*
350 * Order matters.
351 *
352 * 1. Bits-per-pixel, descending.
353 * 2. Bits-per-pixel compressed, descending.
354 * 3. Pixel order, same as in pixel_order_str. Formats for all four pixel
355 * orders must be defined.
356 */
357 static const struct smiapp_csi_data_format smiapp_csi_data_formats[] = {
358 { V4L2_MBUS_FMT_SGRBG12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_GRBG, },
359 { V4L2_MBUS_FMT_SRGGB12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_RGGB, },
360 { V4L2_MBUS_FMT_SBGGR12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_BGGR, },
361 { V4L2_MBUS_FMT_SGBRG12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_GBRG, },
362 { V4L2_MBUS_FMT_SGRBG10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_GRBG, },
363 { V4L2_MBUS_FMT_SRGGB10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_RGGB, },
364 { V4L2_MBUS_FMT_SBGGR10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_BGGR, },
365 { V4L2_MBUS_FMT_SGBRG10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_GBRG, },
366 { V4L2_MBUS_FMT_SGRBG10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_GRBG, },
367 { V4L2_MBUS_FMT_SRGGB10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_RGGB, },
368 { V4L2_MBUS_FMT_SBGGR10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_BGGR, },
369 { V4L2_MBUS_FMT_SGBRG10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_GBRG, },
370 { V4L2_MBUS_FMT_SGRBG8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_GRBG, },
371 { V4L2_MBUS_FMT_SRGGB8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_RGGB, },
372 { V4L2_MBUS_FMT_SBGGR8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_BGGR, },
373 { V4L2_MBUS_FMT_SGBRG8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_GBRG, },
374 };
375
376 const char *pixel_order_str[] = { "GRBG", "RGGB", "BGGR", "GBRG" };
377
378 #define to_csi_format_idx(fmt) (((unsigned long)(fmt) \
379 - (unsigned long)smiapp_csi_data_formats) \
380 / sizeof(*smiapp_csi_data_formats))
381
382 static u32 smiapp_pixel_order(struct smiapp_sensor *sensor)
383 {
384 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
385 int flip = 0;
386
387 if (sensor->hflip) {
388 if (sensor->hflip->val)
389 flip |= SMIAPP_IMAGE_ORIENTATION_HFLIP;
390
391 if (sensor->vflip->val)
392 flip |= SMIAPP_IMAGE_ORIENTATION_VFLIP;
393 }
394
395 flip ^= sensor->hvflip_inv_mask;
396
397 dev_dbg(&client->dev, "flip %d\n", flip);
398 return sensor->default_pixel_order ^ flip;
399 }
400
401 static void smiapp_update_mbus_formats(struct smiapp_sensor *sensor)
402 {
403 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
404 unsigned int csi_format_idx =
405 to_csi_format_idx(sensor->csi_format) & ~3;
406 unsigned int internal_csi_format_idx =
407 to_csi_format_idx(sensor->internal_csi_format) & ~3;
408 unsigned int pixel_order = smiapp_pixel_order(sensor);
409
410 sensor->mbus_frame_fmts =
411 sensor->default_mbus_frame_fmts << pixel_order;
412 sensor->csi_format =
413 &smiapp_csi_data_formats[csi_format_idx + pixel_order];
414 sensor->internal_csi_format =
415 &smiapp_csi_data_formats[internal_csi_format_idx
416 + pixel_order];
417
418 BUG_ON(max(internal_csi_format_idx, csi_format_idx) + pixel_order
419 >= ARRAY_SIZE(smiapp_csi_data_formats));
420 BUG_ON(min(internal_csi_format_idx, csi_format_idx) < 0);
421
422 dev_dbg(&client->dev, "new pixel order %s\n",
423 pixel_order_str[pixel_order]);
424 }
425
426 static int smiapp_set_ctrl(struct v4l2_ctrl *ctrl)
427 {
428 struct smiapp_sensor *sensor =
429 container_of(ctrl->handler, struct smiapp_subdev, ctrl_handler)
430 ->sensor;
431 u32 orient = 0;
432 int exposure;
433 int rval;
434
435 switch (ctrl->id) {
436 case V4L2_CID_ANALOGUE_GAIN:
437 return smiapp_write(
438 sensor,
439 SMIAPP_REG_U16_ANALOGUE_GAIN_CODE_GLOBAL, ctrl->val);
440
441 case V4L2_CID_EXPOSURE:
442 return smiapp_write(
443 sensor,
444 SMIAPP_REG_U16_COARSE_INTEGRATION_TIME, ctrl->val);
445
446 case V4L2_CID_HFLIP:
447 case V4L2_CID_VFLIP:
448 if (sensor->streaming)
449 return -EBUSY;
450
451 if (sensor->hflip->val)
452 orient |= SMIAPP_IMAGE_ORIENTATION_HFLIP;
453
454 if (sensor->vflip->val)
455 orient |= SMIAPP_IMAGE_ORIENTATION_VFLIP;
456
457 orient ^= sensor->hvflip_inv_mask;
458 rval = smiapp_write(sensor,
459 SMIAPP_REG_U8_IMAGE_ORIENTATION,
460 orient);
461 if (rval < 0)
462 return rval;
463
464 smiapp_update_mbus_formats(sensor);
465
466 return 0;
467
468 case V4L2_CID_VBLANK:
469 exposure = sensor->exposure->val;
470
471 __smiapp_update_exposure_limits(sensor);
472
473 if (exposure > sensor->exposure->maximum) {
474 sensor->exposure->val =
475 sensor->exposure->maximum;
476 rval = smiapp_set_ctrl(
477 sensor->exposure);
478 if (rval < 0)
479 return rval;
480 }
481
482 return smiapp_write(
483 sensor, SMIAPP_REG_U16_FRAME_LENGTH_LINES,
484 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height
485 + ctrl->val);
486
487 case V4L2_CID_HBLANK:
488 return smiapp_write(
489 sensor, SMIAPP_REG_U16_LINE_LENGTH_PCK,
490 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width
491 + ctrl->val);
492
493 case V4L2_CID_LINK_FREQ:
494 if (sensor->streaming)
495 return -EBUSY;
496
497 return smiapp_pll_update(sensor);
498
499 default:
500 return -EINVAL;
501 }
502 }
503
504 static const struct v4l2_ctrl_ops smiapp_ctrl_ops = {
505 .s_ctrl = smiapp_set_ctrl,
506 };
507
508 static int smiapp_init_controls(struct smiapp_sensor *sensor)
509 {
510 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
511 unsigned int max;
512 int rval;
513
514 rval = v4l2_ctrl_handler_init(&sensor->pixel_array->ctrl_handler, 7);
515 if (rval)
516 return rval;
517 sensor->pixel_array->ctrl_handler.lock = &sensor->mutex;
518
519 sensor->analog_gain = v4l2_ctrl_new_std(
520 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
521 V4L2_CID_ANALOGUE_GAIN,
522 sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MIN],
523 sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MAX],
524 max(sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_STEP], 1U),
525 sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MIN]);
526
527 /* Exposure limits will be updated soon, use just something here. */
528 sensor->exposure = v4l2_ctrl_new_std(
529 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
530 V4L2_CID_EXPOSURE, 0, 0, 1, 0);
531
532 sensor->hflip = v4l2_ctrl_new_std(
533 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
534 V4L2_CID_HFLIP, 0, 1, 1, 0);
535 sensor->vflip = v4l2_ctrl_new_std(
536 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
537 V4L2_CID_VFLIP, 0, 1, 1, 0);
538
539 sensor->vblank = v4l2_ctrl_new_std(
540 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
541 V4L2_CID_VBLANK, 0, 1, 1, 0);
542
543 if (sensor->vblank)
544 sensor->vblank->flags |= V4L2_CTRL_FLAG_UPDATE;
545
546 sensor->hblank = v4l2_ctrl_new_std(
547 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
548 V4L2_CID_HBLANK, 0, 1, 1, 0);
549
550 if (sensor->hblank)
551 sensor->hblank->flags |= V4L2_CTRL_FLAG_UPDATE;
552
553 sensor->pixel_rate_parray = v4l2_ctrl_new_std(
554 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
555 V4L2_CID_PIXEL_RATE, 0, 0, 1, 0);
556
557 if (sensor->pixel_array->ctrl_handler.error) {
558 dev_err(&client->dev,
559 "pixel array controls initialization failed (%d)\n",
560 sensor->pixel_array->ctrl_handler.error);
561 rval = sensor->pixel_array->ctrl_handler.error;
562 goto error;
563 }
564
565 sensor->pixel_array->sd.ctrl_handler =
566 &sensor->pixel_array->ctrl_handler;
567
568 v4l2_ctrl_cluster(2, &sensor->hflip);
569
570 rval = v4l2_ctrl_handler_init(&sensor->src->ctrl_handler, 0);
571 if (rval)
572 goto error;
573 sensor->src->ctrl_handler.lock = &sensor->mutex;
574
575 for (max = 0; sensor->platform_data->op_sys_clock[max + 1]; max++);
576
577 sensor->link_freq = v4l2_ctrl_new_int_menu(
578 &sensor->src->ctrl_handler, &smiapp_ctrl_ops,
579 V4L2_CID_LINK_FREQ, max, 0,
580 sensor->platform_data->op_sys_clock);
581
582 sensor->pixel_rate_csi = v4l2_ctrl_new_std(
583 &sensor->src->ctrl_handler, &smiapp_ctrl_ops,
584 V4L2_CID_PIXEL_RATE, 0, 0, 1, 0);
585
586 if (sensor->src->ctrl_handler.error) {
587 dev_err(&client->dev,
588 "src controls initialization failed (%d)\n",
589 sensor->src->ctrl_handler.error);
590 rval = sensor->src->ctrl_handler.error;
591 goto error;
592 }
593
594 sensor->src->sd.ctrl_handler =
595 &sensor->src->ctrl_handler;
596
597 return 0;
598
599 error:
600 v4l2_ctrl_handler_free(&sensor->pixel_array->ctrl_handler);
601 v4l2_ctrl_handler_free(&sensor->src->ctrl_handler);
602
603 return rval;
604 }
605
606 static void smiapp_free_controls(struct smiapp_sensor *sensor)
607 {
608 unsigned int i;
609
610 for (i = 0; i < sensor->ssds_used; i++)
611 v4l2_ctrl_handler_free(&sensor->ssds[i].ctrl_handler);
612 }
613
614 static int smiapp_get_limits(struct smiapp_sensor *sensor, int const *limit,
615 unsigned int n)
616 {
617 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
618 unsigned int i;
619 u32 val;
620 int rval;
621
622 for (i = 0; i < n; i++) {
623 rval = smiapp_read(
624 sensor, smiapp_reg_limits[limit[i]].addr, &val);
625 if (rval)
626 return rval;
627 sensor->limits[limit[i]] = val;
628 dev_dbg(&client->dev, "0x%8.8x \"%s\" = %d, 0x%x\n",
629 smiapp_reg_limits[limit[i]].addr,
630 smiapp_reg_limits[limit[i]].what, val, val);
631 }
632
633 return 0;
634 }
635
636 static int smiapp_get_all_limits(struct smiapp_sensor *sensor)
637 {
638 unsigned int i;
639 int rval;
640
641 for (i = 0; i < SMIAPP_LIMIT_LAST; i++) {
642 rval = smiapp_get_limits(sensor, &i, 1);
643 if (rval < 0)
644 return rval;
645 }
646
647 if (sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] == 0)
648 smiapp_replace_limit(sensor, SMIAPP_LIMIT_SCALER_N_MIN, 16);
649
650 return 0;
651 }
652
653 static int smiapp_get_limits_binning(struct smiapp_sensor *sensor)
654 {
655 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
656 static u32 const limits[] = {
657 SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN,
658 SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES_BIN,
659 SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN,
660 SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK_BIN,
661 SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN,
662 SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MIN_BIN,
663 SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MAX_MARGIN_BIN,
664 };
665 static u32 const limits_replace[] = {
666 SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES,
667 SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES,
668 SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK,
669 SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK,
670 SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK,
671 SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MIN,
672 SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MAX_MARGIN,
673 };
674 unsigned int i;
675 int rval;
676
677 if (sensor->limits[SMIAPP_LIMIT_BINNING_CAPABILITY] ==
678 SMIAPP_BINNING_CAPABILITY_NO) {
679 for (i = 0; i < ARRAY_SIZE(limits); i++)
680 sensor->limits[limits[i]] =
681 sensor->limits[limits_replace[i]];
682
683 return 0;
684 }
685
686 rval = smiapp_get_limits(sensor, limits, ARRAY_SIZE(limits));
687 if (rval < 0)
688 return rval;
689
690 /*
691 * Sanity check whether the binning limits are valid. If not,
692 * use the non-binning ones.
693 */
694 if (sensor->limits[SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN]
695 && sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN]
696 && sensor->limits[SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN])
697 return 0;
698
699 for (i = 0; i < ARRAY_SIZE(limits); i++) {
700 dev_dbg(&client->dev,
701 "replace limit 0x%8.8x \"%s\" = %d, 0x%x\n",
702 smiapp_reg_limits[limits[i]].addr,
703 smiapp_reg_limits[limits[i]].what,
704 sensor->limits[limits_replace[i]],
705 sensor->limits[limits_replace[i]]);
706 sensor->limits[limits[i]] =
707 sensor->limits[limits_replace[i]];
708 }
709
710 return 0;
711 }
712
713 static int smiapp_get_mbus_formats(struct smiapp_sensor *sensor)
714 {
715 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
716 unsigned int type, n;
717 unsigned int i, pixel_order;
718 int rval;
719
720 rval = smiapp_read(
721 sensor, SMIAPP_REG_U8_DATA_FORMAT_MODEL_TYPE, &type);
722 if (rval)
723 return rval;
724
725 dev_dbg(&client->dev, "data_format_model_type %d\n", type);
726
727 rval = smiapp_read(sensor, SMIAPP_REG_U8_PIXEL_ORDER,
728 &pixel_order);
729 if (rval)
730 return rval;
731
732 if (pixel_order >= ARRAY_SIZE(pixel_order_str)) {
733 dev_dbg(&client->dev, "bad pixel order %d\n", pixel_order);
734 return -EINVAL;
735 }
736
737 dev_dbg(&client->dev, "pixel order %d (%s)\n", pixel_order,
738 pixel_order_str[pixel_order]);
739
740 switch (type) {
741 case SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL:
742 n = SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL_N;
743 break;
744 case SMIAPP_DATA_FORMAT_MODEL_TYPE_EXTENDED:
745 n = SMIAPP_DATA_FORMAT_MODEL_TYPE_EXTENDED_N;
746 break;
747 default:
748 return -EINVAL;
749 }
750
751 sensor->default_pixel_order = pixel_order;
752 sensor->mbus_frame_fmts = 0;
753
754 for (i = 0; i < n; i++) {
755 unsigned int fmt, j;
756
757 rval = smiapp_read(
758 sensor,
759 SMIAPP_REG_U16_DATA_FORMAT_DESCRIPTOR(i), &fmt);
760 if (rval)
761 return rval;
762
763 dev_dbg(&client->dev, "bpp %d, compressed %d\n",
764 fmt >> 8, (u8)fmt);
765
766 for (j = 0; j < ARRAY_SIZE(smiapp_csi_data_formats); j++) {
767 const struct smiapp_csi_data_format *f =
768 &smiapp_csi_data_formats[j];
769
770 if (f->pixel_order != SMIAPP_PIXEL_ORDER_GRBG)
771 continue;
772
773 if (f->width != fmt >> 8 || f->compressed != (u8)fmt)
774 continue;
775
776 dev_dbg(&client->dev, "jolly good! %d\n", j);
777
778 sensor->default_mbus_frame_fmts |= 1 << j;
779 if (!sensor->csi_format) {
780 sensor->csi_format = f;
781 sensor->internal_csi_format = f;
782 }
783 }
784 }
785
786 if (!sensor->csi_format) {
787 dev_err(&client->dev, "no supported mbus code found\n");
788 return -EINVAL;
789 }
790
791 smiapp_update_mbus_formats(sensor);
792
793 return 0;
794 }
795
796 static void smiapp_update_blanking(struct smiapp_sensor *sensor)
797 {
798 struct v4l2_ctrl *vblank = sensor->vblank;
799 struct v4l2_ctrl *hblank = sensor->hblank;
800
801 vblank->minimum =
802 max_t(int,
803 sensor->limits[SMIAPP_LIMIT_MIN_FRAME_BLANKING_LINES],
804 sensor->limits[SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN] -
805 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height);
806 vblank->maximum =
807 sensor->limits[SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES_BIN] -
808 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height;
809
810 vblank->val = clamp_t(int, vblank->val,
811 vblank->minimum, vblank->maximum);
812 vblank->default_value = vblank->minimum;
813 vblank->val = vblank->val;
814 vblank->cur.val = vblank->val;
815
816 hblank->minimum =
817 max_t(int,
818 sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN] -
819 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width,
820 sensor->limits[SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN]);
821 hblank->maximum =
822 sensor->limits[SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK_BIN] -
823 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width;
824
825 hblank->val = clamp_t(int, hblank->val,
826 hblank->minimum, hblank->maximum);
827 hblank->default_value = hblank->minimum;
828 hblank->val = hblank->val;
829 hblank->cur.val = hblank->val;
830
831 __smiapp_update_exposure_limits(sensor);
832 }
833
834 static int smiapp_update_mode(struct smiapp_sensor *sensor)
835 {
836 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
837 unsigned int binning_mode;
838 int rval;
839
840 dev_dbg(&client->dev, "frame size: %dx%d\n",
841 sensor->src->crop[SMIAPP_PAD_SRC].width,
842 sensor->src->crop[SMIAPP_PAD_SRC].height);
843 dev_dbg(&client->dev, "csi format width: %d\n",
844 sensor->csi_format->width);
845
846 /* Binning has to be set up here; it affects limits */
847 if (sensor->binning_horizontal == 1 &&
848 sensor->binning_vertical == 1) {
849 binning_mode = 0;
850 } else {
851 u8 binning_type =
852 (sensor->binning_horizontal << 4)
853 | sensor->binning_vertical;
854
855 rval = smiapp_write(
856 sensor, SMIAPP_REG_U8_BINNING_TYPE, binning_type);
857 if (rval < 0)
858 return rval;
859
860 binning_mode = 1;
861 }
862 rval = smiapp_write(sensor, SMIAPP_REG_U8_BINNING_MODE, binning_mode);
863 if (rval < 0)
864 return rval;
865
866 /* Get updated limits due to binning */
867 rval = smiapp_get_limits_binning(sensor);
868 if (rval < 0)
869 return rval;
870
871 rval = smiapp_pll_update(sensor);
872 if (rval < 0)
873 return rval;
874
875 /* Output from pixel array, including blanking */
876 smiapp_update_blanking(sensor);
877
878 dev_dbg(&client->dev, "vblank\t\t%d\n", sensor->vblank->val);
879 dev_dbg(&client->dev, "hblank\t\t%d\n", sensor->hblank->val);
880
881 dev_dbg(&client->dev, "real timeperframe\t100/%d\n",
882 sensor->pll.vt_pix_clk_freq_hz /
883 ((sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width
884 + sensor->hblank->val) *
885 (sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height
886 + sensor->vblank->val) / 100));
887
888 return 0;
889 }
890
891 /*
892 *
893 * SMIA++ NVM handling
894 *
895 */
896 static int smiapp_read_nvm(struct smiapp_sensor *sensor,
897 unsigned char *nvm)
898 {
899 u32 i, s, p, np, v;
900 int rval = 0, rval2;
901
902 np = sensor->nvm_size / SMIAPP_NVM_PAGE_SIZE;
903 for (p = 0; p < np; p++) {
904 rval = smiapp_write(
905 sensor,
906 SMIAPP_REG_U8_DATA_TRANSFER_IF_1_PAGE_SELECT, p);
907 if (rval)
908 goto out;
909
910 rval = smiapp_write(sensor,
911 SMIAPP_REG_U8_DATA_TRANSFER_IF_1_CTRL,
912 SMIAPP_DATA_TRANSFER_IF_1_CTRL_EN |
913 SMIAPP_DATA_TRANSFER_IF_1_CTRL_RD_EN);
914 if (rval)
915 goto out;
916
917 for (i = 0; i < 1000; i++) {
918 rval = smiapp_read(
919 sensor,
920 SMIAPP_REG_U8_DATA_TRANSFER_IF_1_STATUS, &s);
921
922 if (rval)
923 goto out;
924
925 if (s & SMIAPP_DATA_TRANSFER_IF_1_STATUS_RD_READY)
926 break;
927
928 if (--i == 0) {
929 rval = -ETIMEDOUT;
930 goto out;
931 }
932
933 }
934
935 for (i = 0; i < SMIAPP_NVM_PAGE_SIZE; i++) {
936 rval = smiapp_read(
937 sensor,
938 SMIAPP_REG_U8_DATA_TRANSFER_IF_1_DATA_0 + i,
939 &v);
940 if (rval)
941 goto out;
942
943 *nvm++ = v;
944 }
945 }
946
947 out:
948 rval2 = smiapp_write(sensor, SMIAPP_REG_U8_DATA_TRANSFER_IF_1_CTRL, 0);
949 if (rval < 0)
950 return rval;
951 else
952 return rval2;
953 }
954
955 /*
956 *
957 * SMIA++ CCI address control
958 *
959 */
960 static int smiapp_change_cci_addr(struct smiapp_sensor *sensor)
961 {
962 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
963 int rval;
964 u32 val;
965
966 client->addr = sensor->platform_data->i2c_addr_dfl;
967
968 rval = smiapp_write(sensor,
969 SMIAPP_REG_U8_CCI_ADDRESS_CONTROL,
970 sensor->platform_data->i2c_addr_alt << 1);
971 if (rval)
972 return rval;
973
974 client->addr = sensor->platform_data->i2c_addr_alt;
975
976 /* verify addr change went ok */
977 rval = smiapp_read(sensor, SMIAPP_REG_U8_CCI_ADDRESS_CONTROL, &val);
978 if (rval)
979 return rval;
980
981 if (val != sensor->platform_data->i2c_addr_alt << 1)
982 return -ENODEV;
983
984 return 0;
985 }
986
987 /*
988 *
989 * SMIA++ Mode Control
990 *
991 */
992 static int smiapp_setup_flash_strobe(struct smiapp_sensor *sensor)
993 {
994 struct smiapp_flash_strobe_parms *strobe_setup;
995 unsigned int ext_freq = sensor->platform_data->ext_clk;
996 u32 tmp;
997 u32 strobe_adjustment;
998 u32 strobe_width_high_rs;
999 int rval;
1000
1001 strobe_setup = sensor->platform_data->strobe_setup;
1002
1003 /*
1004 * How to calculate registers related to strobe length. Please
1005 * do not change, or if you do at least know what you're
1006 * doing. :-)
1007 *
1008 * Sakari Ailus <sakari.ailus@maxwell.research.nokia.com> 2010-10-25
1009 *
1010 * flash_strobe_length [us] / 10^6 = (tFlash_strobe_width_ctrl
1011 * / EXTCLK freq [Hz]) * flash_strobe_adjustment
1012 *
1013 * tFlash_strobe_width_ctrl E N, [1 - 0xffff]
1014 * flash_strobe_adjustment E N, [1 - 0xff]
1015 *
1016 * The formula above is written as below to keep it on one
1017 * line:
1018 *
1019 * l / 10^6 = w / e * a
1020 *
1021 * Let's mark w * a by x:
1022 *
1023 * x = w * a
1024 *
1025 * Thus, we get:
1026 *
1027 * x = l * e / 10^6
1028 *
1029 * The strobe width must be at least as long as requested,
1030 * thus rounding upwards is needed.
1031 *
1032 * x = (l * e + 10^6 - 1) / 10^6
1033 * -----------------------------
1034 *
1035 * Maximum possible accuracy is wanted at all times. Thus keep
1036 * a as small as possible.
1037 *
1038 * Calculate a, assuming maximum w, with rounding upwards:
1039 *
1040 * a = (x + (2^16 - 1) - 1) / (2^16 - 1)
1041 * -------------------------------------
1042 *
1043 * Thus, we also get w, with that a, with rounding upwards:
1044 *
1045 * w = (x + a - 1) / a
1046 * -------------------
1047 *
1048 * To get limits:
1049 *
1050 * x E [1, (2^16 - 1) * (2^8 - 1)]
1051 *
1052 * Substituting maximum x to the original formula (with rounding),
1053 * the maximum l is thus
1054 *
1055 * (2^16 - 1) * (2^8 - 1) * 10^6 = l * e + 10^6 - 1
1056 *
1057 * l = (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / e
1058 * --------------------------------------------------
1059 *
1060 * flash_strobe_length must be clamped between 1 and
1061 * (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / EXTCLK freq.
1062 *
1063 * Then,
1064 *
1065 * flash_strobe_adjustment = ((flash_strobe_length *
1066 * EXTCLK freq + 10^6 - 1) / 10^6 + (2^16 - 1) - 1) / (2^16 - 1)
1067 *
1068 * tFlash_strobe_width_ctrl = ((flash_strobe_length *
1069 * EXTCLK freq + 10^6 - 1) / 10^6 +
1070 * flash_strobe_adjustment - 1) / flash_strobe_adjustment
1071 */
1072 tmp = div_u64(1000000ULL * ((1 << 16) - 1) * ((1 << 8) - 1) -
1073 1000000 + 1, ext_freq);
1074 strobe_setup->strobe_width_high_us =
1075 clamp_t(u32, strobe_setup->strobe_width_high_us, 1, tmp);
1076
1077 tmp = div_u64(((u64)strobe_setup->strobe_width_high_us * (u64)ext_freq +
1078 1000000 - 1), 1000000ULL);
1079 strobe_adjustment = (tmp + (1 << 16) - 1 - 1) / ((1 << 16) - 1);
1080 strobe_width_high_rs = (tmp + strobe_adjustment - 1) /
1081 strobe_adjustment;
1082
1083 rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_MODE_RS,
1084 strobe_setup->mode);
1085 if (rval < 0)
1086 goto out;
1087
1088 rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_STROBE_ADJUSTMENT,
1089 strobe_adjustment);
1090 if (rval < 0)
1091 goto out;
1092
1093 rval = smiapp_write(
1094 sensor, SMIAPP_REG_U16_TFLASH_STROBE_WIDTH_HIGH_RS_CTRL,
1095 strobe_width_high_rs);
1096 if (rval < 0)
1097 goto out;
1098
1099 rval = smiapp_write(sensor, SMIAPP_REG_U16_TFLASH_STROBE_DELAY_RS_CTRL,
1100 strobe_setup->strobe_delay);
1101 if (rval < 0)
1102 goto out;
1103
1104 rval = smiapp_write(sensor, SMIAPP_REG_U16_FLASH_STROBE_START_POINT,
1105 strobe_setup->stobe_start_point);
1106 if (rval < 0)
1107 goto out;
1108
1109 rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_TRIGGER_RS,
1110 strobe_setup->trigger);
1111
1112 out:
1113 sensor->platform_data->strobe_setup->trigger = 0;
1114
1115 return rval;
1116 }
1117
1118 /* -----------------------------------------------------------------------------
1119 * Power management
1120 */
1121
1122 static int smiapp_power_on(struct smiapp_sensor *sensor)
1123 {
1124 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1125 unsigned int sleep;
1126 int rval;
1127
1128 rval = regulator_enable(sensor->vana);
1129 if (rval) {
1130 dev_err(&client->dev, "failed to enable vana regulator\n");
1131 return rval;
1132 }
1133 usleep_range(1000, 1000);
1134
1135 if (sensor->platform_data->set_xclk)
1136 rval = sensor->platform_data->set_xclk(
1137 &sensor->src->sd, sensor->platform_data->ext_clk);
1138 else
1139 rval = clk_enable(sensor->ext_clk);
1140 if (rval < 0) {
1141 dev_dbg(&client->dev, "failed to set xclk\n");
1142 goto out_xclk_fail;
1143 }
1144 usleep_range(1000, 1000);
1145
1146 if (sensor->platform_data->xshutdown != SMIAPP_NO_XSHUTDOWN)
1147 gpio_set_value(sensor->platform_data->xshutdown, 1);
1148
1149 sleep = SMIAPP_RESET_DELAY(sensor->platform_data->ext_clk);
1150 usleep_range(sleep, sleep);
1151
1152 /*
1153 * Failures to respond to the address change command have been noticed.
1154 * Those failures seem to be caused by the sensor requiring a longer
1155 * boot time than advertised. An additional 10ms delay seems to work
1156 * around the issue, but the SMIA++ I2C write retry hack makes the delay
1157 * unnecessary. The failures need to be investigated to find a proper
1158 * fix, and a delay will likely need to be added here if the I2C write
1159 * retry hack is reverted before the root cause of the boot time issue
1160 * is found.
1161 */
1162
1163 if (sensor->platform_data->i2c_addr_alt) {
1164 rval = smiapp_change_cci_addr(sensor);
1165 if (rval) {
1166 dev_err(&client->dev, "cci address change error\n");
1167 goto out_cci_addr_fail;
1168 }
1169 }
1170
1171 rval = smiapp_write(sensor, SMIAPP_REG_U8_SOFTWARE_RESET,
1172 SMIAPP_SOFTWARE_RESET);
1173 if (rval < 0) {
1174 dev_err(&client->dev, "software reset failed\n");
1175 goto out_cci_addr_fail;
1176 }
1177
1178 if (sensor->platform_data->i2c_addr_alt) {
1179 rval = smiapp_change_cci_addr(sensor);
1180 if (rval) {
1181 dev_err(&client->dev, "cci address change error\n");
1182 goto out_cci_addr_fail;
1183 }
1184 }
1185
1186 rval = smiapp_write(sensor, SMIAPP_REG_U16_COMPRESSION_MODE,
1187 SMIAPP_COMPRESSION_MODE_SIMPLE_PREDICTOR);
1188 if (rval) {
1189 dev_err(&client->dev, "compression mode set failed\n");
1190 goto out_cci_addr_fail;
1191 }
1192
1193 rval = smiapp_write(
1194 sensor, SMIAPP_REG_U16_EXTCLK_FREQUENCY_MHZ,
1195 sensor->platform_data->ext_clk / (1000000 / (1 << 8)));
1196 if (rval) {
1197 dev_err(&client->dev, "extclk frequency set failed\n");
1198 goto out_cci_addr_fail;
1199 }
1200
1201 rval = smiapp_write(sensor, SMIAPP_REG_U8_CSI_LANE_MODE,
1202 sensor->platform_data->lanes - 1);
1203 if (rval) {
1204 dev_err(&client->dev, "csi lane mode set failed\n");
1205 goto out_cci_addr_fail;
1206 }
1207
1208 rval = smiapp_write(sensor, SMIAPP_REG_U8_FAST_STANDBY_CTRL,
1209 SMIAPP_FAST_STANDBY_CTRL_IMMEDIATE);
1210 if (rval) {
1211 dev_err(&client->dev, "fast standby set failed\n");
1212 goto out_cci_addr_fail;
1213 }
1214
1215 rval = smiapp_write(sensor, SMIAPP_REG_U8_CSI_SIGNALLING_MODE,
1216 sensor->platform_data->csi_signalling_mode);
1217 if (rval) {
1218 dev_err(&client->dev, "csi signalling mode set failed\n");
1219 goto out_cci_addr_fail;
1220 }
1221
1222 /* DPHY control done by sensor based on requested link rate */
1223 rval = smiapp_write(sensor, SMIAPP_REG_U8_DPHY_CTRL,
1224 SMIAPP_DPHY_CTRL_UI);
1225 if (rval < 0)
1226 return rval;
1227
1228 rval = smiapp_call_quirk(sensor, post_poweron);
1229 if (rval) {
1230 dev_err(&client->dev, "post_poweron quirks failed\n");
1231 goto out_cci_addr_fail;
1232 }
1233
1234 /* Are we still initialising...? If yes, return here. */
1235 if (!sensor->pixel_array)
1236 return 0;
1237
1238 rval = v4l2_ctrl_handler_setup(
1239 &sensor->pixel_array->ctrl_handler);
1240 if (rval)
1241 goto out_cci_addr_fail;
1242
1243 rval = v4l2_ctrl_handler_setup(&sensor->src->ctrl_handler);
1244 if (rval)
1245 goto out_cci_addr_fail;
1246
1247 mutex_lock(&sensor->mutex);
1248 rval = smiapp_update_mode(sensor);
1249 mutex_unlock(&sensor->mutex);
1250 if (rval < 0)
1251 goto out_cci_addr_fail;
1252
1253 return 0;
1254
1255 out_cci_addr_fail:
1256 if (sensor->platform_data->xshutdown != SMIAPP_NO_XSHUTDOWN)
1257 gpio_set_value(sensor->platform_data->xshutdown, 0);
1258 if (sensor->platform_data->set_xclk)
1259 sensor->platform_data->set_xclk(&sensor->src->sd, 0);
1260 else
1261 clk_disable(sensor->ext_clk);
1262
1263 out_xclk_fail:
1264 regulator_disable(sensor->vana);
1265 return rval;
1266 }
1267
1268 static void smiapp_power_off(struct smiapp_sensor *sensor)
1269 {
1270 /*
1271 * Currently power/clock to lens are enable/disabled separately
1272 * but they are essentially the same signals. So if the sensor is
1273 * powered off while the lens is powered on the sensor does not
1274 * really see a power off and next time the cci address change
1275 * will fail. So do a soft reset explicitly here.
1276 */
1277 if (sensor->platform_data->i2c_addr_alt)
1278 smiapp_write(sensor,
1279 SMIAPP_REG_U8_SOFTWARE_RESET,
1280 SMIAPP_SOFTWARE_RESET);
1281
1282 if (sensor->platform_data->xshutdown != SMIAPP_NO_XSHUTDOWN)
1283 gpio_set_value(sensor->platform_data->xshutdown, 0);
1284 if (sensor->platform_data->set_xclk)
1285 sensor->platform_data->set_xclk(&sensor->src->sd, 0);
1286 else
1287 clk_disable(sensor->ext_clk);
1288 usleep_range(5000, 5000);
1289 regulator_disable(sensor->vana);
1290 sensor->streaming = 0;
1291 }
1292
1293 static int smiapp_set_power(struct v4l2_subdev *subdev, int on)
1294 {
1295 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1296 int ret = 0;
1297
1298 mutex_lock(&sensor->power_mutex);
1299
1300 /*
1301 * If the power count is modified from 0 to != 0 or from != 0
1302 * to 0, update the power state.
1303 */
1304 if (!sensor->power_count == !on)
1305 goto out;
1306
1307 if (on) {
1308 /* Power on and perform initialisation. */
1309 ret = smiapp_power_on(sensor);
1310 if (ret < 0)
1311 goto out;
1312 } else {
1313 smiapp_power_off(sensor);
1314 }
1315
1316 /* Update the power count. */
1317 sensor->power_count += on ? 1 : -1;
1318 WARN_ON(sensor->power_count < 0);
1319
1320 out:
1321 mutex_unlock(&sensor->power_mutex);
1322 return ret;
1323 }
1324
1325 /* -----------------------------------------------------------------------------
1326 * Video stream management
1327 */
1328
1329 static int smiapp_start_streaming(struct smiapp_sensor *sensor)
1330 {
1331 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1332 int rval;
1333
1334 mutex_lock(&sensor->mutex);
1335
1336 rval = smiapp_write(sensor, SMIAPP_REG_U16_CSI_DATA_FORMAT,
1337 (sensor->csi_format->width << 8) |
1338 sensor->csi_format->compressed);
1339 if (rval)
1340 goto out;
1341
1342 rval = smiapp_pll_configure(sensor);
1343 if (rval)
1344 goto out;
1345
1346 /* Analog crop start coordinates */
1347 rval = smiapp_write(sensor, SMIAPP_REG_U16_X_ADDR_START,
1348 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].left);
1349 if (rval < 0)
1350 goto out;
1351
1352 rval = smiapp_write(sensor, SMIAPP_REG_U16_Y_ADDR_START,
1353 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].top);
1354 if (rval < 0)
1355 goto out;
1356
1357 /* Analog crop end coordinates */
1358 rval = smiapp_write(
1359 sensor, SMIAPP_REG_U16_X_ADDR_END,
1360 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].left
1361 + sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width - 1);
1362 if (rval < 0)
1363 goto out;
1364
1365 rval = smiapp_write(
1366 sensor, SMIAPP_REG_U16_Y_ADDR_END,
1367 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].top
1368 + sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height - 1);
1369 if (rval < 0)
1370 goto out;
1371
1372 /*
1373 * Output from pixel array, including blanking, is set using
1374 * controls below. No need to set here.
1375 */
1376
1377 /* Digital crop */
1378 if (sensor->limits[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY]
1379 == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
1380 rval = smiapp_write(
1381 sensor, SMIAPP_REG_U16_DIGITAL_CROP_X_OFFSET,
1382 sensor->scaler->crop[SMIAPP_PAD_SINK].left);
1383 if (rval < 0)
1384 goto out;
1385
1386 rval = smiapp_write(
1387 sensor, SMIAPP_REG_U16_DIGITAL_CROP_Y_OFFSET,
1388 sensor->scaler->crop[SMIAPP_PAD_SINK].top);
1389 if (rval < 0)
1390 goto out;
1391
1392 rval = smiapp_write(
1393 sensor, SMIAPP_REG_U16_DIGITAL_CROP_IMAGE_WIDTH,
1394 sensor->scaler->crop[SMIAPP_PAD_SINK].width);
1395 if (rval < 0)
1396 goto out;
1397
1398 rval = smiapp_write(
1399 sensor, SMIAPP_REG_U16_DIGITAL_CROP_IMAGE_HEIGHT,
1400 sensor->scaler->crop[SMIAPP_PAD_SINK].height);
1401 if (rval < 0)
1402 goto out;
1403 }
1404
1405 /* Scaling */
1406 if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
1407 != SMIAPP_SCALING_CAPABILITY_NONE) {
1408 rval = smiapp_write(sensor, SMIAPP_REG_U16_SCALING_MODE,
1409 sensor->scaling_mode);
1410 if (rval < 0)
1411 goto out;
1412
1413 rval = smiapp_write(sensor, SMIAPP_REG_U16_SCALE_M,
1414 sensor->scale_m);
1415 if (rval < 0)
1416 goto out;
1417 }
1418
1419 /* Output size from sensor */
1420 rval = smiapp_write(sensor, SMIAPP_REG_U16_X_OUTPUT_SIZE,
1421 sensor->src->crop[SMIAPP_PAD_SRC].width);
1422 if (rval < 0)
1423 goto out;
1424 rval = smiapp_write(sensor, SMIAPP_REG_U16_Y_OUTPUT_SIZE,
1425 sensor->src->crop[SMIAPP_PAD_SRC].height);
1426 if (rval < 0)
1427 goto out;
1428
1429 if ((sensor->flash_capability &
1430 (SMIAPP_FLASH_MODE_CAPABILITY_SINGLE_STROBE |
1431 SMIAPP_FLASH_MODE_CAPABILITY_MULTIPLE_STROBE)) &&
1432 sensor->platform_data->strobe_setup != NULL &&
1433 sensor->platform_data->strobe_setup->trigger != 0) {
1434 rval = smiapp_setup_flash_strobe(sensor);
1435 if (rval)
1436 goto out;
1437 }
1438
1439 rval = smiapp_call_quirk(sensor, pre_streamon);
1440 if (rval) {
1441 dev_err(&client->dev, "pre_streamon quirks failed\n");
1442 goto out;
1443 }
1444
1445 rval = smiapp_write(sensor, SMIAPP_REG_U8_MODE_SELECT,
1446 SMIAPP_MODE_SELECT_STREAMING);
1447
1448 out:
1449 mutex_unlock(&sensor->mutex);
1450
1451 return rval;
1452 }
1453
1454 static int smiapp_stop_streaming(struct smiapp_sensor *sensor)
1455 {
1456 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1457 int rval;
1458
1459 mutex_lock(&sensor->mutex);
1460 rval = smiapp_write(sensor, SMIAPP_REG_U8_MODE_SELECT,
1461 SMIAPP_MODE_SELECT_SOFTWARE_STANDBY);
1462 if (rval)
1463 goto out;
1464
1465 rval = smiapp_call_quirk(sensor, post_streamoff);
1466 if (rval)
1467 dev_err(&client->dev, "post_streamoff quirks failed\n");
1468
1469 out:
1470 mutex_unlock(&sensor->mutex);
1471 return rval;
1472 }
1473
1474 /* -----------------------------------------------------------------------------
1475 * V4L2 subdev video operations
1476 */
1477
1478 static int smiapp_set_stream(struct v4l2_subdev *subdev, int enable)
1479 {
1480 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1481 int rval;
1482
1483 if (sensor->streaming == enable)
1484 return 0;
1485
1486 if (enable) {
1487 sensor->streaming = 1;
1488 rval = smiapp_start_streaming(sensor);
1489 if (rval < 0)
1490 sensor->streaming = 0;
1491 } else {
1492 rval = smiapp_stop_streaming(sensor);
1493 sensor->streaming = 0;
1494 }
1495
1496 return rval;
1497 }
1498
1499 static int smiapp_enum_mbus_code(struct v4l2_subdev *subdev,
1500 struct v4l2_subdev_fh *fh,
1501 struct v4l2_subdev_mbus_code_enum *code)
1502 {
1503 struct i2c_client *client = v4l2_get_subdevdata(subdev);
1504 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1505 unsigned int i;
1506 int idx = -1;
1507 int rval = -EINVAL;
1508
1509 mutex_lock(&sensor->mutex);
1510
1511 dev_err(&client->dev, "subdev %s, pad %d, index %d\n",
1512 subdev->name, code->pad, code->index);
1513
1514 if (subdev != &sensor->src->sd || code->pad != SMIAPP_PAD_SRC) {
1515 if (code->index)
1516 goto out;
1517
1518 code->code = sensor->internal_csi_format->code;
1519 rval = 0;
1520 goto out;
1521 }
1522
1523 for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) {
1524 if (sensor->mbus_frame_fmts & (1 << i))
1525 idx++;
1526
1527 if (idx == code->index) {
1528 code->code = smiapp_csi_data_formats[i].code;
1529 dev_err(&client->dev, "found index %d, i %d, code %x\n",
1530 code->index, i, code->code);
1531 rval = 0;
1532 break;
1533 }
1534 }
1535
1536 out:
1537 mutex_unlock(&sensor->mutex);
1538
1539 return rval;
1540 }
1541
1542 static u32 __smiapp_get_mbus_code(struct v4l2_subdev *subdev,
1543 unsigned int pad)
1544 {
1545 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1546
1547 if (subdev == &sensor->src->sd && pad == SMIAPP_PAD_SRC)
1548 return sensor->csi_format->code;
1549 else
1550 return sensor->internal_csi_format->code;
1551 }
1552
1553 static int __smiapp_get_format(struct v4l2_subdev *subdev,
1554 struct v4l2_subdev_fh *fh,
1555 struct v4l2_subdev_format *fmt)
1556 {
1557 struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1558
1559 if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) {
1560 fmt->format = *v4l2_subdev_get_try_format(fh, fmt->pad);
1561 } else {
1562 struct v4l2_rect *r;
1563
1564 if (fmt->pad == ssd->source_pad)
1565 r = &ssd->crop[ssd->source_pad];
1566 else
1567 r = &ssd->sink_fmt;
1568
1569 fmt->format.code = __smiapp_get_mbus_code(subdev, fmt->pad);
1570 fmt->format.width = r->width;
1571 fmt->format.height = r->height;
1572 }
1573
1574 return 0;
1575 }
1576
1577 static int smiapp_get_format(struct v4l2_subdev *subdev,
1578 struct v4l2_subdev_fh *fh,
1579 struct v4l2_subdev_format *fmt)
1580 {
1581 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1582 int rval;
1583
1584 mutex_lock(&sensor->mutex);
1585 rval = __smiapp_get_format(subdev, fh, fmt);
1586 mutex_unlock(&sensor->mutex);
1587
1588 return rval;
1589 }
1590
1591 static void smiapp_get_crop_compose(struct v4l2_subdev *subdev,
1592 struct v4l2_subdev_fh *fh,
1593 struct v4l2_rect **crops,
1594 struct v4l2_rect **comps, int which)
1595 {
1596 struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1597 unsigned int i;
1598
1599 if (which == V4L2_SUBDEV_FORMAT_ACTIVE) {
1600 if (crops)
1601 for (i = 0; i < subdev->entity.num_pads; i++)
1602 crops[i] = &ssd->crop[i];
1603 if (comps)
1604 *comps = &ssd->compose;
1605 } else {
1606 if (crops) {
1607 for (i = 0; i < subdev->entity.num_pads; i++) {
1608 crops[i] = v4l2_subdev_get_try_crop(fh, i);
1609 BUG_ON(!crops[i]);
1610 }
1611 }
1612 if (comps) {
1613 *comps = v4l2_subdev_get_try_compose(fh,
1614 SMIAPP_PAD_SINK);
1615 BUG_ON(!*comps);
1616 }
1617 }
1618 }
1619
1620 /* Changes require propagation only on sink pad. */
1621 static void smiapp_propagate(struct v4l2_subdev *subdev,
1622 struct v4l2_subdev_fh *fh, int which,
1623 int target)
1624 {
1625 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1626 struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1627 struct v4l2_rect *comp, *crops[SMIAPP_PADS];
1628
1629 smiapp_get_crop_compose(subdev, fh, crops, &comp, which);
1630
1631 switch (target) {
1632 case V4L2_SUBDEV_SEL_TGT_CROP_ACTUAL:
1633 comp->width = crops[SMIAPP_PAD_SINK]->width;
1634 comp->height = crops[SMIAPP_PAD_SINK]->height;
1635 if (which == V4L2_SUBDEV_FORMAT_ACTIVE) {
1636 if (ssd == sensor->scaler) {
1637 sensor->scale_m =
1638 sensor->limits[
1639 SMIAPP_LIMIT_SCALER_N_MIN];
1640 sensor->scaling_mode =
1641 SMIAPP_SCALING_MODE_NONE;
1642 } else if (ssd == sensor->binner) {
1643 sensor->binning_horizontal = 1;
1644 sensor->binning_vertical = 1;
1645 }
1646 }
1647 /* Fall through */
1648 case V4L2_SUBDEV_SEL_TGT_COMPOSE_ACTUAL:
1649 *crops[SMIAPP_PAD_SRC] = *comp;
1650 break;
1651 default:
1652 BUG();
1653 }
1654 }
1655
1656 static const struct smiapp_csi_data_format
1657 *smiapp_validate_csi_data_format(struct smiapp_sensor *sensor, u32 code)
1658 {
1659 const struct smiapp_csi_data_format *csi_format = sensor->csi_format;
1660 unsigned int i;
1661
1662 for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) {
1663 if (sensor->mbus_frame_fmts & (1 << i)
1664 && smiapp_csi_data_formats[i].code == code)
1665 return &smiapp_csi_data_formats[i];
1666 }
1667
1668 return csi_format;
1669 }
1670
1671 static int smiapp_set_format(struct v4l2_subdev *subdev,
1672 struct v4l2_subdev_fh *fh,
1673 struct v4l2_subdev_format *fmt)
1674 {
1675 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1676 struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1677 struct v4l2_rect *crops[SMIAPP_PADS];
1678
1679 mutex_lock(&sensor->mutex);
1680
1681 /*
1682 * Media bus code is changeable on src subdev's source pad. On
1683 * other source pads we just get format here.
1684 */
1685 if (fmt->pad == ssd->source_pad) {
1686 u32 code = fmt->format.code;
1687 int rval = __smiapp_get_format(subdev, fh, fmt);
1688
1689 if (!rval && subdev == &sensor->src->sd) {
1690 const struct smiapp_csi_data_format *csi_format =
1691 smiapp_validate_csi_data_format(sensor, code);
1692 if (fmt->which == V4L2_SUBDEV_FORMAT_ACTIVE)
1693 sensor->csi_format = csi_format;
1694 fmt->format.code = csi_format->code;
1695 }
1696
1697 mutex_unlock(&sensor->mutex);
1698 return rval;
1699 }
1700
1701 /* Sink pad. Width and height are changeable here. */
1702 fmt->format.code = __smiapp_get_mbus_code(subdev, fmt->pad);
1703 fmt->format.width &= ~1;
1704 fmt->format.height &= ~1;
1705
1706 fmt->format.width =
1707 clamp(fmt->format.width,
1708 sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE],
1709 sensor->limits[SMIAPP_LIMIT_MAX_X_OUTPUT_SIZE]);
1710 fmt->format.height =
1711 clamp(fmt->format.height,
1712 sensor->limits[SMIAPP_LIMIT_MIN_Y_OUTPUT_SIZE],
1713 sensor->limits[SMIAPP_LIMIT_MAX_Y_OUTPUT_SIZE]);
1714
1715 smiapp_get_crop_compose(subdev, fh, crops, NULL, fmt->which);
1716
1717 crops[ssd->sink_pad]->left = 0;
1718 crops[ssd->sink_pad]->top = 0;
1719 crops[ssd->sink_pad]->width = fmt->format.width;
1720 crops[ssd->sink_pad]->height = fmt->format.height;
1721 if (fmt->which == V4L2_SUBDEV_FORMAT_ACTIVE)
1722 ssd->sink_fmt = *crops[ssd->sink_pad];
1723 smiapp_propagate(subdev, fh, fmt->which,
1724 V4L2_SUBDEV_SEL_TGT_CROP_ACTUAL);
1725
1726 mutex_unlock(&sensor->mutex);
1727
1728 return 0;
1729 }
1730
1731 /*
1732 * Calculate goodness of scaled image size compared to expected image
1733 * size and flags provided.
1734 */
1735 #define SCALING_GOODNESS 100000
1736 #define SCALING_GOODNESS_EXTREME 100000000
1737 static int scaling_goodness(struct v4l2_subdev *subdev, int w, int ask_w,
1738 int h, int ask_h, u32 flags)
1739 {
1740 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1741 struct i2c_client *client = v4l2_get_subdevdata(subdev);
1742 int val = 0;
1743
1744 w &= ~1;
1745 ask_w &= ~1;
1746 h &= ~1;
1747 ask_h &= ~1;
1748
1749 if (flags & V4L2_SUBDEV_SEL_FLAG_SIZE_GE) {
1750 if (w < ask_w)
1751 val -= SCALING_GOODNESS;
1752 if (h < ask_h)
1753 val -= SCALING_GOODNESS;
1754 }
1755
1756 if (flags & V4L2_SUBDEV_SEL_FLAG_SIZE_LE) {
1757 if (w > ask_w)
1758 val -= SCALING_GOODNESS;
1759 if (h > ask_h)
1760 val -= SCALING_GOODNESS;
1761 }
1762
1763 val -= abs(w - ask_w);
1764 val -= abs(h - ask_h);
1765
1766 if (w < sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE])
1767 val -= SCALING_GOODNESS_EXTREME;
1768
1769 dev_dbg(&client->dev, "w %d ask_w %d h %d ask_h %d goodness %d\n",
1770 w, ask_h, h, ask_h, val);
1771
1772 return val;
1773 }
1774
1775 static void smiapp_set_compose_binner(struct v4l2_subdev *subdev,
1776 struct v4l2_subdev_fh *fh,
1777 struct v4l2_subdev_selection *sel,
1778 struct v4l2_rect **crops,
1779 struct v4l2_rect *comp)
1780 {
1781 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1782 unsigned int i;
1783 unsigned int binh = 1, binv = 1;
1784 unsigned int best = scaling_goodness(
1785 subdev,
1786 crops[SMIAPP_PAD_SINK]->width, sel->r.width,
1787 crops[SMIAPP_PAD_SINK]->height, sel->r.height, sel->flags);
1788
1789 for (i = 0; i < sensor->nbinning_subtypes; i++) {
1790 int this = scaling_goodness(
1791 subdev,
1792 crops[SMIAPP_PAD_SINK]->width
1793 / sensor->binning_subtypes[i].horizontal,
1794 sel->r.width,
1795 crops[SMIAPP_PAD_SINK]->height
1796 / sensor->binning_subtypes[i].vertical,
1797 sel->r.height, sel->flags);
1798
1799 if (this > best) {
1800 binh = sensor->binning_subtypes[i].horizontal;
1801 binv = sensor->binning_subtypes[i].vertical;
1802 best = this;
1803 }
1804 }
1805 if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
1806 sensor->binning_vertical = binv;
1807 sensor->binning_horizontal = binh;
1808 }
1809
1810 sel->r.width = (crops[SMIAPP_PAD_SINK]->width / binh) & ~1;
1811 sel->r.height = (crops[SMIAPP_PAD_SINK]->height / binv) & ~1;
1812 }
1813
1814 /*
1815 * Calculate best scaling ratio and mode for given output resolution.
1816 *
1817 * Try all of these: horizontal ratio, vertical ratio and smallest
1818 * size possible (horizontally).
1819 *
1820 * Also try whether horizontal scaler or full scaler gives a better
1821 * result.
1822 */
1823 static void smiapp_set_compose_scaler(struct v4l2_subdev *subdev,
1824 struct v4l2_subdev_fh *fh,
1825 struct v4l2_subdev_selection *sel,
1826 struct v4l2_rect **crops,
1827 struct v4l2_rect *comp)
1828 {
1829 struct i2c_client *client = v4l2_get_subdevdata(subdev);
1830 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1831 u32 min, max, a, b, max_m;
1832 u32 scale_m = sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN];
1833 int mode = SMIAPP_SCALING_MODE_HORIZONTAL;
1834 u32 try[4];
1835 u32 ntry = 0;
1836 unsigned int i;
1837 int best = INT_MIN;
1838
1839 sel->r.width = min_t(unsigned int, sel->r.width,
1840 crops[SMIAPP_PAD_SINK]->width);
1841 sel->r.height = min_t(unsigned int, sel->r.height,
1842 crops[SMIAPP_PAD_SINK]->height);
1843
1844 a = crops[SMIAPP_PAD_SINK]->width
1845 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] / sel->r.width;
1846 b = crops[SMIAPP_PAD_SINK]->height
1847 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] / sel->r.height;
1848 max_m = crops[SMIAPP_PAD_SINK]->width
1849 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN]
1850 / sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE];
1851
1852 a = min(sensor->limits[SMIAPP_LIMIT_SCALER_M_MAX],
1853 max(a, sensor->limits[SMIAPP_LIMIT_SCALER_M_MIN]));
1854 b = min(sensor->limits[SMIAPP_LIMIT_SCALER_M_MAX],
1855 max(b, sensor->limits[SMIAPP_LIMIT_SCALER_M_MIN]));
1856 max_m = min(sensor->limits[SMIAPP_LIMIT_SCALER_M_MAX],
1857 max(max_m, sensor->limits[SMIAPP_LIMIT_SCALER_M_MIN]));
1858
1859 dev_dbg(&client->dev, "scaling: a %d b %d max_m %d\n", a, b, max_m);
1860
1861 min = min(max_m, min(a, b));
1862 max = min(max_m, max(a, b));
1863
1864 try[ntry] = min;
1865 ntry++;
1866 if (min != max) {
1867 try[ntry] = max;
1868 ntry++;
1869 }
1870 if (max != max_m) {
1871 try[ntry] = min + 1;
1872 ntry++;
1873 if (min != max) {
1874 try[ntry] = max + 1;
1875 ntry++;
1876 }
1877 }
1878
1879 for (i = 0; i < ntry; i++) {
1880 int this = scaling_goodness(
1881 subdev,
1882 crops[SMIAPP_PAD_SINK]->width
1883 / try[i]
1884 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN],
1885 sel->r.width,
1886 crops[SMIAPP_PAD_SINK]->height,
1887 sel->r.height,
1888 sel->flags);
1889
1890 dev_dbg(&client->dev, "trying factor %d (%d)\n", try[i], i);
1891
1892 if (this > best) {
1893 scale_m = try[i];
1894 mode = SMIAPP_SCALING_MODE_HORIZONTAL;
1895 best = this;
1896 }
1897
1898 if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
1899 == SMIAPP_SCALING_CAPABILITY_HORIZONTAL)
1900 continue;
1901
1902 this = scaling_goodness(
1903 subdev, crops[SMIAPP_PAD_SINK]->width
1904 / try[i]
1905 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN],
1906 sel->r.width,
1907 crops[SMIAPP_PAD_SINK]->height
1908 / try[i]
1909 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN],
1910 sel->r.height,
1911 sel->flags);
1912
1913 if (this > best) {
1914 scale_m = try[i];
1915 mode = SMIAPP_SCALING_MODE_BOTH;
1916 best = this;
1917 }
1918 }
1919
1920 sel->r.width =
1921 (crops[SMIAPP_PAD_SINK]->width
1922 / scale_m
1923 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN]) & ~1;
1924 if (mode == SMIAPP_SCALING_MODE_BOTH)
1925 sel->r.height =
1926 (crops[SMIAPP_PAD_SINK]->height
1927 / scale_m
1928 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN])
1929 & ~1;
1930 else
1931 sel->r.height = crops[SMIAPP_PAD_SINK]->height;
1932
1933 if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
1934 sensor->scale_m = scale_m;
1935 sensor->scaling_mode = mode;
1936 }
1937 }
1938 /* We're only called on source pads. This function sets scaling. */
1939 static int smiapp_set_compose(struct v4l2_subdev *subdev,
1940 struct v4l2_subdev_fh *fh,
1941 struct v4l2_subdev_selection *sel)
1942 {
1943 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1944 struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1945 struct v4l2_rect *comp, *crops[SMIAPP_PADS];
1946
1947 smiapp_get_crop_compose(subdev, fh, crops, &comp, sel->which);
1948
1949 sel->r.top = 0;
1950 sel->r.left = 0;
1951
1952 if (ssd == sensor->binner)
1953 smiapp_set_compose_binner(subdev, fh, sel, crops, comp);
1954 else
1955 smiapp_set_compose_scaler(subdev, fh, sel, crops, comp);
1956
1957 *comp = sel->r;
1958 smiapp_propagate(subdev, fh, sel->which,
1959 V4L2_SUBDEV_SEL_TGT_COMPOSE_ACTUAL);
1960
1961 if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE)
1962 return smiapp_update_mode(sensor);
1963
1964 return 0;
1965 }
1966
1967 static int __smiapp_sel_supported(struct v4l2_subdev *subdev,
1968 struct v4l2_subdev_selection *sel)
1969 {
1970 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1971 struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1972
1973 /* We only implement crop in three places. */
1974 switch (sel->target) {
1975 case V4L2_SUBDEV_SEL_TGT_CROP_ACTUAL:
1976 case V4L2_SUBDEV_SEL_TGT_CROP_BOUNDS:
1977 if (ssd == sensor->pixel_array
1978 && sel->pad == SMIAPP_PA_PAD_SRC)
1979 return 0;
1980 if (ssd == sensor->src
1981 && sel->pad == SMIAPP_PAD_SRC)
1982 return 0;
1983 if (ssd == sensor->scaler
1984 && sel->pad == SMIAPP_PAD_SINK
1985 && sensor->limits[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY]
1986 == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP)
1987 return 0;
1988 return -EINVAL;
1989 case V4L2_SUBDEV_SEL_TGT_COMPOSE_ACTUAL:
1990 case V4L2_SUBDEV_SEL_TGT_COMPOSE_BOUNDS:
1991 if (sel->pad == ssd->source_pad)
1992 return -EINVAL;
1993 if (ssd == sensor->binner)
1994 return 0;
1995 if (ssd == sensor->scaler
1996 && sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
1997 != SMIAPP_SCALING_CAPABILITY_NONE)
1998 return 0;
1999 /* Fall through */
2000 default:
2001 return -EINVAL;
2002 }
2003 }
2004
2005 static int smiapp_set_crop(struct v4l2_subdev *subdev,
2006 struct v4l2_subdev_fh *fh,
2007 struct v4l2_subdev_selection *sel)
2008 {
2009 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2010 struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
2011 struct v4l2_rect *src_size, *crops[SMIAPP_PADS];
2012 struct v4l2_rect _r;
2013
2014 smiapp_get_crop_compose(subdev, fh, crops, NULL, sel->which);
2015
2016 if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2017 if (sel->pad == ssd->sink_pad)
2018 src_size = &ssd->sink_fmt;
2019 else
2020 src_size = &ssd->compose;
2021 } else {
2022 if (sel->pad == ssd->sink_pad) {
2023 _r.left = 0;
2024 _r.top = 0;
2025 _r.width = v4l2_subdev_get_try_format(fh, sel->pad)
2026 ->width;
2027 _r.height = v4l2_subdev_get_try_format(fh, sel->pad)
2028 ->height;
2029 src_size = &_r;
2030 } else {
2031 src_size =
2032 v4l2_subdev_get_try_compose(
2033 fh, ssd->sink_pad);
2034 }
2035 }
2036
2037 if (ssd == sensor->src && sel->pad == SMIAPP_PAD_SRC) {
2038 sel->r.left = 0;
2039 sel->r.top = 0;
2040 }
2041
2042 sel->r.width = min(sel->r.width, src_size->width);
2043 sel->r.height = min(sel->r.height, src_size->height);
2044
2045 sel->r.left = min(sel->r.left, src_size->width - sel->r.width);
2046 sel->r.top = min(sel->r.top, src_size->height - sel->r.height);
2047
2048 *crops[sel->pad] = sel->r;
2049
2050 if (ssd != sensor->pixel_array && sel->pad == SMIAPP_PAD_SINK)
2051 smiapp_propagate(subdev, fh, sel->which,
2052 V4L2_SUBDEV_SEL_TGT_CROP_ACTUAL);
2053
2054 return 0;
2055 }
2056
2057 static int __smiapp_get_selection(struct v4l2_subdev *subdev,
2058 struct v4l2_subdev_fh *fh,
2059 struct v4l2_subdev_selection *sel)
2060 {
2061 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2062 struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
2063 struct v4l2_rect *comp, *crops[SMIAPP_PADS];
2064 struct v4l2_rect sink_fmt;
2065 int ret;
2066
2067 ret = __smiapp_sel_supported(subdev, sel);
2068 if (ret)
2069 return ret;
2070
2071 smiapp_get_crop_compose(subdev, fh, crops, &comp, sel->which);
2072
2073 if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2074 sink_fmt = ssd->sink_fmt;
2075 } else {
2076 struct v4l2_mbus_framefmt *fmt =
2077 v4l2_subdev_get_try_format(fh, ssd->sink_pad);
2078
2079 sink_fmt.left = 0;
2080 sink_fmt.top = 0;
2081 sink_fmt.width = fmt->width;
2082 sink_fmt.height = fmt->height;
2083 }
2084
2085 switch (sel->target) {
2086 case V4L2_SUBDEV_SEL_TGT_CROP_BOUNDS:
2087 if (ssd == sensor->pixel_array) {
2088 sel->r.width =
2089 sensor->limits[SMIAPP_LIMIT_X_ADDR_MAX] + 1;
2090 sel->r.height =
2091 sensor->limits[SMIAPP_LIMIT_Y_ADDR_MAX] + 1;
2092 } else if (sel->pad == ssd->sink_pad) {
2093 sel->r = sink_fmt;
2094 } else {
2095 sel->r = *comp;
2096 }
2097 break;
2098 case V4L2_SUBDEV_SEL_TGT_CROP_ACTUAL:
2099 case V4L2_SUBDEV_SEL_TGT_COMPOSE_BOUNDS:
2100 sel->r = *crops[sel->pad];
2101 break;
2102 case V4L2_SUBDEV_SEL_TGT_COMPOSE_ACTUAL:
2103 sel->r = *comp;
2104 break;
2105 }
2106
2107 return 0;
2108 }
2109
2110 static int smiapp_get_selection(struct v4l2_subdev *subdev,
2111 struct v4l2_subdev_fh *fh,
2112 struct v4l2_subdev_selection *sel)
2113 {
2114 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2115 int rval;
2116
2117 mutex_lock(&sensor->mutex);
2118 rval = __smiapp_get_selection(subdev, fh, sel);
2119 mutex_unlock(&sensor->mutex);
2120
2121 return rval;
2122 }
2123 static int smiapp_set_selection(struct v4l2_subdev *subdev,
2124 struct v4l2_subdev_fh *fh,
2125 struct v4l2_subdev_selection *sel)
2126 {
2127 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2128 int ret;
2129
2130 ret = __smiapp_sel_supported(subdev, sel);
2131 if (ret)
2132 return ret;
2133
2134 mutex_lock(&sensor->mutex);
2135
2136 sel->r.left = max(0, sel->r.left & ~1);
2137 sel->r.top = max(0, sel->r.top & ~1);
2138 sel->r.width = max(0, SMIAPP_ALIGN_DIM(sel->r.width, sel->flags));
2139 sel->r.height = max(0, SMIAPP_ALIGN_DIM(sel->r.height, sel->flags));
2140
2141 sel->r.width = max_t(unsigned int,
2142 sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE],
2143 sel->r.width);
2144 sel->r.height = max_t(unsigned int,
2145 sensor->limits[SMIAPP_LIMIT_MIN_Y_OUTPUT_SIZE],
2146 sel->r.height);
2147
2148 switch (sel->target) {
2149 case V4L2_SUBDEV_SEL_TGT_CROP_ACTUAL:
2150 ret = smiapp_set_crop(subdev, fh, sel);
2151 break;
2152 case V4L2_SUBDEV_SEL_TGT_COMPOSE_ACTUAL:
2153 ret = smiapp_set_compose(subdev, fh, sel);
2154 break;
2155 default:
2156 BUG();
2157 }
2158
2159 mutex_unlock(&sensor->mutex);
2160 return ret;
2161 }
2162
2163 static int smiapp_get_skip_frames(struct v4l2_subdev *subdev, u32 *frames)
2164 {
2165 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2166
2167 *frames = sensor->frame_skip;
2168 return 0;
2169 }
2170
2171 /* -----------------------------------------------------------------------------
2172 * sysfs attributes
2173 */
2174
2175 static ssize_t
2176 smiapp_sysfs_nvm_read(struct device *dev, struct device_attribute *attr,
2177 char *buf)
2178 {
2179 struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev));
2180 struct i2c_client *client = v4l2_get_subdevdata(subdev);
2181 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2182 unsigned int nbytes;
2183
2184 if (!sensor->dev_init_done)
2185 return -EBUSY;
2186
2187 if (!sensor->nvm_size) {
2188 /* NVM not read yet - read it now */
2189 sensor->nvm_size = sensor->platform_data->nvm_size;
2190 if (smiapp_set_power(subdev, 1) < 0)
2191 return -ENODEV;
2192 if (smiapp_read_nvm(sensor, sensor->nvm)) {
2193 dev_err(&client->dev, "nvm read failed\n");
2194 return -ENODEV;
2195 }
2196 smiapp_set_power(subdev, 0);
2197 }
2198 /*
2199 * NVM is still way below a PAGE_SIZE, so we can safely
2200 * assume this for now.
2201 */
2202 nbytes = min_t(unsigned int, sensor->nvm_size, PAGE_SIZE);
2203 memcpy(buf, sensor->nvm, nbytes);
2204
2205 return nbytes;
2206 }
2207 static DEVICE_ATTR(nvm, S_IRUGO, smiapp_sysfs_nvm_read, NULL);
2208
2209 /* -----------------------------------------------------------------------------
2210 * V4L2 subdev core operations
2211 */
2212
2213 static int smiapp_identify_module(struct v4l2_subdev *subdev)
2214 {
2215 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2216 struct i2c_client *client = v4l2_get_subdevdata(subdev);
2217 struct smiapp_module_info *minfo = &sensor->minfo;
2218 unsigned int i;
2219 int rval = 0;
2220
2221 minfo->name = SMIAPP_NAME;
2222
2223 /* Module info */
2224 rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_MANUFACTURER_ID,
2225 &minfo->manufacturer_id);
2226 if (!rval)
2227 rval = smiapp_read_8only(sensor, SMIAPP_REG_U16_MODEL_ID,
2228 &minfo->model_id);
2229 if (!rval)
2230 rval = smiapp_read_8only(sensor,
2231 SMIAPP_REG_U8_REVISION_NUMBER_MAJOR,
2232 &minfo->revision_number_major);
2233 if (!rval)
2234 rval = smiapp_read_8only(sensor,
2235 SMIAPP_REG_U8_REVISION_NUMBER_MINOR,
2236 &minfo->revision_number_minor);
2237 if (!rval)
2238 rval = smiapp_read_8only(sensor,
2239 SMIAPP_REG_U8_MODULE_DATE_YEAR,
2240 &minfo->module_year);
2241 if (!rval)
2242 rval = smiapp_read_8only(sensor,
2243 SMIAPP_REG_U8_MODULE_DATE_MONTH,
2244 &minfo->module_month);
2245 if (!rval)
2246 rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_MODULE_DATE_DAY,
2247 &minfo->module_day);
2248
2249 /* Sensor info */
2250 if (!rval)
2251 rval = smiapp_read_8only(sensor,
2252 SMIAPP_REG_U8_SENSOR_MANUFACTURER_ID,
2253 &minfo->sensor_manufacturer_id);
2254 if (!rval)
2255 rval = smiapp_read_8only(sensor,
2256 SMIAPP_REG_U16_SENSOR_MODEL_ID,
2257 &minfo->sensor_model_id);
2258 if (!rval)
2259 rval = smiapp_read_8only(sensor,
2260 SMIAPP_REG_U8_SENSOR_REVISION_NUMBER,
2261 &minfo->sensor_revision_number);
2262 if (!rval)
2263 rval = smiapp_read_8only(sensor,
2264 SMIAPP_REG_U8_SENSOR_FIRMWARE_VERSION,
2265 &minfo->sensor_firmware_version);
2266
2267 /* SMIA */
2268 if (!rval)
2269 rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_SMIA_VERSION,
2270 &minfo->smia_version);
2271 if (!rval)
2272 rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_SMIAPP_VERSION,
2273 &minfo->smiapp_version);
2274
2275 if (rval) {
2276 dev_err(&client->dev, "sensor detection failed\n");
2277 return -ENODEV;
2278 }
2279
2280 dev_dbg(&client->dev, "module 0x%2.2x-0x%4.4x\n",
2281 minfo->manufacturer_id, minfo->model_id);
2282
2283 dev_dbg(&client->dev,
2284 "module revision 0x%2.2x-0x%2.2x date %2.2d-%2.2d-%2.2d\n",
2285 minfo->revision_number_major, minfo->revision_number_minor,
2286 minfo->module_year, minfo->module_month, minfo->module_day);
2287
2288 dev_dbg(&client->dev, "sensor 0x%2.2x-0x%4.4x\n",
2289 minfo->sensor_manufacturer_id, minfo->sensor_model_id);
2290
2291 dev_dbg(&client->dev,
2292 "sensor revision 0x%2.2x firmware version 0x%2.2x\n",
2293 minfo->sensor_revision_number, minfo->sensor_firmware_version);
2294
2295 dev_dbg(&client->dev, "smia version %2.2d smiapp version %2.2d\n",
2296 minfo->smia_version, minfo->smiapp_version);
2297
2298 /*
2299 * Some modules have bad data in the lvalues below. Hope the
2300 * rvalues have better stuff. The lvalues are module
2301 * parameters whereas the rvalues are sensor parameters.
2302 */
2303 if (!minfo->manufacturer_id && !minfo->model_id) {
2304 minfo->manufacturer_id = minfo->sensor_manufacturer_id;
2305 minfo->model_id = minfo->sensor_model_id;
2306 minfo->revision_number_major = minfo->sensor_revision_number;
2307 }
2308
2309 for (i = 0; i < ARRAY_SIZE(smiapp_module_idents); i++) {
2310 if (smiapp_module_idents[i].manufacturer_id
2311 != minfo->manufacturer_id)
2312 continue;
2313 if (smiapp_module_idents[i].model_id != minfo->model_id)
2314 continue;
2315 if (smiapp_module_idents[i].flags
2316 & SMIAPP_MODULE_IDENT_FLAG_REV_LE) {
2317 if (smiapp_module_idents[i].revision_number_major
2318 < minfo->revision_number_major)
2319 continue;
2320 } else {
2321 if (smiapp_module_idents[i].revision_number_major
2322 != minfo->revision_number_major)
2323 continue;
2324 }
2325
2326 minfo->name = smiapp_module_idents[i].name;
2327 minfo->quirk = smiapp_module_idents[i].quirk;
2328 break;
2329 }
2330
2331 if (i >= ARRAY_SIZE(smiapp_module_idents))
2332 dev_warn(&client->dev,
2333 "no quirks for this module; let's hope it's fully compliant\n");
2334
2335 dev_dbg(&client->dev, "the sensor is called %s, ident %2.2x%4.4x%2.2x\n",
2336 minfo->name, minfo->manufacturer_id, minfo->model_id,
2337 minfo->revision_number_major);
2338
2339 strlcpy(subdev->name, sensor->minfo.name, sizeof(subdev->name));
2340
2341 return 0;
2342 }
2343
2344 static const struct v4l2_subdev_ops smiapp_ops;
2345 static const struct v4l2_subdev_internal_ops smiapp_internal_ops;
2346 static const struct media_entity_operations smiapp_entity_ops;
2347
2348 static int smiapp_registered(struct v4l2_subdev *subdev)
2349 {
2350 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2351 struct i2c_client *client = v4l2_get_subdevdata(subdev);
2352 struct smiapp_subdev *last = NULL;
2353 u32 tmp;
2354 unsigned int i;
2355 int rval;
2356
2357 sensor->vana = regulator_get(&client->dev, "VANA");
2358 if (IS_ERR(sensor->vana)) {
2359 dev_err(&client->dev, "could not get regulator for vana\n");
2360 return -ENODEV;
2361 }
2362
2363 if (!sensor->platform_data->set_xclk) {
2364 sensor->ext_clk = clk_get(&client->dev,
2365 sensor->platform_data->ext_clk_name);
2366 if (IS_ERR(sensor->ext_clk)) {
2367 dev_err(&client->dev, "could not get clock %s\n",
2368 sensor->platform_data->ext_clk_name);
2369 rval = -ENODEV;
2370 goto out_clk_get;
2371 }
2372
2373 rval = clk_set_rate(sensor->ext_clk,
2374 sensor->platform_data->ext_clk);
2375 if (rval < 0) {
2376 dev_err(&client->dev,
2377 "unable to set clock %s freq to %u\n",
2378 sensor->platform_data->ext_clk_name,
2379 sensor->platform_data->ext_clk);
2380 rval = -ENODEV;
2381 goto out_clk_set_rate;
2382 }
2383 }
2384
2385 if (sensor->platform_data->xshutdown != SMIAPP_NO_XSHUTDOWN) {
2386 if (gpio_request_one(sensor->platform_data->xshutdown, 0,
2387 "SMIA++ xshutdown") != 0) {
2388 dev_err(&client->dev,
2389 "unable to acquire reset gpio %d\n",
2390 sensor->platform_data->xshutdown);
2391 rval = -ENODEV;
2392 goto out_clk_set_rate;
2393 }
2394 }
2395
2396 rval = smiapp_power_on(sensor);
2397 if (rval) {
2398 rval = -ENODEV;
2399 goto out_smiapp_power_on;
2400 }
2401
2402 rval = smiapp_identify_module(subdev);
2403 if (rval) {
2404 rval = -ENODEV;
2405 goto out_power_off;
2406 }
2407
2408 rval = smiapp_get_all_limits(sensor);
2409 if (rval) {
2410 rval = -ENODEV;
2411 goto out_power_off;
2412 }
2413
2414 /*
2415 * Handle Sensor Module orientation on the board.
2416 *
2417 * The application of H-FLIP and V-FLIP on the sensor is modified by
2418 * the sensor orientation on the board.
2419 *
2420 * For SMIAPP_BOARD_SENSOR_ORIENT_180 the default behaviour is to set
2421 * both H-FLIP and V-FLIP for normal operation which also implies
2422 * that a set/unset operation for user space HFLIP and VFLIP v4l2
2423 * controls will need to be internally inverted.
2424 *
2425 * Rotation also changes the bayer pattern.
2426 */
2427 if (sensor->platform_data->module_board_orient ==
2428 SMIAPP_MODULE_BOARD_ORIENT_180)
2429 sensor->hvflip_inv_mask = SMIAPP_IMAGE_ORIENTATION_HFLIP |
2430 SMIAPP_IMAGE_ORIENTATION_VFLIP;
2431
2432 rval = smiapp_get_mbus_formats(sensor);
2433 if (rval) {
2434 rval = -ENODEV;
2435 goto out_power_off;
2436 }
2437
2438 if (sensor->limits[SMIAPP_LIMIT_BINNING_CAPABILITY]) {
2439 u32 val;
2440
2441 rval = smiapp_read(sensor,
2442 SMIAPP_REG_U8_BINNING_SUBTYPES, &val);
2443 if (rval < 0) {
2444 rval = -ENODEV;
2445 goto out_power_off;
2446 }
2447 sensor->nbinning_subtypes = min_t(u8, val,
2448 SMIAPP_BINNING_SUBTYPES);
2449
2450 for (i = 0; i < sensor->nbinning_subtypes; i++) {
2451 rval = smiapp_read(
2452 sensor, SMIAPP_REG_U8_BINNING_TYPE_n(i), &val);
2453 if (rval < 0) {
2454 rval = -ENODEV;
2455 goto out_power_off;
2456 }
2457 sensor->binning_subtypes[i] =
2458 *(struct smiapp_binning_subtype *)&val;
2459
2460 dev_dbg(&client->dev, "binning %xx%x\n",
2461 sensor->binning_subtypes[i].horizontal,
2462 sensor->binning_subtypes[i].vertical);
2463 }
2464 }
2465 sensor->binning_horizontal = 1;
2466 sensor->binning_vertical = 1;
2467
2468 /* SMIA++ NVM initialization - it will be read from the sensor
2469 * when it is first requested by userspace.
2470 */
2471 if (sensor->minfo.smiapp_version && sensor->platform_data->nvm_size) {
2472 sensor->nvm = kzalloc(sensor->platform_data->nvm_size,
2473 GFP_KERNEL);
2474 if (sensor->nvm == NULL) {
2475 dev_err(&client->dev, "nvm buf allocation failed\n");
2476 rval = -ENOMEM;
2477 goto out_power_off;
2478 }
2479
2480 if (device_create_file(&client->dev, &dev_attr_nvm) != 0) {
2481 dev_err(&client->dev, "sysfs nvm entry failed\n");
2482 rval = -EBUSY;
2483 goto out_power_off;
2484 }
2485 }
2486
2487 rval = smiapp_call_quirk(sensor, limits);
2488 if (rval) {
2489 dev_err(&client->dev, "limits quirks failed\n");
2490 goto out_nvm_release;
2491 }
2492
2493 /* We consider this as profile 0 sensor if any of these are zero. */
2494 if (!sensor->limits[SMIAPP_LIMIT_MIN_OP_SYS_CLK_DIV] ||
2495 !sensor->limits[SMIAPP_LIMIT_MAX_OP_SYS_CLK_DIV] ||
2496 !sensor->limits[SMIAPP_LIMIT_MIN_OP_PIX_CLK_DIV] ||
2497 !sensor->limits[SMIAPP_LIMIT_MAX_OP_PIX_CLK_DIV]) {
2498 sensor->minfo.smiapp_profile = SMIAPP_PROFILE_0;
2499 } else if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
2500 != SMIAPP_SCALING_CAPABILITY_NONE) {
2501 if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
2502 == SMIAPP_SCALING_CAPABILITY_HORIZONTAL)
2503 sensor->minfo.smiapp_profile = SMIAPP_PROFILE_1;
2504 else
2505 sensor->minfo.smiapp_profile = SMIAPP_PROFILE_2;
2506 sensor->scaler = &sensor->ssds[sensor->ssds_used];
2507 sensor->ssds_used++;
2508 } else if (sensor->limits[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY]
2509 == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
2510 sensor->scaler = &sensor->ssds[sensor->ssds_used];
2511 sensor->ssds_used++;
2512 }
2513 sensor->binner = &sensor->ssds[sensor->ssds_used];
2514 sensor->ssds_used++;
2515 sensor->pixel_array = &sensor->ssds[sensor->ssds_used];
2516 sensor->ssds_used++;
2517
2518 sensor->scale_m = sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN];
2519
2520 for (i = 0; i < SMIAPP_SUBDEVS; i++) {
2521 struct {
2522 struct smiapp_subdev *ssd;
2523 char *name;
2524 } const __this[] = {
2525 { sensor->scaler, "scaler", },
2526 { sensor->binner, "binner", },
2527 { sensor->pixel_array, "pixel array", },
2528 }, *_this = &__this[i];
2529 struct smiapp_subdev *this = _this->ssd;
2530
2531 if (!this)
2532 continue;
2533
2534 if (this != sensor->src)
2535 v4l2_subdev_init(&this->sd, &smiapp_ops);
2536
2537 this->sensor = sensor;
2538
2539 if (this == sensor->pixel_array) {
2540 this->npads = 1;
2541 } else {
2542 this->npads = 2;
2543 this->source_pad = 1;
2544 }
2545
2546 snprintf(this->sd.name,
2547 sizeof(this->sd.name), "%s %s",
2548 sensor->minfo.name, _this->name);
2549
2550 this->sink_fmt.width =
2551 sensor->limits[SMIAPP_LIMIT_X_ADDR_MAX] + 1;
2552 this->sink_fmt.height =
2553 sensor->limits[SMIAPP_LIMIT_Y_ADDR_MAX] + 1;
2554 this->compose.width = this->sink_fmt.width;
2555 this->compose.height = this->sink_fmt.height;
2556 this->crop[this->source_pad] = this->compose;
2557 this->pads[this->source_pad].flags = MEDIA_PAD_FL_SOURCE;
2558 if (this != sensor->pixel_array) {
2559 this->crop[this->sink_pad] = this->compose;
2560 this->pads[this->sink_pad].flags = MEDIA_PAD_FL_SINK;
2561 }
2562
2563 this->sd.entity.ops = &smiapp_entity_ops;
2564
2565 if (last == NULL) {
2566 last = this;
2567 continue;
2568 }
2569
2570 this->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
2571 this->sd.internal_ops = &smiapp_internal_ops;
2572 this->sd.owner = NULL;
2573 v4l2_set_subdevdata(&this->sd, client);
2574
2575 rval = media_entity_init(&this->sd.entity,
2576 this->npads, this->pads, 0);
2577 if (rval) {
2578 dev_err(&client->dev,
2579 "media_entity_init failed\n");
2580 goto out_nvm_release;
2581 }
2582
2583 rval = media_entity_create_link(&this->sd.entity,
2584 this->source_pad,
2585 &last->sd.entity,
2586 last->sink_pad,
2587 MEDIA_LNK_FL_ENABLED |
2588 MEDIA_LNK_FL_IMMUTABLE);
2589 if (rval) {
2590 dev_err(&client->dev,
2591 "media_entity_create_link failed\n");
2592 goto out_nvm_release;
2593 }
2594
2595 rval = v4l2_device_register_subdev(sensor->src->sd.v4l2_dev,
2596 &this->sd);
2597 if (rval) {
2598 dev_err(&client->dev,
2599 "v4l2_device_register_subdev failed\n");
2600 goto out_nvm_release;
2601 }
2602
2603 last = this;
2604 }
2605
2606 dev_dbg(&client->dev, "profile %d\n", sensor->minfo.smiapp_profile);
2607
2608 sensor->pixel_array->sd.entity.type = MEDIA_ENT_T_V4L2_SUBDEV_SENSOR;
2609
2610 /* final steps */
2611 smiapp_read_frame_fmt(sensor);
2612 rval = smiapp_init_controls(sensor);
2613 if (rval < 0)
2614 goto out_nvm_release;
2615
2616 rval = smiapp_update_mode(sensor);
2617 if (rval) {
2618 dev_err(&client->dev, "update mode failed\n");
2619 goto out_nvm_release;
2620 }
2621
2622 sensor->streaming = false;
2623 sensor->dev_init_done = true;
2624
2625 /* check flash capability */
2626 rval = smiapp_read(sensor, SMIAPP_REG_U8_FLASH_MODE_CAPABILITY, &tmp);
2627 sensor->flash_capability = tmp;
2628 if (rval)
2629 goto out_nvm_release;
2630
2631 smiapp_power_off(sensor);
2632
2633 return 0;
2634
2635 out_nvm_release:
2636 device_remove_file(&client->dev, &dev_attr_nvm);
2637
2638 out_power_off:
2639 kfree(sensor->nvm);
2640 sensor->nvm = NULL;
2641 smiapp_power_off(sensor);
2642
2643 out_smiapp_power_on:
2644 if (sensor->platform_data->xshutdown != SMIAPP_NO_XSHUTDOWN)
2645 gpio_free(sensor->platform_data->xshutdown);
2646
2647 out_clk_set_rate:
2648 clk_put(sensor->ext_clk);
2649 sensor->ext_clk = NULL;
2650
2651 out_clk_get:
2652 regulator_put(sensor->vana);
2653 sensor->vana = NULL;
2654 return rval;
2655 }
2656
2657 static int smiapp_open(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh)
2658 {
2659 struct smiapp_subdev *ssd = to_smiapp_subdev(sd);
2660 struct smiapp_sensor *sensor = ssd->sensor;
2661 u32 mbus_code =
2662 smiapp_csi_data_formats[smiapp_pixel_order(sensor)].code;
2663 unsigned int i;
2664
2665 mutex_lock(&sensor->mutex);
2666
2667 for (i = 0; i < ssd->npads; i++) {
2668 struct v4l2_mbus_framefmt *try_fmt =
2669 v4l2_subdev_get_try_format(fh, i);
2670 struct v4l2_rect *try_crop = v4l2_subdev_get_try_crop(fh, i);
2671 struct v4l2_rect *try_comp;
2672
2673 try_fmt->width = sensor->limits[SMIAPP_LIMIT_X_ADDR_MAX] + 1;
2674 try_fmt->height = sensor->limits[SMIAPP_LIMIT_Y_ADDR_MAX] + 1;
2675 try_fmt->code = mbus_code;
2676
2677 try_crop->top = 0;
2678 try_crop->left = 0;
2679 try_crop->width = try_fmt->width;
2680 try_crop->height = try_fmt->height;
2681
2682 if (ssd != sensor->pixel_array)
2683 continue;
2684
2685 try_comp = v4l2_subdev_get_try_compose(fh, i);
2686 *try_comp = *try_crop;
2687 }
2688
2689 mutex_unlock(&sensor->mutex);
2690
2691 return smiapp_set_power(sd, 1);
2692 }
2693
2694 static int smiapp_close(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh)
2695 {
2696 return smiapp_set_power(sd, 0);
2697 }
2698
2699 static const struct v4l2_subdev_video_ops smiapp_video_ops = {
2700 .s_stream = smiapp_set_stream,
2701 };
2702
2703 static const struct v4l2_subdev_core_ops smiapp_core_ops = {
2704 .s_power = smiapp_set_power,
2705 };
2706
2707 static const struct v4l2_subdev_pad_ops smiapp_pad_ops = {
2708 .enum_mbus_code = smiapp_enum_mbus_code,
2709 .get_fmt = smiapp_get_format,
2710 .set_fmt = smiapp_set_format,
2711 .get_selection = smiapp_get_selection,
2712 .set_selection = smiapp_set_selection,
2713 };
2714
2715 static const struct v4l2_subdev_sensor_ops smiapp_sensor_ops = {
2716 .g_skip_frames = smiapp_get_skip_frames,
2717 };
2718
2719 static const struct v4l2_subdev_ops smiapp_ops = {
2720 .core = &smiapp_core_ops,
2721 .video = &smiapp_video_ops,
2722 .pad = &smiapp_pad_ops,
2723 .sensor = &smiapp_sensor_ops,
2724 };
2725
2726 static const struct media_entity_operations smiapp_entity_ops = {
2727 .link_validate = v4l2_subdev_link_validate,
2728 };
2729
2730 static const struct v4l2_subdev_internal_ops smiapp_internal_src_ops = {
2731 .registered = smiapp_registered,
2732 .open = smiapp_open,
2733 .close = smiapp_close,
2734 };
2735
2736 static const struct v4l2_subdev_internal_ops smiapp_internal_ops = {
2737 .open = smiapp_open,
2738 .close = smiapp_close,
2739 };
2740
2741 /* -----------------------------------------------------------------------------
2742 * I2C Driver
2743 */
2744
2745 #ifdef CONFIG_PM
2746
2747 static int smiapp_suspend(struct device *dev)
2748 {
2749 struct i2c_client *client = to_i2c_client(dev);
2750 struct v4l2_subdev *subdev = i2c_get_clientdata(client);
2751 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2752 bool streaming;
2753
2754 BUG_ON(mutex_is_locked(&sensor->mutex));
2755
2756 if (sensor->power_count == 0)
2757 return 0;
2758
2759 if (sensor->streaming)
2760 smiapp_stop_streaming(sensor);
2761
2762 streaming = sensor->streaming;
2763
2764 smiapp_power_off(sensor);
2765
2766 /* save state for resume */
2767 sensor->streaming = streaming;
2768
2769 return 0;
2770 }
2771
2772 static int smiapp_resume(struct device *dev)
2773 {
2774 struct i2c_client *client = to_i2c_client(dev);
2775 struct v4l2_subdev *subdev = i2c_get_clientdata(client);
2776 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2777 int rval;
2778
2779 if (sensor->power_count == 0)
2780 return 0;
2781
2782 rval = smiapp_power_on(sensor);
2783 if (rval)
2784 return rval;
2785
2786 if (sensor->streaming)
2787 rval = smiapp_start_streaming(sensor);
2788
2789 return rval;
2790 }
2791
2792 #else
2793
2794 #define smiapp_suspend NULL
2795 #define smiapp_resume NULL
2796
2797 #endif /* CONFIG_PM */
2798
2799 static int smiapp_probe(struct i2c_client *client,
2800 const struct i2c_device_id *devid)
2801 {
2802 struct smiapp_sensor *sensor;
2803 int rval;
2804
2805 if (client->dev.platform_data == NULL)
2806 return -ENODEV;
2807
2808 sensor = kzalloc(sizeof(*sensor), GFP_KERNEL);
2809 if (sensor == NULL)
2810 return -ENOMEM;
2811
2812 sensor->platform_data = client->dev.platform_data;
2813 mutex_init(&sensor->mutex);
2814 mutex_init(&sensor->power_mutex);
2815 sensor->src = &sensor->ssds[sensor->ssds_used];
2816
2817 v4l2_i2c_subdev_init(&sensor->src->sd, client, &smiapp_ops);
2818 sensor->src->sd.internal_ops = &smiapp_internal_src_ops;
2819 sensor->src->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
2820 sensor->src->sensor = sensor;
2821
2822 sensor->src->pads[0].flags = MEDIA_PAD_FL_SOURCE;
2823 rval = media_entity_init(&sensor->src->sd.entity, 2,
2824 sensor->src->pads, 0);
2825 if (rval < 0)
2826 kfree(sensor);
2827
2828 return rval;
2829 }
2830
2831 static int __exit smiapp_remove(struct i2c_client *client)
2832 {
2833 struct v4l2_subdev *subdev = i2c_get_clientdata(client);
2834 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2835 unsigned int i;
2836
2837 if (sensor->power_count) {
2838 if (sensor->platform_data->xshutdown != SMIAPP_NO_XSHUTDOWN)
2839 gpio_set_value(sensor->platform_data->xshutdown, 0);
2840 if (sensor->platform_data->set_xclk)
2841 sensor->platform_data->set_xclk(&sensor->src->sd, 0);
2842 else
2843 clk_disable(sensor->ext_clk);
2844 sensor->power_count = 0;
2845 }
2846
2847 if (sensor->nvm) {
2848 device_remove_file(&client->dev, &dev_attr_nvm);
2849 kfree(sensor->nvm);
2850 }
2851
2852 for (i = 0; i < sensor->ssds_used; i++) {
2853 media_entity_cleanup(&sensor->ssds[i].sd.entity);
2854 v4l2_device_unregister_subdev(&sensor->ssds[i].sd);
2855 }
2856 smiapp_free_controls(sensor);
2857 if (sensor->platform_data->xshutdown != SMIAPP_NO_XSHUTDOWN)
2858 gpio_free(sensor->platform_data->xshutdown);
2859 if (sensor->ext_clk)
2860 clk_put(sensor->ext_clk);
2861 if (sensor->vana)
2862 regulator_put(sensor->vana);
2863
2864 kfree(sensor);
2865
2866 return 0;
2867 }
2868
2869 static const struct i2c_device_id smiapp_id_table[] = {
2870 { SMIAPP_NAME, 0 },
2871 { },
2872 };
2873 MODULE_DEVICE_TABLE(i2c, smiapp_id_table);
2874
2875 static const struct dev_pm_ops smiapp_pm_ops = {
2876 .suspend = smiapp_suspend,
2877 .resume = smiapp_resume,
2878 };
2879
2880 static struct i2c_driver smiapp_i2c_driver = {
2881 .driver = {
2882 .name = SMIAPP_NAME,
2883 .pm = &smiapp_pm_ops,
2884 },
2885 .probe = smiapp_probe,
2886 .remove = __exit_p(smiapp_remove),
2887 .id_table = smiapp_id_table,
2888 };
2889
2890 module_i2c_driver(smiapp_i2c_driver);
2891
2892 MODULE_AUTHOR("Sakari Ailus <sakari.ailus@maxwell.research.nokia.com>");
2893 MODULE_DESCRIPTION("Generic SMIA/SMIA++ camera module driver");
2894 MODULE_LICENSE("GPL");
This page took 0.089495 seconds and 6 git commands to generate.