Merge branch 'for-linus' of git://git.open-osd.org/linux-open-osd
[deliverable/linux.git] / drivers / media / video / smiapp / smiapp-core.c
1 /*
2 * drivers/media/video/smiapp/smiapp-core.c
3 *
4 * Generic driver for SMIA/SMIA++ compliant camera modules
5 *
6 * Copyright (C) 2010--2012 Nokia Corporation
7 * Contact: Sakari Ailus <sakari.ailus@maxwell.research.nokia.com>
8 *
9 * Based on smiapp driver by Vimarsh Zutshi
10 * Based on jt8ev1.c by Vimarsh Zutshi
11 * Based on smia-sensor.c by Tuukka Toivonen <tuukkat76@gmail.com>
12 *
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License
15 * version 2 as published by the Free Software Foundation.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
25 * 02110-1301 USA
26 *
27 */
28
29 #include <linux/clk.h>
30 #include <linux/delay.h>
31 #include <linux/device.h>
32 #include <linux/gpio.h>
33 #include <linux/module.h>
34 #include <linux/slab.h>
35 #include <linux/regulator/consumer.h>
36 #include <linux/slab.h>
37 #include <linux/v4l2-mediabus.h>
38 #include <media/v4l2-device.h>
39
40 #include "smiapp.h"
41
42 #define SMIAPP_ALIGN_DIM(dim, flags) \
43 ((flags) & V4L2_SUBDEV_SEL_FLAG_SIZE_GE \
44 ? ALIGN((dim), 2) \
45 : (dim) & ~1)
46
47 /*
48 * smiapp_module_idents - supported camera modules
49 */
50 static const struct smiapp_module_ident smiapp_module_idents[] = {
51 SMIAPP_IDENT_L(0x01, 0x022b, -1, "vs6555"),
52 SMIAPP_IDENT_L(0x01, 0x022e, -1, "vw6558"),
53 SMIAPP_IDENT_L(0x07, 0x7698, -1, "ovm7698"),
54 SMIAPP_IDENT_L(0x0b, 0x4242, -1, "smiapp-003"),
55 SMIAPP_IDENT_L(0x0c, 0x208a, -1, "tcm8330md"),
56 SMIAPP_IDENT_LQ(0x0c, 0x2134, -1, "tcm8500md", &smiapp_tcm8500md_quirk),
57 SMIAPP_IDENT_L(0x0c, 0x213e, -1, "et8en2"),
58 SMIAPP_IDENT_L(0x0c, 0x2184, -1, "tcm8580md"),
59 SMIAPP_IDENT_LQ(0x0c, 0x560f, -1, "jt8ew9", &smiapp_jt8ew9_quirk),
60 SMIAPP_IDENT_LQ(0x10, 0x4141, -1, "jt8ev1", &smiapp_jt8ev1_quirk),
61 SMIAPP_IDENT_LQ(0x10, 0x4241, -1, "imx125es", &smiapp_imx125es_quirk),
62 };
63
64 /*
65 *
66 * Dynamic Capability Identification
67 *
68 */
69
70 static int smiapp_read_frame_fmt(struct smiapp_sensor *sensor)
71 {
72 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
73 u32 fmt_model_type, fmt_model_subtype, ncol_desc, nrow_desc;
74 unsigned int i;
75 int rval;
76 int line_count = 0;
77 int embedded_start = -1, embedded_end = -1;
78 int image_start = 0;
79
80 rval = smiapp_read(sensor, SMIAPP_REG_U8_FRAME_FORMAT_MODEL_TYPE,
81 &fmt_model_type);
82 if (rval)
83 return rval;
84
85 rval = smiapp_read(sensor, SMIAPP_REG_U8_FRAME_FORMAT_MODEL_SUBTYPE,
86 &fmt_model_subtype);
87 if (rval)
88 return rval;
89
90 ncol_desc = (fmt_model_subtype
91 & SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NCOLS_MASK)
92 >> SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NCOLS_SHIFT;
93 nrow_desc = fmt_model_subtype
94 & SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NROWS_MASK;
95
96 dev_dbg(&client->dev, "format_model_type %s\n",
97 fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_2BYTE
98 ? "2 byte" :
99 fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_4BYTE
100 ? "4 byte" : "is simply bad");
101
102 for (i = 0; i < ncol_desc + nrow_desc; i++) {
103 u32 desc;
104 u32 pixelcode;
105 u32 pixels;
106 char *which;
107 char *what;
108
109 if (fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_2BYTE) {
110 rval = smiapp_read(
111 sensor,
112 SMIAPP_REG_U16_FRAME_FORMAT_DESCRIPTOR_2(i),
113 &desc);
114 if (rval)
115 return rval;
116
117 pixelcode =
118 (desc
119 & SMIAPP_FRAME_FORMAT_DESC_2_PIXELCODE_MASK)
120 >> SMIAPP_FRAME_FORMAT_DESC_2_PIXELCODE_SHIFT;
121 pixels = desc & SMIAPP_FRAME_FORMAT_DESC_2_PIXELS_MASK;
122 } else if (fmt_model_type
123 == SMIAPP_FRAME_FORMAT_MODEL_TYPE_4BYTE) {
124 rval = smiapp_read(
125 sensor,
126 SMIAPP_REG_U32_FRAME_FORMAT_DESCRIPTOR_4(i),
127 &desc);
128 if (rval)
129 return rval;
130
131 pixelcode =
132 (desc
133 & SMIAPP_FRAME_FORMAT_DESC_4_PIXELCODE_MASK)
134 >> SMIAPP_FRAME_FORMAT_DESC_4_PIXELCODE_SHIFT;
135 pixels = desc & SMIAPP_FRAME_FORMAT_DESC_4_PIXELS_MASK;
136 } else {
137 dev_dbg(&client->dev,
138 "invalid frame format model type %d\n",
139 fmt_model_type);
140 return -EINVAL;
141 }
142
143 if (i < ncol_desc)
144 which = "columns";
145 else
146 which = "rows";
147
148 switch (pixelcode) {
149 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_EMBEDDED:
150 what = "embedded";
151 break;
152 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_DUMMY:
153 what = "dummy";
154 break;
155 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_BLACK:
156 what = "black";
157 break;
158 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_DARK:
159 what = "dark";
160 break;
161 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_VISIBLE:
162 what = "visible";
163 break;
164 default:
165 what = "invalid";
166 dev_dbg(&client->dev, "pixelcode %d\n", pixelcode);
167 break;
168 }
169
170 dev_dbg(&client->dev, "%s pixels: %d %s\n",
171 what, pixels, which);
172
173 if (i < ncol_desc)
174 continue;
175
176 /* Handle row descriptors */
177 if (pixelcode
178 == SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_EMBEDDED) {
179 embedded_start = line_count;
180 } else {
181 if (pixelcode == SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_VISIBLE
182 || pixels >= sensor->limits[SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES] / 2)
183 image_start = line_count;
184 if (embedded_start != -1 && embedded_end == -1)
185 embedded_end = line_count;
186 }
187 line_count += pixels;
188 }
189
190 if (embedded_start == -1 || embedded_end == -1) {
191 embedded_start = 0;
192 embedded_end = 0;
193 }
194
195 dev_dbg(&client->dev, "embedded data from lines %d to %d\n",
196 embedded_start, embedded_end);
197 dev_dbg(&client->dev, "image data starts at line %d\n", image_start);
198
199 return 0;
200 }
201
202 static int smiapp_pll_configure(struct smiapp_sensor *sensor)
203 {
204 struct smiapp_pll *pll = &sensor->pll;
205 int rval;
206
207 rval = smiapp_write(
208 sensor, SMIAPP_REG_U16_VT_PIX_CLK_DIV, pll->vt_pix_clk_div);
209 if (rval < 0)
210 return rval;
211
212 rval = smiapp_write(
213 sensor, SMIAPP_REG_U16_VT_SYS_CLK_DIV, pll->vt_sys_clk_div);
214 if (rval < 0)
215 return rval;
216
217 rval = smiapp_write(
218 sensor, SMIAPP_REG_U16_PRE_PLL_CLK_DIV, pll->pre_pll_clk_div);
219 if (rval < 0)
220 return rval;
221
222 rval = smiapp_write(
223 sensor, SMIAPP_REG_U16_PLL_MULTIPLIER, pll->pll_multiplier);
224 if (rval < 0)
225 return rval;
226
227 /* Lane op clock ratio does not apply here. */
228 rval = smiapp_write(
229 sensor, SMIAPP_REG_U32_REQUESTED_LINK_BIT_RATE_MBPS,
230 DIV_ROUND_UP(pll->op_sys_clk_freq_hz, 1000000 / 256 / 256));
231 if (rval < 0 || sensor->minfo.smiapp_profile == SMIAPP_PROFILE_0)
232 return rval;
233
234 rval = smiapp_write(
235 sensor, SMIAPP_REG_U16_OP_PIX_CLK_DIV, pll->op_pix_clk_div);
236 if (rval < 0)
237 return rval;
238
239 return smiapp_write(
240 sensor, SMIAPP_REG_U16_OP_SYS_CLK_DIV, pll->op_sys_clk_div);
241 }
242
243 static int smiapp_pll_update(struct smiapp_sensor *sensor)
244 {
245 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
246 struct smiapp_pll_limits lim = {
247 .min_pre_pll_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_PRE_PLL_CLK_DIV],
248 .max_pre_pll_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_PRE_PLL_CLK_DIV],
249 .min_pll_ip_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_PLL_IP_FREQ_HZ],
250 .max_pll_ip_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_PLL_IP_FREQ_HZ],
251 .min_pll_multiplier = sensor->limits[SMIAPP_LIMIT_MIN_PLL_MULTIPLIER],
252 .max_pll_multiplier = sensor->limits[SMIAPP_LIMIT_MAX_PLL_MULTIPLIER],
253 .min_pll_op_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_PLL_OP_FREQ_HZ],
254 .max_pll_op_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_PLL_OP_FREQ_HZ],
255
256 .min_op_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_OP_SYS_CLK_DIV],
257 .max_op_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_OP_SYS_CLK_DIV],
258 .min_op_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_OP_PIX_CLK_DIV],
259 .max_op_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_OP_PIX_CLK_DIV],
260 .min_op_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_OP_SYS_CLK_FREQ_HZ],
261 .max_op_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_OP_SYS_CLK_FREQ_HZ],
262 .min_op_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_OP_PIX_CLK_FREQ_HZ],
263 .max_op_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_OP_PIX_CLK_FREQ_HZ],
264
265 .min_vt_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_VT_SYS_CLK_DIV],
266 .max_vt_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_VT_SYS_CLK_DIV],
267 .min_vt_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_VT_PIX_CLK_DIV],
268 .max_vt_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_VT_PIX_CLK_DIV],
269 .min_vt_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_VT_SYS_CLK_FREQ_HZ],
270 .max_vt_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_VT_SYS_CLK_FREQ_HZ],
271 .min_vt_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_VT_PIX_CLK_FREQ_HZ],
272 .max_vt_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_VT_PIX_CLK_FREQ_HZ],
273
274 .min_line_length_pck_bin = sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN],
275 .min_line_length_pck = sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK],
276 };
277 struct smiapp_pll *pll = &sensor->pll;
278 int rval;
279
280 memset(&sensor->pll, 0, sizeof(sensor->pll));
281
282 pll->lanes = sensor->platform_data->lanes;
283 pll->ext_clk_freq_hz = sensor->platform_data->ext_clk;
284
285 if (sensor->minfo.smiapp_profile == SMIAPP_PROFILE_0) {
286 /*
287 * Fill in operational clock divisors limits from the
288 * video timing ones. On profile 0 sensors the
289 * requirements regarding them are essentially the
290 * same as on VT ones.
291 */
292 lim.min_op_sys_clk_div = lim.min_vt_sys_clk_div;
293 lim.max_op_sys_clk_div = lim.max_vt_sys_clk_div;
294 lim.min_op_pix_clk_div = lim.min_vt_pix_clk_div;
295 lim.max_op_pix_clk_div = lim.max_vt_pix_clk_div;
296 lim.min_op_sys_clk_freq_hz = lim.min_vt_sys_clk_freq_hz;
297 lim.max_op_sys_clk_freq_hz = lim.max_vt_sys_clk_freq_hz;
298 lim.min_op_pix_clk_freq_hz = lim.min_vt_pix_clk_freq_hz;
299 lim.max_op_pix_clk_freq_hz = lim.max_vt_pix_clk_freq_hz;
300 /* Profile 0 sensors have no separate OP clock branch. */
301 pll->flags |= SMIAPP_PLL_FLAG_NO_OP_CLOCKS;
302 }
303
304 if (smiapp_needs_quirk(sensor,
305 SMIAPP_QUIRK_FLAG_OP_PIX_CLOCK_PER_LANE))
306 pll->flags |= SMIAPP_PLL_FLAG_OP_PIX_CLOCK_PER_LANE;
307
308 pll->binning_horizontal = sensor->binning_horizontal;
309 pll->binning_vertical = sensor->binning_vertical;
310 pll->link_freq =
311 sensor->link_freq->qmenu_int[sensor->link_freq->val];
312 pll->scale_m = sensor->scale_m;
313 pll->scale_n = sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN];
314 pll->bits_per_pixel = sensor->csi_format->compressed;
315
316 rval = smiapp_pll_calculate(&client->dev, &lim, pll);
317 if (rval < 0)
318 return rval;
319
320 sensor->pixel_rate_parray->cur.val64 = pll->vt_pix_clk_freq_hz;
321 sensor->pixel_rate_csi->cur.val64 = pll->pixel_rate_csi;
322
323 return 0;
324 }
325
326
327 /*
328 *
329 * V4L2 Controls handling
330 *
331 */
332
333 static void __smiapp_update_exposure_limits(struct smiapp_sensor *sensor)
334 {
335 struct v4l2_ctrl *ctrl = sensor->exposure;
336 int max;
337
338 max = sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height
339 + sensor->vblank->val
340 - sensor->limits[SMIAPP_LIMIT_COARSE_INTEGRATION_TIME_MAX_MARGIN];
341
342 ctrl->maximum = max;
343 if (ctrl->default_value > max)
344 ctrl->default_value = max;
345 if (ctrl->val > max)
346 ctrl->val = max;
347 if (ctrl->cur.val > max)
348 ctrl->cur.val = max;
349 }
350
351 /*
352 * Order matters.
353 *
354 * 1. Bits-per-pixel, descending.
355 * 2. Bits-per-pixel compressed, descending.
356 * 3. Pixel order, same as in pixel_order_str. Formats for all four pixel
357 * orders must be defined.
358 */
359 static const struct smiapp_csi_data_format smiapp_csi_data_formats[] = {
360 { V4L2_MBUS_FMT_SGRBG12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_GRBG, },
361 { V4L2_MBUS_FMT_SRGGB12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_RGGB, },
362 { V4L2_MBUS_FMT_SBGGR12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_BGGR, },
363 { V4L2_MBUS_FMT_SGBRG12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_GBRG, },
364 { V4L2_MBUS_FMT_SGRBG10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_GRBG, },
365 { V4L2_MBUS_FMT_SRGGB10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_RGGB, },
366 { V4L2_MBUS_FMT_SBGGR10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_BGGR, },
367 { V4L2_MBUS_FMT_SGBRG10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_GBRG, },
368 { V4L2_MBUS_FMT_SGRBG10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_GRBG, },
369 { V4L2_MBUS_FMT_SRGGB10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_RGGB, },
370 { V4L2_MBUS_FMT_SBGGR10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_BGGR, },
371 { V4L2_MBUS_FMT_SGBRG10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_GBRG, },
372 { V4L2_MBUS_FMT_SGRBG8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_GRBG, },
373 { V4L2_MBUS_FMT_SRGGB8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_RGGB, },
374 { V4L2_MBUS_FMT_SBGGR8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_BGGR, },
375 { V4L2_MBUS_FMT_SGBRG8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_GBRG, },
376 };
377
378 const char *pixel_order_str[] = { "GRBG", "RGGB", "BGGR", "GBRG" };
379
380 #define to_csi_format_idx(fmt) (((unsigned long)(fmt) \
381 - (unsigned long)smiapp_csi_data_formats) \
382 / sizeof(*smiapp_csi_data_formats))
383
384 static u32 smiapp_pixel_order(struct smiapp_sensor *sensor)
385 {
386 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
387 int flip = 0;
388
389 if (sensor->hflip) {
390 if (sensor->hflip->val)
391 flip |= SMIAPP_IMAGE_ORIENTATION_HFLIP;
392
393 if (sensor->vflip->val)
394 flip |= SMIAPP_IMAGE_ORIENTATION_VFLIP;
395 }
396
397 flip ^= sensor->hvflip_inv_mask;
398
399 dev_dbg(&client->dev, "flip %d\n", flip);
400 return sensor->default_pixel_order ^ flip;
401 }
402
403 static void smiapp_update_mbus_formats(struct smiapp_sensor *sensor)
404 {
405 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
406 unsigned int csi_format_idx =
407 to_csi_format_idx(sensor->csi_format) & ~3;
408 unsigned int internal_csi_format_idx =
409 to_csi_format_idx(sensor->internal_csi_format) & ~3;
410 unsigned int pixel_order = smiapp_pixel_order(sensor);
411
412 sensor->mbus_frame_fmts =
413 sensor->default_mbus_frame_fmts << pixel_order;
414 sensor->csi_format =
415 &smiapp_csi_data_formats[csi_format_idx + pixel_order];
416 sensor->internal_csi_format =
417 &smiapp_csi_data_formats[internal_csi_format_idx
418 + pixel_order];
419
420 BUG_ON(max(internal_csi_format_idx, csi_format_idx) + pixel_order
421 >= ARRAY_SIZE(smiapp_csi_data_formats));
422 BUG_ON(min(internal_csi_format_idx, csi_format_idx) < 0);
423
424 dev_dbg(&client->dev, "new pixel order %s\n",
425 pixel_order_str[pixel_order]);
426 }
427
428 static int smiapp_set_ctrl(struct v4l2_ctrl *ctrl)
429 {
430 struct smiapp_sensor *sensor =
431 container_of(ctrl->handler, struct smiapp_subdev, ctrl_handler)
432 ->sensor;
433 u32 orient = 0;
434 int exposure;
435 int rval;
436
437 switch (ctrl->id) {
438 case V4L2_CID_ANALOGUE_GAIN:
439 return smiapp_write(
440 sensor,
441 SMIAPP_REG_U16_ANALOGUE_GAIN_CODE_GLOBAL, ctrl->val);
442
443 case V4L2_CID_EXPOSURE:
444 return smiapp_write(
445 sensor,
446 SMIAPP_REG_U16_COARSE_INTEGRATION_TIME, ctrl->val);
447
448 case V4L2_CID_HFLIP:
449 case V4L2_CID_VFLIP:
450 if (sensor->streaming)
451 return -EBUSY;
452
453 if (sensor->hflip->val)
454 orient |= SMIAPP_IMAGE_ORIENTATION_HFLIP;
455
456 if (sensor->vflip->val)
457 orient |= SMIAPP_IMAGE_ORIENTATION_VFLIP;
458
459 orient ^= sensor->hvflip_inv_mask;
460 rval = smiapp_write(sensor,
461 SMIAPP_REG_U8_IMAGE_ORIENTATION,
462 orient);
463 if (rval < 0)
464 return rval;
465
466 smiapp_update_mbus_formats(sensor);
467
468 return 0;
469
470 case V4L2_CID_VBLANK:
471 exposure = sensor->exposure->val;
472
473 __smiapp_update_exposure_limits(sensor);
474
475 if (exposure > sensor->exposure->maximum) {
476 sensor->exposure->val =
477 sensor->exposure->maximum;
478 rval = smiapp_set_ctrl(
479 sensor->exposure);
480 if (rval < 0)
481 return rval;
482 }
483
484 return smiapp_write(
485 sensor, SMIAPP_REG_U16_FRAME_LENGTH_LINES,
486 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height
487 + ctrl->val);
488
489 case V4L2_CID_HBLANK:
490 return smiapp_write(
491 sensor, SMIAPP_REG_U16_LINE_LENGTH_PCK,
492 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width
493 + ctrl->val);
494
495 case V4L2_CID_LINK_FREQ:
496 if (sensor->streaming)
497 return -EBUSY;
498
499 return smiapp_pll_update(sensor);
500
501 default:
502 return -EINVAL;
503 }
504 }
505
506 static const struct v4l2_ctrl_ops smiapp_ctrl_ops = {
507 .s_ctrl = smiapp_set_ctrl,
508 };
509
510 static int smiapp_init_controls(struct smiapp_sensor *sensor)
511 {
512 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
513 unsigned int max;
514 int rval;
515
516 rval = v4l2_ctrl_handler_init(&sensor->pixel_array->ctrl_handler, 7);
517 if (rval)
518 return rval;
519 sensor->pixel_array->ctrl_handler.lock = &sensor->mutex;
520
521 sensor->analog_gain = v4l2_ctrl_new_std(
522 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
523 V4L2_CID_ANALOGUE_GAIN,
524 sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MIN],
525 sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MAX],
526 max(sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_STEP], 1U),
527 sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MIN]);
528
529 /* Exposure limits will be updated soon, use just something here. */
530 sensor->exposure = v4l2_ctrl_new_std(
531 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
532 V4L2_CID_EXPOSURE, 0, 0, 1, 0);
533
534 sensor->hflip = v4l2_ctrl_new_std(
535 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
536 V4L2_CID_HFLIP, 0, 1, 1, 0);
537 sensor->vflip = v4l2_ctrl_new_std(
538 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
539 V4L2_CID_VFLIP, 0, 1, 1, 0);
540
541 sensor->vblank = v4l2_ctrl_new_std(
542 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
543 V4L2_CID_VBLANK, 0, 1, 1, 0);
544
545 if (sensor->vblank)
546 sensor->vblank->flags |= V4L2_CTRL_FLAG_UPDATE;
547
548 sensor->hblank = v4l2_ctrl_new_std(
549 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
550 V4L2_CID_HBLANK, 0, 1, 1, 0);
551
552 if (sensor->hblank)
553 sensor->hblank->flags |= V4L2_CTRL_FLAG_UPDATE;
554
555 sensor->pixel_rate_parray = v4l2_ctrl_new_std(
556 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
557 V4L2_CID_PIXEL_RATE, 0, 0, 1, 0);
558
559 if (sensor->pixel_array->ctrl_handler.error) {
560 dev_err(&client->dev,
561 "pixel array controls initialization failed (%d)\n",
562 sensor->pixel_array->ctrl_handler.error);
563 rval = sensor->pixel_array->ctrl_handler.error;
564 goto error;
565 }
566
567 sensor->pixel_array->sd.ctrl_handler =
568 &sensor->pixel_array->ctrl_handler;
569
570 v4l2_ctrl_cluster(2, &sensor->hflip);
571
572 rval = v4l2_ctrl_handler_init(&sensor->src->ctrl_handler, 0);
573 if (rval)
574 goto error;
575 sensor->src->ctrl_handler.lock = &sensor->mutex;
576
577 for (max = 0; sensor->platform_data->op_sys_clock[max + 1]; max++);
578
579 sensor->link_freq = v4l2_ctrl_new_int_menu(
580 &sensor->src->ctrl_handler, &smiapp_ctrl_ops,
581 V4L2_CID_LINK_FREQ, max, 0,
582 sensor->platform_data->op_sys_clock);
583
584 sensor->pixel_rate_csi = v4l2_ctrl_new_std(
585 &sensor->src->ctrl_handler, &smiapp_ctrl_ops,
586 V4L2_CID_PIXEL_RATE, 0, 0, 1, 0);
587
588 if (sensor->src->ctrl_handler.error) {
589 dev_err(&client->dev,
590 "src controls initialization failed (%d)\n",
591 sensor->src->ctrl_handler.error);
592 rval = sensor->src->ctrl_handler.error;
593 goto error;
594 }
595
596 sensor->src->sd.ctrl_handler =
597 &sensor->src->ctrl_handler;
598
599 return 0;
600
601 error:
602 v4l2_ctrl_handler_free(&sensor->pixel_array->ctrl_handler);
603 v4l2_ctrl_handler_free(&sensor->src->ctrl_handler);
604
605 return rval;
606 }
607
608 static void smiapp_free_controls(struct smiapp_sensor *sensor)
609 {
610 unsigned int i;
611
612 for (i = 0; i < sensor->ssds_used; i++)
613 v4l2_ctrl_handler_free(&sensor->ssds[i].ctrl_handler);
614 }
615
616 static int smiapp_get_limits(struct smiapp_sensor *sensor, int const *limit,
617 unsigned int n)
618 {
619 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
620 unsigned int i;
621 u32 val;
622 int rval;
623
624 for (i = 0; i < n; i++) {
625 rval = smiapp_read(
626 sensor, smiapp_reg_limits[limit[i]].addr, &val);
627 if (rval)
628 return rval;
629 sensor->limits[limit[i]] = val;
630 dev_dbg(&client->dev, "0x%8.8x \"%s\" = %d, 0x%x\n",
631 smiapp_reg_limits[limit[i]].addr,
632 smiapp_reg_limits[limit[i]].what, val, val);
633 }
634
635 return 0;
636 }
637
638 static int smiapp_get_all_limits(struct smiapp_sensor *sensor)
639 {
640 unsigned int i;
641 int rval;
642
643 for (i = 0; i < SMIAPP_LIMIT_LAST; i++) {
644 rval = smiapp_get_limits(sensor, &i, 1);
645 if (rval < 0)
646 return rval;
647 }
648
649 if (sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] == 0)
650 smiapp_replace_limit(sensor, SMIAPP_LIMIT_SCALER_N_MIN, 16);
651
652 return 0;
653 }
654
655 static int smiapp_get_limits_binning(struct smiapp_sensor *sensor)
656 {
657 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
658 static u32 const limits[] = {
659 SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN,
660 SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES_BIN,
661 SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN,
662 SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK_BIN,
663 SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN,
664 SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MIN_BIN,
665 SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MAX_MARGIN_BIN,
666 };
667 static u32 const limits_replace[] = {
668 SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES,
669 SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES,
670 SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK,
671 SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK,
672 SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK,
673 SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MIN,
674 SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MAX_MARGIN,
675 };
676 unsigned int i;
677 int rval;
678
679 if (sensor->limits[SMIAPP_LIMIT_BINNING_CAPABILITY] ==
680 SMIAPP_BINNING_CAPABILITY_NO) {
681 for (i = 0; i < ARRAY_SIZE(limits); i++)
682 sensor->limits[limits[i]] =
683 sensor->limits[limits_replace[i]];
684
685 return 0;
686 }
687
688 rval = smiapp_get_limits(sensor, limits, ARRAY_SIZE(limits));
689 if (rval < 0)
690 return rval;
691
692 /*
693 * Sanity check whether the binning limits are valid. If not,
694 * use the non-binning ones.
695 */
696 if (sensor->limits[SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN]
697 && sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN]
698 && sensor->limits[SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN])
699 return 0;
700
701 for (i = 0; i < ARRAY_SIZE(limits); i++) {
702 dev_dbg(&client->dev,
703 "replace limit 0x%8.8x \"%s\" = %d, 0x%x\n",
704 smiapp_reg_limits[limits[i]].addr,
705 smiapp_reg_limits[limits[i]].what,
706 sensor->limits[limits_replace[i]],
707 sensor->limits[limits_replace[i]]);
708 sensor->limits[limits[i]] =
709 sensor->limits[limits_replace[i]];
710 }
711
712 return 0;
713 }
714
715 static int smiapp_get_mbus_formats(struct smiapp_sensor *sensor)
716 {
717 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
718 unsigned int type, n;
719 unsigned int i, pixel_order;
720 int rval;
721
722 rval = smiapp_read(
723 sensor, SMIAPP_REG_U8_DATA_FORMAT_MODEL_TYPE, &type);
724 if (rval)
725 return rval;
726
727 dev_dbg(&client->dev, "data_format_model_type %d\n", type);
728
729 rval = smiapp_read(sensor, SMIAPP_REG_U8_PIXEL_ORDER,
730 &pixel_order);
731 if (rval)
732 return rval;
733
734 if (pixel_order >= ARRAY_SIZE(pixel_order_str)) {
735 dev_dbg(&client->dev, "bad pixel order %d\n", pixel_order);
736 return -EINVAL;
737 }
738
739 dev_dbg(&client->dev, "pixel order %d (%s)\n", pixel_order,
740 pixel_order_str[pixel_order]);
741
742 switch (type) {
743 case SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL:
744 n = SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL_N;
745 break;
746 case SMIAPP_DATA_FORMAT_MODEL_TYPE_EXTENDED:
747 n = SMIAPP_DATA_FORMAT_MODEL_TYPE_EXTENDED_N;
748 break;
749 default:
750 return -EINVAL;
751 }
752
753 sensor->default_pixel_order = pixel_order;
754 sensor->mbus_frame_fmts = 0;
755
756 for (i = 0; i < n; i++) {
757 unsigned int fmt, j;
758
759 rval = smiapp_read(
760 sensor,
761 SMIAPP_REG_U16_DATA_FORMAT_DESCRIPTOR(i), &fmt);
762 if (rval)
763 return rval;
764
765 dev_dbg(&client->dev, "bpp %d, compressed %d\n",
766 fmt >> 8, (u8)fmt);
767
768 for (j = 0; j < ARRAY_SIZE(smiapp_csi_data_formats); j++) {
769 const struct smiapp_csi_data_format *f =
770 &smiapp_csi_data_formats[j];
771
772 if (f->pixel_order != SMIAPP_PIXEL_ORDER_GRBG)
773 continue;
774
775 if (f->width != fmt >> 8 || f->compressed != (u8)fmt)
776 continue;
777
778 dev_dbg(&client->dev, "jolly good! %d\n", j);
779
780 sensor->default_mbus_frame_fmts |= 1 << j;
781 if (!sensor->csi_format) {
782 sensor->csi_format = f;
783 sensor->internal_csi_format = f;
784 }
785 }
786 }
787
788 if (!sensor->csi_format) {
789 dev_err(&client->dev, "no supported mbus code found\n");
790 return -EINVAL;
791 }
792
793 smiapp_update_mbus_formats(sensor);
794
795 return 0;
796 }
797
798 static void smiapp_update_blanking(struct smiapp_sensor *sensor)
799 {
800 struct v4l2_ctrl *vblank = sensor->vblank;
801 struct v4l2_ctrl *hblank = sensor->hblank;
802
803 vblank->minimum =
804 max_t(int,
805 sensor->limits[SMIAPP_LIMIT_MIN_FRAME_BLANKING_LINES],
806 sensor->limits[SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN] -
807 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height);
808 vblank->maximum =
809 sensor->limits[SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES_BIN] -
810 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height;
811
812 vblank->val = clamp_t(int, vblank->val,
813 vblank->minimum, vblank->maximum);
814 vblank->default_value = vblank->minimum;
815 vblank->val = vblank->val;
816 vblank->cur.val = vblank->val;
817
818 hblank->minimum =
819 max_t(int,
820 sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN] -
821 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width,
822 sensor->limits[SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN]);
823 hblank->maximum =
824 sensor->limits[SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK_BIN] -
825 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width;
826
827 hblank->val = clamp_t(int, hblank->val,
828 hblank->minimum, hblank->maximum);
829 hblank->default_value = hblank->minimum;
830 hblank->val = hblank->val;
831 hblank->cur.val = hblank->val;
832
833 __smiapp_update_exposure_limits(sensor);
834 }
835
836 static int smiapp_update_mode(struct smiapp_sensor *sensor)
837 {
838 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
839 unsigned int binning_mode;
840 int rval;
841
842 dev_dbg(&client->dev, "frame size: %dx%d\n",
843 sensor->src->crop[SMIAPP_PAD_SRC].width,
844 sensor->src->crop[SMIAPP_PAD_SRC].height);
845 dev_dbg(&client->dev, "csi format width: %d\n",
846 sensor->csi_format->width);
847
848 /* Binning has to be set up here; it affects limits */
849 if (sensor->binning_horizontal == 1 &&
850 sensor->binning_vertical == 1) {
851 binning_mode = 0;
852 } else {
853 u8 binning_type =
854 (sensor->binning_horizontal << 4)
855 | sensor->binning_vertical;
856
857 rval = smiapp_write(
858 sensor, SMIAPP_REG_U8_BINNING_TYPE, binning_type);
859 if (rval < 0)
860 return rval;
861
862 binning_mode = 1;
863 }
864 rval = smiapp_write(sensor, SMIAPP_REG_U8_BINNING_MODE, binning_mode);
865 if (rval < 0)
866 return rval;
867
868 /* Get updated limits due to binning */
869 rval = smiapp_get_limits_binning(sensor);
870 if (rval < 0)
871 return rval;
872
873 rval = smiapp_pll_update(sensor);
874 if (rval < 0)
875 return rval;
876
877 /* Output from pixel array, including blanking */
878 smiapp_update_blanking(sensor);
879
880 dev_dbg(&client->dev, "vblank\t\t%d\n", sensor->vblank->val);
881 dev_dbg(&client->dev, "hblank\t\t%d\n", sensor->hblank->val);
882
883 dev_dbg(&client->dev, "real timeperframe\t100/%d\n",
884 sensor->pll.vt_pix_clk_freq_hz /
885 ((sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width
886 + sensor->hblank->val) *
887 (sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height
888 + sensor->vblank->val) / 100));
889
890 return 0;
891 }
892
893 /*
894 *
895 * SMIA++ NVM handling
896 *
897 */
898 static int smiapp_read_nvm(struct smiapp_sensor *sensor,
899 unsigned char *nvm)
900 {
901 u32 i, s, p, np, v;
902 int rval = 0, rval2;
903
904 np = sensor->nvm_size / SMIAPP_NVM_PAGE_SIZE;
905 for (p = 0; p < np; p++) {
906 rval = smiapp_write(
907 sensor,
908 SMIAPP_REG_U8_DATA_TRANSFER_IF_1_PAGE_SELECT, p);
909 if (rval)
910 goto out;
911
912 rval = smiapp_write(sensor,
913 SMIAPP_REG_U8_DATA_TRANSFER_IF_1_CTRL,
914 SMIAPP_DATA_TRANSFER_IF_1_CTRL_EN |
915 SMIAPP_DATA_TRANSFER_IF_1_CTRL_RD_EN);
916 if (rval)
917 goto out;
918
919 for (i = 0; i < 1000; i++) {
920 rval = smiapp_read(
921 sensor,
922 SMIAPP_REG_U8_DATA_TRANSFER_IF_1_STATUS, &s);
923
924 if (rval)
925 goto out;
926
927 if (s & SMIAPP_DATA_TRANSFER_IF_1_STATUS_RD_READY)
928 break;
929
930 if (--i == 0) {
931 rval = -ETIMEDOUT;
932 goto out;
933 }
934
935 }
936
937 for (i = 0; i < SMIAPP_NVM_PAGE_SIZE; i++) {
938 rval = smiapp_read(
939 sensor,
940 SMIAPP_REG_U8_DATA_TRANSFER_IF_1_DATA_0 + i,
941 &v);
942 if (rval)
943 goto out;
944
945 *nvm++ = v;
946 }
947 }
948
949 out:
950 rval2 = smiapp_write(sensor, SMIAPP_REG_U8_DATA_TRANSFER_IF_1_CTRL, 0);
951 if (rval < 0)
952 return rval;
953 else
954 return rval2;
955 }
956
957 /*
958 *
959 * SMIA++ CCI address control
960 *
961 */
962 static int smiapp_change_cci_addr(struct smiapp_sensor *sensor)
963 {
964 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
965 int rval;
966 u32 val;
967
968 client->addr = sensor->platform_data->i2c_addr_dfl;
969
970 rval = smiapp_write(sensor,
971 SMIAPP_REG_U8_CCI_ADDRESS_CONTROL,
972 sensor->platform_data->i2c_addr_alt << 1);
973 if (rval)
974 return rval;
975
976 client->addr = sensor->platform_data->i2c_addr_alt;
977
978 /* verify addr change went ok */
979 rval = smiapp_read(sensor, SMIAPP_REG_U8_CCI_ADDRESS_CONTROL, &val);
980 if (rval)
981 return rval;
982
983 if (val != sensor->platform_data->i2c_addr_alt << 1)
984 return -ENODEV;
985
986 return 0;
987 }
988
989 /*
990 *
991 * SMIA++ Mode Control
992 *
993 */
994 static int smiapp_setup_flash_strobe(struct smiapp_sensor *sensor)
995 {
996 struct smiapp_flash_strobe_parms *strobe_setup;
997 unsigned int ext_freq = sensor->platform_data->ext_clk;
998 u32 tmp;
999 u32 strobe_adjustment;
1000 u32 strobe_width_high_rs;
1001 int rval;
1002
1003 strobe_setup = sensor->platform_data->strobe_setup;
1004
1005 /*
1006 * How to calculate registers related to strobe length. Please
1007 * do not change, or if you do at least know what you're
1008 * doing. :-)
1009 *
1010 * Sakari Ailus <sakari.ailus@maxwell.research.nokia.com> 2010-10-25
1011 *
1012 * flash_strobe_length [us] / 10^6 = (tFlash_strobe_width_ctrl
1013 * / EXTCLK freq [Hz]) * flash_strobe_adjustment
1014 *
1015 * tFlash_strobe_width_ctrl E N, [1 - 0xffff]
1016 * flash_strobe_adjustment E N, [1 - 0xff]
1017 *
1018 * The formula above is written as below to keep it on one
1019 * line:
1020 *
1021 * l / 10^6 = w / e * a
1022 *
1023 * Let's mark w * a by x:
1024 *
1025 * x = w * a
1026 *
1027 * Thus, we get:
1028 *
1029 * x = l * e / 10^6
1030 *
1031 * The strobe width must be at least as long as requested,
1032 * thus rounding upwards is needed.
1033 *
1034 * x = (l * e + 10^6 - 1) / 10^6
1035 * -----------------------------
1036 *
1037 * Maximum possible accuracy is wanted at all times. Thus keep
1038 * a as small as possible.
1039 *
1040 * Calculate a, assuming maximum w, with rounding upwards:
1041 *
1042 * a = (x + (2^16 - 1) - 1) / (2^16 - 1)
1043 * -------------------------------------
1044 *
1045 * Thus, we also get w, with that a, with rounding upwards:
1046 *
1047 * w = (x + a - 1) / a
1048 * -------------------
1049 *
1050 * To get limits:
1051 *
1052 * x E [1, (2^16 - 1) * (2^8 - 1)]
1053 *
1054 * Substituting maximum x to the original formula (with rounding),
1055 * the maximum l is thus
1056 *
1057 * (2^16 - 1) * (2^8 - 1) * 10^6 = l * e + 10^6 - 1
1058 *
1059 * l = (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / e
1060 * --------------------------------------------------
1061 *
1062 * flash_strobe_length must be clamped between 1 and
1063 * (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / EXTCLK freq.
1064 *
1065 * Then,
1066 *
1067 * flash_strobe_adjustment = ((flash_strobe_length *
1068 * EXTCLK freq + 10^6 - 1) / 10^6 + (2^16 - 1) - 1) / (2^16 - 1)
1069 *
1070 * tFlash_strobe_width_ctrl = ((flash_strobe_length *
1071 * EXTCLK freq + 10^6 - 1) / 10^6 +
1072 * flash_strobe_adjustment - 1) / flash_strobe_adjustment
1073 */
1074 tmp = div_u64(1000000ULL * ((1 << 16) - 1) * ((1 << 8) - 1) -
1075 1000000 + 1, ext_freq);
1076 strobe_setup->strobe_width_high_us =
1077 clamp_t(u32, strobe_setup->strobe_width_high_us, 1, tmp);
1078
1079 tmp = div_u64(((u64)strobe_setup->strobe_width_high_us * (u64)ext_freq +
1080 1000000 - 1), 1000000ULL);
1081 strobe_adjustment = (tmp + (1 << 16) - 1 - 1) / ((1 << 16) - 1);
1082 strobe_width_high_rs = (tmp + strobe_adjustment - 1) /
1083 strobe_adjustment;
1084
1085 rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_MODE_RS,
1086 strobe_setup->mode);
1087 if (rval < 0)
1088 goto out;
1089
1090 rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_STROBE_ADJUSTMENT,
1091 strobe_adjustment);
1092 if (rval < 0)
1093 goto out;
1094
1095 rval = smiapp_write(
1096 sensor, SMIAPP_REG_U16_TFLASH_STROBE_WIDTH_HIGH_RS_CTRL,
1097 strobe_width_high_rs);
1098 if (rval < 0)
1099 goto out;
1100
1101 rval = smiapp_write(sensor, SMIAPP_REG_U16_TFLASH_STROBE_DELAY_RS_CTRL,
1102 strobe_setup->strobe_delay);
1103 if (rval < 0)
1104 goto out;
1105
1106 rval = smiapp_write(sensor, SMIAPP_REG_U16_FLASH_STROBE_START_POINT,
1107 strobe_setup->stobe_start_point);
1108 if (rval < 0)
1109 goto out;
1110
1111 rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_TRIGGER_RS,
1112 strobe_setup->trigger);
1113
1114 out:
1115 sensor->platform_data->strobe_setup->trigger = 0;
1116
1117 return rval;
1118 }
1119
1120 /* -----------------------------------------------------------------------------
1121 * Power management
1122 */
1123
1124 static int smiapp_power_on(struct smiapp_sensor *sensor)
1125 {
1126 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1127 unsigned int sleep;
1128 int rval;
1129
1130 rval = regulator_enable(sensor->vana);
1131 if (rval) {
1132 dev_err(&client->dev, "failed to enable vana regulator\n");
1133 return rval;
1134 }
1135 usleep_range(1000, 1000);
1136
1137 if (sensor->platform_data->set_xclk)
1138 rval = sensor->platform_data->set_xclk(
1139 &sensor->src->sd, sensor->platform_data->ext_clk);
1140 else
1141 rval = clk_enable(sensor->ext_clk);
1142 if (rval < 0) {
1143 dev_dbg(&client->dev, "failed to set xclk\n");
1144 goto out_xclk_fail;
1145 }
1146 usleep_range(1000, 1000);
1147
1148 if (sensor->platform_data->xshutdown != SMIAPP_NO_XSHUTDOWN)
1149 gpio_set_value(sensor->platform_data->xshutdown, 1);
1150
1151 sleep = SMIAPP_RESET_DELAY(sensor->platform_data->ext_clk);
1152 usleep_range(sleep, sleep);
1153
1154 /*
1155 * Failures to respond to the address change command have been noticed.
1156 * Those failures seem to be caused by the sensor requiring a longer
1157 * boot time than advertised. An additional 10ms delay seems to work
1158 * around the issue, but the SMIA++ I2C write retry hack makes the delay
1159 * unnecessary. The failures need to be investigated to find a proper
1160 * fix, and a delay will likely need to be added here if the I2C write
1161 * retry hack is reverted before the root cause of the boot time issue
1162 * is found.
1163 */
1164
1165 if (sensor->platform_data->i2c_addr_alt) {
1166 rval = smiapp_change_cci_addr(sensor);
1167 if (rval) {
1168 dev_err(&client->dev, "cci address change error\n");
1169 goto out_cci_addr_fail;
1170 }
1171 }
1172
1173 rval = smiapp_write(sensor, SMIAPP_REG_U8_SOFTWARE_RESET,
1174 SMIAPP_SOFTWARE_RESET);
1175 if (rval < 0) {
1176 dev_err(&client->dev, "software reset failed\n");
1177 goto out_cci_addr_fail;
1178 }
1179
1180 if (sensor->platform_data->i2c_addr_alt) {
1181 rval = smiapp_change_cci_addr(sensor);
1182 if (rval) {
1183 dev_err(&client->dev, "cci address change error\n");
1184 goto out_cci_addr_fail;
1185 }
1186 }
1187
1188 rval = smiapp_write(sensor, SMIAPP_REG_U16_COMPRESSION_MODE,
1189 SMIAPP_COMPRESSION_MODE_SIMPLE_PREDICTOR);
1190 if (rval) {
1191 dev_err(&client->dev, "compression mode set failed\n");
1192 goto out_cci_addr_fail;
1193 }
1194
1195 rval = smiapp_write(
1196 sensor, SMIAPP_REG_U16_EXTCLK_FREQUENCY_MHZ,
1197 sensor->platform_data->ext_clk / (1000000 / (1 << 8)));
1198 if (rval) {
1199 dev_err(&client->dev, "extclk frequency set failed\n");
1200 goto out_cci_addr_fail;
1201 }
1202
1203 rval = smiapp_write(sensor, SMIAPP_REG_U8_CSI_LANE_MODE,
1204 sensor->platform_data->lanes - 1);
1205 if (rval) {
1206 dev_err(&client->dev, "csi lane mode set failed\n");
1207 goto out_cci_addr_fail;
1208 }
1209
1210 rval = smiapp_write(sensor, SMIAPP_REG_U8_FAST_STANDBY_CTRL,
1211 SMIAPP_FAST_STANDBY_CTRL_IMMEDIATE);
1212 if (rval) {
1213 dev_err(&client->dev, "fast standby set failed\n");
1214 goto out_cci_addr_fail;
1215 }
1216
1217 rval = smiapp_write(sensor, SMIAPP_REG_U8_CSI_SIGNALLING_MODE,
1218 sensor->platform_data->csi_signalling_mode);
1219 if (rval) {
1220 dev_err(&client->dev, "csi signalling mode set failed\n");
1221 goto out_cci_addr_fail;
1222 }
1223
1224 /* DPHY control done by sensor based on requested link rate */
1225 rval = smiapp_write(sensor, SMIAPP_REG_U8_DPHY_CTRL,
1226 SMIAPP_DPHY_CTRL_UI);
1227 if (rval < 0)
1228 return rval;
1229
1230 rval = smiapp_call_quirk(sensor, post_poweron);
1231 if (rval) {
1232 dev_err(&client->dev, "post_poweron quirks failed\n");
1233 goto out_cci_addr_fail;
1234 }
1235
1236 /* Are we still initialising...? If yes, return here. */
1237 if (!sensor->pixel_array)
1238 return 0;
1239
1240 rval = v4l2_ctrl_handler_setup(
1241 &sensor->pixel_array->ctrl_handler);
1242 if (rval)
1243 goto out_cci_addr_fail;
1244
1245 rval = v4l2_ctrl_handler_setup(&sensor->src->ctrl_handler);
1246 if (rval)
1247 goto out_cci_addr_fail;
1248
1249 mutex_lock(&sensor->mutex);
1250 rval = smiapp_update_mode(sensor);
1251 mutex_unlock(&sensor->mutex);
1252 if (rval < 0)
1253 goto out_cci_addr_fail;
1254
1255 return 0;
1256
1257 out_cci_addr_fail:
1258 if (sensor->platform_data->xshutdown != SMIAPP_NO_XSHUTDOWN)
1259 gpio_set_value(sensor->platform_data->xshutdown, 0);
1260 if (sensor->platform_data->set_xclk)
1261 sensor->platform_data->set_xclk(&sensor->src->sd, 0);
1262 else
1263 clk_disable(sensor->ext_clk);
1264
1265 out_xclk_fail:
1266 regulator_disable(sensor->vana);
1267 return rval;
1268 }
1269
1270 static void smiapp_power_off(struct smiapp_sensor *sensor)
1271 {
1272 /*
1273 * Currently power/clock to lens are enable/disabled separately
1274 * but they are essentially the same signals. So if the sensor is
1275 * powered off while the lens is powered on the sensor does not
1276 * really see a power off and next time the cci address change
1277 * will fail. So do a soft reset explicitly here.
1278 */
1279 if (sensor->platform_data->i2c_addr_alt)
1280 smiapp_write(sensor,
1281 SMIAPP_REG_U8_SOFTWARE_RESET,
1282 SMIAPP_SOFTWARE_RESET);
1283
1284 if (sensor->platform_data->xshutdown != SMIAPP_NO_XSHUTDOWN)
1285 gpio_set_value(sensor->platform_data->xshutdown, 0);
1286 if (sensor->platform_data->set_xclk)
1287 sensor->platform_data->set_xclk(&sensor->src->sd, 0);
1288 else
1289 clk_disable(sensor->ext_clk);
1290 usleep_range(5000, 5000);
1291 regulator_disable(sensor->vana);
1292 sensor->streaming = 0;
1293 }
1294
1295 static int smiapp_set_power(struct v4l2_subdev *subdev, int on)
1296 {
1297 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1298 int ret = 0;
1299
1300 mutex_lock(&sensor->power_mutex);
1301
1302 /*
1303 * If the power count is modified from 0 to != 0 or from != 0
1304 * to 0, update the power state.
1305 */
1306 if (!sensor->power_count == !on)
1307 goto out;
1308
1309 if (on) {
1310 /* Power on and perform initialisation. */
1311 ret = smiapp_power_on(sensor);
1312 if (ret < 0)
1313 goto out;
1314 } else {
1315 smiapp_power_off(sensor);
1316 }
1317
1318 /* Update the power count. */
1319 sensor->power_count += on ? 1 : -1;
1320 WARN_ON(sensor->power_count < 0);
1321
1322 out:
1323 mutex_unlock(&sensor->power_mutex);
1324 return ret;
1325 }
1326
1327 /* -----------------------------------------------------------------------------
1328 * Video stream management
1329 */
1330
1331 static int smiapp_start_streaming(struct smiapp_sensor *sensor)
1332 {
1333 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1334 int rval;
1335
1336 mutex_lock(&sensor->mutex);
1337
1338 rval = smiapp_write(sensor, SMIAPP_REG_U16_CSI_DATA_FORMAT,
1339 (sensor->csi_format->width << 8) |
1340 sensor->csi_format->compressed);
1341 if (rval)
1342 goto out;
1343
1344 rval = smiapp_pll_configure(sensor);
1345 if (rval)
1346 goto out;
1347
1348 /* Analog crop start coordinates */
1349 rval = smiapp_write(sensor, SMIAPP_REG_U16_X_ADDR_START,
1350 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].left);
1351 if (rval < 0)
1352 goto out;
1353
1354 rval = smiapp_write(sensor, SMIAPP_REG_U16_Y_ADDR_START,
1355 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].top);
1356 if (rval < 0)
1357 goto out;
1358
1359 /* Analog crop end coordinates */
1360 rval = smiapp_write(
1361 sensor, SMIAPP_REG_U16_X_ADDR_END,
1362 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].left
1363 + sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width - 1);
1364 if (rval < 0)
1365 goto out;
1366
1367 rval = smiapp_write(
1368 sensor, SMIAPP_REG_U16_Y_ADDR_END,
1369 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].top
1370 + sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height - 1);
1371 if (rval < 0)
1372 goto out;
1373
1374 /*
1375 * Output from pixel array, including blanking, is set using
1376 * controls below. No need to set here.
1377 */
1378
1379 /* Digital crop */
1380 if (sensor->limits[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY]
1381 == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
1382 rval = smiapp_write(
1383 sensor, SMIAPP_REG_U16_DIGITAL_CROP_X_OFFSET,
1384 sensor->scaler->crop[SMIAPP_PAD_SINK].left);
1385 if (rval < 0)
1386 goto out;
1387
1388 rval = smiapp_write(
1389 sensor, SMIAPP_REG_U16_DIGITAL_CROP_Y_OFFSET,
1390 sensor->scaler->crop[SMIAPP_PAD_SINK].top);
1391 if (rval < 0)
1392 goto out;
1393
1394 rval = smiapp_write(
1395 sensor, SMIAPP_REG_U16_DIGITAL_CROP_IMAGE_WIDTH,
1396 sensor->scaler->crop[SMIAPP_PAD_SINK].width);
1397 if (rval < 0)
1398 goto out;
1399
1400 rval = smiapp_write(
1401 sensor, SMIAPP_REG_U16_DIGITAL_CROP_IMAGE_HEIGHT,
1402 sensor->scaler->crop[SMIAPP_PAD_SINK].height);
1403 if (rval < 0)
1404 goto out;
1405 }
1406
1407 /* Scaling */
1408 if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
1409 != SMIAPP_SCALING_CAPABILITY_NONE) {
1410 rval = smiapp_write(sensor, SMIAPP_REG_U16_SCALING_MODE,
1411 sensor->scaling_mode);
1412 if (rval < 0)
1413 goto out;
1414
1415 rval = smiapp_write(sensor, SMIAPP_REG_U16_SCALE_M,
1416 sensor->scale_m);
1417 if (rval < 0)
1418 goto out;
1419 }
1420
1421 /* Output size from sensor */
1422 rval = smiapp_write(sensor, SMIAPP_REG_U16_X_OUTPUT_SIZE,
1423 sensor->src->crop[SMIAPP_PAD_SRC].width);
1424 if (rval < 0)
1425 goto out;
1426 rval = smiapp_write(sensor, SMIAPP_REG_U16_Y_OUTPUT_SIZE,
1427 sensor->src->crop[SMIAPP_PAD_SRC].height);
1428 if (rval < 0)
1429 goto out;
1430
1431 if ((sensor->flash_capability &
1432 (SMIAPP_FLASH_MODE_CAPABILITY_SINGLE_STROBE |
1433 SMIAPP_FLASH_MODE_CAPABILITY_MULTIPLE_STROBE)) &&
1434 sensor->platform_data->strobe_setup != NULL &&
1435 sensor->platform_data->strobe_setup->trigger != 0) {
1436 rval = smiapp_setup_flash_strobe(sensor);
1437 if (rval)
1438 goto out;
1439 }
1440
1441 rval = smiapp_call_quirk(sensor, pre_streamon);
1442 if (rval) {
1443 dev_err(&client->dev, "pre_streamon quirks failed\n");
1444 goto out;
1445 }
1446
1447 rval = smiapp_write(sensor, SMIAPP_REG_U8_MODE_SELECT,
1448 SMIAPP_MODE_SELECT_STREAMING);
1449
1450 out:
1451 mutex_unlock(&sensor->mutex);
1452
1453 return rval;
1454 }
1455
1456 static int smiapp_stop_streaming(struct smiapp_sensor *sensor)
1457 {
1458 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1459 int rval;
1460
1461 mutex_lock(&sensor->mutex);
1462 rval = smiapp_write(sensor, SMIAPP_REG_U8_MODE_SELECT,
1463 SMIAPP_MODE_SELECT_SOFTWARE_STANDBY);
1464 if (rval)
1465 goto out;
1466
1467 rval = smiapp_call_quirk(sensor, post_streamoff);
1468 if (rval)
1469 dev_err(&client->dev, "post_streamoff quirks failed\n");
1470
1471 out:
1472 mutex_unlock(&sensor->mutex);
1473 return rval;
1474 }
1475
1476 /* -----------------------------------------------------------------------------
1477 * V4L2 subdev video operations
1478 */
1479
1480 static int smiapp_set_stream(struct v4l2_subdev *subdev, int enable)
1481 {
1482 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1483 int rval;
1484
1485 if (sensor->streaming == enable)
1486 return 0;
1487
1488 if (enable) {
1489 sensor->streaming = 1;
1490 rval = smiapp_start_streaming(sensor);
1491 if (rval < 0)
1492 sensor->streaming = 0;
1493 } else {
1494 rval = smiapp_stop_streaming(sensor);
1495 sensor->streaming = 0;
1496 }
1497
1498 return rval;
1499 }
1500
1501 static int smiapp_enum_mbus_code(struct v4l2_subdev *subdev,
1502 struct v4l2_subdev_fh *fh,
1503 struct v4l2_subdev_mbus_code_enum *code)
1504 {
1505 struct i2c_client *client = v4l2_get_subdevdata(subdev);
1506 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1507 unsigned int i;
1508 int idx = -1;
1509 int rval = -EINVAL;
1510
1511 mutex_lock(&sensor->mutex);
1512
1513 dev_err(&client->dev, "subdev %s, pad %d, index %d\n",
1514 subdev->name, code->pad, code->index);
1515
1516 if (subdev != &sensor->src->sd || code->pad != SMIAPP_PAD_SRC) {
1517 if (code->index)
1518 goto out;
1519
1520 code->code = sensor->internal_csi_format->code;
1521 rval = 0;
1522 goto out;
1523 }
1524
1525 for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) {
1526 if (sensor->mbus_frame_fmts & (1 << i))
1527 idx++;
1528
1529 if (idx == code->index) {
1530 code->code = smiapp_csi_data_formats[i].code;
1531 dev_err(&client->dev, "found index %d, i %d, code %x\n",
1532 code->index, i, code->code);
1533 rval = 0;
1534 break;
1535 }
1536 }
1537
1538 out:
1539 mutex_unlock(&sensor->mutex);
1540
1541 return rval;
1542 }
1543
1544 static u32 __smiapp_get_mbus_code(struct v4l2_subdev *subdev,
1545 unsigned int pad)
1546 {
1547 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1548
1549 if (subdev == &sensor->src->sd && pad == SMIAPP_PAD_SRC)
1550 return sensor->csi_format->code;
1551 else
1552 return sensor->internal_csi_format->code;
1553 }
1554
1555 static int __smiapp_get_format(struct v4l2_subdev *subdev,
1556 struct v4l2_subdev_fh *fh,
1557 struct v4l2_subdev_format *fmt)
1558 {
1559 struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1560
1561 if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) {
1562 fmt->format = *v4l2_subdev_get_try_format(fh, fmt->pad);
1563 } else {
1564 struct v4l2_rect *r;
1565
1566 if (fmt->pad == ssd->source_pad)
1567 r = &ssd->crop[ssd->source_pad];
1568 else
1569 r = &ssd->sink_fmt;
1570
1571 fmt->format.code = __smiapp_get_mbus_code(subdev, fmt->pad);
1572 fmt->format.width = r->width;
1573 fmt->format.height = r->height;
1574 }
1575
1576 return 0;
1577 }
1578
1579 static int smiapp_get_format(struct v4l2_subdev *subdev,
1580 struct v4l2_subdev_fh *fh,
1581 struct v4l2_subdev_format *fmt)
1582 {
1583 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1584 int rval;
1585
1586 mutex_lock(&sensor->mutex);
1587 rval = __smiapp_get_format(subdev, fh, fmt);
1588 mutex_unlock(&sensor->mutex);
1589
1590 return rval;
1591 }
1592
1593 static void smiapp_get_crop_compose(struct v4l2_subdev *subdev,
1594 struct v4l2_subdev_fh *fh,
1595 struct v4l2_rect **crops,
1596 struct v4l2_rect **comps, int which)
1597 {
1598 struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1599 unsigned int i;
1600
1601 if (which == V4L2_SUBDEV_FORMAT_ACTIVE) {
1602 if (crops)
1603 for (i = 0; i < subdev->entity.num_pads; i++)
1604 crops[i] = &ssd->crop[i];
1605 if (comps)
1606 *comps = &ssd->compose;
1607 } else {
1608 if (crops) {
1609 for (i = 0; i < subdev->entity.num_pads; i++) {
1610 crops[i] = v4l2_subdev_get_try_crop(fh, i);
1611 BUG_ON(!crops[i]);
1612 }
1613 }
1614 if (comps) {
1615 *comps = v4l2_subdev_get_try_compose(fh,
1616 SMIAPP_PAD_SINK);
1617 BUG_ON(!*comps);
1618 }
1619 }
1620 }
1621
1622 /* Changes require propagation only on sink pad. */
1623 static void smiapp_propagate(struct v4l2_subdev *subdev,
1624 struct v4l2_subdev_fh *fh, int which,
1625 int target)
1626 {
1627 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1628 struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1629 struct v4l2_rect *comp, *crops[SMIAPP_PADS];
1630
1631 smiapp_get_crop_compose(subdev, fh, crops, &comp, which);
1632
1633 switch (target) {
1634 case V4L2_SUBDEV_SEL_TGT_CROP_ACTUAL:
1635 comp->width = crops[SMIAPP_PAD_SINK]->width;
1636 comp->height = crops[SMIAPP_PAD_SINK]->height;
1637 if (which == V4L2_SUBDEV_FORMAT_ACTIVE) {
1638 if (ssd == sensor->scaler) {
1639 sensor->scale_m =
1640 sensor->limits[
1641 SMIAPP_LIMIT_SCALER_N_MIN];
1642 sensor->scaling_mode =
1643 SMIAPP_SCALING_MODE_NONE;
1644 } else if (ssd == sensor->binner) {
1645 sensor->binning_horizontal = 1;
1646 sensor->binning_vertical = 1;
1647 }
1648 }
1649 /* Fall through */
1650 case V4L2_SUBDEV_SEL_TGT_COMPOSE_ACTUAL:
1651 *crops[SMIAPP_PAD_SRC] = *comp;
1652 break;
1653 default:
1654 BUG();
1655 }
1656 }
1657
1658 static const struct smiapp_csi_data_format
1659 *smiapp_validate_csi_data_format(struct smiapp_sensor *sensor, u32 code)
1660 {
1661 const struct smiapp_csi_data_format *csi_format = sensor->csi_format;
1662 unsigned int i;
1663
1664 for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) {
1665 if (sensor->mbus_frame_fmts & (1 << i)
1666 && smiapp_csi_data_formats[i].code == code)
1667 return &smiapp_csi_data_formats[i];
1668 }
1669
1670 return csi_format;
1671 }
1672
1673 static int smiapp_set_format(struct v4l2_subdev *subdev,
1674 struct v4l2_subdev_fh *fh,
1675 struct v4l2_subdev_format *fmt)
1676 {
1677 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1678 struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1679 struct v4l2_rect *crops[SMIAPP_PADS];
1680
1681 mutex_lock(&sensor->mutex);
1682
1683 /*
1684 * Media bus code is changeable on src subdev's source pad. On
1685 * other source pads we just get format here.
1686 */
1687 if (fmt->pad == ssd->source_pad) {
1688 u32 code = fmt->format.code;
1689 int rval = __smiapp_get_format(subdev, fh, fmt);
1690
1691 if (!rval && subdev == &sensor->src->sd) {
1692 const struct smiapp_csi_data_format *csi_format =
1693 smiapp_validate_csi_data_format(sensor, code);
1694 if (fmt->which == V4L2_SUBDEV_FORMAT_ACTIVE)
1695 sensor->csi_format = csi_format;
1696 fmt->format.code = csi_format->code;
1697 }
1698
1699 mutex_unlock(&sensor->mutex);
1700 return rval;
1701 }
1702
1703 /* Sink pad. Width and height are changeable here. */
1704 fmt->format.code = __smiapp_get_mbus_code(subdev, fmt->pad);
1705 fmt->format.width &= ~1;
1706 fmt->format.height &= ~1;
1707
1708 fmt->format.width =
1709 clamp(fmt->format.width,
1710 sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE],
1711 sensor->limits[SMIAPP_LIMIT_MAX_X_OUTPUT_SIZE]);
1712 fmt->format.height =
1713 clamp(fmt->format.height,
1714 sensor->limits[SMIAPP_LIMIT_MIN_Y_OUTPUT_SIZE],
1715 sensor->limits[SMIAPP_LIMIT_MAX_Y_OUTPUT_SIZE]);
1716
1717 smiapp_get_crop_compose(subdev, fh, crops, NULL, fmt->which);
1718
1719 crops[ssd->sink_pad]->left = 0;
1720 crops[ssd->sink_pad]->top = 0;
1721 crops[ssd->sink_pad]->width = fmt->format.width;
1722 crops[ssd->sink_pad]->height = fmt->format.height;
1723 if (fmt->which == V4L2_SUBDEV_FORMAT_ACTIVE)
1724 ssd->sink_fmt = *crops[ssd->sink_pad];
1725 smiapp_propagate(subdev, fh, fmt->which,
1726 V4L2_SUBDEV_SEL_TGT_CROP_ACTUAL);
1727
1728 mutex_unlock(&sensor->mutex);
1729
1730 return 0;
1731 }
1732
1733 /*
1734 * Calculate goodness of scaled image size compared to expected image
1735 * size and flags provided.
1736 */
1737 #define SCALING_GOODNESS 100000
1738 #define SCALING_GOODNESS_EXTREME 100000000
1739 static int scaling_goodness(struct v4l2_subdev *subdev, int w, int ask_w,
1740 int h, int ask_h, u32 flags)
1741 {
1742 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1743 struct i2c_client *client = v4l2_get_subdevdata(subdev);
1744 int val = 0;
1745
1746 w &= ~1;
1747 ask_w &= ~1;
1748 h &= ~1;
1749 ask_h &= ~1;
1750
1751 if (flags & V4L2_SUBDEV_SEL_FLAG_SIZE_GE) {
1752 if (w < ask_w)
1753 val -= SCALING_GOODNESS;
1754 if (h < ask_h)
1755 val -= SCALING_GOODNESS;
1756 }
1757
1758 if (flags & V4L2_SUBDEV_SEL_FLAG_SIZE_LE) {
1759 if (w > ask_w)
1760 val -= SCALING_GOODNESS;
1761 if (h > ask_h)
1762 val -= SCALING_GOODNESS;
1763 }
1764
1765 val -= abs(w - ask_w);
1766 val -= abs(h - ask_h);
1767
1768 if (w < sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE])
1769 val -= SCALING_GOODNESS_EXTREME;
1770
1771 dev_dbg(&client->dev, "w %d ask_w %d h %d ask_h %d goodness %d\n",
1772 w, ask_h, h, ask_h, val);
1773
1774 return val;
1775 }
1776
1777 static void smiapp_set_compose_binner(struct v4l2_subdev *subdev,
1778 struct v4l2_subdev_fh *fh,
1779 struct v4l2_subdev_selection *sel,
1780 struct v4l2_rect **crops,
1781 struct v4l2_rect *comp)
1782 {
1783 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1784 unsigned int i;
1785 unsigned int binh = 1, binv = 1;
1786 unsigned int best = scaling_goodness(
1787 subdev,
1788 crops[SMIAPP_PAD_SINK]->width, sel->r.width,
1789 crops[SMIAPP_PAD_SINK]->height, sel->r.height, sel->flags);
1790
1791 for (i = 0; i < sensor->nbinning_subtypes; i++) {
1792 int this = scaling_goodness(
1793 subdev,
1794 crops[SMIAPP_PAD_SINK]->width
1795 / sensor->binning_subtypes[i].horizontal,
1796 sel->r.width,
1797 crops[SMIAPP_PAD_SINK]->height
1798 / sensor->binning_subtypes[i].vertical,
1799 sel->r.height, sel->flags);
1800
1801 if (this > best) {
1802 binh = sensor->binning_subtypes[i].horizontal;
1803 binv = sensor->binning_subtypes[i].vertical;
1804 best = this;
1805 }
1806 }
1807 if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
1808 sensor->binning_vertical = binv;
1809 sensor->binning_horizontal = binh;
1810 }
1811
1812 sel->r.width = (crops[SMIAPP_PAD_SINK]->width / binh) & ~1;
1813 sel->r.height = (crops[SMIAPP_PAD_SINK]->height / binv) & ~1;
1814 }
1815
1816 /*
1817 * Calculate best scaling ratio and mode for given output resolution.
1818 *
1819 * Try all of these: horizontal ratio, vertical ratio and smallest
1820 * size possible (horizontally).
1821 *
1822 * Also try whether horizontal scaler or full scaler gives a better
1823 * result.
1824 */
1825 static void smiapp_set_compose_scaler(struct v4l2_subdev *subdev,
1826 struct v4l2_subdev_fh *fh,
1827 struct v4l2_subdev_selection *sel,
1828 struct v4l2_rect **crops,
1829 struct v4l2_rect *comp)
1830 {
1831 struct i2c_client *client = v4l2_get_subdevdata(subdev);
1832 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1833 u32 min, max, a, b, max_m;
1834 u32 scale_m = sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN];
1835 int mode = SMIAPP_SCALING_MODE_HORIZONTAL;
1836 u32 try[4];
1837 u32 ntry = 0;
1838 unsigned int i;
1839 int best = INT_MIN;
1840
1841 sel->r.width = min_t(unsigned int, sel->r.width,
1842 crops[SMIAPP_PAD_SINK]->width);
1843 sel->r.height = min_t(unsigned int, sel->r.height,
1844 crops[SMIAPP_PAD_SINK]->height);
1845
1846 a = crops[SMIAPP_PAD_SINK]->width
1847 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] / sel->r.width;
1848 b = crops[SMIAPP_PAD_SINK]->height
1849 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] / sel->r.height;
1850 max_m = crops[SMIAPP_PAD_SINK]->width
1851 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN]
1852 / sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE];
1853
1854 a = min(sensor->limits[SMIAPP_LIMIT_SCALER_M_MAX],
1855 max(a, sensor->limits[SMIAPP_LIMIT_SCALER_M_MIN]));
1856 b = min(sensor->limits[SMIAPP_LIMIT_SCALER_M_MAX],
1857 max(b, sensor->limits[SMIAPP_LIMIT_SCALER_M_MIN]));
1858 max_m = min(sensor->limits[SMIAPP_LIMIT_SCALER_M_MAX],
1859 max(max_m, sensor->limits[SMIAPP_LIMIT_SCALER_M_MIN]));
1860
1861 dev_dbg(&client->dev, "scaling: a %d b %d max_m %d\n", a, b, max_m);
1862
1863 min = min(max_m, min(a, b));
1864 max = min(max_m, max(a, b));
1865
1866 try[ntry] = min;
1867 ntry++;
1868 if (min != max) {
1869 try[ntry] = max;
1870 ntry++;
1871 }
1872 if (max != max_m) {
1873 try[ntry] = min + 1;
1874 ntry++;
1875 if (min != max) {
1876 try[ntry] = max + 1;
1877 ntry++;
1878 }
1879 }
1880
1881 for (i = 0; i < ntry; i++) {
1882 int this = scaling_goodness(
1883 subdev,
1884 crops[SMIAPP_PAD_SINK]->width
1885 / try[i]
1886 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN],
1887 sel->r.width,
1888 crops[SMIAPP_PAD_SINK]->height,
1889 sel->r.height,
1890 sel->flags);
1891
1892 dev_dbg(&client->dev, "trying factor %d (%d)\n", try[i], i);
1893
1894 if (this > best) {
1895 scale_m = try[i];
1896 mode = SMIAPP_SCALING_MODE_HORIZONTAL;
1897 best = this;
1898 }
1899
1900 if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
1901 == SMIAPP_SCALING_CAPABILITY_HORIZONTAL)
1902 continue;
1903
1904 this = scaling_goodness(
1905 subdev, crops[SMIAPP_PAD_SINK]->width
1906 / try[i]
1907 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN],
1908 sel->r.width,
1909 crops[SMIAPP_PAD_SINK]->height
1910 / try[i]
1911 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN],
1912 sel->r.height,
1913 sel->flags);
1914
1915 if (this > best) {
1916 scale_m = try[i];
1917 mode = SMIAPP_SCALING_MODE_BOTH;
1918 best = this;
1919 }
1920 }
1921
1922 sel->r.width =
1923 (crops[SMIAPP_PAD_SINK]->width
1924 / scale_m
1925 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN]) & ~1;
1926 if (mode == SMIAPP_SCALING_MODE_BOTH)
1927 sel->r.height =
1928 (crops[SMIAPP_PAD_SINK]->height
1929 / scale_m
1930 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN])
1931 & ~1;
1932 else
1933 sel->r.height = crops[SMIAPP_PAD_SINK]->height;
1934
1935 if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
1936 sensor->scale_m = scale_m;
1937 sensor->scaling_mode = mode;
1938 }
1939 }
1940 /* We're only called on source pads. This function sets scaling. */
1941 static int smiapp_set_compose(struct v4l2_subdev *subdev,
1942 struct v4l2_subdev_fh *fh,
1943 struct v4l2_subdev_selection *sel)
1944 {
1945 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1946 struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1947 struct v4l2_rect *comp, *crops[SMIAPP_PADS];
1948
1949 smiapp_get_crop_compose(subdev, fh, crops, &comp, sel->which);
1950
1951 sel->r.top = 0;
1952 sel->r.left = 0;
1953
1954 if (ssd == sensor->binner)
1955 smiapp_set_compose_binner(subdev, fh, sel, crops, comp);
1956 else
1957 smiapp_set_compose_scaler(subdev, fh, sel, crops, comp);
1958
1959 *comp = sel->r;
1960 smiapp_propagate(subdev, fh, sel->which,
1961 V4L2_SUBDEV_SEL_TGT_COMPOSE_ACTUAL);
1962
1963 if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE)
1964 return smiapp_update_mode(sensor);
1965
1966 return 0;
1967 }
1968
1969 static int __smiapp_sel_supported(struct v4l2_subdev *subdev,
1970 struct v4l2_subdev_selection *sel)
1971 {
1972 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1973 struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1974
1975 /* We only implement crop in three places. */
1976 switch (sel->target) {
1977 case V4L2_SUBDEV_SEL_TGT_CROP_ACTUAL:
1978 case V4L2_SUBDEV_SEL_TGT_CROP_BOUNDS:
1979 if (ssd == sensor->pixel_array
1980 && sel->pad == SMIAPP_PA_PAD_SRC)
1981 return 0;
1982 if (ssd == sensor->src
1983 && sel->pad == SMIAPP_PAD_SRC)
1984 return 0;
1985 if (ssd == sensor->scaler
1986 && sel->pad == SMIAPP_PAD_SINK
1987 && sensor->limits[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY]
1988 == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP)
1989 return 0;
1990 return -EINVAL;
1991 case V4L2_SUBDEV_SEL_TGT_COMPOSE_ACTUAL:
1992 case V4L2_SUBDEV_SEL_TGT_COMPOSE_BOUNDS:
1993 if (sel->pad == ssd->source_pad)
1994 return -EINVAL;
1995 if (ssd == sensor->binner)
1996 return 0;
1997 if (ssd == sensor->scaler
1998 && sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
1999 != SMIAPP_SCALING_CAPABILITY_NONE)
2000 return 0;
2001 /* Fall through */
2002 default:
2003 return -EINVAL;
2004 }
2005 }
2006
2007 static int smiapp_set_crop(struct v4l2_subdev *subdev,
2008 struct v4l2_subdev_fh *fh,
2009 struct v4l2_subdev_selection *sel)
2010 {
2011 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2012 struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
2013 struct v4l2_rect *src_size, *crops[SMIAPP_PADS];
2014 struct v4l2_rect _r;
2015
2016 smiapp_get_crop_compose(subdev, fh, crops, NULL, sel->which);
2017
2018 if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2019 if (sel->pad == ssd->sink_pad)
2020 src_size = &ssd->sink_fmt;
2021 else
2022 src_size = &ssd->compose;
2023 } else {
2024 if (sel->pad == ssd->sink_pad) {
2025 _r.left = 0;
2026 _r.top = 0;
2027 _r.width = v4l2_subdev_get_try_format(fh, sel->pad)
2028 ->width;
2029 _r.height = v4l2_subdev_get_try_format(fh, sel->pad)
2030 ->height;
2031 src_size = &_r;
2032 } else {
2033 src_size =
2034 v4l2_subdev_get_try_compose(
2035 fh, ssd->sink_pad);
2036 }
2037 }
2038
2039 if (ssd == sensor->src && sel->pad == SMIAPP_PAD_SRC) {
2040 sel->r.left = 0;
2041 sel->r.top = 0;
2042 }
2043
2044 sel->r.width = min(sel->r.width, src_size->width);
2045 sel->r.height = min(sel->r.height, src_size->height);
2046
2047 sel->r.left = min(sel->r.left, src_size->width - sel->r.width);
2048 sel->r.top = min(sel->r.top, src_size->height - sel->r.height);
2049
2050 *crops[sel->pad] = sel->r;
2051
2052 if (ssd != sensor->pixel_array && sel->pad == SMIAPP_PAD_SINK)
2053 smiapp_propagate(subdev, fh, sel->which,
2054 V4L2_SUBDEV_SEL_TGT_CROP_ACTUAL);
2055
2056 return 0;
2057 }
2058
2059 static int __smiapp_get_selection(struct v4l2_subdev *subdev,
2060 struct v4l2_subdev_fh *fh,
2061 struct v4l2_subdev_selection *sel)
2062 {
2063 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2064 struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
2065 struct v4l2_rect *comp, *crops[SMIAPP_PADS];
2066 struct v4l2_rect sink_fmt;
2067 int ret;
2068
2069 ret = __smiapp_sel_supported(subdev, sel);
2070 if (ret)
2071 return ret;
2072
2073 smiapp_get_crop_compose(subdev, fh, crops, &comp, sel->which);
2074
2075 if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2076 sink_fmt = ssd->sink_fmt;
2077 } else {
2078 struct v4l2_mbus_framefmt *fmt =
2079 v4l2_subdev_get_try_format(fh, ssd->sink_pad);
2080
2081 sink_fmt.left = 0;
2082 sink_fmt.top = 0;
2083 sink_fmt.width = fmt->width;
2084 sink_fmt.height = fmt->height;
2085 }
2086
2087 switch (sel->target) {
2088 case V4L2_SUBDEV_SEL_TGT_CROP_BOUNDS:
2089 if (ssd == sensor->pixel_array) {
2090 sel->r.width =
2091 sensor->limits[SMIAPP_LIMIT_X_ADDR_MAX] + 1;
2092 sel->r.height =
2093 sensor->limits[SMIAPP_LIMIT_Y_ADDR_MAX] + 1;
2094 } else if (sel->pad == ssd->sink_pad) {
2095 sel->r = sink_fmt;
2096 } else {
2097 sel->r = *comp;
2098 }
2099 break;
2100 case V4L2_SUBDEV_SEL_TGT_CROP_ACTUAL:
2101 case V4L2_SUBDEV_SEL_TGT_COMPOSE_BOUNDS:
2102 sel->r = *crops[sel->pad];
2103 break;
2104 case V4L2_SUBDEV_SEL_TGT_COMPOSE_ACTUAL:
2105 sel->r = *comp;
2106 break;
2107 }
2108
2109 return 0;
2110 }
2111
2112 static int smiapp_get_selection(struct v4l2_subdev *subdev,
2113 struct v4l2_subdev_fh *fh,
2114 struct v4l2_subdev_selection *sel)
2115 {
2116 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2117 int rval;
2118
2119 mutex_lock(&sensor->mutex);
2120 rval = __smiapp_get_selection(subdev, fh, sel);
2121 mutex_unlock(&sensor->mutex);
2122
2123 return rval;
2124 }
2125 static int smiapp_set_selection(struct v4l2_subdev *subdev,
2126 struct v4l2_subdev_fh *fh,
2127 struct v4l2_subdev_selection *sel)
2128 {
2129 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2130 int ret;
2131
2132 ret = __smiapp_sel_supported(subdev, sel);
2133 if (ret)
2134 return ret;
2135
2136 mutex_lock(&sensor->mutex);
2137
2138 sel->r.left = max(0, sel->r.left & ~1);
2139 sel->r.top = max(0, sel->r.top & ~1);
2140 sel->r.width = max(0, SMIAPP_ALIGN_DIM(sel->r.width, sel->flags));
2141 sel->r.height = max(0, SMIAPP_ALIGN_DIM(sel->r.height, sel->flags));
2142
2143 sel->r.width = max_t(unsigned int,
2144 sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE],
2145 sel->r.width);
2146 sel->r.height = max_t(unsigned int,
2147 sensor->limits[SMIAPP_LIMIT_MIN_Y_OUTPUT_SIZE],
2148 sel->r.height);
2149
2150 switch (sel->target) {
2151 case V4L2_SUBDEV_SEL_TGT_CROP_ACTUAL:
2152 ret = smiapp_set_crop(subdev, fh, sel);
2153 break;
2154 case V4L2_SUBDEV_SEL_TGT_COMPOSE_ACTUAL:
2155 ret = smiapp_set_compose(subdev, fh, sel);
2156 break;
2157 default:
2158 BUG();
2159 }
2160
2161 mutex_unlock(&sensor->mutex);
2162 return ret;
2163 }
2164
2165 static int smiapp_get_skip_frames(struct v4l2_subdev *subdev, u32 *frames)
2166 {
2167 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2168
2169 *frames = sensor->frame_skip;
2170 return 0;
2171 }
2172
2173 /* -----------------------------------------------------------------------------
2174 * sysfs attributes
2175 */
2176
2177 static ssize_t
2178 smiapp_sysfs_nvm_read(struct device *dev, struct device_attribute *attr,
2179 char *buf)
2180 {
2181 struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev));
2182 struct i2c_client *client = v4l2_get_subdevdata(subdev);
2183 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2184 unsigned int nbytes;
2185
2186 if (!sensor->dev_init_done)
2187 return -EBUSY;
2188
2189 if (!sensor->nvm_size) {
2190 /* NVM not read yet - read it now */
2191 sensor->nvm_size = sensor->platform_data->nvm_size;
2192 if (smiapp_set_power(subdev, 1) < 0)
2193 return -ENODEV;
2194 if (smiapp_read_nvm(sensor, sensor->nvm)) {
2195 dev_err(&client->dev, "nvm read failed\n");
2196 return -ENODEV;
2197 }
2198 smiapp_set_power(subdev, 0);
2199 }
2200 /*
2201 * NVM is still way below a PAGE_SIZE, so we can safely
2202 * assume this for now.
2203 */
2204 nbytes = min_t(unsigned int, sensor->nvm_size, PAGE_SIZE);
2205 memcpy(buf, sensor->nvm, nbytes);
2206
2207 return nbytes;
2208 }
2209 static DEVICE_ATTR(nvm, S_IRUGO, smiapp_sysfs_nvm_read, NULL);
2210
2211 /* -----------------------------------------------------------------------------
2212 * V4L2 subdev core operations
2213 */
2214
2215 static int smiapp_identify_module(struct v4l2_subdev *subdev)
2216 {
2217 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2218 struct i2c_client *client = v4l2_get_subdevdata(subdev);
2219 struct smiapp_module_info *minfo = &sensor->minfo;
2220 unsigned int i;
2221 int rval = 0;
2222
2223 minfo->name = SMIAPP_NAME;
2224
2225 /* Module info */
2226 rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_MANUFACTURER_ID,
2227 &minfo->manufacturer_id);
2228 if (!rval)
2229 rval = smiapp_read_8only(sensor, SMIAPP_REG_U16_MODEL_ID,
2230 &minfo->model_id);
2231 if (!rval)
2232 rval = smiapp_read_8only(sensor,
2233 SMIAPP_REG_U8_REVISION_NUMBER_MAJOR,
2234 &minfo->revision_number_major);
2235 if (!rval)
2236 rval = smiapp_read_8only(sensor,
2237 SMIAPP_REG_U8_REVISION_NUMBER_MINOR,
2238 &minfo->revision_number_minor);
2239 if (!rval)
2240 rval = smiapp_read_8only(sensor,
2241 SMIAPP_REG_U8_MODULE_DATE_YEAR,
2242 &minfo->module_year);
2243 if (!rval)
2244 rval = smiapp_read_8only(sensor,
2245 SMIAPP_REG_U8_MODULE_DATE_MONTH,
2246 &minfo->module_month);
2247 if (!rval)
2248 rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_MODULE_DATE_DAY,
2249 &minfo->module_day);
2250
2251 /* Sensor info */
2252 if (!rval)
2253 rval = smiapp_read_8only(sensor,
2254 SMIAPP_REG_U8_SENSOR_MANUFACTURER_ID,
2255 &minfo->sensor_manufacturer_id);
2256 if (!rval)
2257 rval = smiapp_read_8only(sensor,
2258 SMIAPP_REG_U16_SENSOR_MODEL_ID,
2259 &minfo->sensor_model_id);
2260 if (!rval)
2261 rval = smiapp_read_8only(sensor,
2262 SMIAPP_REG_U8_SENSOR_REVISION_NUMBER,
2263 &minfo->sensor_revision_number);
2264 if (!rval)
2265 rval = smiapp_read_8only(sensor,
2266 SMIAPP_REG_U8_SENSOR_FIRMWARE_VERSION,
2267 &minfo->sensor_firmware_version);
2268
2269 /* SMIA */
2270 if (!rval)
2271 rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_SMIA_VERSION,
2272 &minfo->smia_version);
2273 if (!rval)
2274 rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_SMIAPP_VERSION,
2275 &minfo->smiapp_version);
2276
2277 if (rval) {
2278 dev_err(&client->dev, "sensor detection failed\n");
2279 return -ENODEV;
2280 }
2281
2282 dev_dbg(&client->dev, "module 0x%2.2x-0x%4.4x\n",
2283 minfo->manufacturer_id, minfo->model_id);
2284
2285 dev_dbg(&client->dev,
2286 "module revision 0x%2.2x-0x%2.2x date %2.2d-%2.2d-%2.2d\n",
2287 minfo->revision_number_major, minfo->revision_number_minor,
2288 minfo->module_year, minfo->module_month, minfo->module_day);
2289
2290 dev_dbg(&client->dev, "sensor 0x%2.2x-0x%4.4x\n",
2291 minfo->sensor_manufacturer_id, minfo->sensor_model_id);
2292
2293 dev_dbg(&client->dev,
2294 "sensor revision 0x%2.2x firmware version 0x%2.2x\n",
2295 minfo->sensor_revision_number, minfo->sensor_firmware_version);
2296
2297 dev_dbg(&client->dev, "smia version %2.2d smiapp version %2.2d\n",
2298 minfo->smia_version, minfo->smiapp_version);
2299
2300 /*
2301 * Some modules have bad data in the lvalues below. Hope the
2302 * rvalues have better stuff. The lvalues are module
2303 * parameters whereas the rvalues are sensor parameters.
2304 */
2305 if (!minfo->manufacturer_id && !minfo->model_id) {
2306 minfo->manufacturer_id = minfo->sensor_manufacturer_id;
2307 minfo->model_id = minfo->sensor_model_id;
2308 minfo->revision_number_major = minfo->sensor_revision_number;
2309 }
2310
2311 for (i = 0; i < ARRAY_SIZE(smiapp_module_idents); i++) {
2312 if (smiapp_module_idents[i].manufacturer_id
2313 != minfo->manufacturer_id)
2314 continue;
2315 if (smiapp_module_idents[i].model_id != minfo->model_id)
2316 continue;
2317 if (smiapp_module_idents[i].flags
2318 & SMIAPP_MODULE_IDENT_FLAG_REV_LE) {
2319 if (smiapp_module_idents[i].revision_number_major
2320 < minfo->revision_number_major)
2321 continue;
2322 } else {
2323 if (smiapp_module_idents[i].revision_number_major
2324 != minfo->revision_number_major)
2325 continue;
2326 }
2327
2328 minfo->name = smiapp_module_idents[i].name;
2329 minfo->quirk = smiapp_module_idents[i].quirk;
2330 break;
2331 }
2332
2333 if (i >= ARRAY_SIZE(smiapp_module_idents))
2334 dev_warn(&client->dev,
2335 "no quirks for this module; let's hope it's fully compliant\n");
2336
2337 dev_dbg(&client->dev, "the sensor is called %s, ident %2.2x%4.4x%2.2x\n",
2338 minfo->name, minfo->manufacturer_id, minfo->model_id,
2339 minfo->revision_number_major);
2340
2341 strlcpy(subdev->name, sensor->minfo.name, sizeof(subdev->name));
2342
2343 return 0;
2344 }
2345
2346 static const struct v4l2_subdev_ops smiapp_ops;
2347 static const struct v4l2_subdev_internal_ops smiapp_internal_ops;
2348 static const struct media_entity_operations smiapp_entity_ops;
2349
2350 static int smiapp_registered(struct v4l2_subdev *subdev)
2351 {
2352 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2353 struct i2c_client *client = v4l2_get_subdevdata(subdev);
2354 struct smiapp_subdev *last = NULL;
2355 u32 tmp;
2356 unsigned int i;
2357 int rval;
2358
2359 sensor->vana = regulator_get(&client->dev, "VANA");
2360 if (IS_ERR(sensor->vana)) {
2361 dev_err(&client->dev, "could not get regulator for vana\n");
2362 return -ENODEV;
2363 }
2364
2365 if (!sensor->platform_data->set_xclk) {
2366 sensor->ext_clk = clk_get(&client->dev,
2367 sensor->platform_data->ext_clk_name);
2368 if (IS_ERR(sensor->ext_clk)) {
2369 dev_err(&client->dev, "could not get clock %s\n",
2370 sensor->platform_data->ext_clk_name);
2371 rval = -ENODEV;
2372 goto out_clk_get;
2373 }
2374
2375 rval = clk_set_rate(sensor->ext_clk,
2376 sensor->platform_data->ext_clk);
2377 if (rval < 0) {
2378 dev_err(&client->dev,
2379 "unable to set clock %s freq to %u\n",
2380 sensor->platform_data->ext_clk_name,
2381 sensor->platform_data->ext_clk);
2382 rval = -ENODEV;
2383 goto out_clk_set_rate;
2384 }
2385 }
2386
2387 if (sensor->platform_data->xshutdown != SMIAPP_NO_XSHUTDOWN) {
2388 if (gpio_request_one(sensor->platform_data->xshutdown, 0,
2389 "SMIA++ xshutdown") != 0) {
2390 dev_err(&client->dev,
2391 "unable to acquire reset gpio %d\n",
2392 sensor->platform_data->xshutdown);
2393 rval = -ENODEV;
2394 goto out_clk_set_rate;
2395 }
2396 }
2397
2398 rval = smiapp_power_on(sensor);
2399 if (rval) {
2400 rval = -ENODEV;
2401 goto out_smiapp_power_on;
2402 }
2403
2404 rval = smiapp_identify_module(subdev);
2405 if (rval) {
2406 rval = -ENODEV;
2407 goto out_power_off;
2408 }
2409
2410 rval = smiapp_get_all_limits(sensor);
2411 if (rval) {
2412 rval = -ENODEV;
2413 goto out_power_off;
2414 }
2415
2416 /*
2417 * Handle Sensor Module orientation on the board.
2418 *
2419 * The application of H-FLIP and V-FLIP on the sensor is modified by
2420 * the sensor orientation on the board.
2421 *
2422 * For SMIAPP_BOARD_SENSOR_ORIENT_180 the default behaviour is to set
2423 * both H-FLIP and V-FLIP for normal operation which also implies
2424 * that a set/unset operation for user space HFLIP and VFLIP v4l2
2425 * controls will need to be internally inverted.
2426 *
2427 * Rotation also changes the bayer pattern.
2428 */
2429 if (sensor->platform_data->module_board_orient ==
2430 SMIAPP_MODULE_BOARD_ORIENT_180)
2431 sensor->hvflip_inv_mask = SMIAPP_IMAGE_ORIENTATION_HFLIP |
2432 SMIAPP_IMAGE_ORIENTATION_VFLIP;
2433
2434 rval = smiapp_get_mbus_formats(sensor);
2435 if (rval) {
2436 rval = -ENODEV;
2437 goto out_power_off;
2438 }
2439
2440 if (sensor->limits[SMIAPP_LIMIT_BINNING_CAPABILITY]) {
2441 u32 val;
2442
2443 rval = smiapp_read(sensor,
2444 SMIAPP_REG_U8_BINNING_SUBTYPES, &val);
2445 if (rval < 0) {
2446 rval = -ENODEV;
2447 goto out_power_off;
2448 }
2449 sensor->nbinning_subtypes = min_t(u8, val,
2450 SMIAPP_BINNING_SUBTYPES);
2451
2452 for (i = 0; i < sensor->nbinning_subtypes; i++) {
2453 rval = smiapp_read(
2454 sensor, SMIAPP_REG_U8_BINNING_TYPE_n(i), &val);
2455 if (rval < 0) {
2456 rval = -ENODEV;
2457 goto out_power_off;
2458 }
2459 sensor->binning_subtypes[i] =
2460 *(struct smiapp_binning_subtype *)&val;
2461
2462 dev_dbg(&client->dev, "binning %xx%x\n",
2463 sensor->binning_subtypes[i].horizontal,
2464 sensor->binning_subtypes[i].vertical);
2465 }
2466 }
2467 sensor->binning_horizontal = 1;
2468 sensor->binning_vertical = 1;
2469
2470 /* SMIA++ NVM initialization - it will be read from the sensor
2471 * when it is first requested by userspace.
2472 */
2473 if (sensor->minfo.smiapp_version && sensor->platform_data->nvm_size) {
2474 sensor->nvm = kzalloc(sensor->platform_data->nvm_size,
2475 GFP_KERNEL);
2476 if (sensor->nvm == NULL) {
2477 dev_err(&client->dev, "nvm buf allocation failed\n");
2478 rval = -ENOMEM;
2479 goto out_power_off;
2480 }
2481
2482 if (device_create_file(&client->dev, &dev_attr_nvm) != 0) {
2483 dev_err(&client->dev, "sysfs nvm entry failed\n");
2484 rval = -EBUSY;
2485 goto out_power_off;
2486 }
2487 }
2488
2489 rval = smiapp_call_quirk(sensor, limits);
2490 if (rval) {
2491 dev_err(&client->dev, "limits quirks failed\n");
2492 goto out_nvm_release;
2493 }
2494
2495 /* We consider this as profile 0 sensor if any of these are zero. */
2496 if (!sensor->limits[SMIAPP_LIMIT_MIN_OP_SYS_CLK_DIV] ||
2497 !sensor->limits[SMIAPP_LIMIT_MAX_OP_SYS_CLK_DIV] ||
2498 !sensor->limits[SMIAPP_LIMIT_MIN_OP_PIX_CLK_DIV] ||
2499 !sensor->limits[SMIAPP_LIMIT_MAX_OP_PIX_CLK_DIV]) {
2500 sensor->minfo.smiapp_profile = SMIAPP_PROFILE_0;
2501 } else if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
2502 != SMIAPP_SCALING_CAPABILITY_NONE) {
2503 if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
2504 == SMIAPP_SCALING_CAPABILITY_HORIZONTAL)
2505 sensor->minfo.smiapp_profile = SMIAPP_PROFILE_1;
2506 else
2507 sensor->minfo.smiapp_profile = SMIAPP_PROFILE_2;
2508 sensor->scaler = &sensor->ssds[sensor->ssds_used];
2509 sensor->ssds_used++;
2510 } else if (sensor->limits[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY]
2511 == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
2512 sensor->scaler = &sensor->ssds[sensor->ssds_used];
2513 sensor->ssds_used++;
2514 }
2515 sensor->binner = &sensor->ssds[sensor->ssds_used];
2516 sensor->ssds_used++;
2517 sensor->pixel_array = &sensor->ssds[sensor->ssds_used];
2518 sensor->ssds_used++;
2519
2520 sensor->scale_m = sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN];
2521
2522 for (i = 0; i < SMIAPP_SUBDEVS; i++) {
2523 struct {
2524 struct smiapp_subdev *ssd;
2525 char *name;
2526 } const __this[] = {
2527 { sensor->scaler, "scaler", },
2528 { sensor->binner, "binner", },
2529 { sensor->pixel_array, "pixel array", },
2530 }, *_this = &__this[i];
2531 struct smiapp_subdev *this = _this->ssd;
2532
2533 if (!this)
2534 continue;
2535
2536 if (this != sensor->src)
2537 v4l2_subdev_init(&this->sd, &smiapp_ops);
2538
2539 this->sensor = sensor;
2540
2541 if (this == sensor->pixel_array) {
2542 this->npads = 1;
2543 } else {
2544 this->npads = 2;
2545 this->source_pad = 1;
2546 }
2547
2548 snprintf(this->sd.name,
2549 sizeof(this->sd.name), "%s %s",
2550 sensor->minfo.name, _this->name);
2551
2552 this->sink_fmt.width =
2553 sensor->limits[SMIAPP_LIMIT_X_ADDR_MAX] + 1;
2554 this->sink_fmt.height =
2555 sensor->limits[SMIAPP_LIMIT_Y_ADDR_MAX] + 1;
2556 this->compose.width = this->sink_fmt.width;
2557 this->compose.height = this->sink_fmt.height;
2558 this->crop[this->source_pad] = this->compose;
2559 this->pads[this->source_pad].flags = MEDIA_PAD_FL_SOURCE;
2560 if (this != sensor->pixel_array) {
2561 this->crop[this->sink_pad] = this->compose;
2562 this->pads[this->sink_pad].flags = MEDIA_PAD_FL_SINK;
2563 }
2564
2565 this->sd.entity.ops = &smiapp_entity_ops;
2566
2567 if (last == NULL) {
2568 last = this;
2569 continue;
2570 }
2571
2572 this->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
2573 this->sd.internal_ops = &smiapp_internal_ops;
2574 this->sd.owner = NULL;
2575 v4l2_set_subdevdata(&this->sd, client);
2576
2577 rval = media_entity_init(&this->sd.entity,
2578 this->npads, this->pads, 0);
2579 if (rval) {
2580 dev_err(&client->dev,
2581 "media_entity_init failed\n");
2582 goto out_nvm_release;
2583 }
2584
2585 rval = media_entity_create_link(&this->sd.entity,
2586 this->source_pad,
2587 &last->sd.entity,
2588 last->sink_pad,
2589 MEDIA_LNK_FL_ENABLED |
2590 MEDIA_LNK_FL_IMMUTABLE);
2591 if (rval) {
2592 dev_err(&client->dev,
2593 "media_entity_create_link failed\n");
2594 goto out_nvm_release;
2595 }
2596
2597 rval = v4l2_device_register_subdev(sensor->src->sd.v4l2_dev,
2598 &this->sd);
2599 if (rval) {
2600 dev_err(&client->dev,
2601 "v4l2_device_register_subdev failed\n");
2602 goto out_nvm_release;
2603 }
2604
2605 last = this;
2606 }
2607
2608 dev_dbg(&client->dev, "profile %d\n", sensor->minfo.smiapp_profile);
2609
2610 sensor->pixel_array->sd.entity.type = MEDIA_ENT_T_V4L2_SUBDEV_SENSOR;
2611
2612 /* final steps */
2613 smiapp_read_frame_fmt(sensor);
2614 rval = smiapp_init_controls(sensor);
2615 if (rval < 0)
2616 goto out_nvm_release;
2617
2618 rval = smiapp_update_mode(sensor);
2619 if (rval) {
2620 dev_err(&client->dev, "update mode failed\n");
2621 goto out_nvm_release;
2622 }
2623
2624 sensor->streaming = false;
2625 sensor->dev_init_done = true;
2626
2627 /* check flash capability */
2628 rval = smiapp_read(sensor, SMIAPP_REG_U8_FLASH_MODE_CAPABILITY, &tmp);
2629 sensor->flash_capability = tmp;
2630 if (rval)
2631 goto out_nvm_release;
2632
2633 smiapp_power_off(sensor);
2634
2635 return 0;
2636
2637 out_nvm_release:
2638 device_remove_file(&client->dev, &dev_attr_nvm);
2639
2640 out_power_off:
2641 kfree(sensor->nvm);
2642 sensor->nvm = NULL;
2643 smiapp_power_off(sensor);
2644
2645 out_smiapp_power_on:
2646 if (sensor->platform_data->xshutdown != SMIAPP_NO_XSHUTDOWN)
2647 gpio_free(sensor->platform_data->xshutdown);
2648
2649 out_clk_set_rate:
2650 clk_put(sensor->ext_clk);
2651 sensor->ext_clk = NULL;
2652
2653 out_clk_get:
2654 regulator_put(sensor->vana);
2655 sensor->vana = NULL;
2656 return rval;
2657 }
2658
2659 static int smiapp_open(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh)
2660 {
2661 struct smiapp_subdev *ssd = to_smiapp_subdev(sd);
2662 struct smiapp_sensor *sensor = ssd->sensor;
2663 u32 mbus_code =
2664 smiapp_csi_data_formats[smiapp_pixel_order(sensor)].code;
2665 unsigned int i;
2666
2667 mutex_lock(&sensor->mutex);
2668
2669 for (i = 0; i < ssd->npads; i++) {
2670 struct v4l2_mbus_framefmt *try_fmt =
2671 v4l2_subdev_get_try_format(fh, i);
2672 struct v4l2_rect *try_crop = v4l2_subdev_get_try_crop(fh, i);
2673 struct v4l2_rect *try_comp;
2674
2675 try_fmt->width = sensor->limits[SMIAPP_LIMIT_X_ADDR_MAX] + 1;
2676 try_fmt->height = sensor->limits[SMIAPP_LIMIT_Y_ADDR_MAX] + 1;
2677 try_fmt->code = mbus_code;
2678
2679 try_crop->top = 0;
2680 try_crop->left = 0;
2681 try_crop->width = try_fmt->width;
2682 try_crop->height = try_fmt->height;
2683
2684 if (ssd != sensor->pixel_array)
2685 continue;
2686
2687 try_comp = v4l2_subdev_get_try_compose(fh, i);
2688 *try_comp = *try_crop;
2689 }
2690
2691 mutex_unlock(&sensor->mutex);
2692
2693 return smiapp_set_power(sd, 1);
2694 }
2695
2696 static int smiapp_close(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh)
2697 {
2698 return smiapp_set_power(sd, 0);
2699 }
2700
2701 static const struct v4l2_subdev_video_ops smiapp_video_ops = {
2702 .s_stream = smiapp_set_stream,
2703 };
2704
2705 static const struct v4l2_subdev_core_ops smiapp_core_ops = {
2706 .s_power = smiapp_set_power,
2707 };
2708
2709 static const struct v4l2_subdev_pad_ops smiapp_pad_ops = {
2710 .enum_mbus_code = smiapp_enum_mbus_code,
2711 .get_fmt = smiapp_get_format,
2712 .set_fmt = smiapp_set_format,
2713 .get_selection = smiapp_get_selection,
2714 .set_selection = smiapp_set_selection,
2715 };
2716
2717 static const struct v4l2_subdev_sensor_ops smiapp_sensor_ops = {
2718 .g_skip_frames = smiapp_get_skip_frames,
2719 };
2720
2721 static const struct v4l2_subdev_ops smiapp_ops = {
2722 .core = &smiapp_core_ops,
2723 .video = &smiapp_video_ops,
2724 .pad = &smiapp_pad_ops,
2725 .sensor = &smiapp_sensor_ops,
2726 };
2727
2728 static const struct media_entity_operations smiapp_entity_ops = {
2729 .link_validate = v4l2_subdev_link_validate,
2730 };
2731
2732 static const struct v4l2_subdev_internal_ops smiapp_internal_src_ops = {
2733 .registered = smiapp_registered,
2734 .open = smiapp_open,
2735 .close = smiapp_close,
2736 };
2737
2738 static const struct v4l2_subdev_internal_ops smiapp_internal_ops = {
2739 .open = smiapp_open,
2740 .close = smiapp_close,
2741 };
2742
2743 /* -----------------------------------------------------------------------------
2744 * I2C Driver
2745 */
2746
2747 #ifdef CONFIG_PM
2748
2749 static int smiapp_suspend(struct device *dev)
2750 {
2751 struct i2c_client *client = to_i2c_client(dev);
2752 struct v4l2_subdev *subdev = i2c_get_clientdata(client);
2753 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2754 bool streaming;
2755
2756 BUG_ON(mutex_is_locked(&sensor->mutex));
2757
2758 if (sensor->power_count == 0)
2759 return 0;
2760
2761 if (sensor->streaming)
2762 smiapp_stop_streaming(sensor);
2763
2764 streaming = sensor->streaming;
2765
2766 smiapp_power_off(sensor);
2767
2768 /* save state for resume */
2769 sensor->streaming = streaming;
2770
2771 return 0;
2772 }
2773
2774 static int smiapp_resume(struct device *dev)
2775 {
2776 struct i2c_client *client = to_i2c_client(dev);
2777 struct v4l2_subdev *subdev = i2c_get_clientdata(client);
2778 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2779 int rval;
2780
2781 if (sensor->power_count == 0)
2782 return 0;
2783
2784 rval = smiapp_power_on(sensor);
2785 if (rval)
2786 return rval;
2787
2788 if (sensor->streaming)
2789 rval = smiapp_start_streaming(sensor);
2790
2791 return rval;
2792 }
2793
2794 #else
2795
2796 #define smiapp_suspend NULL
2797 #define smiapp_resume NULL
2798
2799 #endif /* CONFIG_PM */
2800
2801 static int smiapp_probe(struct i2c_client *client,
2802 const struct i2c_device_id *devid)
2803 {
2804 struct smiapp_sensor *sensor;
2805 int rval;
2806
2807 if (client->dev.platform_data == NULL)
2808 return -ENODEV;
2809
2810 sensor = kzalloc(sizeof(*sensor), GFP_KERNEL);
2811 if (sensor == NULL)
2812 return -ENOMEM;
2813
2814 sensor->platform_data = client->dev.platform_data;
2815 mutex_init(&sensor->mutex);
2816 mutex_init(&sensor->power_mutex);
2817 sensor->src = &sensor->ssds[sensor->ssds_used];
2818
2819 v4l2_i2c_subdev_init(&sensor->src->sd, client, &smiapp_ops);
2820 sensor->src->sd.internal_ops = &smiapp_internal_src_ops;
2821 sensor->src->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
2822 sensor->src->sensor = sensor;
2823
2824 sensor->src->pads[0].flags = MEDIA_PAD_FL_SOURCE;
2825 rval = media_entity_init(&sensor->src->sd.entity, 2,
2826 sensor->src->pads, 0);
2827 if (rval < 0)
2828 kfree(sensor);
2829
2830 return rval;
2831 }
2832
2833 static int __exit smiapp_remove(struct i2c_client *client)
2834 {
2835 struct v4l2_subdev *subdev = i2c_get_clientdata(client);
2836 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2837 unsigned int i;
2838
2839 if (sensor->power_count) {
2840 if (sensor->platform_data->xshutdown != SMIAPP_NO_XSHUTDOWN)
2841 gpio_set_value(sensor->platform_data->xshutdown, 0);
2842 if (sensor->platform_data->set_xclk)
2843 sensor->platform_data->set_xclk(&sensor->src->sd, 0);
2844 else
2845 clk_disable(sensor->ext_clk);
2846 sensor->power_count = 0;
2847 }
2848
2849 if (sensor->nvm) {
2850 device_remove_file(&client->dev, &dev_attr_nvm);
2851 kfree(sensor->nvm);
2852 }
2853
2854 for (i = 0; i < sensor->ssds_used; i++) {
2855 media_entity_cleanup(&sensor->ssds[i].sd.entity);
2856 v4l2_device_unregister_subdev(&sensor->ssds[i].sd);
2857 }
2858 smiapp_free_controls(sensor);
2859 if (sensor->platform_data->xshutdown != SMIAPP_NO_XSHUTDOWN)
2860 gpio_free(sensor->platform_data->xshutdown);
2861 if (sensor->ext_clk)
2862 clk_put(sensor->ext_clk);
2863 if (sensor->vana)
2864 regulator_put(sensor->vana);
2865
2866 kfree(sensor);
2867
2868 return 0;
2869 }
2870
2871 static const struct i2c_device_id smiapp_id_table[] = {
2872 { SMIAPP_NAME, 0 },
2873 { },
2874 };
2875 MODULE_DEVICE_TABLE(i2c, smiapp_id_table);
2876
2877 static const struct dev_pm_ops smiapp_pm_ops = {
2878 .suspend = smiapp_suspend,
2879 .resume = smiapp_resume,
2880 };
2881
2882 static struct i2c_driver smiapp_i2c_driver = {
2883 .driver = {
2884 .name = SMIAPP_NAME,
2885 .pm = &smiapp_pm_ops,
2886 },
2887 .probe = smiapp_probe,
2888 .remove = __exit_p(smiapp_remove),
2889 .id_table = smiapp_id_table,
2890 };
2891
2892 module_i2c_driver(smiapp_i2c_driver);
2893
2894 MODULE_AUTHOR("Sakari Ailus <sakari.ailus@maxwell.research.nokia.com>");
2895 MODULE_DESCRIPTION("Generic SMIA/SMIA++ camera module driver");
2896 MODULE_LICENSE("GPL");
This page took 0.151877 seconds and 6 git commands to generate.