98da431af044679fbd412682daaac783d5698d17
[deliverable/linux.git] / drivers / mfd / db8500-prcmu.c
1 /*
2 * Copyright (C) STMicroelectronics 2009
3 * Copyright (C) ST-Ericsson SA 2010
4 *
5 * License Terms: GNU General Public License v2
6 * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
7 * Author: Sundar Iyer <sundar.iyer@stericsson.com>
8 * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
9 *
10 * U8500 PRCM Unit interface driver
11 *
12 */
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/delay.h>
16 #include <linux/errno.h>
17 #include <linux/err.h>
18 #include <linux/spinlock.h>
19 #include <linux/io.h>
20 #include <linux/slab.h>
21 #include <linux/mutex.h>
22 #include <linux/completion.h>
23 #include <linux/irq.h>
24 #include <linux/jiffies.h>
25 #include <linux/bitops.h>
26 #include <linux/fs.h>
27 #include <linux/platform_device.h>
28 #include <linux/uaccess.h>
29 #include <linux/mfd/core.h>
30 #include <linux/mfd/dbx500-prcmu.h>
31 #include <linux/regulator/db8500-prcmu.h>
32 #include <linux/regulator/machine.h>
33 #include <mach/hardware.h>
34 #include <mach/irqs.h>
35 #include <mach/db8500-regs.h>
36 #include <mach/id.h>
37 #include "dbx500-prcmu-regs.h"
38
39 /* Offset for the firmware version within the TCPM */
40 #define PRCMU_FW_VERSION_OFFSET 0xA4
41
42 /* PRCMU project numbers, defined by PRCMU FW */
43 #define PRCMU_PROJECT_ID_8500V1_0 1
44 #define PRCMU_PROJECT_ID_8500V2_0 2
45 #define PRCMU_PROJECT_ID_8400V2_0 3
46
47 /* Index of different voltages to be used when accessing AVSData */
48 #define PRCM_AVS_BASE 0x2FC
49 #define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0)
50 #define PRCM_AVS_VBB_MAX_OPP (PRCM_AVS_BASE + 0x1)
51 #define PRCM_AVS_VBB_100_OPP (PRCM_AVS_BASE + 0x2)
52 #define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3)
53 #define PRCM_AVS_VARM_MAX_OPP (PRCM_AVS_BASE + 0x4)
54 #define PRCM_AVS_VARM_100_OPP (PRCM_AVS_BASE + 0x5)
55 #define PRCM_AVS_VARM_50_OPP (PRCM_AVS_BASE + 0x6)
56 #define PRCM_AVS_VARM_RET (PRCM_AVS_BASE + 0x7)
57 #define PRCM_AVS_VAPE_100_OPP (PRCM_AVS_BASE + 0x8)
58 #define PRCM_AVS_VAPE_50_OPP (PRCM_AVS_BASE + 0x9)
59 #define PRCM_AVS_VMOD_100_OPP (PRCM_AVS_BASE + 0xA)
60 #define PRCM_AVS_VMOD_50_OPP (PRCM_AVS_BASE + 0xB)
61 #define PRCM_AVS_VSAFE (PRCM_AVS_BASE + 0xC)
62
63 #define PRCM_AVS_VOLTAGE 0
64 #define PRCM_AVS_VOLTAGE_MASK 0x3f
65 #define PRCM_AVS_ISSLOWSTARTUP 6
66 #define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP)
67 #define PRCM_AVS_ISMODEENABLE 7
68 #define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE)
69
70 #define PRCM_BOOT_STATUS 0xFFF
71 #define PRCM_ROMCODE_A2P 0xFFE
72 #define PRCM_ROMCODE_P2A 0xFFD
73 #define PRCM_XP70_CUR_PWR_STATE 0xFFC /* 4 BYTES */
74
75 #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
76
77 #define _PRCM_MBOX_HEADER 0xFE8 /* 16 bytes */
78 #define PRCM_MBOX_HEADER_REQ_MB0 (_PRCM_MBOX_HEADER + 0x0)
79 #define PRCM_MBOX_HEADER_REQ_MB1 (_PRCM_MBOX_HEADER + 0x1)
80 #define PRCM_MBOX_HEADER_REQ_MB2 (_PRCM_MBOX_HEADER + 0x2)
81 #define PRCM_MBOX_HEADER_REQ_MB3 (_PRCM_MBOX_HEADER + 0x3)
82 #define PRCM_MBOX_HEADER_REQ_MB4 (_PRCM_MBOX_HEADER + 0x4)
83 #define PRCM_MBOX_HEADER_REQ_MB5 (_PRCM_MBOX_HEADER + 0x5)
84 #define PRCM_MBOX_HEADER_ACK_MB0 (_PRCM_MBOX_HEADER + 0x8)
85
86 /* Req Mailboxes */
87 #define PRCM_REQ_MB0 0xFDC /* 12 bytes */
88 #define PRCM_REQ_MB1 0xFD0 /* 12 bytes */
89 #define PRCM_REQ_MB2 0xFC0 /* 16 bytes */
90 #define PRCM_REQ_MB3 0xE4C /* 372 bytes */
91 #define PRCM_REQ_MB4 0xE48 /* 4 bytes */
92 #define PRCM_REQ_MB5 0xE44 /* 4 bytes */
93
94 /* Ack Mailboxes */
95 #define PRCM_ACK_MB0 0xE08 /* 52 bytes */
96 #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
97 #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
98 #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
99 #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
100 #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
101
102 /* Mailbox 0 headers */
103 #define MB0H_POWER_STATE_TRANS 0
104 #define MB0H_CONFIG_WAKEUPS_EXE 1
105 #define MB0H_READ_WAKEUP_ACK 3
106 #define MB0H_CONFIG_WAKEUPS_SLEEP 4
107
108 #define MB0H_WAKEUP_EXE 2
109 #define MB0H_WAKEUP_SLEEP 5
110
111 /* Mailbox 0 REQs */
112 #define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0)
113 #define PRCM_REQ_MB0_AP_PLL_STATE (PRCM_REQ_MB0 + 0x1)
114 #define PRCM_REQ_MB0_ULP_CLOCK_STATE (PRCM_REQ_MB0 + 0x2)
115 #define PRCM_REQ_MB0_DO_NOT_WFI (PRCM_REQ_MB0 + 0x3)
116 #define PRCM_REQ_MB0_WAKEUP_8500 (PRCM_REQ_MB0 + 0x4)
117 #define PRCM_REQ_MB0_WAKEUP_4500 (PRCM_REQ_MB0 + 0x8)
118
119 /* Mailbox 0 ACKs */
120 #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS (PRCM_ACK_MB0 + 0x0)
121 #define PRCM_ACK_MB0_READ_POINTER (PRCM_ACK_MB0 + 0x1)
122 #define PRCM_ACK_MB0_WAKEUP_0_8500 (PRCM_ACK_MB0 + 0x4)
123 #define PRCM_ACK_MB0_WAKEUP_0_4500 (PRCM_ACK_MB0 + 0x8)
124 #define PRCM_ACK_MB0_WAKEUP_1_8500 (PRCM_ACK_MB0 + 0x1C)
125 #define PRCM_ACK_MB0_WAKEUP_1_4500 (PRCM_ACK_MB0 + 0x20)
126 #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
127
128 /* Mailbox 1 headers */
129 #define MB1H_ARM_APE_OPP 0x0
130 #define MB1H_RESET_MODEM 0x2
131 #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
132 #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
133 #define MB1H_RELEASE_USB_WAKEUP 0x5
134 #define MB1H_PLL_ON_OFF 0x6
135
136 /* Mailbox 1 Requests */
137 #define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0)
138 #define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1)
139 #define PRCM_REQ_MB1_PLL_ON_OFF (PRCM_REQ_MB1 + 0x4)
140 #define PLL_SOC1_OFF 0x4
141 #define PLL_SOC1_ON 0x8
142
143 /* Mailbox 1 ACKs */
144 #define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0)
145 #define PRCM_ACK_MB1_CURRENT_APE_OPP (PRCM_ACK_MB1 + 0x1)
146 #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
147 #define PRCM_ACK_MB1_DVFS_STATUS (PRCM_ACK_MB1 + 0x3)
148
149 /* Mailbox 2 headers */
150 #define MB2H_DPS 0x0
151 #define MB2H_AUTO_PWR 0x1
152
153 /* Mailbox 2 REQs */
154 #define PRCM_REQ_MB2_SVA_MMDSP (PRCM_REQ_MB2 + 0x0)
155 #define PRCM_REQ_MB2_SVA_PIPE (PRCM_REQ_MB2 + 0x1)
156 #define PRCM_REQ_MB2_SIA_MMDSP (PRCM_REQ_MB2 + 0x2)
157 #define PRCM_REQ_MB2_SIA_PIPE (PRCM_REQ_MB2 + 0x3)
158 #define PRCM_REQ_MB2_SGA (PRCM_REQ_MB2 + 0x4)
159 #define PRCM_REQ_MB2_B2R2_MCDE (PRCM_REQ_MB2 + 0x5)
160 #define PRCM_REQ_MB2_ESRAM12 (PRCM_REQ_MB2 + 0x6)
161 #define PRCM_REQ_MB2_ESRAM34 (PRCM_REQ_MB2 + 0x7)
162 #define PRCM_REQ_MB2_AUTO_PM_SLEEP (PRCM_REQ_MB2 + 0x8)
163 #define PRCM_REQ_MB2_AUTO_PM_IDLE (PRCM_REQ_MB2 + 0xC)
164
165 /* Mailbox 2 ACKs */
166 #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
167 #define HWACC_PWR_ST_OK 0xFE
168
169 /* Mailbox 3 headers */
170 #define MB3H_ANC 0x0
171 #define MB3H_SIDETONE 0x1
172 #define MB3H_SYSCLK 0xE
173
174 /* Mailbox 3 Requests */
175 #define PRCM_REQ_MB3_ANC_FIR_COEFF (PRCM_REQ_MB3 + 0x0)
176 #define PRCM_REQ_MB3_ANC_IIR_COEFF (PRCM_REQ_MB3 + 0x20)
177 #define PRCM_REQ_MB3_ANC_SHIFTER (PRCM_REQ_MB3 + 0x60)
178 #define PRCM_REQ_MB3_ANC_WARP (PRCM_REQ_MB3 + 0x64)
179 #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN (PRCM_REQ_MB3 + 0x68)
180 #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
181 #define PRCM_REQ_MB3_SYSCLK_MGT (PRCM_REQ_MB3 + 0x16C)
182
183 /* Mailbox 4 headers */
184 #define MB4H_DDR_INIT 0x0
185 #define MB4H_MEM_ST 0x1
186 #define MB4H_HOTDOG 0x12
187 #define MB4H_HOTMON 0x13
188 #define MB4H_HOT_PERIOD 0x14
189 #define MB4H_A9WDOG_CONF 0x16
190 #define MB4H_A9WDOG_EN 0x17
191 #define MB4H_A9WDOG_DIS 0x18
192 #define MB4H_A9WDOG_LOAD 0x19
193 #define MB4H_A9WDOG_KICK 0x20
194
195 /* Mailbox 4 Requests */
196 #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0)
197 #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE (PRCM_REQ_MB4 + 0x1)
198 #define PRCM_REQ_MB4_ESRAM0_ST (PRCM_REQ_MB4 + 0x3)
199 #define PRCM_REQ_MB4_HOTDOG_THRESHOLD (PRCM_REQ_MB4 + 0x0)
200 #define PRCM_REQ_MB4_HOTMON_LOW (PRCM_REQ_MB4 + 0x0)
201 #define PRCM_REQ_MB4_HOTMON_HIGH (PRCM_REQ_MB4 + 0x1)
202 #define PRCM_REQ_MB4_HOTMON_CONFIG (PRCM_REQ_MB4 + 0x2)
203 #define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0)
204 #define HOTMON_CONFIG_LOW BIT(0)
205 #define HOTMON_CONFIG_HIGH BIT(1)
206 #define PRCM_REQ_MB4_A9WDOG_0 (PRCM_REQ_MB4 + 0x0)
207 #define PRCM_REQ_MB4_A9WDOG_1 (PRCM_REQ_MB4 + 0x1)
208 #define PRCM_REQ_MB4_A9WDOG_2 (PRCM_REQ_MB4 + 0x2)
209 #define PRCM_REQ_MB4_A9WDOG_3 (PRCM_REQ_MB4 + 0x3)
210 #define A9WDOG_AUTO_OFF_EN BIT(7)
211 #define A9WDOG_AUTO_OFF_DIS 0
212 #define A9WDOG_ID_MASK 0xf
213
214 /* Mailbox 5 Requests */
215 #define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0)
216 #define PRCM_REQ_MB5_I2C_HW_BITS (PRCM_REQ_MB5 + 0x1)
217 #define PRCM_REQ_MB5_I2C_REG (PRCM_REQ_MB5 + 0x2)
218 #define PRCM_REQ_MB5_I2C_VAL (PRCM_REQ_MB5 + 0x3)
219 #define PRCMU_I2C_WRITE(slave) \
220 (((slave) << 1) | (cpu_is_u8500v2() ? BIT(6) : 0))
221 #define PRCMU_I2C_READ(slave) \
222 (((slave) << 1) | BIT(0) | (cpu_is_u8500v2() ? BIT(6) : 0))
223 #define PRCMU_I2C_STOP_EN BIT(3)
224
225 /* Mailbox 5 ACKs */
226 #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
227 #define PRCM_ACK_MB5_I2C_VAL (PRCM_ACK_MB5 + 0x3)
228 #define I2C_WR_OK 0x1
229 #define I2C_RD_OK 0x2
230
231 #define NUM_MB 8
232 #define MBOX_BIT BIT
233 #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
234
235 /*
236 * Wakeups/IRQs
237 */
238
239 #define WAKEUP_BIT_RTC BIT(0)
240 #define WAKEUP_BIT_RTT0 BIT(1)
241 #define WAKEUP_BIT_RTT1 BIT(2)
242 #define WAKEUP_BIT_HSI0 BIT(3)
243 #define WAKEUP_BIT_HSI1 BIT(4)
244 #define WAKEUP_BIT_CA_WAKE BIT(5)
245 #define WAKEUP_BIT_USB BIT(6)
246 #define WAKEUP_BIT_ABB BIT(7)
247 #define WAKEUP_BIT_ABB_FIFO BIT(8)
248 #define WAKEUP_BIT_SYSCLK_OK BIT(9)
249 #define WAKEUP_BIT_CA_SLEEP BIT(10)
250 #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
251 #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
252 #define WAKEUP_BIT_ANC_OK BIT(13)
253 #define WAKEUP_BIT_SW_ERROR BIT(14)
254 #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
255 #define WAKEUP_BIT_ARM BIT(17)
256 #define WAKEUP_BIT_HOTMON_LOW BIT(18)
257 #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
258 #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
259 #define WAKEUP_BIT_GPIO0 BIT(23)
260 #define WAKEUP_BIT_GPIO1 BIT(24)
261 #define WAKEUP_BIT_GPIO2 BIT(25)
262 #define WAKEUP_BIT_GPIO3 BIT(26)
263 #define WAKEUP_BIT_GPIO4 BIT(27)
264 #define WAKEUP_BIT_GPIO5 BIT(28)
265 #define WAKEUP_BIT_GPIO6 BIT(29)
266 #define WAKEUP_BIT_GPIO7 BIT(30)
267 #define WAKEUP_BIT_GPIO8 BIT(31)
268
269 /*
270 * This vector maps irq numbers to the bits in the bit field used in
271 * communication with the PRCMU firmware.
272 *
273 * The reason for having this is to keep the irq numbers contiguous even though
274 * the bits in the bit field are not. (The bits also have a tendency to move
275 * around, to further complicate matters.)
276 */
277 #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name) - IRQ_PRCMU_BASE)
278 #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
279 static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
280 IRQ_ENTRY(RTC),
281 IRQ_ENTRY(RTT0),
282 IRQ_ENTRY(RTT1),
283 IRQ_ENTRY(HSI0),
284 IRQ_ENTRY(HSI1),
285 IRQ_ENTRY(CA_WAKE),
286 IRQ_ENTRY(USB),
287 IRQ_ENTRY(ABB),
288 IRQ_ENTRY(ABB_FIFO),
289 IRQ_ENTRY(CA_SLEEP),
290 IRQ_ENTRY(ARM),
291 IRQ_ENTRY(HOTMON_LOW),
292 IRQ_ENTRY(HOTMON_HIGH),
293 IRQ_ENTRY(MODEM_SW_RESET_REQ),
294 IRQ_ENTRY(GPIO0),
295 IRQ_ENTRY(GPIO1),
296 IRQ_ENTRY(GPIO2),
297 IRQ_ENTRY(GPIO3),
298 IRQ_ENTRY(GPIO4),
299 IRQ_ENTRY(GPIO5),
300 IRQ_ENTRY(GPIO6),
301 IRQ_ENTRY(GPIO7),
302 IRQ_ENTRY(GPIO8)
303 };
304
305 #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
306 #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
307 static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
308 WAKEUP_ENTRY(RTC),
309 WAKEUP_ENTRY(RTT0),
310 WAKEUP_ENTRY(RTT1),
311 WAKEUP_ENTRY(HSI0),
312 WAKEUP_ENTRY(HSI1),
313 WAKEUP_ENTRY(USB),
314 WAKEUP_ENTRY(ABB),
315 WAKEUP_ENTRY(ABB_FIFO),
316 WAKEUP_ENTRY(ARM)
317 };
318
319 /*
320 * mb0_transfer - state needed for mailbox 0 communication.
321 * @lock: The transaction lock.
322 * @dbb_events_lock: A lock used to handle concurrent access to (parts of)
323 * the request data.
324 * @mask_work: Work structure used for (un)masking wakeup interrupts.
325 * @req: Request data that need to persist between requests.
326 */
327 static struct {
328 spinlock_t lock;
329 spinlock_t dbb_irqs_lock;
330 struct work_struct mask_work;
331 struct mutex ac_wake_lock;
332 struct completion ac_wake_work;
333 struct {
334 u32 dbb_irqs;
335 u32 dbb_wakeups;
336 u32 abb_events;
337 } req;
338 } mb0_transfer;
339
340 /*
341 * mb1_transfer - state needed for mailbox 1 communication.
342 * @lock: The transaction lock.
343 * @work: The transaction completion structure.
344 * @ack: Reply ("acknowledge") data.
345 */
346 static struct {
347 struct mutex lock;
348 struct completion work;
349 struct {
350 u8 header;
351 u8 arm_opp;
352 u8 ape_opp;
353 u8 ape_voltage_status;
354 } ack;
355 } mb1_transfer;
356
357 /*
358 * mb2_transfer - state needed for mailbox 2 communication.
359 * @lock: The transaction lock.
360 * @work: The transaction completion structure.
361 * @auto_pm_lock: The autonomous power management configuration lock.
362 * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
363 * @req: Request data that need to persist between requests.
364 * @ack: Reply ("acknowledge") data.
365 */
366 static struct {
367 struct mutex lock;
368 struct completion work;
369 spinlock_t auto_pm_lock;
370 bool auto_pm_enabled;
371 struct {
372 u8 status;
373 } ack;
374 } mb2_transfer;
375
376 /*
377 * mb3_transfer - state needed for mailbox 3 communication.
378 * @lock: The request lock.
379 * @sysclk_lock: A lock used to handle concurrent sysclk requests.
380 * @sysclk_work: Work structure used for sysclk requests.
381 */
382 static struct {
383 spinlock_t lock;
384 struct mutex sysclk_lock;
385 struct completion sysclk_work;
386 } mb3_transfer;
387
388 /*
389 * mb4_transfer - state needed for mailbox 4 communication.
390 * @lock: The transaction lock.
391 * @work: The transaction completion structure.
392 */
393 static struct {
394 struct mutex lock;
395 struct completion work;
396 } mb4_transfer;
397
398 /*
399 * mb5_transfer - state needed for mailbox 5 communication.
400 * @lock: The transaction lock.
401 * @work: The transaction completion structure.
402 * @ack: Reply ("acknowledge") data.
403 */
404 static struct {
405 struct mutex lock;
406 struct completion work;
407 struct {
408 u8 status;
409 u8 value;
410 } ack;
411 } mb5_transfer;
412
413 static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
414
415 /* Spinlocks */
416 static DEFINE_SPINLOCK(clkout_lock);
417 static DEFINE_SPINLOCK(gpiocr_lock);
418
419 /* Global var to runtime determine TCDM base for v2 or v1 */
420 static __iomem void *tcdm_base;
421
422 struct clk_mgt {
423 unsigned int offset;
424 u32 pllsw;
425 };
426
427 static DEFINE_SPINLOCK(clk_mgt_lock);
428
429 #define CLK_MGT_ENTRY(_name)[PRCMU_##_name] = { (PRCM_##_name##_MGT_OFF), 0 }
430 struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
431 CLK_MGT_ENTRY(SGACLK),
432 CLK_MGT_ENTRY(UARTCLK),
433 CLK_MGT_ENTRY(MSP02CLK),
434 CLK_MGT_ENTRY(MSP1CLK),
435 CLK_MGT_ENTRY(I2CCLK),
436 CLK_MGT_ENTRY(SDMMCCLK),
437 CLK_MGT_ENTRY(SLIMCLK),
438 CLK_MGT_ENTRY(PER1CLK),
439 CLK_MGT_ENTRY(PER2CLK),
440 CLK_MGT_ENTRY(PER3CLK),
441 CLK_MGT_ENTRY(PER5CLK),
442 CLK_MGT_ENTRY(PER6CLK),
443 CLK_MGT_ENTRY(PER7CLK),
444 CLK_MGT_ENTRY(LCDCLK),
445 CLK_MGT_ENTRY(BMLCLK),
446 CLK_MGT_ENTRY(HSITXCLK),
447 CLK_MGT_ENTRY(HSIRXCLK),
448 CLK_MGT_ENTRY(HDMICLK),
449 CLK_MGT_ENTRY(APEATCLK),
450 CLK_MGT_ENTRY(APETRACECLK),
451 CLK_MGT_ENTRY(MCDECLK),
452 CLK_MGT_ENTRY(IPI2CCLK),
453 CLK_MGT_ENTRY(DSIALTCLK),
454 CLK_MGT_ENTRY(DMACLK),
455 CLK_MGT_ENTRY(B2R2CLK),
456 CLK_MGT_ENTRY(TVCLK),
457 CLK_MGT_ENTRY(SSPCLK),
458 CLK_MGT_ENTRY(RNGCLK),
459 CLK_MGT_ENTRY(UICCCLK),
460 };
461
462 static struct regulator *hwacc_regulator[NUM_HW_ACC];
463 static struct regulator *hwacc_ret_regulator[NUM_HW_ACC];
464
465 static bool hwacc_enabled[NUM_HW_ACC];
466 static bool hwacc_ret_enabled[NUM_HW_ACC];
467
468 static const char *hwacc_regulator_name[NUM_HW_ACC] = {
469 [HW_ACC_SVAMMDSP] = "hwacc-sva-mmdsp",
470 [HW_ACC_SVAPIPE] = "hwacc-sva-pipe",
471 [HW_ACC_SIAMMDSP] = "hwacc-sia-mmdsp",
472 [HW_ACC_SIAPIPE] = "hwacc-sia-pipe",
473 [HW_ACC_SGA] = "hwacc-sga",
474 [HW_ACC_B2R2] = "hwacc-b2r2",
475 [HW_ACC_MCDE] = "hwacc-mcde",
476 [HW_ACC_ESRAM1] = "hwacc-esram1",
477 [HW_ACC_ESRAM2] = "hwacc-esram2",
478 [HW_ACC_ESRAM3] = "hwacc-esram3",
479 [HW_ACC_ESRAM4] = "hwacc-esram4",
480 };
481
482 static const char *hwacc_ret_regulator_name[NUM_HW_ACC] = {
483 [HW_ACC_SVAMMDSP] = "hwacc-sva-mmdsp-ret",
484 [HW_ACC_SIAMMDSP] = "hwacc-sia-mmdsp-ret",
485 [HW_ACC_ESRAM1] = "hwacc-esram1-ret",
486 [HW_ACC_ESRAM2] = "hwacc-esram2-ret",
487 [HW_ACC_ESRAM3] = "hwacc-esram3-ret",
488 [HW_ACC_ESRAM4] = "hwacc-esram4-ret",
489 };
490
491 /*
492 * Used by MCDE to setup all necessary PRCMU registers
493 */
494 #define PRCMU_RESET_DSIPLL 0x00004000
495 #define PRCMU_UNCLAMP_DSIPLL 0x00400800
496
497 #define PRCMU_CLK_PLL_DIV_SHIFT 0
498 #define PRCMU_CLK_PLL_SW_SHIFT 5
499 #define PRCMU_CLK_38 (1 << 9)
500 #define PRCMU_CLK_38_SRC (1 << 10)
501 #define PRCMU_CLK_38_DIV (1 << 11)
502
503 /* PLLDIV=12, PLLSW=4 (PLLDDR) */
504 #define PRCMU_DSI_CLOCK_SETTING 0x0000008C
505
506 /* PLLDIV=8, PLLSW=4 (PLLDDR) */
507 #define PRCMU_DSI_CLOCK_SETTING_U8400 0x00000088
508
509 /* DPI 50000000 Hz */
510 #define PRCMU_DPI_CLOCK_SETTING ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
511 (16 << PRCMU_CLK_PLL_DIV_SHIFT))
512 #define PRCMU_DSI_LP_CLOCK_SETTING 0x00000E00
513
514 /* D=101, N=1, R=4, SELDIV2=0 */
515 #define PRCMU_PLLDSI_FREQ_SETTING 0x00040165
516
517 /* D=70, N=1, R=3, SELDIV2=0 */
518 #define PRCMU_PLLDSI_FREQ_SETTING_U8400 0x00030146
519
520 #define PRCMU_ENABLE_PLLDSI 0x00000001
521 #define PRCMU_DISABLE_PLLDSI 0x00000000
522 #define PRCMU_RELEASE_RESET_DSS 0x0000400C
523 #define PRCMU_DSI_PLLOUT_SEL_SETTING 0x00000202
524 /* ESC clk, div0=1, div1=1, div2=3 */
525 #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV 0x07030101
526 #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV 0x00030101
527 #define PRCMU_DSI_RESET_SW 0x00000007
528
529 #define PRCMU_PLLDSI_LOCKP_LOCKED 0x3
530
531 static struct {
532 u8 project_number;
533 u8 api_version;
534 u8 func_version;
535 u8 errata;
536 } prcmu_version;
537
538
539 int db8500_prcmu_enable_dsipll(void)
540 {
541 int i;
542 unsigned int plldsifreq;
543
544 /* Clear DSIPLL_RESETN */
545 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
546 /* Unclamp DSIPLL in/out */
547 writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
548
549 if (prcmu_is_u8400())
550 plldsifreq = PRCMU_PLLDSI_FREQ_SETTING_U8400;
551 else
552 plldsifreq = PRCMU_PLLDSI_FREQ_SETTING;
553 /* Set DSI PLL FREQ */
554 writel(plldsifreq, PRCM_PLLDSI_FREQ);
555 writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
556 /* Enable Escape clocks */
557 writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
558
559 /* Start DSI PLL */
560 writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
561 /* Reset DSI PLL */
562 writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
563 for (i = 0; i < 10; i++) {
564 if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
565 == PRCMU_PLLDSI_LOCKP_LOCKED)
566 break;
567 udelay(100);
568 }
569 /* Set DSIPLL_RESETN */
570 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
571 return 0;
572 }
573
574 int db8500_prcmu_disable_dsipll(void)
575 {
576 /* Disable dsi pll */
577 writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
578 /* Disable escapeclock */
579 writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
580 return 0;
581 }
582
583 int db8500_prcmu_set_display_clocks(void)
584 {
585 unsigned long flags;
586 unsigned int dsiclk;
587
588 if (prcmu_is_u8400())
589 dsiclk = PRCMU_DSI_CLOCK_SETTING_U8400;
590 else
591 dsiclk = PRCMU_DSI_CLOCK_SETTING;
592
593 spin_lock_irqsave(&clk_mgt_lock, flags);
594
595 /* Grab the HW semaphore. */
596 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
597 cpu_relax();
598
599 writel(dsiclk, PRCM_HDMICLK_MGT);
600 writel(PRCMU_DSI_LP_CLOCK_SETTING, PRCM_TVCLK_MGT);
601 writel(PRCMU_DPI_CLOCK_SETTING, PRCM_LCDCLK_MGT);
602
603 /* Release the HW semaphore. */
604 writel(0, PRCM_SEM);
605
606 spin_unlock_irqrestore(&clk_mgt_lock, flags);
607
608 return 0;
609 }
610
611 /**
612 * prcmu_enable_spi2 - Enables pin muxing for SPI2 on OtherAlternateC1.
613 */
614 void prcmu_enable_spi2(void)
615 {
616 u32 reg;
617 unsigned long flags;
618
619 spin_lock_irqsave(&gpiocr_lock, flags);
620 reg = readl(PRCM_GPIOCR);
621 writel(reg | PRCM_GPIOCR_SPI2_SELECT, PRCM_GPIOCR);
622 spin_unlock_irqrestore(&gpiocr_lock, flags);
623 }
624
625 /**
626 * prcmu_disable_spi2 - Disables pin muxing for SPI2 on OtherAlternateC1.
627 */
628 void prcmu_disable_spi2(void)
629 {
630 u32 reg;
631 unsigned long flags;
632
633 spin_lock_irqsave(&gpiocr_lock, flags);
634 reg = readl(PRCM_GPIOCR);
635 writel(reg & ~PRCM_GPIOCR_SPI2_SELECT, PRCM_GPIOCR);
636 spin_unlock_irqrestore(&gpiocr_lock, flags);
637 }
638
639 bool prcmu_has_arm_maxopp(void)
640 {
641 return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
642 PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
643 }
644
645 bool prcmu_is_u8400(void)
646 {
647 return prcmu_version.project_number == PRCMU_PROJECT_ID_8400V2_0;
648 }
649
650 /**
651 * prcmu_get_boot_status - PRCMU boot status checking
652 * Returns: the current PRCMU boot status
653 */
654 int prcmu_get_boot_status(void)
655 {
656 return readb(tcdm_base + PRCM_BOOT_STATUS);
657 }
658
659 /**
660 * prcmu_set_rc_a2p - This function is used to run few power state sequences
661 * @val: Value to be set, i.e. transition requested
662 * Returns: 0 on success, -EINVAL on invalid argument
663 *
664 * This function is used to run the following power state sequences -
665 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
666 */
667 int prcmu_set_rc_a2p(enum romcode_write val)
668 {
669 if (val < RDY_2_DS || val > RDY_2_XP70_RST)
670 return -EINVAL;
671 writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
672 return 0;
673 }
674
675 /**
676 * prcmu_get_rc_p2a - This function is used to get power state sequences
677 * Returns: the power transition that has last happened
678 *
679 * This function can return the following transitions-
680 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
681 */
682 enum romcode_read prcmu_get_rc_p2a(void)
683 {
684 return readb(tcdm_base + PRCM_ROMCODE_P2A);
685 }
686
687 /**
688 * prcmu_get_current_mode - Return the current XP70 power mode
689 * Returns: Returns the current AP(ARM) power mode: init,
690 * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
691 */
692 enum ap_pwrst prcmu_get_xp70_current_state(void)
693 {
694 return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
695 }
696
697 /**
698 * prcmu_config_clkout - Configure one of the programmable clock outputs.
699 * @clkout: The CLKOUT number (0 or 1).
700 * @source: The clock to be used (one of the PRCMU_CLKSRC_*).
701 * @div: The divider to be applied.
702 *
703 * Configures one of the programmable clock outputs (CLKOUTs).
704 * @div should be in the range [1,63] to request a configuration, or 0 to
705 * inform that the configuration is no longer requested.
706 */
707 int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
708 {
709 static int requests[2];
710 int r = 0;
711 unsigned long flags;
712 u32 val;
713 u32 bits;
714 u32 mask;
715 u32 div_mask;
716
717 BUG_ON(clkout > 1);
718 BUG_ON(div > 63);
719 BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
720
721 if (!div && !requests[clkout])
722 return -EINVAL;
723
724 switch (clkout) {
725 case 0:
726 div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
727 mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
728 bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
729 (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
730 break;
731 case 1:
732 div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
733 mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
734 PRCM_CLKOCR_CLK1TYPE);
735 bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
736 (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
737 break;
738 }
739 bits &= mask;
740
741 spin_lock_irqsave(&clkout_lock, flags);
742
743 val = readl(PRCM_CLKOCR);
744 if (val & div_mask) {
745 if (div) {
746 if ((val & mask) != bits) {
747 r = -EBUSY;
748 goto unlock_and_return;
749 }
750 } else {
751 if ((val & mask & ~div_mask) != bits) {
752 r = -EINVAL;
753 goto unlock_and_return;
754 }
755 }
756 }
757 writel((bits | (val & ~mask)), PRCM_CLKOCR);
758 requests[clkout] += (div ? 1 : -1);
759
760 unlock_and_return:
761 spin_unlock_irqrestore(&clkout_lock, flags);
762
763 return r;
764 }
765
766 int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
767 {
768 unsigned long flags;
769
770 BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
771
772 spin_lock_irqsave(&mb0_transfer.lock, flags);
773
774 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
775 cpu_relax();
776
777 writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
778 writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
779 writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
780 writeb((keep_ulp_clk ? 1 : 0),
781 (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
782 writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
783 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
784
785 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
786
787 return 0;
788 }
789
790 /* This function should only be called while mb0_transfer.lock is held. */
791 static void config_wakeups(void)
792 {
793 const u8 header[2] = {
794 MB0H_CONFIG_WAKEUPS_EXE,
795 MB0H_CONFIG_WAKEUPS_SLEEP
796 };
797 static u32 last_dbb_events;
798 static u32 last_abb_events;
799 u32 dbb_events;
800 u32 abb_events;
801 unsigned int i;
802
803 dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
804 dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
805
806 abb_events = mb0_transfer.req.abb_events;
807
808 if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
809 return;
810
811 for (i = 0; i < 2; i++) {
812 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
813 cpu_relax();
814 writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
815 writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
816 writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
817 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
818 }
819 last_dbb_events = dbb_events;
820 last_abb_events = abb_events;
821 }
822
823 void db8500_prcmu_enable_wakeups(u32 wakeups)
824 {
825 unsigned long flags;
826 u32 bits;
827 int i;
828
829 BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
830
831 for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
832 if (wakeups & BIT(i))
833 bits |= prcmu_wakeup_bit[i];
834 }
835
836 spin_lock_irqsave(&mb0_transfer.lock, flags);
837
838 mb0_transfer.req.dbb_wakeups = bits;
839 config_wakeups();
840
841 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
842 }
843
844 void db8500_prcmu_config_abb_event_readout(u32 abb_events)
845 {
846 unsigned long flags;
847
848 spin_lock_irqsave(&mb0_transfer.lock, flags);
849
850 mb0_transfer.req.abb_events = abb_events;
851 config_wakeups();
852
853 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
854 }
855
856 void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
857 {
858 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
859 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
860 else
861 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
862 }
863
864 /**
865 * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
866 * @opp: The new ARM operating point to which transition is to be made
867 * Returns: 0 on success, non-zero on failure
868 *
869 * This function sets the the operating point of the ARM.
870 */
871 int db8500_prcmu_set_arm_opp(u8 opp)
872 {
873 int r;
874
875 if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
876 return -EINVAL;
877
878 r = 0;
879
880 mutex_lock(&mb1_transfer.lock);
881
882 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
883 cpu_relax();
884
885 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
886 writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
887 writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
888
889 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
890 wait_for_completion(&mb1_transfer.work);
891
892 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
893 (mb1_transfer.ack.arm_opp != opp))
894 r = -EIO;
895
896 mutex_unlock(&mb1_transfer.lock);
897
898 return r;
899 }
900
901 /**
902 * db8500_prcmu_get_arm_opp - get the current ARM OPP
903 *
904 * Returns: the current ARM OPP
905 */
906 int db8500_prcmu_get_arm_opp(void)
907 {
908 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
909 }
910
911 /**
912 * prcmu_get_ddr_opp - get the current DDR OPP
913 *
914 * Returns: the current DDR OPP
915 */
916 int prcmu_get_ddr_opp(void)
917 {
918 return readb(PRCM_DDR_SUBSYS_APE_MINBW);
919 }
920
921 /**
922 * set_ddr_opp - set the appropriate DDR OPP
923 * @opp: The new DDR operating point to which transition is to be made
924 * Returns: 0 on success, non-zero on failure
925 *
926 * This function sets the operating point of the DDR.
927 */
928 int prcmu_set_ddr_opp(u8 opp)
929 {
930 if (opp < DDR_100_OPP || opp > DDR_25_OPP)
931 return -EINVAL;
932 /* Changing the DDR OPP can hang the hardware pre-v21 */
933 if (cpu_is_u8500v20_or_later() && !cpu_is_u8500v20())
934 writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW);
935
936 return 0;
937 }
938 /**
939 * set_ape_opp - set the appropriate APE OPP
940 * @opp: The new APE operating point to which transition is to be made
941 * Returns: 0 on success, non-zero on failure
942 *
943 * This function sets the operating point of the APE.
944 */
945 int prcmu_set_ape_opp(u8 opp)
946 {
947 int r = 0;
948
949 mutex_lock(&mb1_transfer.lock);
950
951 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
952 cpu_relax();
953
954 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
955 writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
956 writeb(opp, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
957
958 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
959 wait_for_completion(&mb1_transfer.work);
960
961 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
962 (mb1_transfer.ack.ape_opp != opp))
963 r = -EIO;
964
965 mutex_unlock(&mb1_transfer.lock);
966
967 return r;
968 }
969
970 /**
971 * prcmu_get_ape_opp - get the current APE OPP
972 *
973 * Returns: the current APE OPP
974 */
975 int prcmu_get_ape_opp(void)
976 {
977 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
978 }
979
980 /**
981 * prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
982 * @enable: true to request the higher voltage, false to drop a request.
983 *
984 * Calls to this function to enable and disable requests must be balanced.
985 */
986 int prcmu_request_ape_opp_100_voltage(bool enable)
987 {
988 int r = 0;
989 u8 header;
990 static unsigned int requests;
991
992 mutex_lock(&mb1_transfer.lock);
993
994 if (enable) {
995 if (0 != requests++)
996 goto unlock_and_return;
997 header = MB1H_REQUEST_APE_OPP_100_VOLT;
998 } else {
999 if (requests == 0) {
1000 r = -EIO;
1001 goto unlock_and_return;
1002 } else if (1 != requests--) {
1003 goto unlock_and_return;
1004 }
1005 header = MB1H_RELEASE_APE_OPP_100_VOLT;
1006 }
1007
1008 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1009 cpu_relax();
1010
1011 writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1012
1013 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1014 wait_for_completion(&mb1_transfer.work);
1015
1016 if ((mb1_transfer.ack.header != header) ||
1017 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1018 r = -EIO;
1019
1020 unlock_and_return:
1021 mutex_unlock(&mb1_transfer.lock);
1022
1023 return r;
1024 }
1025
1026 /**
1027 * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1028 *
1029 * This function releases the power state requirements of a USB wakeup.
1030 */
1031 int prcmu_release_usb_wakeup_state(void)
1032 {
1033 int r = 0;
1034
1035 mutex_lock(&mb1_transfer.lock);
1036
1037 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1038 cpu_relax();
1039
1040 writeb(MB1H_RELEASE_USB_WAKEUP,
1041 (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1042
1043 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1044 wait_for_completion(&mb1_transfer.work);
1045
1046 if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1047 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1048 r = -EIO;
1049
1050 mutex_unlock(&mb1_transfer.lock);
1051
1052 return r;
1053 }
1054
1055 static int request_pll(u8 clock, bool enable)
1056 {
1057 int r = 0;
1058
1059 if (clock == PRCMU_PLLSOC1)
1060 clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1061 else
1062 return -EINVAL;
1063
1064 mutex_lock(&mb1_transfer.lock);
1065
1066 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1067 cpu_relax();
1068
1069 writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1070 writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1071
1072 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1073 wait_for_completion(&mb1_transfer.work);
1074
1075 if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1076 r = -EIO;
1077
1078 mutex_unlock(&mb1_transfer.lock);
1079
1080 return r;
1081 }
1082
1083 /**
1084 * prcmu_set_hwacc - set the power state of a h/w accelerator
1085 * @hwacc_dev: The hardware accelerator (enum hw_acc_dev).
1086 * @state: The new power state (enum hw_acc_state).
1087 *
1088 * This function sets the power state of a hardware accelerator.
1089 * This function should not be called from interrupt context.
1090 *
1091 * NOTE! Deprecated, to be removed when all users switched over to use the
1092 * regulator framework API.
1093 */
1094 int prcmu_set_hwacc(u16 hwacc_dev, u8 state)
1095 {
1096 int r = 0;
1097 bool ram_retention = false;
1098 bool enable, enable_ret;
1099
1100 /* check argument */
1101 BUG_ON(hwacc_dev >= NUM_HW_ACC);
1102
1103 /* get state of switches */
1104 enable = hwacc_enabled[hwacc_dev];
1105 enable_ret = hwacc_ret_enabled[hwacc_dev];
1106
1107 /* set flag if retention is possible */
1108 switch (hwacc_dev) {
1109 case HW_ACC_SVAMMDSP:
1110 case HW_ACC_SIAMMDSP:
1111 case HW_ACC_ESRAM1:
1112 case HW_ACC_ESRAM2:
1113 case HW_ACC_ESRAM3:
1114 case HW_ACC_ESRAM4:
1115 ram_retention = true;
1116 break;
1117 }
1118
1119 /* check argument */
1120 BUG_ON(state > HW_ON);
1121 BUG_ON(state == HW_OFF_RAMRET && !ram_retention);
1122
1123 /* modify enable flags */
1124 switch (state) {
1125 case HW_OFF:
1126 enable_ret = false;
1127 enable = false;
1128 break;
1129 case HW_ON:
1130 enable = true;
1131 break;
1132 case HW_OFF_RAMRET:
1133 enable_ret = true;
1134 enable = false;
1135 break;
1136 }
1137
1138 /* get regulator (lazy) */
1139 if (hwacc_regulator[hwacc_dev] == NULL) {
1140 hwacc_regulator[hwacc_dev] = regulator_get(NULL,
1141 hwacc_regulator_name[hwacc_dev]);
1142 if (IS_ERR(hwacc_regulator[hwacc_dev])) {
1143 pr_err("prcmu: failed to get supply %s\n",
1144 hwacc_regulator_name[hwacc_dev]);
1145 r = PTR_ERR(hwacc_regulator[hwacc_dev]);
1146 goto out;
1147 }
1148 }
1149
1150 if (ram_retention) {
1151 if (hwacc_ret_regulator[hwacc_dev] == NULL) {
1152 hwacc_ret_regulator[hwacc_dev] = regulator_get(NULL,
1153 hwacc_ret_regulator_name[hwacc_dev]);
1154 if (IS_ERR(hwacc_ret_regulator[hwacc_dev])) {
1155 pr_err("prcmu: failed to get supply %s\n",
1156 hwacc_ret_regulator_name[hwacc_dev]);
1157 r = PTR_ERR(hwacc_ret_regulator[hwacc_dev]);
1158 goto out;
1159 }
1160 }
1161 }
1162
1163 /* set regulators */
1164 if (ram_retention) {
1165 if (enable_ret && !hwacc_ret_enabled[hwacc_dev]) {
1166 r = regulator_enable(hwacc_ret_regulator[hwacc_dev]);
1167 if (r < 0) {
1168 pr_err("prcmu_set_hwacc: ret enable failed\n");
1169 goto out;
1170 }
1171 hwacc_ret_enabled[hwacc_dev] = true;
1172 }
1173 }
1174
1175 if (enable && !hwacc_enabled[hwacc_dev]) {
1176 r = regulator_enable(hwacc_regulator[hwacc_dev]);
1177 if (r < 0) {
1178 pr_err("prcmu_set_hwacc: enable failed\n");
1179 goto out;
1180 }
1181 hwacc_enabled[hwacc_dev] = true;
1182 }
1183
1184 if (!enable && hwacc_enabled[hwacc_dev]) {
1185 r = regulator_disable(hwacc_regulator[hwacc_dev]);
1186 if (r < 0) {
1187 pr_err("prcmu_set_hwacc: disable failed\n");
1188 goto out;
1189 }
1190 hwacc_enabled[hwacc_dev] = false;
1191 }
1192
1193 if (ram_retention) {
1194 if (!enable_ret && hwacc_ret_enabled[hwacc_dev]) {
1195 r = regulator_disable(hwacc_ret_regulator[hwacc_dev]);
1196 if (r < 0) {
1197 pr_err("prcmu_set_hwacc: ret disable failed\n");
1198 goto out;
1199 }
1200 hwacc_ret_enabled[hwacc_dev] = false;
1201 }
1202 }
1203
1204 out:
1205 return r;
1206 }
1207 EXPORT_SYMBOL(prcmu_set_hwacc);
1208
1209 /**
1210 * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1211 * @epod_id: The EPOD to set
1212 * @epod_state: The new EPOD state
1213 *
1214 * This function sets the state of a EPOD (power domain). It may not be called
1215 * from interrupt context.
1216 */
1217 int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
1218 {
1219 int r = 0;
1220 bool ram_retention = false;
1221 int i;
1222
1223 /* check argument */
1224 BUG_ON(epod_id >= NUM_EPOD_ID);
1225
1226 /* set flag if retention is possible */
1227 switch (epod_id) {
1228 case EPOD_ID_SVAMMDSP:
1229 case EPOD_ID_SIAMMDSP:
1230 case EPOD_ID_ESRAM12:
1231 case EPOD_ID_ESRAM34:
1232 ram_retention = true;
1233 break;
1234 }
1235
1236 /* check argument */
1237 BUG_ON(epod_state > EPOD_STATE_ON);
1238 BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1239
1240 /* get lock */
1241 mutex_lock(&mb2_transfer.lock);
1242
1243 /* wait for mailbox */
1244 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1245 cpu_relax();
1246
1247 /* fill in mailbox */
1248 for (i = 0; i < NUM_EPOD_ID; i++)
1249 writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1250 writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1251
1252 writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1253
1254 writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
1255
1256 /*
1257 * The current firmware version does not handle errors correctly,
1258 * and we cannot recover if there is an error.
1259 * This is expected to change when the firmware is updated.
1260 */
1261 if (!wait_for_completion_timeout(&mb2_transfer.work,
1262 msecs_to_jiffies(20000))) {
1263 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1264 __func__);
1265 r = -EIO;
1266 goto unlock_and_return;
1267 }
1268
1269 if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1270 r = -EIO;
1271
1272 unlock_and_return:
1273 mutex_unlock(&mb2_transfer.lock);
1274 return r;
1275 }
1276
1277 /**
1278 * prcmu_configure_auto_pm - Configure autonomous power management.
1279 * @sleep: Configuration for ApSleep.
1280 * @idle: Configuration for ApIdle.
1281 */
1282 void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1283 struct prcmu_auto_pm_config *idle)
1284 {
1285 u32 sleep_cfg;
1286 u32 idle_cfg;
1287 unsigned long flags;
1288
1289 BUG_ON((sleep == NULL) || (idle == NULL));
1290
1291 sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1292 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1293 sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1294 sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1295 sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1296 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
1297
1298 idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1299 idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1300 idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1301 idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1302 idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1303 idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
1304
1305 spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1306
1307 /*
1308 * The autonomous power management configuration is done through
1309 * fields in mailbox 2, but these fields are only used as shared
1310 * variables - i.e. there is no need to send a message.
1311 */
1312 writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1313 writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1314
1315 mb2_transfer.auto_pm_enabled =
1316 ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1317 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1318 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1319 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
1320
1321 spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1322 }
1323 EXPORT_SYMBOL(prcmu_configure_auto_pm);
1324
1325 bool prcmu_is_auto_pm_enabled(void)
1326 {
1327 return mb2_transfer.auto_pm_enabled;
1328 }
1329
1330 static int request_sysclk(bool enable)
1331 {
1332 int r;
1333 unsigned long flags;
1334
1335 r = 0;
1336
1337 mutex_lock(&mb3_transfer.sysclk_lock);
1338
1339 spin_lock_irqsave(&mb3_transfer.lock, flags);
1340
1341 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1342 cpu_relax();
1343
1344 writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
1345
1346 writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1347 writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
1348
1349 spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1350
1351 /*
1352 * The firmware only sends an ACK if we want to enable the
1353 * SysClk, and it succeeds.
1354 */
1355 if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1356 msecs_to_jiffies(20000))) {
1357 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1358 __func__);
1359 r = -EIO;
1360 }
1361
1362 mutex_unlock(&mb3_transfer.sysclk_lock);
1363
1364 return r;
1365 }
1366
1367 static int request_timclk(bool enable)
1368 {
1369 u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1370
1371 if (!enable)
1372 val |= PRCM_TCR_STOP_TIMERS;
1373 writel(val, PRCM_TCR);
1374
1375 return 0;
1376 }
1377
1378 static int request_reg_clock(u8 clock, bool enable)
1379 {
1380 u32 val;
1381 unsigned long flags;
1382
1383 spin_lock_irqsave(&clk_mgt_lock, flags);
1384
1385 /* Grab the HW semaphore. */
1386 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1387 cpu_relax();
1388
1389 val = readl(_PRCMU_BASE + clk_mgt[clock].offset);
1390 if (enable) {
1391 val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1392 } else {
1393 clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1394 val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1395 }
1396 writel(val, (_PRCMU_BASE + clk_mgt[clock].offset));
1397
1398 /* Release the HW semaphore. */
1399 writel(0, PRCM_SEM);
1400
1401 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1402
1403 return 0;
1404 }
1405
1406 static int request_sga_clock(u8 clock, bool enable)
1407 {
1408 u32 val;
1409 int ret;
1410
1411 if (enable) {
1412 val = readl(PRCM_CGATING_BYPASS);
1413 writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1414 }
1415
1416 ret = request_reg_clock(clock, enable);
1417
1418 if (!ret && !enable) {
1419 val = readl(PRCM_CGATING_BYPASS);
1420 writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1421 }
1422
1423 return ret;
1424 }
1425
1426 /**
1427 * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1428 * @clock: The clock for which the request is made.
1429 * @enable: Whether the clock should be enabled (true) or disabled (false).
1430 *
1431 * This function should only be used by the clock implementation.
1432 * Do not use it from any other place!
1433 */
1434 int db8500_prcmu_request_clock(u8 clock, bool enable)
1435 {
1436 if (clock == PRCMU_SGACLK)
1437 return request_sga_clock(clock, enable);
1438 else if (clock < PRCMU_NUM_REG_CLOCKS)
1439 return request_reg_clock(clock, enable);
1440 else if (clock == PRCMU_TIMCLK)
1441 return request_timclk(enable);
1442 else if (clock == PRCMU_SYSCLK)
1443 return request_sysclk(enable);
1444 else if (clock == PRCMU_PLLSOC1)
1445 return request_pll(clock, enable);
1446 else
1447 return -EINVAL;
1448 }
1449
1450 int db8500_prcmu_config_esram0_deep_sleep(u8 state)
1451 {
1452 if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
1453 (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
1454 return -EINVAL;
1455
1456 mutex_lock(&mb4_transfer.lock);
1457
1458 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1459 cpu_relax();
1460
1461 writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1462 writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
1463 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
1464 writeb(DDR_PWR_STATE_ON,
1465 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
1466 writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
1467
1468 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1469 wait_for_completion(&mb4_transfer.work);
1470
1471 mutex_unlock(&mb4_transfer.lock);
1472
1473 return 0;
1474 }
1475
1476 int prcmu_config_hotdog(u8 threshold)
1477 {
1478 mutex_lock(&mb4_transfer.lock);
1479
1480 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1481 cpu_relax();
1482
1483 writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
1484 writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1485
1486 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1487 wait_for_completion(&mb4_transfer.work);
1488
1489 mutex_unlock(&mb4_transfer.lock);
1490
1491 return 0;
1492 }
1493
1494 int prcmu_config_hotmon(u8 low, u8 high)
1495 {
1496 mutex_lock(&mb4_transfer.lock);
1497
1498 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1499 cpu_relax();
1500
1501 writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
1502 writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
1503 writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
1504 (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
1505 writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1506
1507 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1508 wait_for_completion(&mb4_transfer.work);
1509
1510 mutex_unlock(&mb4_transfer.lock);
1511
1512 return 0;
1513 }
1514
1515 static int config_hot_period(u16 val)
1516 {
1517 mutex_lock(&mb4_transfer.lock);
1518
1519 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1520 cpu_relax();
1521
1522 writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
1523 writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1524
1525 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1526 wait_for_completion(&mb4_transfer.work);
1527
1528 mutex_unlock(&mb4_transfer.lock);
1529
1530 return 0;
1531 }
1532
1533 int prcmu_start_temp_sense(u16 cycles32k)
1534 {
1535 if (cycles32k == 0xFFFF)
1536 return -EINVAL;
1537
1538 return config_hot_period(cycles32k);
1539 }
1540
1541 int prcmu_stop_temp_sense(void)
1542 {
1543 return config_hot_period(0xFFFF);
1544 }
1545
1546 static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
1547 {
1548
1549 mutex_lock(&mb4_transfer.lock);
1550
1551 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1552 cpu_relax();
1553
1554 writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
1555 writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
1556 writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
1557 writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
1558
1559 writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1560
1561 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1562 wait_for_completion(&mb4_transfer.work);
1563
1564 mutex_unlock(&mb4_transfer.lock);
1565
1566 return 0;
1567
1568 }
1569
1570 int prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
1571 {
1572 BUG_ON(num == 0 || num > 0xf);
1573 return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
1574 sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
1575 A9WDOG_AUTO_OFF_DIS);
1576 }
1577
1578 int prcmu_enable_a9wdog(u8 id)
1579 {
1580 return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
1581 }
1582
1583 int prcmu_disable_a9wdog(u8 id)
1584 {
1585 return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
1586 }
1587
1588 int prcmu_kick_a9wdog(u8 id)
1589 {
1590 return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
1591 }
1592
1593 /*
1594 * timeout is 28 bit, in ms.
1595 */
1596 #define MAX_WATCHDOG_TIMEOUT 131000
1597 int prcmu_load_a9wdog(u8 id, u32 timeout)
1598 {
1599 if (timeout > MAX_WATCHDOG_TIMEOUT)
1600 /*
1601 * Due to calculation bug in prcmu fw, timeouts
1602 * can't be bigger than 131 seconds.
1603 */
1604 return -EINVAL;
1605
1606 return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
1607 (id & A9WDOG_ID_MASK) |
1608 /*
1609 * Put the lowest 28 bits of timeout at
1610 * offset 4. Four first bits are used for id.
1611 */
1612 (u8)((timeout << 4) & 0xf0),
1613 (u8)((timeout >> 4) & 0xff),
1614 (u8)((timeout >> 12) & 0xff),
1615 (u8)((timeout >> 20) & 0xff));
1616 }
1617
1618 /**
1619 * prcmu_set_clock_divider() - Configure the clock divider.
1620 * @clock: The clock for which the request is made.
1621 * @divider: The clock divider. (< 32)
1622 *
1623 * This function should only be used by the clock implementation.
1624 * Do not use it from any other place!
1625 */
1626 int prcmu_set_clock_divider(u8 clock, u8 divider)
1627 {
1628 u32 val;
1629 unsigned long flags;
1630
1631 if ((clock >= PRCMU_NUM_REG_CLOCKS) || (divider < 1) || (31 < divider))
1632 return -EINVAL;
1633
1634 spin_lock_irqsave(&clk_mgt_lock, flags);
1635
1636 /* Grab the HW semaphore. */
1637 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1638 cpu_relax();
1639
1640 val = readl(_PRCMU_BASE + clk_mgt[clock].offset);
1641 val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK);
1642 val |= (u32)divider;
1643 writel(val, (_PRCMU_BASE + clk_mgt[clock].offset));
1644
1645 /* Release the HW semaphore. */
1646 writel(0, PRCM_SEM);
1647
1648 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1649
1650 return 0;
1651 }
1652
1653 /**
1654 * prcmu_abb_read() - Read register value(s) from the ABB.
1655 * @slave: The I2C slave address.
1656 * @reg: The (start) register address.
1657 * @value: The read out value(s).
1658 * @size: The number of registers to read.
1659 *
1660 * Reads register value(s) from the ABB.
1661 * @size has to be 1 for the current firmware version.
1662 */
1663 int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
1664 {
1665 int r;
1666
1667 if (size != 1)
1668 return -EINVAL;
1669
1670 mutex_lock(&mb5_transfer.lock);
1671
1672 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
1673 cpu_relax();
1674
1675 writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
1676 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
1677 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
1678 writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
1679
1680 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
1681
1682 if (!wait_for_completion_timeout(&mb5_transfer.work,
1683 msecs_to_jiffies(20000))) {
1684 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1685 __func__);
1686 r = -EIO;
1687 } else {
1688 r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
1689 }
1690
1691 if (!r)
1692 *value = mb5_transfer.ack.value;
1693
1694 mutex_unlock(&mb5_transfer.lock);
1695
1696 return r;
1697 }
1698
1699 /**
1700 * prcmu_abb_write() - Write register value(s) to the ABB.
1701 * @slave: The I2C slave address.
1702 * @reg: The (start) register address.
1703 * @value: The value(s) to write.
1704 * @size: The number of registers to write.
1705 *
1706 * Reads register value(s) from the ABB.
1707 * @size has to be 1 for the current firmware version.
1708 */
1709 int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
1710 {
1711 int r;
1712
1713 if (size != 1)
1714 return -EINVAL;
1715
1716 mutex_lock(&mb5_transfer.lock);
1717
1718 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
1719 cpu_relax();
1720
1721 writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
1722 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
1723 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
1724 writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
1725
1726 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
1727
1728 if (!wait_for_completion_timeout(&mb5_transfer.work,
1729 msecs_to_jiffies(20000))) {
1730 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1731 __func__);
1732 r = -EIO;
1733 } else {
1734 r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
1735 }
1736
1737 mutex_unlock(&mb5_transfer.lock);
1738
1739 return r;
1740 }
1741
1742 /**
1743 * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
1744 */
1745 void prcmu_ac_wake_req(void)
1746 {
1747 u32 val;
1748 u32 status;
1749
1750 mutex_lock(&mb0_transfer.ac_wake_lock);
1751
1752 val = readl(PRCM_HOSTACCESS_REQ);
1753 if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
1754 goto unlock_and_return;
1755
1756 atomic_set(&ac_wake_req_state, 1);
1757
1758 retry:
1759 writel((val | PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ), PRCM_HOSTACCESS_REQ);
1760
1761 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
1762 msecs_to_jiffies(5000))) {
1763 panic("prcmu: %s timed out (5 s) waiting for a reply.\n",
1764 __func__);
1765 goto unlock_and_return;
1766 }
1767
1768 /*
1769 * The modem can generate an AC_WAKE_ACK, and then still go to sleep.
1770 * As a workaround, we wait, and then check that the modem is indeed
1771 * awake (in terms of the value of the PRCM_MOD_AWAKE_STATUS
1772 * register, which may not be the whole truth).
1773 */
1774 udelay(400);
1775 status = (readl(PRCM_MOD_AWAKE_STATUS) & BITS(0, 2));
1776 if (status != (PRCM_MOD_AWAKE_STATUS_PRCM_MOD_AAPD_AWAKE |
1777 PRCM_MOD_AWAKE_STATUS_PRCM_MOD_COREPD_AWAKE)) {
1778 pr_err("prcmu: %s received ack, but modem not awake (0x%X).\n",
1779 __func__, status);
1780 udelay(1200);
1781 writel(val, PRCM_HOSTACCESS_REQ);
1782 if (wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
1783 msecs_to_jiffies(5000)))
1784 goto retry;
1785 panic("prcmu: %s timed out (5 s) waiting for AC_SLEEP_ACK.\n",
1786 __func__);
1787 }
1788
1789 unlock_and_return:
1790 mutex_unlock(&mb0_transfer.ac_wake_lock);
1791 }
1792
1793 /**
1794 * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
1795 */
1796 void prcmu_ac_sleep_req()
1797 {
1798 u32 val;
1799
1800 mutex_lock(&mb0_transfer.ac_wake_lock);
1801
1802 val = readl(PRCM_HOSTACCESS_REQ);
1803 if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
1804 goto unlock_and_return;
1805
1806 writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
1807 PRCM_HOSTACCESS_REQ);
1808
1809 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
1810 msecs_to_jiffies(5000))) {
1811 panic("prcmu: %s timed out (5 s) waiting for a reply.\n",
1812 __func__);
1813 }
1814
1815 atomic_set(&ac_wake_req_state, 0);
1816
1817 unlock_and_return:
1818 mutex_unlock(&mb0_transfer.ac_wake_lock);
1819 }
1820
1821 bool db8500_prcmu_is_ac_wake_requested(void)
1822 {
1823 return (atomic_read(&ac_wake_req_state) != 0);
1824 }
1825
1826 /**
1827 * db8500_prcmu_system_reset - System reset
1828 *
1829 * Saves the reset reason code and then sets the APE_SOFTRST register which
1830 * fires interrupt to fw
1831 */
1832 void db8500_prcmu_system_reset(u16 reset_code)
1833 {
1834 writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
1835 writel(1, PRCM_APE_SOFTRST);
1836 }
1837
1838 /**
1839 * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
1840 *
1841 * Retrieves the reset reason code stored by prcmu_system_reset() before
1842 * last restart.
1843 */
1844 u16 db8500_prcmu_get_reset_code(void)
1845 {
1846 return readw(tcdm_base + PRCM_SW_RST_REASON);
1847 }
1848
1849 /**
1850 * prcmu_reset_modem - ask the PRCMU to reset modem
1851 */
1852 void prcmu_modem_reset(void)
1853 {
1854 mutex_lock(&mb1_transfer.lock);
1855
1856 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1857 cpu_relax();
1858
1859 writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1860 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1861 wait_for_completion(&mb1_transfer.work);
1862
1863 /*
1864 * No need to check return from PRCMU as modem should go in reset state
1865 * This state is already managed by upper layer
1866 */
1867
1868 mutex_unlock(&mb1_transfer.lock);
1869 }
1870
1871 static void ack_dbb_wakeup(void)
1872 {
1873 unsigned long flags;
1874
1875 spin_lock_irqsave(&mb0_transfer.lock, flags);
1876
1877 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
1878 cpu_relax();
1879
1880 writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
1881 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
1882
1883 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
1884 }
1885
1886 static inline void print_unknown_header_warning(u8 n, u8 header)
1887 {
1888 pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
1889 header, n);
1890 }
1891
1892 static bool read_mailbox_0(void)
1893 {
1894 bool r;
1895 u32 ev;
1896 unsigned int n;
1897 u8 header;
1898
1899 header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
1900 switch (header) {
1901 case MB0H_WAKEUP_EXE:
1902 case MB0H_WAKEUP_SLEEP:
1903 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
1904 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
1905 else
1906 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
1907
1908 if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
1909 complete(&mb0_transfer.ac_wake_work);
1910 if (ev & WAKEUP_BIT_SYSCLK_OK)
1911 complete(&mb3_transfer.sysclk_work);
1912
1913 ev &= mb0_transfer.req.dbb_irqs;
1914
1915 for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
1916 if (ev & prcmu_irq_bit[n])
1917 generic_handle_irq(IRQ_PRCMU_BASE + n);
1918 }
1919 r = true;
1920 break;
1921 default:
1922 print_unknown_header_warning(0, header);
1923 r = false;
1924 break;
1925 }
1926 writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
1927 return r;
1928 }
1929
1930 static bool read_mailbox_1(void)
1931 {
1932 mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
1933 mb1_transfer.ack.arm_opp = readb(tcdm_base +
1934 PRCM_ACK_MB1_CURRENT_ARM_OPP);
1935 mb1_transfer.ack.ape_opp = readb(tcdm_base +
1936 PRCM_ACK_MB1_CURRENT_APE_OPP);
1937 mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
1938 PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
1939 writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
1940 complete(&mb1_transfer.work);
1941 return false;
1942 }
1943
1944 static bool read_mailbox_2(void)
1945 {
1946 mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
1947 writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
1948 complete(&mb2_transfer.work);
1949 return false;
1950 }
1951
1952 static bool read_mailbox_3(void)
1953 {
1954 writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
1955 return false;
1956 }
1957
1958 static bool read_mailbox_4(void)
1959 {
1960 u8 header;
1961 bool do_complete = true;
1962
1963 header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
1964 switch (header) {
1965 case MB4H_MEM_ST:
1966 case MB4H_HOTDOG:
1967 case MB4H_HOTMON:
1968 case MB4H_HOT_PERIOD:
1969 case MB4H_A9WDOG_CONF:
1970 case MB4H_A9WDOG_EN:
1971 case MB4H_A9WDOG_DIS:
1972 case MB4H_A9WDOG_LOAD:
1973 case MB4H_A9WDOG_KICK:
1974 break;
1975 default:
1976 print_unknown_header_warning(4, header);
1977 do_complete = false;
1978 break;
1979 }
1980
1981 writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
1982
1983 if (do_complete)
1984 complete(&mb4_transfer.work);
1985
1986 return false;
1987 }
1988
1989 static bool read_mailbox_5(void)
1990 {
1991 mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
1992 mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
1993 writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
1994 complete(&mb5_transfer.work);
1995 return false;
1996 }
1997
1998 static bool read_mailbox_6(void)
1999 {
2000 writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
2001 return false;
2002 }
2003
2004 static bool read_mailbox_7(void)
2005 {
2006 writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
2007 return false;
2008 }
2009
2010 static bool (* const read_mailbox[NUM_MB])(void) = {
2011 read_mailbox_0,
2012 read_mailbox_1,
2013 read_mailbox_2,
2014 read_mailbox_3,
2015 read_mailbox_4,
2016 read_mailbox_5,
2017 read_mailbox_6,
2018 read_mailbox_7
2019 };
2020
2021 static irqreturn_t prcmu_irq_handler(int irq, void *data)
2022 {
2023 u32 bits;
2024 u8 n;
2025 irqreturn_t r;
2026
2027 bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
2028 if (unlikely(!bits))
2029 return IRQ_NONE;
2030
2031 r = IRQ_HANDLED;
2032 for (n = 0; bits; n++) {
2033 if (bits & MBOX_BIT(n)) {
2034 bits -= MBOX_BIT(n);
2035 if (read_mailbox[n]())
2036 r = IRQ_WAKE_THREAD;
2037 }
2038 }
2039 return r;
2040 }
2041
2042 static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2043 {
2044 ack_dbb_wakeup();
2045 return IRQ_HANDLED;
2046 }
2047
2048 static void prcmu_mask_work(struct work_struct *work)
2049 {
2050 unsigned long flags;
2051
2052 spin_lock_irqsave(&mb0_transfer.lock, flags);
2053
2054 config_wakeups();
2055
2056 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2057 }
2058
2059 static void prcmu_irq_mask(struct irq_data *d)
2060 {
2061 unsigned long flags;
2062
2063 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2064
2065 mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->irq - IRQ_PRCMU_BASE];
2066
2067 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2068
2069 if (d->irq != IRQ_PRCMU_CA_SLEEP)
2070 schedule_work(&mb0_transfer.mask_work);
2071 }
2072
2073 static void prcmu_irq_unmask(struct irq_data *d)
2074 {
2075 unsigned long flags;
2076
2077 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2078
2079 mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->irq - IRQ_PRCMU_BASE];
2080
2081 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2082
2083 if (d->irq != IRQ_PRCMU_CA_SLEEP)
2084 schedule_work(&mb0_transfer.mask_work);
2085 }
2086
2087 static void noop(struct irq_data *d)
2088 {
2089 }
2090
2091 static struct irq_chip prcmu_irq_chip = {
2092 .name = "prcmu",
2093 .irq_disable = prcmu_irq_mask,
2094 .irq_ack = noop,
2095 .irq_mask = prcmu_irq_mask,
2096 .irq_unmask = prcmu_irq_unmask,
2097 };
2098
2099 void __init db8500_prcmu_early_init(void)
2100 {
2101 unsigned int i;
2102
2103 if (cpu_is_u8500v1()) {
2104 tcdm_base = __io_address(U8500_PRCMU_TCDM_BASE_V1);
2105 } else if (cpu_is_u8500v2()) {
2106 void *tcpm_base = ioremap_nocache(U8500_PRCMU_TCPM_BASE, SZ_4K);
2107
2108 if (tcpm_base != NULL) {
2109 int version;
2110 version = readl(tcpm_base + PRCMU_FW_VERSION_OFFSET);
2111 prcmu_version.project_number = version & 0xFF;
2112 prcmu_version.api_version = (version >> 8) & 0xFF;
2113 prcmu_version.func_version = (version >> 16) & 0xFF;
2114 prcmu_version.errata = (version >> 24) & 0xFF;
2115 pr_info("PRCMU firmware version %d.%d.%d\n",
2116 (version >> 8) & 0xFF, (version >> 16) & 0xFF,
2117 (version >> 24) & 0xFF);
2118 iounmap(tcpm_base);
2119 }
2120
2121 tcdm_base = __io_address(U8500_PRCMU_TCDM_BASE);
2122 } else {
2123 pr_err("prcmu: Unsupported chip version\n");
2124 BUG();
2125 }
2126
2127 spin_lock_init(&mb0_transfer.lock);
2128 spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2129 mutex_init(&mb0_transfer.ac_wake_lock);
2130 init_completion(&mb0_transfer.ac_wake_work);
2131 mutex_init(&mb1_transfer.lock);
2132 init_completion(&mb1_transfer.work);
2133 mutex_init(&mb2_transfer.lock);
2134 init_completion(&mb2_transfer.work);
2135 spin_lock_init(&mb2_transfer.auto_pm_lock);
2136 spin_lock_init(&mb3_transfer.lock);
2137 mutex_init(&mb3_transfer.sysclk_lock);
2138 init_completion(&mb3_transfer.sysclk_work);
2139 mutex_init(&mb4_transfer.lock);
2140 init_completion(&mb4_transfer.work);
2141 mutex_init(&mb5_transfer.lock);
2142 init_completion(&mb5_transfer.work);
2143
2144 INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
2145
2146 /* Initalize irqs. */
2147 for (i = 0; i < NUM_PRCMU_WAKEUPS; i++) {
2148 unsigned int irq;
2149
2150 irq = IRQ_PRCMU_BASE + i;
2151 irq_set_chip_and_handler(irq, &prcmu_irq_chip,
2152 handle_simple_irq);
2153 set_irq_flags(irq, IRQF_VALID);
2154 }
2155 }
2156
2157 static void __init db8500_prcmu_init_clkforce(void)
2158 {
2159 u32 val;
2160
2161 val = readl(PRCM_A9PL_FORCE_CLKEN);
2162 val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2163 PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2164 writel(val, (PRCM_A9PL_FORCE_CLKEN));
2165 }
2166
2167 /*
2168 * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2169 */
2170 static struct regulator_consumer_supply db8500_vape_consumers[] = {
2171 REGULATOR_SUPPLY("v-ape", NULL),
2172 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2173 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2174 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2175 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2176 /* "v-mmc" changed to "vcore" in the mainline kernel */
2177 REGULATOR_SUPPLY("vcore", "sdi0"),
2178 REGULATOR_SUPPLY("vcore", "sdi1"),
2179 REGULATOR_SUPPLY("vcore", "sdi2"),
2180 REGULATOR_SUPPLY("vcore", "sdi3"),
2181 REGULATOR_SUPPLY("vcore", "sdi4"),
2182 REGULATOR_SUPPLY("v-dma", "dma40.0"),
2183 REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2184 /* "v-uart" changed to "vcore" in the mainline kernel */
2185 REGULATOR_SUPPLY("vcore", "uart0"),
2186 REGULATOR_SUPPLY("vcore", "uart1"),
2187 REGULATOR_SUPPLY("vcore", "uart2"),
2188 REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2189 };
2190
2191 static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
2192 /* CG2900 and CW1200 power to off-chip peripherals */
2193 REGULATOR_SUPPLY("gbf_1v8", "cg2900-uart.0"),
2194 REGULATOR_SUPPLY("wlan_1v8", "cw1200.0"),
2195 REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2196 /* AV8100 regulator */
2197 REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2198 };
2199
2200 static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
2201 REGULATOR_SUPPLY("vsupply", "b2r2.0"),
2202 REGULATOR_SUPPLY("vsupply", "mcde"),
2203 };
2204
2205 /* SVA MMDSP regulator switch */
2206 static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2207 REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2208 };
2209
2210 /* SVA pipe regulator switch */
2211 static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2212 REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2213 };
2214
2215 /* SIA MMDSP regulator switch */
2216 static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2217 REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2218 };
2219
2220 /* SIA pipe regulator switch */
2221 static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2222 REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2223 };
2224
2225 static struct regulator_consumer_supply db8500_sga_consumers[] = {
2226 REGULATOR_SUPPLY("v-mali", NULL),
2227 };
2228
2229 /* ESRAM1 and 2 regulator switch */
2230 static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2231 REGULATOR_SUPPLY("esram12", "cm_control"),
2232 };
2233
2234 /* ESRAM3 and 4 regulator switch */
2235 static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2236 REGULATOR_SUPPLY("v-esram34", "mcde"),
2237 REGULATOR_SUPPLY("esram34", "cm_control"),
2238 };
2239
2240 static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2241 [DB8500_REGULATOR_VAPE] = {
2242 .constraints = {
2243 .name = "db8500-vape",
2244 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2245 },
2246 .consumer_supplies = db8500_vape_consumers,
2247 .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2248 },
2249 [DB8500_REGULATOR_VARM] = {
2250 .constraints = {
2251 .name = "db8500-varm",
2252 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2253 },
2254 },
2255 [DB8500_REGULATOR_VMODEM] = {
2256 .constraints = {
2257 .name = "db8500-vmodem",
2258 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2259 },
2260 },
2261 [DB8500_REGULATOR_VPLL] = {
2262 .constraints = {
2263 .name = "db8500-vpll",
2264 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2265 },
2266 },
2267 [DB8500_REGULATOR_VSMPS1] = {
2268 .constraints = {
2269 .name = "db8500-vsmps1",
2270 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2271 },
2272 },
2273 [DB8500_REGULATOR_VSMPS2] = {
2274 .constraints = {
2275 .name = "db8500-vsmps2",
2276 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2277 },
2278 .consumer_supplies = db8500_vsmps2_consumers,
2279 .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2280 },
2281 [DB8500_REGULATOR_VSMPS3] = {
2282 .constraints = {
2283 .name = "db8500-vsmps3",
2284 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2285 },
2286 },
2287 [DB8500_REGULATOR_VRF1] = {
2288 .constraints = {
2289 .name = "db8500-vrf1",
2290 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2291 },
2292 },
2293 [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
2294 .supply_regulator = "db8500-vape",
2295 .constraints = {
2296 .name = "db8500-sva-mmdsp",
2297 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2298 },
2299 .consumer_supplies = db8500_svammdsp_consumers,
2300 .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
2301 },
2302 [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2303 .constraints = {
2304 /* "ret" means "retention" */
2305 .name = "db8500-sva-mmdsp-ret",
2306 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2307 },
2308 },
2309 [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
2310 .supply_regulator = "db8500-vape",
2311 .constraints = {
2312 .name = "db8500-sva-pipe",
2313 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2314 },
2315 .consumer_supplies = db8500_svapipe_consumers,
2316 .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
2317 },
2318 [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
2319 .supply_regulator = "db8500-vape",
2320 .constraints = {
2321 .name = "db8500-sia-mmdsp",
2322 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2323 },
2324 .consumer_supplies = db8500_siammdsp_consumers,
2325 .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
2326 },
2327 [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2328 .constraints = {
2329 .name = "db8500-sia-mmdsp-ret",
2330 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2331 },
2332 },
2333 [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
2334 .supply_regulator = "db8500-vape",
2335 .constraints = {
2336 .name = "db8500-sia-pipe",
2337 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2338 },
2339 .consumer_supplies = db8500_siapipe_consumers,
2340 .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
2341 },
2342 [DB8500_REGULATOR_SWITCH_SGA] = {
2343 .supply_regulator = "db8500-vape",
2344 .constraints = {
2345 .name = "db8500-sga",
2346 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2347 },
2348 .consumer_supplies = db8500_sga_consumers,
2349 .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
2350
2351 },
2352 [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
2353 .supply_regulator = "db8500-vape",
2354 .constraints = {
2355 .name = "db8500-b2r2-mcde",
2356 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2357 },
2358 .consumer_supplies = db8500_b2r2_mcde_consumers,
2359 .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
2360 },
2361 [DB8500_REGULATOR_SWITCH_ESRAM12] = {
2362 .supply_regulator = "db8500-vape",
2363 .constraints = {
2364 .name = "db8500-esram12",
2365 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2366 },
2367 .consumer_supplies = db8500_esram12_consumers,
2368 .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
2369 },
2370 [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
2371 .constraints = {
2372 .name = "db8500-esram12-ret",
2373 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2374 },
2375 },
2376 [DB8500_REGULATOR_SWITCH_ESRAM34] = {
2377 .supply_regulator = "db8500-vape",
2378 .constraints = {
2379 .name = "db8500-esram34",
2380 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2381 },
2382 .consumer_supplies = db8500_esram34_consumers,
2383 .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
2384 },
2385 [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
2386 .constraints = {
2387 .name = "db8500-esram34-ret",
2388 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2389 },
2390 },
2391 };
2392
2393 static struct mfd_cell db8500_prcmu_devs[] = {
2394 {
2395 .name = "db8500-prcmu-regulators",
2396 .platform_data = &db8500_regulators,
2397 .pdata_size = sizeof(db8500_regulators),
2398 },
2399 {
2400 .name = "cpufreq-u8500",
2401 },
2402 };
2403
2404 /**
2405 * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
2406 *
2407 */
2408 static int __init db8500_prcmu_probe(struct platform_device *pdev)
2409 {
2410 int err = 0;
2411
2412 if (ux500_is_svp())
2413 return -ENODEV;
2414
2415 db8500_prcmu_init_clkforce();
2416
2417 /* Clean up the mailbox interrupts after pre-kernel code. */
2418 writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
2419
2420 err = request_threaded_irq(IRQ_DB8500_PRCMU1, prcmu_irq_handler,
2421 prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
2422 if (err < 0) {
2423 pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
2424 err = -EBUSY;
2425 goto no_irq_return;
2426 }
2427
2428 if (cpu_is_u8500v20_or_later())
2429 prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
2430
2431 err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
2432 ARRAY_SIZE(db8500_prcmu_devs), NULL,
2433 0);
2434
2435 if (err)
2436 pr_err("prcmu: Failed to add subdevices\n");
2437 else
2438 pr_info("DB8500 PRCMU initialized\n");
2439
2440 no_irq_return:
2441 return err;
2442 }
2443
2444 static struct platform_driver db8500_prcmu_driver = {
2445 .driver = {
2446 .name = "db8500-prcmu",
2447 .owner = THIS_MODULE,
2448 },
2449 };
2450
2451 static int __init db8500_prcmu_init(void)
2452 {
2453 return platform_driver_probe(&db8500_prcmu_driver, db8500_prcmu_probe);
2454 }
2455
2456 arch_initcall(db8500_prcmu_init);
2457
2458 MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
2459 MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
2460 MODULE_LICENSE("GPL v2");
This page took 0.07871 seconds and 4 git commands to generate.