9335339ebfdfea4e194e61d57dcb453857d2e7ee
[deliverable/linux.git] / drivers / memory / emif.c
1 /*
2 * EMIF driver
3 *
4 * Copyright (C) 2012 Texas Instruments, Inc.
5 *
6 * Aneesh V <aneesh@ti.com>
7 * Santosh Shilimkar <santosh.shilimkar@ti.com>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13 #include <linux/err.h>
14 #include <linux/kernel.h>
15 #include <linux/reboot.h>
16 #include <linux/platform_data/emif_plat.h>
17 #include <linux/io.h>
18 #include <linux/device.h>
19 #include <linux/platform_device.h>
20 #include <linux/interrupt.h>
21 #include <linux/slab.h>
22 #include <linux/of.h>
23 #include <linux/debugfs.h>
24 #include <linux/seq_file.h>
25 #include <linux/module.h>
26 #include <linux/list.h>
27 #include <linux/spinlock.h>
28 #include <linux/pm.h>
29 #include <memory/jedec_ddr.h>
30 #include "emif.h"
31 #include "of_memory.h"
32
33 /**
34 * struct emif_data - Per device static data for driver's use
35 * @duplicate: Whether the DDR devices attached to this EMIF
36 * instance are exactly same as that on EMIF1. In
37 * this case we can save some memory and processing
38 * @temperature_level: Maximum temperature of LPDDR2 devices attached
39 * to this EMIF - read from MR4 register. If there
40 * are two devices attached to this EMIF, this
41 * value is the maximum of the two temperature
42 * levels.
43 * @node: node in the device list
44 * @base: base address of memory-mapped IO registers.
45 * @dev: device pointer.
46 * @addressing table with addressing information from the spec
47 * @regs_cache: An array of 'struct emif_regs' that stores
48 * calculated register values for different
49 * frequencies, to avoid re-calculating them on
50 * each DVFS transition.
51 * @curr_regs: The set of register values used in the last
52 * frequency change (i.e. corresponding to the
53 * frequency in effect at the moment)
54 * @plat_data: Pointer to saved platform data.
55 * @debugfs_root: dentry to the root folder for EMIF in debugfs
56 * @np_ddr: Pointer to ddr device tree node
57 */
58 struct emif_data {
59 u8 duplicate;
60 u8 temperature_level;
61 u8 lpmode;
62 struct list_head node;
63 unsigned long irq_state;
64 void __iomem *base;
65 struct device *dev;
66 const struct lpddr2_addressing *addressing;
67 struct emif_regs *regs_cache[EMIF_MAX_NUM_FREQUENCIES];
68 struct emif_regs *curr_regs;
69 struct emif_platform_data *plat_data;
70 struct dentry *debugfs_root;
71 struct device_node *np_ddr;
72 };
73
74 static struct emif_data *emif1;
75 static spinlock_t emif_lock;
76 static unsigned long irq_state;
77 static u32 t_ck; /* DDR clock period in ps */
78 static LIST_HEAD(device_list);
79
80 #ifdef CONFIG_DEBUG_FS
81 static void do_emif_regdump_show(struct seq_file *s, struct emif_data *emif,
82 struct emif_regs *regs)
83 {
84 u32 type = emif->plat_data->device_info->type;
85 u32 ip_rev = emif->plat_data->ip_rev;
86
87 seq_printf(s, "EMIF register cache dump for %dMHz\n",
88 regs->freq/1000000);
89
90 seq_printf(s, "ref_ctrl_shdw\t: 0x%08x\n", regs->ref_ctrl_shdw);
91 seq_printf(s, "sdram_tim1_shdw\t: 0x%08x\n", regs->sdram_tim1_shdw);
92 seq_printf(s, "sdram_tim2_shdw\t: 0x%08x\n", regs->sdram_tim2_shdw);
93 seq_printf(s, "sdram_tim3_shdw\t: 0x%08x\n", regs->sdram_tim3_shdw);
94
95 if (ip_rev == EMIF_4D) {
96 seq_printf(s, "read_idle_ctrl_shdw_normal\t: 0x%08x\n",
97 regs->read_idle_ctrl_shdw_normal);
98 seq_printf(s, "read_idle_ctrl_shdw_volt_ramp\t: 0x%08x\n",
99 regs->read_idle_ctrl_shdw_volt_ramp);
100 } else if (ip_rev == EMIF_4D5) {
101 seq_printf(s, "dll_calib_ctrl_shdw_normal\t: 0x%08x\n",
102 regs->dll_calib_ctrl_shdw_normal);
103 seq_printf(s, "dll_calib_ctrl_shdw_volt_ramp\t: 0x%08x\n",
104 regs->dll_calib_ctrl_shdw_volt_ramp);
105 }
106
107 if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
108 seq_printf(s, "ref_ctrl_shdw_derated\t: 0x%08x\n",
109 regs->ref_ctrl_shdw_derated);
110 seq_printf(s, "sdram_tim1_shdw_derated\t: 0x%08x\n",
111 regs->sdram_tim1_shdw_derated);
112 seq_printf(s, "sdram_tim3_shdw_derated\t: 0x%08x\n",
113 regs->sdram_tim3_shdw_derated);
114 }
115 }
116
117 static int emif_regdump_show(struct seq_file *s, void *unused)
118 {
119 struct emif_data *emif = s->private;
120 struct emif_regs **regs_cache;
121 int i;
122
123 if (emif->duplicate)
124 regs_cache = emif1->regs_cache;
125 else
126 regs_cache = emif->regs_cache;
127
128 for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
129 do_emif_regdump_show(s, emif, regs_cache[i]);
130 seq_printf(s, "\n");
131 }
132
133 return 0;
134 }
135
136 static int emif_regdump_open(struct inode *inode, struct file *file)
137 {
138 return single_open(file, emif_regdump_show, inode->i_private);
139 }
140
141 static const struct file_operations emif_regdump_fops = {
142 .open = emif_regdump_open,
143 .read = seq_read,
144 .release = single_release,
145 };
146
147 static int emif_mr4_show(struct seq_file *s, void *unused)
148 {
149 struct emif_data *emif = s->private;
150
151 seq_printf(s, "MR4=%d\n", emif->temperature_level);
152 return 0;
153 }
154
155 static int emif_mr4_open(struct inode *inode, struct file *file)
156 {
157 return single_open(file, emif_mr4_show, inode->i_private);
158 }
159
160 static const struct file_operations emif_mr4_fops = {
161 .open = emif_mr4_open,
162 .read = seq_read,
163 .release = single_release,
164 };
165
166 static int __init_or_module emif_debugfs_init(struct emif_data *emif)
167 {
168 struct dentry *dentry;
169 int ret;
170
171 dentry = debugfs_create_dir(dev_name(emif->dev), NULL);
172 if (!dentry) {
173 ret = -ENOMEM;
174 goto err0;
175 }
176 emif->debugfs_root = dentry;
177
178 dentry = debugfs_create_file("regcache_dump", S_IRUGO,
179 emif->debugfs_root, emif, &emif_regdump_fops);
180 if (!dentry) {
181 ret = -ENOMEM;
182 goto err1;
183 }
184
185 dentry = debugfs_create_file("mr4", S_IRUGO,
186 emif->debugfs_root, emif, &emif_mr4_fops);
187 if (!dentry) {
188 ret = -ENOMEM;
189 goto err1;
190 }
191
192 return 0;
193 err1:
194 debugfs_remove_recursive(emif->debugfs_root);
195 err0:
196 return ret;
197 }
198
199 static void __exit emif_debugfs_exit(struct emif_data *emif)
200 {
201 debugfs_remove_recursive(emif->debugfs_root);
202 emif->debugfs_root = NULL;
203 }
204 #else
205 static inline int __init_or_module emif_debugfs_init(struct emif_data *emif)
206 {
207 return 0;
208 }
209
210 static inline void __exit emif_debugfs_exit(struct emif_data *emif)
211 {
212 }
213 #endif
214
215 /*
216 * Calculate the period of DDR clock from frequency value
217 */
218 static void set_ddr_clk_period(u32 freq)
219 {
220 /* Divide 10^12 by frequency to get period in ps */
221 t_ck = (u32)DIV_ROUND_UP_ULL(1000000000000ull, freq);
222 }
223
224 /*
225 * Get bus width used by EMIF. Note that this may be different from the
226 * bus width of the DDR devices used. For instance two 16-bit DDR devices
227 * may be connected to a given CS of EMIF. In this case bus width as far
228 * as EMIF is concerned is 32, where as the DDR bus width is 16 bits.
229 */
230 static u32 get_emif_bus_width(struct emif_data *emif)
231 {
232 u32 width;
233 void __iomem *base = emif->base;
234
235 width = (readl(base + EMIF_SDRAM_CONFIG) & NARROW_MODE_MASK)
236 >> NARROW_MODE_SHIFT;
237 width = width == 0 ? 32 : 16;
238
239 return width;
240 }
241
242 /*
243 * Get the CL from SDRAM_CONFIG register
244 */
245 static u32 get_cl(struct emif_data *emif)
246 {
247 u32 cl;
248 void __iomem *base = emif->base;
249
250 cl = (readl(base + EMIF_SDRAM_CONFIG) & CL_MASK) >> CL_SHIFT;
251
252 return cl;
253 }
254
255 static void set_lpmode(struct emif_data *emif, u8 lpmode)
256 {
257 u32 temp;
258 void __iomem *base = emif->base;
259
260 temp = readl(base + EMIF_POWER_MANAGEMENT_CONTROL);
261 temp &= ~LP_MODE_MASK;
262 temp |= (lpmode << LP_MODE_SHIFT);
263 writel(temp, base + EMIF_POWER_MANAGEMENT_CONTROL);
264 }
265
266 static void do_freq_update(void)
267 {
268 struct emif_data *emif;
269
270 /*
271 * Workaround for errata i728: Disable LPMODE during FREQ_UPDATE
272 *
273 * i728 DESCRIPTION:
274 * The EMIF automatically puts the SDRAM into self-refresh mode
275 * after the EMIF has not performed accesses during
276 * EMIF_PWR_MGMT_CTRL[7:4] REG_SR_TIM number of DDR clock cycles
277 * and the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set
278 * to 0x2. If during a small window the following three events
279 * occur:
280 * - The SR_TIMING counter expires
281 * - And frequency change is requested
282 * - And OCP access is requested
283 * Then it causes instable clock on the DDR interface.
284 *
285 * WORKAROUND
286 * To avoid the occurrence of the three events, the workaround
287 * is to disable the self-refresh when requesting a frequency
288 * change. Before requesting a frequency change the software must
289 * program EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x0. When the
290 * frequency change has been done, the software can reprogram
291 * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x2
292 */
293 list_for_each_entry(emif, &device_list, node) {
294 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
295 set_lpmode(emif, EMIF_LP_MODE_DISABLE);
296 }
297
298 /*
299 * TODO: Do FREQ_UPDATE here when an API
300 * is available for this as part of the new
301 * clock framework
302 */
303
304 list_for_each_entry(emif, &device_list, node) {
305 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
306 set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
307 }
308 }
309
310 /* Find addressing table entry based on the device's type and density */
311 static const struct lpddr2_addressing *get_addressing_table(
312 const struct ddr_device_info *device_info)
313 {
314 u32 index, type, density;
315
316 type = device_info->type;
317 density = device_info->density;
318
319 switch (type) {
320 case DDR_TYPE_LPDDR2_S4:
321 index = density - 1;
322 break;
323 case DDR_TYPE_LPDDR2_S2:
324 switch (density) {
325 case DDR_DENSITY_1Gb:
326 case DDR_DENSITY_2Gb:
327 index = density + 3;
328 break;
329 default:
330 index = density - 1;
331 }
332 break;
333 default:
334 return NULL;
335 }
336
337 return &lpddr2_jedec_addressing_table[index];
338 }
339
340 /*
341 * Find the the right timing table from the array of timing
342 * tables of the device using DDR clock frequency
343 */
344 static const struct lpddr2_timings *get_timings_table(struct emif_data *emif,
345 u32 freq)
346 {
347 u32 i, min, max, freq_nearest;
348 const struct lpddr2_timings *timings = NULL;
349 const struct lpddr2_timings *timings_arr = emif->plat_data->timings;
350 struct device *dev = emif->dev;
351
352 /* Start with a very high frequency - 1GHz */
353 freq_nearest = 1000000000;
354
355 /*
356 * Find the timings table such that:
357 * 1. the frequency range covers the required frequency(safe) AND
358 * 2. the max_freq is closest to the required frequency(optimal)
359 */
360 for (i = 0; i < emif->plat_data->timings_arr_size; i++) {
361 max = timings_arr[i].max_freq;
362 min = timings_arr[i].min_freq;
363 if ((freq >= min) && (freq <= max) && (max < freq_nearest)) {
364 freq_nearest = max;
365 timings = &timings_arr[i];
366 }
367 }
368
369 if (!timings)
370 dev_err(dev, "%s: couldn't find timings for - %dHz\n",
371 __func__, freq);
372
373 dev_dbg(dev, "%s: timings table: freq %d, speed bin freq %d\n",
374 __func__, freq, freq_nearest);
375
376 return timings;
377 }
378
379 static u32 get_sdram_ref_ctrl_shdw(u32 freq,
380 const struct lpddr2_addressing *addressing)
381 {
382 u32 ref_ctrl_shdw = 0, val = 0, freq_khz, t_refi;
383
384 /* Scale down frequency and t_refi to avoid overflow */
385 freq_khz = freq / 1000;
386 t_refi = addressing->tREFI_ns / 100;
387
388 /*
389 * refresh rate to be set is 'tREFI(in us) * freq in MHz
390 * division by 10000 to account for change in units
391 */
392 val = t_refi * freq_khz / 10000;
393 ref_ctrl_shdw |= val << REFRESH_RATE_SHIFT;
394
395 return ref_ctrl_shdw;
396 }
397
398 static u32 get_sdram_tim_1_shdw(const struct lpddr2_timings *timings,
399 const struct lpddr2_min_tck *min_tck,
400 const struct lpddr2_addressing *addressing)
401 {
402 u32 tim1 = 0, val = 0;
403
404 val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
405 tim1 |= val << T_WTR_SHIFT;
406
407 if (addressing->num_banks == B8)
408 val = DIV_ROUND_UP(timings->tFAW, t_ck*4);
409 else
410 val = max(min_tck->tRRD, DIV_ROUND_UP(timings->tRRD, t_ck));
411 tim1 |= (val - 1) << T_RRD_SHIFT;
412
413 val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab, t_ck) - 1;
414 tim1 |= val << T_RC_SHIFT;
415
416 val = max(min_tck->tRASmin, DIV_ROUND_UP(timings->tRAS_min, t_ck));
417 tim1 |= (val - 1) << T_RAS_SHIFT;
418
419 val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
420 tim1 |= val << T_WR_SHIFT;
421
422 val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD, t_ck)) - 1;
423 tim1 |= val << T_RCD_SHIFT;
424
425 val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab, t_ck)) - 1;
426 tim1 |= val << T_RP_SHIFT;
427
428 return tim1;
429 }
430
431 static u32 get_sdram_tim_1_shdw_derated(const struct lpddr2_timings *timings,
432 const struct lpddr2_min_tck *min_tck,
433 const struct lpddr2_addressing *addressing)
434 {
435 u32 tim1 = 0, val = 0;
436
437 val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
438 tim1 = val << T_WTR_SHIFT;
439
440 /*
441 * tFAW is approximately 4 times tRRD. So add 1875*4 = 7500ps
442 * to tFAW for de-rating
443 */
444 if (addressing->num_banks == B8) {
445 val = DIV_ROUND_UP(timings->tFAW + 7500, 4 * t_ck) - 1;
446 } else {
447 val = DIV_ROUND_UP(timings->tRRD + 1875, t_ck);
448 val = max(min_tck->tRRD, val) - 1;
449 }
450 tim1 |= val << T_RRD_SHIFT;
451
452 val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab + 1875, t_ck);
453 tim1 |= (val - 1) << T_RC_SHIFT;
454
455 val = DIV_ROUND_UP(timings->tRAS_min + 1875, t_ck);
456 val = max(min_tck->tRASmin, val) - 1;
457 tim1 |= val << T_RAS_SHIFT;
458
459 val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
460 tim1 |= val << T_WR_SHIFT;
461
462 val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD + 1875, t_ck));
463 tim1 |= (val - 1) << T_RCD_SHIFT;
464
465 val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab + 1875, t_ck));
466 tim1 |= (val - 1) << T_RP_SHIFT;
467
468 return tim1;
469 }
470
471 static u32 get_sdram_tim_2_shdw(const struct lpddr2_timings *timings,
472 const struct lpddr2_min_tck *min_tck,
473 const struct lpddr2_addressing *addressing,
474 u32 type)
475 {
476 u32 tim2 = 0, val = 0;
477
478 val = min_tck->tCKE - 1;
479 tim2 |= val << T_CKE_SHIFT;
480
481 val = max(min_tck->tRTP, DIV_ROUND_UP(timings->tRTP, t_ck)) - 1;
482 tim2 |= val << T_RTP_SHIFT;
483
484 /* tXSNR = tRFCab_ps + 10 ns(tRFCab_ps for LPDDR2). */
485 val = DIV_ROUND_UP(addressing->tRFCab_ps + 10000, t_ck) - 1;
486 tim2 |= val << T_XSNR_SHIFT;
487
488 /* XSRD same as XSNR for LPDDR2 */
489 tim2 |= val << T_XSRD_SHIFT;
490
491 val = max(min_tck->tXP, DIV_ROUND_UP(timings->tXP, t_ck)) - 1;
492 tim2 |= val << T_XP_SHIFT;
493
494 return tim2;
495 }
496
497 static u32 get_sdram_tim_3_shdw(const struct lpddr2_timings *timings,
498 const struct lpddr2_min_tck *min_tck,
499 const struct lpddr2_addressing *addressing,
500 u32 type, u32 ip_rev, u32 derated)
501 {
502 u32 tim3 = 0, val = 0, t_dqsck;
503
504 val = timings->tRAS_max_ns / addressing->tREFI_ns - 1;
505 val = val > 0xF ? 0xF : val;
506 tim3 |= val << T_RAS_MAX_SHIFT;
507
508 val = DIV_ROUND_UP(addressing->tRFCab_ps, t_ck) - 1;
509 tim3 |= val << T_RFC_SHIFT;
510
511 t_dqsck = (derated == EMIF_DERATED_TIMINGS) ?
512 timings->tDQSCK_max_derated : timings->tDQSCK_max;
513 if (ip_rev == EMIF_4D5)
514 val = DIV_ROUND_UP(t_dqsck + 1000, t_ck) - 1;
515 else
516 val = DIV_ROUND_UP(t_dqsck, t_ck) - 1;
517
518 tim3 |= val << T_TDQSCKMAX_SHIFT;
519
520 val = DIV_ROUND_UP(timings->tZQCS, t_ck) - 1;
521 tim3 |= val << ZQ_ZQCS_SHIFT;
522
523 val = DIV_ROUND_UP(timings->tCKESR, t_ck);
524 val = max(min_tck->tCKESR, val) - 1;
525 tim3 |= val << T_CKESR_SHIFT;
526
527 if (ip_rev == EMIF_4D5) {
528 tim3 |= (EMIF_T_CSTA - 1) << T_CSTA_SHIFT;
529
530 val = DIV_ROUND_UP(EMIF_T_PDLL_UL, 128) - 1;
531 tim3 |= val << T_PDLL_UL_SHIFT;
532 }
533
534 return tim3;
535 }
536
537 static u32 get_zq_config_reg(const struct lpddr2_addressing *addressing,
538 bool cs1_used, bool cal_resistors_per_cs)
539 {
540 u32 zq = 0, val = 0;
541
542 val = EMIF_ZQCS_INTERVAL_US * 1000 / addressing->tREFI_ns;
543 zq |= val << ZQ_REFINTERVAL_SHIFT;
544
545 val = DIV_ROUND_UP(T_ZQCL_DEFAULT_NS, T_ZQCS_DEFAULT_NS) - 1;
546 zq |= val << ZQ_ZQCL_MULT_SHIFT;
547
548 val = DIV_ROUND_UP(T_ZQINIT_DEFAULT_NS, T_ZQCL_DEFAULT_NS) - 1;
549 zq |= val << ZQ_ZQINIT_MULT_SHIFT;
550
551 zq |= ZQ_SFEXITEN_ENABLE << ZQ_SFEXITEN_SHIFT;
552
553 if (cal_resistors_per_cs)
554 zq |= ZQ_DUALCALEN_ENABLE << ZQ_DUALCALEN_SHIFT;
555 else
556 zq |= ZQ_DUALCALEN_DISABLE << ZQ_DUALCALEN_SHIFT;
557
558 zq |= ZQ_CS0EN_MASK; /* CS0 is used for sure */
559
560 val = cs1_used ? 1 : 0;
561 zq |= val << ZQ_CS1EN_SHIFT;
562
563 return zq;
564 }
565
566 static u32 get_temp_alert_config(const struct lpddr2_addressing *addressing,
567 const struct emif_custom_configs *custom_configs, bool cs1_used,
568 u32 sdram_io_width, u32 emif_bus_width)
569 {
570 u32 alert = 0, interval, devcnt;
571
572 if (custom_configs && (custom_configs->mask &
573 EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL))
574 interval = custom_configs->temp_alert_poll_interval_ms;
575 else
576 interval = TEMP_ALERT_POLL_INTERVAL_DEFAULT_MS;
577
578 interval *= 1000000; /* Convert to ns */
579 interval /= addressing->tREFI_ns; /* Convert to refresh cycles */
580 alert |= (interval << TA_REFINTERVAL_SHIFT);
581
582 /*
583 * sdram_io_width is in 'log2(x) - 1' form. Convert emif_bus_width
584 * also to this form and subtract to get TA_DEVCNT, which is
585 * in log2(x) form.
586 */
587 emif_bus_width = __fls(emif_bus_width) - 1;
588 devcnt = emif_bus_width - sdram_io_width;
589 alert |= devcnt << TA_DEVCNT_SHIFT;
590
591 /* DEVWDT is in 'log2(x) - 3' form */
592 alert |= (sdram_io_width - 2) << TA_DEVWDT_SHIFT;
593
594 alert |= 1 << TA_SFEXITEN_SHIFT;
595 alert |= 1 << TA_CS0EN_SHIFT;
596 alert |= (cs1_used ? 1 : 0) << TA_CS1EN_SHIFT;
597
598 return alert;
599 }
600
601 static u32 get_read_idle_ctrl_shdw(u8 volt_ramp)
602 {
603 u32 idle = 0, val = 0;
604
605 /*
606 * Maximum value in normal conditions and increased frequency
607 * when voltage is ramping
608 */
609 if (volt_ramp)
610 val = READ_IDLE_INTERVAL_DVFS / t_ck / 64 - 1;
611 else
612 val = 0x1FF;
613
614 /*
615 * READ_IDLE_CTRL register in EMIF4D has same offset and fields
616 * as DLL_CALIB_CTRL in EMIF4D5, so use the same shifts
617 */
618 idle |= val << DLL_CALIB_INTERVAL_SHIFT;
619 idle |= EMIF_READ_IDLE_LEN_VAL << ACK_WAIT_SHIFT;
620
621 return idle;
622 }
623
624 static u32 get_dll_calib_ctrl_shdw(u8 volt_ramp)
625 {
626 u32 calib = 0, val = 0;
627
628 if (volt_ramp == DDR_VOLTAGE_RAMPING)
629 val = DLL_CALIB_INTERVAL_DVFS / t_ck / 16 - 1;
630 else
631 val = 0; /* Disabled when voltage is stable */
632
633 calib |= val << DLL_CALIB_INTERVAL_SHIFT;
634 calib |= DLL_CALIB_ACK_WAIT_VAL << ACK_WAIT_SHIFT;
635
636 return calib;
637 }
638
639 static u32 get_ddr_phy_ctrl_1_attilaphy_4d(const struct lpddr2_timings *timings,
640 u32 freq, u8 RL)
641 {
642 u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_ATTILAPHY, val = 0;
643
644 val = RL + DIV_ROUND_UP(timings->tDQSCK_max, t_ck) - 1;
645 phy |= val << READ_LATENCY_SHIFT_4D;
646
647 if (freq <= 100000000)
648 val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS_ATTILAPHY;
649 else if (freq <= 200000000)
650 val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ_ATTILAPHY;
651 else
652 val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ_ATTILAPHY;
653
654 phy |= val << DLL_SLAVE_DLY_CTRL_SHIFT_4D;
655
656 return phy;
657 }
658
659 static u32 get_phy_ctrl_1_intelliphy_4d5(u32 freq, u8 cl)
660 {
661 u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_INTELLIPHY, half_delay;
662
663 /*
664 * DLL operates at 266 MHz. If DDR frequency is near 266 MHz,
665 * half-delay is not needed else set half-delay
666 */
667 if (freq >= 265000000 && freq < 267000000)
668 half_delay = 0;
669 else
670 half_delay = 1;
671
672 phy |= half_delay << DLL_HALF_DELAY_SHIFT_4D5;
673 phy |= ((cl + DIV_ROUND_UP(EMIF_PHY_TOTAL_READ_LATENCY_INTELLIPHY_PS,
674 t_ck) - 1) << READ_LATENCY_SHIFT_4D5);
675
676 return phy;
677 }
678
679 static u32 get_ext_phy_ctrl_2_intelliphy_4d5(void)
680 {
681 u32 fifo_we_slave_ratio;
682
683 fifo_we_slave_ratio = DIV_ROUND_CLOSEST(
684 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
685
686 return fifo_we_slave_ratio | fifo_we_slave_ratio << 11 |
687 fifo_we_slave_ratio << 22;
688 }
689
690 static u32 get_ext_phy_ctrl_3_intelliphy_4d5(void)
691 {
692 u32 fifo_we_slave_ratio;
693
694 fifo_we_slave_ratio = DIV_ROUND_CLOSEST(
695 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
696
697 return fifo_we_slave_ratio >> 10 | fifo_we_slave_ratio << 1 |
698 fifo_we_slave_ratio << 12 | fifo_we_slave_ratio << 23;
699 }
700
701 static u32 get_ext_phy_ctrl_4_intelliphy_4d5(void)
702 {
703 u32 fifo_we_slave_ratio;
704
705 fifo_we_slave_ratio = DIV_ROUND_CLOSEST(
706 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
707
708 return fifo_we_slave_ratio >> 9 | fifo_we_slave_ratio << 2 |
709 fifo_we_slave_ratio << 13;
710 }
711
712 static u32 get_pwr_mgmt_ctrl(u32 freq, struct emif_data *emif, u32 ip_rev)
713 {
714 u32 pwr_mgmt_ctrl = 0, timeout;
715 u32 lpmode = EMIF_LP_MODE_SELF_REFRESH;
716 u32 timeout_perf = EMIF_LP_MODE_TIMEOUT_PERFORMANCE;
717 u32 timeout_pwr = EMIF_LP_MODE_TIMEOUT_POWER;
718 u32 freq_threshold = EMIF_LP_MODE_FREQ_THRESHOLD;
719 u32 mask;
720 u8 shift;
721
722 struct emif_custom_configs *cust_cfgs = emif->plat_data->custom_configs;
723
724 if (cust_cfgs && (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE)) {
725 lpmode = cust_cfgs->lpmode;
726 timeout_perf = cust_cfgs->lpmode_timeout_performance;
727 timeout_pwr = cust_cfgs->lpmode_timeout_power;
728 freq_threshold = cust_cfgs->lpmode_freq_threshold;
729 }
730
731 /* Timeout based on DDR frequency */
732 timeout = freq >= freq_threshold ? timeout_perf : timeout_pwr;
733
734 /*
735 * The value to be set in register is "log2(timeout) - 3"
736 * if timeout < 16 load 0 in register
737 * if timeout is not a power of 2, round to next highest power of 2
738 */
739 if (timeout < 16) {
740 timeout = 0;
741 } else {
742 if (timeout & (timeout - 1))
743 timeout <<= 1;
744 timeout = __fls(timeout) - 3;
745 }
746
747 switch (lpmode) {
748 case EMIF_LP_MODE_CLOCK_STOP:
749 shift = CS_TIM_SHIFT;
750 mask = CS_TIM_MASK;
751 break;
752 case EMIF_LP_MODE_SELF_REFRESH:
753 /* Workaround for errata i735 */
754 if (timeout < 6)
755 timeout = 6;
756
757 shift = SR_TIM_SHIFT;
758 mask = SR_TIM_MASK;
759 break;
760 case EMIF_LP_MODE_PWR_DN:
761 shift = PD_TIM_SHIFT;
762 mask = PD_TIM_MASK;
763 break;
764 case EMIF_LP_MODE_DISABLE:
765 default:
766 mask = 0;
767 shift = 0;
768 break;
769 }
770 /* Round to maximum in case of overflow, BUT warn! */
771 if (lpmode != EMIF_LP_MODE_DISABLE && timeout > mask >> shift) {
772 pr_err("TIMEOUT Overflow - lpmode=%d perf=%d pwr=%d freq=%d\n",
773 lpmode,
774 timeout_perf,
775 timeout_pwr,
776 freq_threshold);
777 WARN(1, "timeout=0x%02x greater than 0x%02x. Using max\n",
778 timeout, mask >> shift);
779 timeout = mask >> shift;
780 }
781
782 /* Setup required timing */
783 pwr_mgmt_ctrl = (timeout << shift) & mask;
784 /* setup a default mask for rest of the modes */
785 pwr_mgmt_ctrl |= (SR_TIM_MASK | CS_TIM_MASK | PD_TIM_MASK) &
786 ~mask;
787
788 /* No CS_TIM in EMIF_4D5 */
789 if (ip_rev == EMIF_4D5)
790 pwr_mgmt_ctrl &= ~CS_TIM_MASK;
791
792 pwr_mgmt_ctrl |= lpmode << LP_MODE_SHIFT;
793
794 return pwr_mgmt_ctrl;
795 }
796
797 /*
798 * Get the temperature level of the EMIF instance:
799 * Reads the MR4 register of attached SDRAM parts to find out the temperature
800 * level. If there are two parts attached(one on each CS), then the temperature
801 * level for the EMIF instance is the higher of the two temperatures.
802 */
803 static void get_temperature_level(struct emif_data *emif)
804 {
805 u32 temp, temperature_level;
806 void __iomem *base;
807
808 base = emif->base;
809
810 /* Read mode register 4 */
811 writel(DDR_MR4, base + EMIF_LPDDR2_MODE_REG_CONFIG);
812 temperature_level = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
813 temperature_level = (temperature_level & MR4_SDRAM_REF_RATE_MASK) >>
814 MR4_SDRAM_REF_RATE_SHIFT;
815
816 if (emif->plat_data->device_info->cs1_used) {
817 writel(DDR_MR4 | CS_MASK, base + EMIF_LPDDR2_MODE_REG_CONFIG);
818 temp = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
819 temp = (temp & MR4_SDRAM_REF_RATE_MASK)
820 >> MR4_SDRAM_REF_RATE_SHIFT;
821 temperature_level = max(temp, temperature_level);
822 }
823
824 /* treat everything less than nominal(3) in MR4 as nominal */
825 if (unlikely(temperature_level < SDRAM_TEMP_NOMINAL))
826 temperature_level = SDRAM_TEMP_NOMINAL;
827
828 /* if we get reserved value in MR4 persist with the existing value */
829 if (likely(temperature_level != SDRAM_TEMP_RESERVED_4))
830 emif->temperature_level = temperature_level;
831 }
832
833 /*
834 * Program EMIF shadow registers that are not dependent on temperature
835 * or voltage
836 */
837 static void setup_registers(struct emif_data *emif, struct emif_regs *regs)
838 {
839 void __iomem *base = emif->base;
840
841 writel(regs->sdram_tim2_shdw, base + EMIF_SDRAM_TIMING_2_SHDW);
842 writel(regs->phy_ctrl_1_shdw, base + EMIF_DDR_PHY_CTRL_1_SHDW);
843 writel(regs->pwr_mgmt_ctrl_shdw,
844 base + EMIF_POWER_MANAGEMENT_CTRL_SHDW);
845
846 /* Settings specific for EMIF4D5 */
847 if (emif->plat_data->ip_rev != EMIF_4D5)
848 return;
849 writel(regs->ext_phy_ctrl_2_shdw, base + EMIF_EXT_PHY_CTRL_2_SHDW);
850 writel(regs->ext_phy_ctrl_3_shdw, base + EMIF_EXT_PHY_CTRL_3_SHDW);
851 writel(regs->ext_phy_ctrl_4_shdw, base + EMIF_EXT_PHY_CTRL_4_SHDW);
852 }
853
854 /*
855 * When voltage ramps dll calibration and forced read idle should
856 * happen more often
857 */
858 static void setup_volt_sensitive_regs(struct emif_data *emif,
859 struct emif_regs *regs, u32 volt_state)
860 {
861 u32 calib_ctrl;
862 void __iomem *base = emif->base;
863
864 /*
865 * EMIF_READ_IDLE_CTRL in EMIF4D refers to the same register as
866 * EMIF_DLL_CALIB_CTRL in EMIF4D5 and dll_calib_ctrl_shadow_*
867 * is an alias of the respective read_idle_ctrl_shdw_* (members of
868 * a union). So, the below code takes care of both cases
869 */
870 if (volt_state == DDR_VOLTAGE_RAMPING)
871 calib_ctrl = regs->dll_calib_ctrl_shdw_volt_ramp;
872 else
873 calib_ctrl = regs->dll_calib_ctrl_shdw_normal;
874
875 writel(calib_ctrl, base + EMIF_DLL_CALIB_CTRL_SHDW);
876 }
877
878 /*
879 * setup_temperature_sensitive_regs() - set the timings for temperature
880 * sensitive registers. This happens once at initialisation time based
881 * on the temperature at boot time and subsequently based on the temperature
882 * alert interrupt. Temperature alert can happen when the temperature
883 * increases or drops. So this function can have the effect of either
884 * derating the timings or going back to nominal values.
885 */
886 static void setup_temperature_sensitive_regs(struct emif_data *emif,
887 struct emif_regs *regs)
888 {
889 u32 tim1, tim3, ref_ctrl, type;
890 void __iomem *base = emif->base;
891 u32 temperature;
892
893 type = emif->plat_data->device_info->type;
894
895 tim1 = regs->sdram_tim1_shdw;
896 tim3 = regs->sdram_tim3_shdw;
897 ref_ctrl = regs->ref_ctrl_shdw;
898
899 /* No de-rating for non-lpddr2 devices */
900 if (type != DDR_TYPE_LPDDR2_S2 && type != DDR_TYPE_LPDDR2_S4)
901 goto out;
902
903 temperature = emif->temperature_level;
904 if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH) {
905 ref_ctrl = regs->ref_ctrl_shdw_derated;
906 } else if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH_AND_TIMINGS) {
907 tim1 = regs->sdram_tim1_shdw_derated;
908 tim3 = regs->sdram_tim3_shdw_derated;
909 ref_ctrl = regs->ref_ctrl_shdw_derated;
910 }
911
912 out:
913 writel(tim1, base + EMIF_SDRAM_TIMING_1_SHDW);
914 writel(tim3, base + EMIF_SDRAM_TIMING_3_SHDW);
915 writel(ref_ctrl, base + EMIF_SDRAM_REFRESH_CTRL_SHDW);
916 }
917
918 static irqreturn_t handle_temp_alert(void __iomem *base, struct emif_data *emif)
919 {
920 u32 old_temp_level;
921 irqreturn_t ret = IRQ_HANDLED;
922 struct emif_custom_configs *custom_configs;
923
924 spin_lock_irqsave(&emif_lock, irq_state);
925 old_temp_level = emif->temperature_level;
926 get_temperature_level(emif);
927
928 if (unlikely(emif->temperature_level == old_temp_level)) {
929 goto out;
930 } else if (!emif->curr_regs) {
931 dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
932 goto out;
933 }
934
935 custom_configs = emif->plat_data->custom_configs;
936
937 /*
938 * IF we detect higher than "nominal rating" from DDR sensor
939 * on an unsupported DDR part, shutdown system
940 */
941 if (custom_configs && !(custom_configs->mask &
942 EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART)) {
943 if (emif->temperature_level >= SDRAM_TEMP_HIGH_DERATE_REFRESH) {
944 dev_err(emif->dev,
945 "%s:NOT Extended temperature capable memory."
946 "Converting MR4=0x%02x as shutdown event\n",
947 __func__, emif->temperature_level);
948 /*
949 * Temperature far too high - do kernel_power_off()
950 * from thread context
951 */
952 emif->temperature_level = SDRAM_TEMP_VERY_HIGH_SHUTDOWN;
953 ret = IRQ_WAKE_THREAD;
954 goto out;
955 }
956 }
957
958 if (emif->temperature_level < old_temp_level ||
959 emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
960 /*
961 * Temperature coming down - defer handling to thread OR
962 * Temperature far too high - do kernel_power_off() from
963 * thread context
964 */
965 ret = IRQ_WAKE_THREAD;
966 } else {
967 /* Temperature is going up - handle immediately */
968 setup_temperature_sensitive_regs(emif, emif->curr_regs);
969 do_freq_update();
970 }
971
972 out:
973 spin_unlock_irqrestore(&emif_lock, irq_state);
974 return ret;
975 }
976
977 static irqreturn_t emif_interrupt_handler(int irq, void *dev_id)
978 {
979 u32 interrupts;
980 struct emif_data *emif = dev_id;
981 void __iomem *base = emif->base;
982 struct device *dev = emif->dev;
983 irqreturn_t ret = IRQ_HANDLED;
984
985 /* Save the status and clear it */
986 interrupts = readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
987 writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
988
989 /*
990 * Handle temperature alert
991 * Temperature alert should be same for all ports
992 * So, it's enough to process it only for one of the ports
993 */
994 if (interrupts & TA_SYS_MASK)
995 ret = handle_temp_alert(base, emif);
996
997 if (interrupts & ERR_SYS_MASK)
998 dev_err(dev, "Access error from SYS port - %x\n", interrupts);
999
1000 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
1001 /* Save the status and clear it */
1002 interrupts = readl(base + EMIF_LL_OCP_INTERRUPT_STATUS);
1003 writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_STATUS);
1004
1005 if (interrupts & ERR_LL_MASK)
1006 dev_err(dev, "Access error from LL port - %x\n",
1007 interrupts);
1008 }
1009
1010 return ret;
1011 }
1012
1013 static irqreturn_t emif_threaded_isr(int irq, void *dev_id)
1014 {
1015 struct emif_data *emif = dev_id;
1016
1017 if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
1018 dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
1019
1020 /* If we have Power OFF ability, use it, else try restarting */
1021 if (pm_power_off) {
1022 kernel_power_off();
1023 } else {
1024 WARN(1, "FIXME: NO pm_power_off!!! trying restart\n");
1025 kernel_restart("SDRAM Over-temp Emergency restart");
1026 }
1027 return IRQ_HANDLED;
1028 }
1029
1030 spin_lock_irqsave(&emif_lock, irq_state);
1031
1032 if (emif->curr_regs) {
1033 setup_temperature_sensitive_regs(emif, emif->curr_regs);
1034 do_freq_update();
1035 } else {
1036 dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
1037 }
1038
1039 spin_unlock_irqrestore(&emif_lock, irq_state);
1040
1041 return IRQ_HANDLED;
1042 }
1043
1044 static void clear_all_interrupts(struct emif_data *emif)
1045 {
1046 void __iomem *base = emif->base;
1047
1048 writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS),
1049 base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
1050 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
1051 writel(readl(base + EMIF_LL_OCP_INTERRUPT_STATUS),
1052 base + EMIF_LL_OCP_INTERRUPT_STATUS);
1053 }
1054
1055 static void disable_and_clear_all_interrupts(struct emif_data *emif)
1056 {
1057 void __iomem *base = emif->base;
1058
1059 /* Disable all interrupts */
1060 writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET),
1061 base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_CLEAR);
1062 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
1063 writel(readl(base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET),
1064 base + EMIF_LL_OCP_INTERRUPT_ENABLE_CLEAR);
1065
1066 /* Clear all interrupts */
1067 clear_all_interrupts(emif);
1068 }
1069
1070 static int __init_or_module setup_interrupts(struct emif_data *emif, u32 irq)
1071 {
1072 u32 interrupts, type;
1073 void __iomem *base = emif->base;
1074
1075 type = emif->plat_data->device_info->type;
1076
1077 clear_all_interrupts(emif);
1078
1079 /* Enable interrupts for SYS interface */
1080 interrupts = EN_ERR_SYS_MASK;
1081 if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4)
1082 interrupts |= EN_TA_SYS_MASK;
1083 writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET);
1084
1085 /* Enable interrupts for LL interface */
1086 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
1087 /* TA need not be enabled for LL */
1088 interrupts = EN_ERR_LL_MASK;
1089 writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET);
1090 }
1091
1092 /* setup IRQ handlers */
1093 return devm_request_threaded_irq(emif->dev, irq,
1094 emif_interrupt_handler,
1095 emif_threaded_isr,
1096 0, dev_name(emif->dev),
1097 emif);
1098
1099 }
1100
1101 static void __init_or_module emif_onetime_settings(struct emif_data *emif)
1102 {
1103 u32 pwr_mgmt_ctrl, zq, temp_alert_cfg;
1104 void __iomem *base = emif->base;
1105 const struct lpddr2_addressing *addressing;
1106 const struct ddr_device_info *device_info;
1107
1108 device_info = emif->plat_data->device_info;
1109 addressing = get_addressing_table(device_info);
1110
1111 /*
1112 * Init power management settings
1113 * We don't know the frequency yet. Use a high frequency
1114 * value for a conservative timeout setting
1115 */
1116 pwr_mgmt_ctrl = get_pwr_mgmt_ctrl(1000000000, emif,
1117 emif->plat_data->ip_rev);
1118 emif->lpmode = (pwr_mgmt_ctrl & LP_MODE_MASK) >> LP_MODE_SHIFT;
1119 writel(pwr_mgmt_ctrl, base + EMIF_POWER_MANAGEMENT_CONTROL);
1120
1121 /* Init ZQ calibration settings */
1122 zq = get_zq_config_reg(addressing, device_info->cs1_used,
1123 device_info->cal_resistors_per_cs);
1124 writel(zq, base + EMIF_SDRAM_OUTPUT_IMPEDANCE_CALIBRATION_CONFIG);
1125
1126 /* Check temperature level temperature level*/
1127 get_temperature_level(emif);
1128 if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN)
1129 dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
1130
1131 /* Init temperature polling */
1132 temp_alert_cfg = get_temp_alert_config(addressing,
1133 emif->plat_data->custom_configs, device_info->cs1_used,
1134 device_info->io_width, get_emif_bus_width(emif));
1135 writel(temp_alert_cfg, base + EMIF_TEMPERATURE_ALERT_CONFIG);
1136
1137 /*
1138 * Program external PHY control registers that are not frequency
1139 * dependent
1140 */
1141 if (emif->plat_data->phy_type != EMIF_PHY_TYPE_INTELLIPHY)
1142 return;
1143 writel(EMIF_EXT_PHY_CTRL_1_VAL, base + EMIF_EXT_PHY_CTRL_1_SHDW);
1144 writel(EMIF_EXT_PHY_CTRL_5_VAL, base + EMIF_EXT_PHY_CTRL_5_SHDW);
1145 writel(EMIF_EXT_PHY_CTRL_6_VAL, base + EMIF_EXT_PHY_CTRL_6_SHDW);
1146 writel(EMIF_EXT_PHY_CTRL_7_VAL, base + EMIF_EXT_PHY_CTRL_7_SHDW);
1147 writel(EMIF_EXT_PHY_CTRL_8_VAL, base + EMIF_EXT_PHY_CTRL_8_SHDW);
1148 writel(EMIF_EXT_PHY_CTRL_9_VAL, base + EMIF_EXT_PHY_CTRL_9_SHDW);
1149 writel(EMIF_EXT_PHY_CTRL_10_VAL, base + EMIF_EXT_PHY_CTRL_10_SHDW);
1150 writel(EMIF_EXT_PHY_CTRL_11_VAL, base + EMIF_EXT_PHY_CTRL_11_SHDW);
1151 writel(EMIF_EXT_PHY_CTRL_12_VAL, base + EMIF_EXT_PHY_CTRL_12_SHDW);
1152 writel(EMIF_EXT_PHY_CTRL_13_VAL, base + EMIF_EXT_PHY_CTRL_13_SHDW);
1153 writel(EMIF_EXT_PHY_CTRL_14_VAL, base + EMIF_EXT_PHY_CTRL_14_SHDW);
1154 writel(EMIF_EXT_PHY_CTRL_15_VAL, base + EMIF_EXT_PHY_CTRL_15_SHDW);
1155 writel(EMIF_EXT_PHY_CTRL_16_VAL, base + EMIF_EXT_PHY_CTRL_16_SHDW);
1156 writel(EMIF_EXT_PHY_CTRL_17_VAL, base + EMIF_EXT_PHY_CTRL_17_SHDW);
1157 writel(EMIF_EXT_PHY_CTRL_18_VAL, base + EMIF_EXT_PHY_CTRL_18_SHDW);
1158 writel(EMIF_EXT_PHY_CTRL_19_VAL, base + EMIF_EXT_PHY_CTRL_19_SHDW);
1159 writel(EMIF_EXT_PHY_CTRL_20_VAL, base + EMIF_EXT_PHY_CTRL_20_SHDW);
1160 writel(EMIF_EXT_PHY_CTRL_21_VAL, base + EMIF_EXT_PHY_CTRL_21_SHDW);
1161 writel(EMIF_EXT_PHY_CTRL_22_VAL, base + EMIF_EXT_PHY_CTRL_22_SHDW);
1162 writel(EMIF_EXT_PHY_CTRL_23_VAL, base + EMIF_EXT_PHY_CTRL_23_SHDW);
1163 writel(EMIF_EXT_PHY_CTRL_24_VAL, base + EMIF_EXT_PHY_CTRL_24_SHDW);
1164 }
1165
1166 static void get_default_timings(struct emif_data *emif)
1167 {
1168 struct emif_platform_data *pd = emif->plat_data;
1169
1170 pd->timings = lpddr2_jedec_timings;
1171 pd->timings_arr_size = ARRAY_SIZE(lpddr2_jedec_timings);
1172
1173 dev_warn(emif->dev, "%s: using default timings\n", __func__);
1174 }
1175
1176 static int is_dev_data_valid(u32 type, u32 density, u32 io_width, u32 phy_type,
1177 u32 ip_rev, struct device *dev)
1178 {
1179 int valid;
1180
1181 valid = (type == DDR_TYPE_LPDDR2_S4 ||
1182 type == DDR_TYPE_LPDDR2_S2)
1183 && (density >= DDR_DENSITY_64Mb
1184 && density <= DDR_DENSITY_8Gb)
1185 && (io_width >= DDR_IO_WIDTH_8
1186 && io_width <= DDR_IO_WIDTH_32);
1187
1188 /* Combinations of EMIF and PHY revisions that we support today */
1189 switch (ip_rev) {
1190 case EMIF_4D:
1191 valid = valid && (phy_type == EMIF_PHY_TYPE_ATTILAPHY);
1192 break;
1193 case EMIF_4D5:
1194 valid = valid && (phy_type == EMIF_PHY_TYPE_INTELLIPHY);
1195 break;
1196 default:
1197 valid = 0;
1198 }
1199
1200 if (!valid)
1201 dev_err(dev, "%s: invalid DDR details\n", __func__);
1202 return valid;
1203 }
1204
1205 static int is_custom_config_valid(struct emif_custom_configs *cust_cfgs,
1206 struct device *dev)
1207 {
1208 int valid = 1;
1209
1210 if ((cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE) &&
1211 (cust_cfgs->lpmode != EMIF_LP_MODE_DISABLE))
1212 valid = cust_cfgs->lpmode_freq_threshold &&
1213 cust_cfgs->lpmode_timeout_performance &&
1214 cust_cfgs->lpmode_timeout_power;
1215
1216 if (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL)
1217 valid = valid && cust_cfgs->temp_alert_poll_interval_ms;
1218
1219 if (!valid)
1220 dev_warn(dev, "%s: invalid custom configs\n", __func__);
1221
1222 return valid;
1223 }
1224
1225 #if defined(CONFIG_OF)
1226 static void __init_or_module of_get_custom_configs(struct device_node *np_emif,
1227 struct emif_data *emif)
1228 {
1229 struct emif_custom_configs *cust_cfgs = NULL;
1230 int len;
1231 const int *lpmode, *poll_intvl;
1232
1233 lpmode = of_get_property(np_emif, "low-power-mode", &len);
1234 poll_intvl = of_get_property(np_emif, "temp-alert-poll-interval", &len);
1235
1236 if (lpmode || poll_intvl)
1237 cust_cfgs = devm_kzalloc(emif->dev, sizeof(*cust_cfgs),
1238 GFP_KERNEL);
1239
1240 if (!cust_cfgs)
1241 return;
1242
1243 if (lpmode) {
1244 cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_LPMODE;
1245 cust_cfgs->lpmode = *lpmode;
1246 of_property_read_u32(np_emif,
1247 "low-power-mode-timeout-performance",
1248 &cust_cfgs->lpmode_timeout_performance);
1249 of_property_read_u32(np_emif,
1250 "low-power-mode-timeout-power",
1251 &cust_cfgs->lpmode_timeout_power);
1252 of_property_read_u32(np_emif,
1253 "low-power-mode-freq-threshold",
1254 &cust_cfgs->lpmode_freq_threshold);
1255 }
1256
1257 if (poll_intvl) {
1258 cust_cfgs->mask |=
1259 EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL;
1260 cust_cfgs->temp_alert_poll_interval_ms = *poll_intvl;
1261 }
1262
1263 if (of_find_property(np_emif, "extended-temp-part", &len))
1264 cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART;
1265
1266 if (!is_custom_config_valid(cust_cfgs, emif->dev)) {
1267 devm_kfree(emif->dev, cust_cfgs);
1268 return;
1269 }
1270
1271 emif->plat_data->custom_configs = cust_cfgs;
1272 }
1273
1274 static void __init_or_module of_get_ddr_info(struct device_node *np_emif,
1275 struct device_node *np_ddr,
1276 struct ddr_device_info *dev_info)
1277 {
1278 u32 density = 0, io_width = 0;
1279 int len;
1280
1281 if (of_find_property(np_emif, "cs1-used", &len))
1282 dev_info->cs1_used = true;
1283
1284 if (of_find_property(np_emif, "cal-resistor-per-cs", &len))
1285 dev_info->cal_resistors_per_cs = true;
1286
1287 if (of_device_is_compatible(np_ddr , "jedec,lpddr2-s4"))
1288 dev_info->type = DDR_TYPE_LPDDR2_S4;
1289 else if (of_device_is_compatible(np_ddr , "jedec,lpddr2-s2"))
1290 dev_info->type = DDR_TYPE_LPDDR2_S2;
1291
1292 of_property_read_u32(np_ddr, "density", &density);
1293 of_property_read_u32(np_ddr, "io-width", &io_width);
1294
1295 /* Convert from density in Mb to the density encoding in jedc_ddr.h */
1296 if (density & (density - 1))
1297 dev_info->density = 0;
1298 else
1299 dev_info->density = __fls(density) - 5;
1300
1301 /* Convert from io_width in bits to io_width encoding in jedc_ddr.h */
1302 if (io_width & (io_width - 1))
1303 dev_info->io_width = 0;
1304 else
1305 dev_info->io_width = __fls(io_width) - 1;
1306 }
1307
1308 static struct emif_data * __init_or_module of_get_memory_device_details(
1309 struct device_node *np_emif, struct device *dev)
1310 {
1311 struct emif_data *emif = NULL;
1312 struct ddr_device_info *dev_info = NULL;
1313 struct emif_platform_data *pd = NULL;
1314 struct device_node *np_ddr;
1315 int len;
1316
1317 np_ddr = of_parse_phandle(np_emif, "device-handle", 0);
1318 if (!np_ddr)
1319 goto error;
1320 emif = devm_kzalloc(dev, sizeof(struct emif_data), GFP_KERNEL);
1321 pd = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
1322 dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
1323
1324 if (!emif || !pd || !dev_info) {
1325 dev_err(dev, "%s: Out of memory!!\n",
1326 __func__);
1327 goto error;
1328 }
1329
1330 emif->plat_data = pd;
1331 pd->device_info = dev_info;
1332 emif->dev = dev;
1333 emif->np_ddr = np_ddr;
1334 emif->temperature_level = SDRAM_TEMP_NOMINAL;
1335
1336 if (of_device_is_compatible(np_emif, "ti,emif-4d"))
1337 emif->plat_data->ip_rev = EMIF_4D;
1338 else if (of_device_is_compatible(np_emif, "ti,emif-4d5"))
1339 emif->plat_data->ip_rev = EMIF_4D5;
1340
1341 of_property_read_u32(np_emif, "phy-type", &pd->phy_type);
1342
1343 if (of_find_property(np_emif, "hw-caps-ll-interface", &len))
1344 pd->hw_caps |= EMIF_HW_CAPS_LL_INTERFACE;
1345
1346 of_get_ddr_info(np_emif, np_ddr, dev_info);
1347 if (!is_dev_data_valid(pd->device_info->type, pd->device_info->density,
1348 pd->device_info->io_width, pd->phy_type, pd->ip_rev,
1349 emif->dev)) {
1350 dev_err(dev, "%s: invalid device data!!\n", __func__);
1351 goto error;
1352 }
1353 /*
1354 * For EMIF instances other than EMIF1 see if the devices connected
1355 * are exactly same as on EMIF1(which is typically the case). If so,
1356 * mark it as a duplicate of EMIF1. This will save some memory and
1357 * computation.
1358 */
1359 if (emif1 && emif1->np_ddr == np_ddr) {
1360 emif->duplicate = true;
1361 goto out;
1362 } else if (emif1) {
1363 dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
1364 __func__);
1365 }
1366
1367 of_get_custom_configs(np_emif, emif);
1368 emif->plat_data->timings = of_get_ddr_timings(np_ddr, emif->dev,
1369 emif->plat_data->device_info->type,
1370 &emif->plat_data->timings_arr_size);
1371
1372 emif->plat_data->min_tck = of_get_min_tck(np_ddr, emif->dev);
1373 goto out;
1374
1375 error:
1376 return NULL;
1377 out:
1378 return emif;
1379 }
1380
1381 #else
1382
1383 static struct emif_data * __init_or_module of_get_memory_device_details(
1384 struct device_node *np_emif, struct device *dev)
1385 {
1386 return NULL;
1387 }
1388 #endif
1389
1390 static struct emif_data *__init_or_module get_device_details(
1391 struct platform_device *pdev)
1392 {
1393 u32 size;
1394 struct emif_data *emif = NULL;
1395 struct ddr_device_info *dev_info;
1396 struct emif_custom_configs *cust_cfgs;
1397 struct emif_platform_data *pd;
1398 struct device *dev;
1399 void *temp;
1400
1401 pd = pdev->dev.platform_data;
1402 dev = &pdev->dev;
1403
1404 if (!(pd && pd->device_info && is_dev_data_valid(pd->device_info->type,
1405 pd->device_info->density, pd->device_info->io_width,
1406 pd->phy_type, pd->ip_rev, dev))) {
1407 dev_err(dev, "%s: invalid device data\n", __func__);
1408 goto error;
1409 }
1410
1411 emif = devm_kzalloc(dev, sizeof(*emif), GFP_KERNEL);
1412 temp = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
1413 dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
1414
1415 if (!emif || !pd || !dev_info) {
1416 dev_err(dev, "%s:%d: allocation error\n", __func__, __LINE__);
1417 goto error;
1418 }
1419
1420 memcpy(temp, pd, sizeof(*pd));
1421 pd = temp;
1422 memcpy(dev_info, pd->device_info, sizeof(*dev_info));
1423
1424 pd->device_info = dev_info;
1425 emif->plat_data = pd;
1426 emif->dev = dev;
1427 emif->temperature_level = SDRAM_TEMP_NOMINAL;
1428
1429 /*
1430 * For EMIF instances other than EMIF1 see if the devices connected
1431 * are exactly same as on EMIF1(which is typically the case). If so,
1432 * mark it as a duplicate of EMIF1 and skip copying timings data.
1433 * This will save some memory and some computation later.
1434 */
1435 emif->duplicate = emif1 && (memcmp(dev_info,
1436 emif1->plat_data->device_info,
1437 sizeof(struct ddr_device_info)) == 0);
1438
1439 if (emif->duplicate) {
1440 pd->timings = NULL;
1441 pd->min_tck = NULL;
1442 goto out;
1443 } else if (emif1) {
1444 dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
1445 __func__);
1446 }
1447
1448 /*
1449 * Copy custom configs - ignore allocation error, if any, as
1450 * custom_configs is not very critical
1451 */
1452 cust_cfgs = pd->custom_configs;
1453 if (cust_cfgs && is_custom_config_valid(cust_cfgs, dev)) {
1454 temp = devm_kzalloc(dev, sizeof(*cust_cfgs), GFP_KERNEL);
1455 if (temp)
1456 memcpy(temp, cust_cfgs, sizeof(*cust_cfgs));
1457 else
1458 dev_warn(dev, "%s:%d: allocation error\n", __func__,
1459 __LINE__);
1460 pd->custom_configs = temp;
1461 }
1462
1463 /*
1464 * Copy timings and min-tck values from platform data. If it is not
1465 * available or if memory allocation fails, use JEDEC defaults
1466 */
1467 size = sizeof(struct lpddr2_timings) * pd->timings_arr_size;
1468 if (pd->timings) {
1469 temp = devm_kzalloc(dev, size, GFP_KERNEL);
1470 if (temp) {
1471 memcpy(temp, pd->timings, size);
1472 pd->timings = temp;
1473 } else {
1474 dev_warn(dev, "%s:%d: allocation error\n", __func__,
1475 __LINE__);
1476 get_default_timings(emif);
1477 }
1478 } else {
1479 get_default_timings(emif);
1480 }
1481
1482 if (pd->min_tck) {
1483 temp = devm_kzalloc(dev, sizeof(*pd->min_tck), GFP_KERNEL);
1484 if (temp) {
1485 memcpy(temp, pd->min_tck, sizeof(*pd->min_tck));
1486 pd->min_tck = temp;
1487 } else {
1488 dev_warn(dev, "%s:%d: allocation error\n", __func__,
1489 __LINE__);
1490 pd->min_tck = &lpddr2_jedec_min_tck;
1491 }
1492 } else {
1493 pd->min_tck = &lpddr2_jedec_min_tck;
1494 }
1495
1496 out:
1497 return emif;
1498
1499 error:
1500 return NULL;
1501 }
1502
1503 static int __init_or_module emif_probe(struct platform_device *pdev)
1504 {
1505 struct emif_data *emif;
1506 struct resource *res;
1507 int irq;
1508
1509 if (pdev->dev.of_node)
1510 emif = of_get_memory_device_details(pdev->dev.of_node, &pdev->dev);
1511 else
1512 emif = get_device_details(pdev);
1513
1514 if (!emif) {
1515 pr_err("%s: error getting device data\n", __func__);
1516 goto error;
1517 }
1518
1519 list_add(&emif->node, &device_list);
1520 emif->addressing = get_addressing_table(emif->plat_data->device_info);
1521
1522 /* Save pointers to each other in emif and device structures */
1523 emif->dev = &pdev->dev;
1524 platform_set_drvdata(pdev, emif);
1525
1526 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1527 if (!res) {
1528 dev_err(emif->dev, "%s: error getting memory resource\n",
1529 __func__);
1530 goto error;
1531 }
1532
1533 emif->base = devm_ioremap_resource(emif->dev, res);
1534 if (IS_ERR(emif->base))
1535 goto error;
1536
1537 irq = platform_get_irq(pdev, 0);
1538 if (irq < 0) {
1539 dev_err(emif->dev, "%s: error getting IRQ resource - %d\n",
1540 __func__, irq);
1541 goto error;
1542 }
1543
1544 emif_onetime_settings(emif);
1545 emif_debugfs_init(emif);
1546 disable_and_clear_all_interrupts(emif);
1547 setup_interrupts(emif, irq);
1548
1549 /* One-time actions taken on probing the first device */
1550 if (!emif1) {
1551 emif1 = emif;
1552 spin_lock_init(&emif_lock);
1553
1554 /*
1555 * TODO: register notifiers for frequency and voltage
1556 * change here once the respective frameworks are
1557 * available
1558 */
1559 }
1560
1561 dev_info(&pdev->dev, "%s: device configured with addr = %p and IRQ%d\n",
1562 __func__, emif->base, irq);
1563
1564 return 0;
1565 error:
1566 return -ENODEV;
1567 }
1568
1569 static int __exit emif_remove(struct platform_device *pdev)
1570 {
1571 struct emif_data *emif = platform_get_drvdata(pdev);
1572
1573 emif_debugfs_exit(emif);
1574
1575 return 0;
1576 }
1577
1578 static void emif_shutdown(struct platform_device *pdev)
1579 {
1580 struct emif_data *emif = platform_get_drvdata(pdev);
1581
1582 disable_and_clear_all_interrupts(emif);
1583 }
1584
1585 static int get_emif_reg_values(struct emif_data *emif, u32 freq,
1586 struct emif_regs *regs)
1587 {
1588 u32 cs1_used, ip_rev, phy_type;
1589 u32 cl, type;
1590 const struct lpddr2_timings *timings;
1591 const struct lpddr2_min_tck *min_tck;
1592 const struct ddr_device_info *device_info;
1593 const struct lpddr2_addressing *addressing;
1594 struct emif_data *emif_for_calc;
1595 struct device *dev;
1596 const struct emif_custom_configs *custom_configs;
1597
1598 dev = emif->dev;
1599 /*
1600 * If the devices on this EMIF instance is duplicate of EMIF1,
1601 * use EMIF1 details for the calculation
1602 */
1603 emif_for_calc = emif->duplicate ? emif1 : emif;
1604 timings = get_timings_table(emif_for_calc, freq);
1605 addressing = emif_for_calc->addressing;
1606 if (!timings || !addressing) {
1607 dev_err(dev, "%s: not enough data available for %dHz",
1608 __func__, freq);
1609 return -1;
1610 }
1611
1612 device_info = emif_for_calc->plat_data->device_info;
1613 type = device_info->type;
1614 cs1_used = device_info->cs1_used;
1615 ip_rev = emif_for_calc->plat_data->ip_rev;
1616 phy_type = emif_for_calc->plat_data->phy_type;
1617
1618 min_tck = emif_for_calc->plat_data->min_tck;
1619 custom_configs = emif_for_calc->plat_data->custom_configs;
1620
1621 set_ddr_clk_period(freq);
1622
1623 regs->ref_ctrl_shdw = get_sdram_ref_ctrl_shdw(freq, addressing);
1624 regs->sdram_tim1_shdw = get_sdram_tim_1_shdw(timings, min_tck,
1625 addressing);
1626 regs->sdram_tim2_shdw = get_sdram_tim_2_shdw(timings, min_tck,
1627 addressing, type);
1628 regs->sdram_tim3_shdw = get_sdram_tim_3_shdw(timings, min_tck,
1629 addressing, type, ip_rev, EMIF_NORMAL_TIMINGS);
1630
1631 cl = get_cl(emif);
1632
1633 if (phy_type == EMIF_PHY_TYPE_ATTILAPHY && ip_rev == EMIF_4D) {
1634 regs->phy_ctrl_1_shdw = get_ddr_phy_ctrl_1_attilaphy_4d(
1635 timings, freq, cl);
1636 } else if (phy_type == EMIF_PHY_TYPE_INTELLIPHY && ip_rev == EMIF_4D5) {
1637 regs->phy_ctrl_1_shdw = get_phy_ctrl_1_intelliphy_4d5(freq, cl);
1638 regs->ext_phy_ctrl_2_shdw = get_ext_phy_ctrl_2_intelliphy_4d5();
1639 regs->ext_phy_ctrl_3_shdw = get_ext_phy_ctrl_3_intelliphy_4d5();
1640 regs->ext_phy_ctrl_4_shdw = get_ext_phy_ctrl_4_intelliphy_4d5();
1641 } else {
1642 return -1;
1643 }
1644
1645 /* Only timeout values in pwr_mgmt_ctrl_shdw register */
1646 regs->pwr_mgmt_ctrl_shdw =
1647 get_pwr_mgmt_ctrl(freq, emif_for_calc, ip_rev) &
1648 (CS_TIM_MASK | SR_TIM_MASK | PD_TIM_MASK);
1649
1650 if (ip_rev & EMIF_4D) {
1651 regs->read_idle_ctrl_shdw_normal =
1652 get_read_idle_ctrl_shdw(DDR_VOLTAGE_STABLE);
1653
1654 regs->read_idle_ctrl_shdw_volt_ramp =
1655 get_read_idle_ctrl_shdw(DDR_VOLTAGE_RAMPING);
1656 } else if (ip_rev & EMIF_4D5) {
1657 regs->dll_calib_ctrl_shdw_normal =
1658 get_dll_calib_ctrl_shdw(DDR_VOLTAGE_STABLE);
1659
1660 regs->dll_calib_ctrl_shdw_volt_ramp =
1661 get_dll_calib_ctrl_shdw(DDR_VOLTAGE_RAMPING);
1662 }
1663
1664 if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
1665 regs->ref_ctrl_shdw_derated = get_sdram_ref_ctrl_shdw(freq / 4,
1666 addressing);
1667
1668 regs->sdram_tim1_shdw_derated =
1669 get_sdram_tim_1_shdw_derated(timings, min_tck,
1670 addressing);
1671
1672 regs->sdram_tim3_shdw_derated = get_sdram_tim_3_shdw(timings,
1673 min_tck, addressing, type, ip_rev,
1674 EMIF_DERATED_TIMINGS);
1675 }
1676
1677 regs->freq = freq;
1678
1679 return 0;
1680 }
1681
1682 /*
1683 * get_regs() - gets the cached emif_regs structure for a given EMIF instance
1684 * given frequency(freq):
1685 *
1686 * As an optimisation, every EMIF instance other than EMIF1 shares the
1687 * register cache with EMIF1 if the devices connected on this instance
1688 * are same as that on EMIF1(indicated by the duplicate flag)
1689 *
1690 * If we do not have an entry corresponding to the frequency given, we
1691 * allocate a new entry and calculate the values
1692 *
1693 * Upon finding the right reg dump, save it in curr_regs. It can be
1694 * directly used for thermal de-rating and voltage ramping changes.
1695 */
1696 static struct emif_regs *get_regs(struct emif_data *emif, u32 freq)
1697 {
1698 int i;
1699 struct emif_regs **regs_cache;
1700 struct emif_regs *regs = NULL;
1701 struct device *dev;
1702
1703 dev = emif->dev;
1704 if (emif->curr_regs && emif->curr_regs->freq == freq) {
1705 dev_dbg(dev, "%s: using curr_regs - %u Hz", __func__, freq);
1706 return emif->curr_regs;
1707 }
1708
1709 if (emif->duplicate)
1710 regs_cache = emif1->regs_cache;
1711 else
1712 regs_cache = emif->regs_cache;
1713
1714 for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
1715 if (regs_cache[i]->freq == freq) {
1716 regs = regs_cache[i];
1717 dev_dbg(dev,
1718 "%s: reg dump found in reg cache for %u Hz\n",
1719 __func__, freq);
1720 break;
1721 }
1722 }
1723
1724 /*
1725 * If we don't have an entry for this frequency in the cache create one
1726 * and calculate the values
1727 */
1728 if (!regs) {
1729 regs = devm_kzalloc(emif->dev, sizeof(*regs), GFP_ATOMIC);
1730 if (!regs)
1731 return NULL;
1732
1733 if (get_emif_reg_values(emif, freq, regs)) {
1734 devm_kfree(emif->dev, regs);
1735 return NULL;
1736 }
1737
1738 /*
1739 * Now look for an un-used entry in the cache and save the
1740 * newly created struct. If there are no free entries
1741 * over-write the last entry
1742 */
1743 for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++)
1744 ;
1745
1746 if (i >= EMIF_MAX_NUM_FREQUENCIES) {
1747 dev_warn(dev, "%s: regs_cache full - reusing a slot!!\n",
1748 __func__);
1749 i = EMIF_MAX_NUM_FREQUENCIES - 1;
1750 devm_kfree(emif->dev, regs_cache[i]);
1751 }
1752 regs_cache[i] = regs;
1753 }
1754
1755 return regs;
1756 }
1757
1758 static void do_volt_notify_handling(struct emif_data *emif, u32 volt_state)
1759 {
1760 dev_dbg(emif->dev, "%s: voltage notification : %d", __func__,
1761 volt_state);
1762
1763 if (!emif->curr_regs) {
1764 dev_err(emif->dev,
1765 "%s: volt-notify before registers are ready: %d\n",
1766 __func__, volt_state);
1767 return;
1768 }
1769
1770 setup_volt_sensitive_regs(emif, emif->curr_regs, volt_state);
1771 }
1772
1773 /*
1774 * TODO: voltage notify handling should be hooked up to
1775 * regulator framework as soon as the necessary support
1776 * is available in mainline kernel. This function is un-used
1777 * right now.
1778 */
1779 static void __attribute__((unused)) volt_notify_handling(u32 volt_state)
1780 {
1781 struct emif_data *emif;
1782
1783 spin_lock_irqsave(&emif_lock, irq_state);
1784
1785 list_for_each_entry(emif, &device_list, node)
1786 do_volt_notify_handling(emif, volt_state);
1787 do_freq_update();
1788
1789 spin_unlock_irqrestore(&emif_lock, irq_state);
1790 }
1791
1792 static void do_freq_pre_notify_handling(struct emif_data *emif, u32 new_freq)
1793 {
1794 struct emif_regs *regs;
1795
1796 regs = get_regs(emif, new_freq);
1797 if (!regs)
1798 return;
1799
1800 emif->curr_regs = regs;
1801
1802 /*
1803 * Update the shadow registers:
1804 * Temperature and voltage-ramp sensitive settings are also configured
1805 * in terms of DDR cycles. So, we need to update them too when there
1806 * is a freq change
1807 */
1808 dev_dbg(emif->dev, "%s: setting up shadow registers for %uHz",
1809 __func__, new_freq);
1810 setup_registers(emif, regs);
1811 setup_temperature_sensitive_regs(emif, regs);
1812 setup_volt_sensitive_regs(emif, regs, DDR_VOLTAGE_STABLE);
1813
1814 /*
1815 * Part of workaround for errata i728. See do_freq_update()
1816 * for more details
1817 */
1818 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
1819 set_lpmode(emif, EMIF_LP_MODE_DISABLE);
1820 }
1821
1822 /*
1823 * TODO: frequency notify handling should be hooked up to
1824 * clock framework as soon as the necessary support is
1825 * available in mainline kernel. This function is un-used
1826 * right now.
1827 */
1828 static void __attribute__((unused)) freq_pre_notify_handling(u32 new_freq)
1829 {
1830 struct emif_data *emif;
1831
1832 /*
1833 * NOTE: we are taking the spin-lock here and releases it
1834 * only in post-notifier. This doesn't look good and
1835 * Sparse complains about it, but this seems to be
1836 * un-avoidable. We need to lock a sequence of events
1837 * that is split between EMIF and clock framework.
1838 *
1839 * 1. EMIF driver updates EMIF timings in shadow registers in the
1840 * frequency pre-notify callback from clock framework
1841 * 2. clock framework sets up the registers for the new frequency
1842 * 3. clock framework initiates a hw-sequence that updates
1843 * the frequency EMIF timings synchronously.
1844 *
1845 * All these 3 steps should be performed as an atomic operation
1846 * vis-a-vis similar sequence in the EMIF interrupt handler
1847 * for temperature events. Otherwise, there could be race
1848 * conditions that could result in incorrect EMIF timings for
1849 * a given frequency
1850 */
1851 spin_lock_irqsave(&emif_lock, irq_state);
1852
1853 list_for_each_entry(emif, &device_list, node)
1854 do_freq_pre_notify_handling(emif, new_freq);
1855 }
1856
1857 static void do_freq_post_notify_handling(struct emif_data *emif)
1858 {
1859 /*
1860 * Part of workaround for errata i728. See do_freq_update()
1861 * for more details
1862 */
1863 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
1864 set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
1865 }
1866
1867 /*
1868 * TODO: frequency notify handling should be hooked up to
1869 * clock framework as soon as the necessary support is
1870 * available in mainline kernel. This function is un-used
1871 * right now.
1872 */
1873 static void __attribute__((unused)) freq_post_notify_handling(void)
1874 {
1875 struct emif_data *emif;
1876
1877 list_for_each_entry(emif, &device_list, node)
1878 do_freq_post_notify_handling(emif);
1879
1880 /*
1881 * Lock is done in pre-notify handler. See freq_pre_notify_handling()
1882 * for more details
1883 */
1884 spin_unlock_irqrestore(&emif_lock, irq_state);
1885 }
1886
1887 #if defined(CONFIG_OF)
1888 static const struct of_device_id emif_of_match[] = {
1889 { .compatible = "ti,emif-4d" },
1890 { .compatible = "ti,emif-4d5" },
1891 {},
1892 };
1893 MODULE_DEVICE_TABLE(of, emif_of_match);
1894 #endif
1895
1896 static struct platform_driver emif_driver = {
1897 .remove = __exit_p(emif_remove),
1898 .shutdown = emif_shutdown,
1899 .driver = {
1900 .name = "emif",
1901 .of_match_table = of_match_ptr(emif_of_match),
1902 },
1903 };
1904
1905 module_platform_driver_probe(emif_driver, emif_probe);
1906
1907 MODULE_DESCRIPTION("TI EMIF SDRAM Controller Driver");
1908 MODULE_LICENSE("GPL");
1909 MODULE_ALIAS("platform:emif");
1910 MODULE_AUTHOR("Texas Instruments Inc");
This page took 0.067881 seconds and 4 git commands to generate.