Merge tag 'davinci-fixes-for-v3.15-rc4' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / drivers / misc / genwqe / card_utils.c
1 /**
2 * IBM Accelerator Family 'GenWQE'
3 *
4 * (C) Copyright IBM Corp. 2013
5 *
6 * Author: Frank Haverkamp <haver@linux.vnet.ibm.com>
7 * Author: Joerg-Stephan Vogt <jsvogt@de.ibm.com>
8 * Author: Michael Jung <mijung@de.ibm.com>
9 * Author: Michael Ruettger <michael@ibmra.de>
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License (version 2 only)
13 * as published by the Free Software Foundation.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 */
20
21 /*
22 * Miscelanous functionality used in the other GenWQE driver parts.
23 */
24
25 #include <linux/kernel.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/sched.h>
28 #include <linux/vmalloc.h>
29 #include <linux/page-flags.h>
30 #include <linux/scatterlist.h>
31 #include <linux/hugetlb.h>
32 #include <linux/iommu.h>
33 #include <linux/delay.h>
34 #include <linux/pci.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/ctype.h>
37 #include <linux/module.h>
38 #include <linux/platform_device.h>
39 #include <linux/delay.h>
40 #include <asm/pgtable.h>
41
42 #include "genwqe_driver.h"
43 #include "card_base.h"
44 #include "card_ddcb.h"
45
46 /**
47 * __genwqe_writeq() - Write 64-bit register
48 * @cd: genwqe device descriptor
49 * @byte_offs: byte offset within BAR
50 * @val: 64-bit value
51 *
52 * Return: 0 if success; < 0 if error
53 */
54 int __genwqe_writeq(struct genwqe_dev *cd, u64 byte_offs, u64 val)
55 {
56 if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
57 return -EIO;
58
59 if (cd->mmio == NULL)
60 return -EIO;
61
62 __raw_writeq((__force u64)cpu_to_be64(val), cd->mmio + byte_offs);
63 return 0;
64 }
65
66 /**
67 * __genwqe_readq() - Read 64-bit register
68 * @cd: genwqe device descriptor
69 * @byte_offs: offset within BAR
70 *
71 * Return: value from register
72 */
73 u64 __genwqe_readq(struct genwqe_dev *cd, u64 byte_offs)
74 {
75 if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
76 return 0xffffffffffffffffull;
77
78 if ((cd->err_inject & GENWQE_INJECT_GFIR_FATAL) &&
79 (byte_offs == IO_SLC_CFGREG_GFIR))
80 return 0x000000000000ffffull;
81
82 if ((cd->err_inject & GENWQE_INJECT_GFIR_INFO) &&
83 (byte_offs == IO_SLC_CFGREG_GFIR))
84 return 0x00000000ffff0000ull;
85
86 if (cd->mmio == NULL)
87 return 0xffffffffffffffffull;
88
89 return be64_to_cpu((__force __be64)__raw_readq(cd->mmio + byte_offs));
90 }
91
92 /**
93 * __genwqe_writel() - Write 32-bit register
94 * @cd: genwqe device descriptor
95 * @byte_offs: byte offset within BAR
96 * @val: 32-bit value
97 *
98 * Return: 0 if success; < 0 if error
99 */
100 int __genwqe_writel(struct genwqe_dev *cd, u64 byte_offs, u32 val)
101 {
102 if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
103 return -EIO;
104
105 if (cd->mmio == NULL)
106 return -EIO;
107
108 __raw_writel((__force u32)cpu_to_be32(val), cd->mmio + byte_offs);
109 return 0;
110 }
111
112 /**
113 * __genwqe_readl() - Read 32-bit register
114 * @cd: genwqe device descriptor
115 * @byte_offs: offset within BAR
116 *
117 * Return: Value from register
118 */
119 u32 __genwqe_readl(struct genwqe_dev *cd, u64 byte_offs)
120 {
121 if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
122 return 0xffffffff;
123
124 if (cd->mmio == NULL)
125 return 0xffffffff;
126
127 return be32_to_cpu((__force __be32)__raw_readl(cd->mmio + byte_offs));
128 }
129
130 /**
131 * genwqe_read_app_id() - Extract app_id
132 *
133 * app_unitcfg need to be filled with valid data first
134 */
135 int genwqe_read_app_id(struct genwqe_dev *cd, char *app_name, int len)
136 {
137 int i, j;
138 u32 app_id = (u32)cd->app_unitcfg;
139
140 memset(app_name, 0, len);
141 for (i = 0, j = 0; j < min(len, 4); j++) {
142 char ch = (char)((app_id >> (24 - j*8)) & 0xff);
143 if (ch == ' ')
144 continue;
145 app_name[i++] = isprint(ch) ? ch : 'X';
146 }
147 return i;
148 }
149
150 /**
151 * genwqe_init_crc32() - Prepare a lookup table for fast crc32 calculations
152 *
153 * Existing kernel functions seem to use a different polynom,
154 * therefore we could not use them here.
155 *
156 * Genwqe's Polynomial = 0x20044009
157 */
158 #define CRC32_POLYNOMIAL 0x20044009
159 static u32 crc32_tab[256]; /* crc32 lookup table */
160
161 void genwqe_init_crc32(void)
162 {
163 int i, j;
164 u32 crc;
165
166 for (i = 0; i < 256; i++) {
167 crc = i << 24;
168 for (j = 0; j < 8; j++) {
169 if (crc & 0x80000000)
170 crc = (crc << 1) ^ CRC32_POLYNOMIAL;
171 else
172 crc = (crc << 1);
173 }
174 crc32_tab[i] = crc;
175 }
176 }
177
178 /**
179 * genwqe_crc32() - Generate 32-bit crc as required for DDCBs
180 * @buff: pointer to data buffer
181 * @len: length of data for calculation
182 * @init: initial crc (0xffffffff at start)
183 *
184 * polynomial = x^32 * + x^29 + x^18 + x^14 + x^3 + 1 (0x20044009)
185
186 * Example: 4 bytes 0x01 0x02 0x03 0x04 with init=0xffffffff should
187 * result in a crc32 of 0xf33cb7d3.
188 *
189 * The existing kernel crc functions did not cover this polynom yet.
190 *
191 * Return: crc32 checksum.
192 */
193 u32 genwqe_crc32(u8 *buff, size_t len, u32 init)
194 {
195 int i;
196 u32 crc;
197
198 crc = init;
199 while (len--) {
200 i = ((crc >> 24) ^ *buff++) & 0xFF;
201 crc = (crc << 8) ^ crc32_tab[i];
202 }
203 return crc;
204 }
205
206 void *__genwqe_alloc_consistent(struct genwqe_dev *cd, size_t size,
207 dma_addr_t *dma_handle)
208 {
209 if (get_order(size) > MAX_ORDER)
210 return NULL;
211
212 return pci_alloc_consistent(cd->pci_dev, size, dma_handle);
213 }
214
215 void __genwqe_free_consistent(struct genwqe_dev *cd, size_t size,
216 void *vaddr, dma_addr_t dma_handle)
217 {
218 if (vaddr == NULL)
219 return;
220
221 pci_free_consistent(cd->pci_dev, size, vaddr, dma_handle);
222 }
223
224 static void genwqe_unmap_pages(struct genwqe_dev *cd, dma_addr_t *dma_list,
225 int num_pages)
226 {
227 int i;
228 struct pci_dev *pci_dev = cd->pci_dev;
229
230 for (i = 0; (i < num_pages) && (dma_list[i] != 0x0); i++) {
231 pci_unmap_page(pci_dev, dma_list[i],
232 PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
233 dma_list[i] = 0x0;
234 }
235 }
236
237 static int genwqe_map_pages(struct genwqe_dev *cd,
238 struct page **page_list, int num_pages,
239 dma_addr_t *dma_list)
240 {
241 int i;
242 struct pci_dev *pci_dev = cd->pci_dev;
243
244 /* establish DMA mapping for requested pages */
245 for (i = 0; i < num_pages; i++) {
246 dma_addr_t daddr;
247
248 dma_list[i] = 0x0;
249 daddr = pci_map_page(pci_dev, page_list[i],
250 0, /* map_offs */
251 PAGE_SIZE,
252 PCI_DMA_BIDIRECTIONAL); /* FIXME rd/rw */
253
254 if (pci_dma_mapping_error(pci_dev, daddr)) {
255 dev_err(&pci_dev->dev,
256 "[%s] err: no dma addr daddr=%016llx!\n",
257 __func__, (long long)daddr);
258 goto err;
259 }
260
261 dma_list[i] = daddr;
262 }
263 return 0;
264
265 err:
266 genwqe_unmap_pages(cd, dma_list, num_pages);
267 return -EIO;
268 }
269
270 static int genwqe_sgl_size(int num_pages)
271 {
272 int len, num_tlb = num_pages / 7;
273
274 len = sizeof(struct sg_entry) * (num_pages+num_tlb + 1);
275 return roundup(len, PAGE_SIZE);
276 }
277
278 /**
279 * genwqe_alloc_sync_sgl() - Allocate memory for sgl and overlapping pages
280 *
281 * Allocates memory for sgl and overlapping pages. Pages which might
282 * overlap other user-space memory blocks are being cached for DMAs,
283 * such that we do not run into syncronization issues. Data is copied
284 * from user-space into the cached pages.
285 */
286 int genwqe_alloc_sync_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl,
287 void __user *user_addr, size_t user_size)
288 {
289 int rc;
290 struct pci_dev *pci_dev = cd->pci_dev;
291
292 sgl->fpage_offs = offset_in_page((unsigned long)user_addr);
293 sgl->fpage_size = min_t(size_t, PAGE_SIZE-sgl->fpage_offs, user_size);
294 sgl->nr_pages = DIV_ROUND_UP(sgl->fpage_offs + user_size, PAGE_SIZE);
295 sgl->lpage_size = (user_size - sgl->fpage_size) % PAGE_SIZE;
296
297 dev_dbg(&pci_dev->dev, "[%s] uaddr=%p usize=%8ld nr_pages=%ld "
298 "fpage_offs=%lx fpage_size=%ld lpage_size=%ld\n",
299 __func__, user_addr, user_size, sgl->nr_pages,
300 sgl->fpage_offs, sgl->fpage_size, sgl->lpage_size);
301
302 sgl->user_addr = user_addr;
303 sgl->user_size = user_size;
304 sgl->sgl_size = genwqe_sgl_size(sgl->nr_pages);
305
306 if (get_order(sgl->sgl_size) > MAX_ORDER) {
307 dev_err(&pci_dev->dev,
308 "[%s] err: too much memory requested!\n", __func__);
309 return -ENOMEM;
310 }
311
312 sgl->sgl = __genwqe_alloc_consistent(cd, sgl->sgl_size,
313 &sgl->sgl_dma_addr);
314 if (sgl->sgl == NULL) {
315 dev_err(&pci_dev->dev,
316 "[%s] err: no memory available!\n", __func__);
317 return -ENOMEM;
318 }
319
320 /* Only use buffering on incomplete pages */
321 if ((sgl->fpage_size != 0) && (sgl->fpage_size != PAGE_SIZE)) {
322 sgl->fpage = __genwqe_alloc_consistent(cd, PAGE_SIZE,
323 &sgl->fpage_dma_addr);
324 if (sgl->fpage == NULL)
325 goto err_out;
326
327 /* Sync with user memory */
328 if (copy_from_user(sgl->fpage + sgl->fpage_offs,
329 user_addr, sgl->fpage_size)) {
330 rc = -EFAULT;
331 goto err_out;
332 }
333 }
334 if (sgl->lpage_size != 0) {
335 sgl->lpage = __genwqe_alloc_consistent(cd, PAGE_SIZE,
336 &sgl->lpage_dma_addr);
337 if (sgl->lpage == NULL)
338 goto err_out1;
339
340 /* Sync with user memory */
341 if (copy_from_user(sgl->lpage, user_addr + user_size -
342 sgl->lpage_size, sgl->lpage_size)) {
343 rc = -EFAULT;
344 goto err_out1;
345 }
346 }
347 return 0;
348
349 err_out1:
350 __genwqe_free_consistent(cd, PAGE_SIZE, sgl->fpage,
351 sgl->fpage_dma_addr);
352 err_out:
353 __genwqe_free_consistent(cd, sgl->sgl_size, sgl->sgl,
354 sgl->sgl_dma_addr);
355 return -ENOMEM;
356 }
357
358 int genwqe_setup_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl,
359 dma_addr_t *dma_list)
360 {
361 int i = 0, j = 0, p;
362 unsigned long dma_offs, map_offs;
363 dma_addr_t prev_daddr = 0;
364 struct sg_entry *s, *last_s = NULL;
365 size_t size = sgl->user_size;
366
367 dma_offs = 128; /* next block if needed/dma_offset */
368 map_offs = sgl->fpage_offs; /* offset in first page */
369
370 s = &sgl->sgl[0]; /* first set of 8 entries */
371 p = 0; /* page */
372 while (p < sgl->nr_pages) {
373 dma_addr_t daddr;
374 unsigned int size_to_map;
375
376 /* always write the chaining entry, cleanup is done later */
377 j = 0;
378 s[j].target_addr = cpu_to_be64(sgl->sgl_dma_addr + dma_offs);
379 s[j].len = cpu_to_be32(128);
380 s[j].flags = cpu_to_be32(SG_CHAINED);
381 j++;
382
383 while (j < 8) {
384 /* DMA mapping for requested page, offs, size */
385 size_to_map = min(size, PAGE_SIZE - map_offs);
386
387 if ((p == 0) && (sgl->fpage != NULL)) {
388 daddr = sgl->fpage_dma_addr + map_offs;
389
390 } else if ((p == sgl->nr_pages - 1) &&
391 (sgl->lpage != NULL)) {
392 daddr = sgl->lpage_dma_addr;
393 } else {
394 daddr = dma_list[p] + map_offs;
395 }
396
397 size -= size_to_map;
398 map_offs = 0;
399
400 if (prev_daddr == daddr) {
401 u32 prev_len = be32_to_cpu(last_s->len);
402
403 /* pr_info("daddr combining: "
404 "%016llx/%08x -> %016llx\n",
405 prev_daddr, prev_len, daddr); */
406
407 last_s->len = cpu_to_be32(prev_len +
408 size_to_map);
409
410 p++; /* process next page */
411 if (p == sgl->nr_pages)
412 goto fixup; /* nothing to do */
413
414 prev_daddr = daddr + size_to_map;
415 continue;
416 }
417
418 /* start new entry */
419 s[j].target_addr = cpu_to_be64(daddr);
420 s[j].len = cpu_to_be32(size_to_map);
421 s[j].flags = cpu_to_be32(SG_DATA);
422 prev_daddr = daddr + size_to_map;
423 last_s = &s[j];
424 j++;
425
426 p++; /* process next page */
427 if (p == sgl->nr_pages)
428 goto fixup; /* nothing to do */
429 }
430 dma_offs += 128;
431 s += 8; /* continue 8 elements further */
432 }
433 fixup:
434 if (j == 1) { /* combining happend on last entry! */
435 s -= 8; /* full shift needed on previous sgl block */
436 j = 7; /* shift all elements */
437 }
438
439 for (i = 0; i < j; i++) /* move elements 1 up */
440 s[i] = s[i + 1];
441
442 s[i].target_addr = cpu_to_be64(0);
443 s[i].len = cpu_to_be32(0);
444 s[i].flags = cpu_to_be32(SG_END_LIST);
445 return 0;
446 }
447
448 /**
449 * genwqe_free_sync_sgl() - Free memory for sgl and overlapping pages
450 *
451 * After the DMA transfer has been completed we free the memory for
452 * the sgl and the cached pages. Data is being transfered from cached
453 * pages into user-space buffers.
454 */
455 int genwqe_free_sync_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl)
456 {
457 int rc;
458 struct pci_dev *pci_dev = cd->pci_dev;
459
460 if (sgl->fpage) {
461 if (copy_to_user(sgl->user_addr, sgl->fpage + sgl->fpage_offs,
462 sgl->fpage_size)) {
463 dev_err(&pci_dev->dev, "[%s] err: copying fpage!\n",
464 __func__);
465 rc = -EFAULT;
466 }
467 __genwqe_free_consistent(cd, PAGE_SIZE, sgl->fpage,
468 sgl->fpage_dma_addr);
469 sgl->fpage = NULL;
470 sgl->fpage_dma_addr = 0;
471 }
472 if (sgl->lpage) {
473 if (copy_to_user(sgl->user_addr + sgl->user_size -
474 sgl->lpage_size, sgl->lpage,
475 sgl->lpage_size)) {
476 dev_err(&pci_dev->dev, "[%s] err: copying lpage!\n",
477 __func__);
478 rc = -EFAULT;
479 }
480 __genwqe_free_consistent(cd, PAGE_SIZE, sgl->lpage,
481 sgl->lpage_dma_addr);
482 sgl->lpage = NULL;
483 sgl->lpage_dma_addr = 0;
484 }
485 __genwqe_free_consistent(cd, sgl->sgl_size, sgl->sgl,
486 sgl->sgl_dma_addr);
487
488 sgl->sgl = NULL;
489 sgl->sgl_dma_addr = 0x0;
490 sgl->sgl_size = 0;
491 return rc;
492 }
493
494 /**
495 * free_user_pages() - Give pinned pages back
496 *
497 * Documentation of get_user_pages is in mm/memory.c:
498 *
499 * If the page is written to, set_page_dirty (or set_page_dirty_lock,
500 * as appropriate) must be called after the page is finished with, and
501 * before put_page is called.
502 *
503 * FIXME Could be of use to others and might belong in the generic
504 * code, if others agree. E.g.
505 * ll_free_user_pages in drivers/staging/lustre/lustre/llite/rw26.c
506 * ceph_put_page_vector in net/ceph/pagevec.c
507 * maybe more?
508 */
509 static int free_user_pages(struct page **page_list, unsigned int nr_pages,
510 int dirty)
511 {
512 unsigned int i;
513
514 for (i = 0; i < nr_pages; i++) {
515 if (page_list[i] != NULL) {
516 if (dirty)
517 set_page_dirty_lock(page_list[i]);
518 put_page(page_list[i]);
519 }
520 }
521 return 0;
522 }
523
524 /**
525 * genwqe_user_vmap() - Map user-space memory to virtual kernel memory
526 * @cd: pointer to genwqe device
527 * @m: mapping params
528 * @uaddr: user virtual address
529 * @size: size of memory to be mapped
530 *
531 * We need to think about how we could speed this up. Of course it is
532 * not a good idea to do this over and over again, like we are
533 * currently doing it. Nevertheless, I am curious where on the path
534 * the performance is spend. Most probably within the memory
535 * allocation functions, but maybe also in the DMA mapping code.
536 *
537 * Restrictions: The maximum size of the possible mapping currently depends
538 * on the amount of memory we can get using kzalloc() for the
539 * page_list and pci_alloc_consistent for the sg_list.
540 * The sg_list is currently itself not scattered, which could
541 * be fixed with some effort. The page_list must be split into
542 * PAGE_SIZE chunks too. All that will make the complicated
543 * code more complicated.
544 *
545 * Return: 0 if success
546 */
547 int genwqe_user_vmap(struct genwqe_dev *cd, struct dma_mapping *m, void *uaddr,
548 unsigned long size, struct ddcb_requ *req)
549 {
550 int rc = -EINVAL;
551 unsigned long data, offs;
552 struct pci_dev *pci_dev = cd->pci_dev;
553
554 if ((uaddr == NULL) || (size == 0)) {
555 m->size = 0; /* mark unused and not added */
556 return -EINVAL;
557 }
558 m->u_vaddr = uaddr;
559 m->size = size;
560
561 /* determine space needed for page_list. */
562 data = (unsigned long)uaddr;
563 offs = offset_in_page(data);
564 m->nr_pages = DIV_ROUND_UP(offs + size, PAGE_SIZE);
565
566 m->page_list = kcalloc(m->nr_pages,
567 sizeof(struct page *) + sizeof(dma_addr_t),
568 GFP_KERNEL);
569 if (!m->page_list) {
570 dev_err(&pci_dev->dev, "err: alloc page_list failed\n");
571 m->nr_pages = 0;
572 m->u_vaddr = NULL;
573 m->size = 0; /* mark unused and not added */
574 return -ENOMEM;
575 }
576 m->dma_list = (dma_addr_t *)(m->page_list + m->nr_pages);
577
578 /* pin user pages in memory */
579 rc = get_user_pages_fast(data & PAGE_MASK, /* page aligned addr */
580 m->nr_pages,
581 1, /* write by caller */
582 m->page_list); /* ptrs to pages */
583
584 /* assumption: get_user_pages can be killed by signals. */
585 if (rc < m->nr_pages) {
586 free_user_pages(m->page_list, rc, 0);
587 rc = -EFAULT;
588 goto fail_get_user_pages;
589 }
590
591 rc = genwqe_map_pages(cd, m->page_list, m->nr_pages, m->dma_list);
592 if (rc != 0)
593 goto fail_free_user_pages;
594
595 return 0;
596
597 fail_free_user_pages:
598 free_user_pages(m->page_list, m->nr_pages, 0);
599
600 fail_get_user_pages:
601 kfree(m->page_list);
602 m->page_list = NULL;
603 m->dma_list = NULL;
604 m->nr_pages = 0;
605 m->u_vaddr = NULL;
606 m->size = 0; /* mark unused and not added */
607 return rc;
608 }
609
610 /**
611 * genwqe_user_vunmap() - Undo mapping of user-space mem to virtual kernel
612 * memory
613 * @cd: pointer to genwqe device
614 * @m: mapping params
615 */
616 int genwqe_user_vunmap(struct genwqe_dev *cd, struct dma_mapping *m,
617 struct ddcb_requ *req)
618 {
619 struct pci_dev *pci_dev = cd->pci_dev;
620
621 if (!dma_mapping_used(m)) {
622 dev_err(&pci_dev->dev, "[%s] err: mapping %p not used!\n",
623 __func__, m);
624 return -EINVAL;
625 }
626
627 if (m->dma_list)
628 genwqe_unmap_pages(cd, m->dma_list, m->nr_pages);
629
630 if (m->page_list) {
631 free_user_pages(m->page_list, m->nr_pages, 1);
632
633 kfree(m->page_list);
634 m->page_list = NULL;
635 m->dma_list = NULL;
636 m->nr_pages = 0;
637 }
638
639 m->u_vaddr = NULL;
640 m->size = 0; /* mark as unused and not added */
641 return 0;
642 }
643
644 /**
645 * genwqe_card_type() - Get chip type SLU Configuration Register
646 * @cd: pointer to the genwqe device descriptor
647 * Return: 0: Altera Stratix-IV 230
648 * 1: Altera Stratix-IV 530
649 * 2: Altera Stratix-V A4
650 * 3: Altera Stratix-V A7
651 */
652 u8 genwqe_card_type(struct genwqe_dev *cd)
653 {
654 u64 card_type = cd->slu_unitcfg;
655 return (u8)((card_type & IO_SLU_UNITCFG_TYPE_MASK) >> 20);
656 }
657
658 /**
659 * genwqe_card_reset() - Reset the card
660 * @cd: pointer to the genwqe device descriptor
661 */
662 int genwqe_card_reset(struct genwqe_dev *cd)
663 {
664 u64 softrst;
665 struct pci_dev *pci_dev = cd->pci_dev;
666
667 if (!genwqe_is_privileged(cd))
668 return -ENODEV;
669
670 /* new SL */
671 __genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET, 0x1ull);
672 msleep(1000);
673 __genwqe_readq(cd, IO_HSU_FIR_CLR);
674 __genwqe_readq(cd, IO_APP_FIR_CLR);
675 __genwqe_readq(cd, IO_SLU_FIR_CLR);
676
677 /*
678 * Read-modify-write to preserve the stealth bits
679 *
680 * For SL >= 039, Stealth WE bit allows removing
681 * the read-modify-wrote.
682 * r-m-w may require a mask 0x3C to avoid hitting hard
683 * reset again for error reset (should be 0, chicken).
684 */
685 softrst = __genwqe_readq(cd, IO_SLC_CFGREG_SOFTRESET) & 0x3cull;
686 __genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET, softrst | 0x2ull);
687
688 /* give ERRORRESET some time to finish */
689 msleep(50);
690
691 if (genwqe_need_err_masking(cd)) {
692 dev_info(&pci_dev->dev,
693 "[%s] masking errors for old bitstreams\n", __func__);
694 __genwqe_writeq(cd, IO_SLC_MISC_DEBUG, 0x0aull);
695 }
696 return 0;
697 }
698
699 int genwqe_read_softreset(struct genwqe_dev *cd)
700 {
701 u64 bitstream;
702
703 if (!genwqe_is_privileged(cd))
704 return -ENODEV;
705
706 bitstream = __genwqe_readq(cd, IO_SLU_BITSTREAM) & 0x1;
707 cd->softreset = (bitstream == 0) ? 0x8ull : 0xcull;
708 return 0;
709 }
710
711 /**
712 * genwqe_set_interrupt_capability() - Configure MSI capability structure
713 * @cd: pointer to the device
714 * Return: 0 if no error
715 */
716 int genwqe_set_interrupt_capability(struct genwqe_dev *cd, int count)
717 {
718 int rc;
719 struct pci_dev *pci_dev = cd->pci_dev;
720
721 rc = pci_enable_msi_block(pci_dev, count);
722 if (rc == 0)
723 cd->flags |= GENWQE_FLAG_MSI_ENABLED;
724 return rc;
725 }
726
727 /**
728 * genwqe_reset_interrupt_capability() - Undo genwqe_set_interrupt_capability()
729 * @cd: pointer to the device
730 */
731 void genwqe_reset_interrupt_capability(struct genwqe_dev *cd)
732 {
733 struct pci_dev *pci_dev = cd->pci_dev;
734
735 if (cd->flags & GENWQE_FLAG_MSI_ENABLED) {
736 pci_disable_msi(pci_dev);
737 cd->flags &= ~GENWQE_FLAG_MSI_ENABLED;
738 }
739 }
740
741 /**
742 * set_reg_idx() - Fill array with data. Ignore illegal offsets.
743 * @cd: card device
744 * @r: debug register array
745 * @i: index to desired entry
746 * @m: maximum possible entries
747 * @addr: addr which is read
748 * @index: index in debug array
749 * @val: read value
750 */
751 static int set_reg_idx(struct genwqe_dev *cd, struct genwqe_reg *r,
752 unsigned int *i, unsigned int m, u32 addr, u32 idx,
753 u64 val)
754 {
755 if (WARN_ON_ONCE(*i >= m))
756 return -EFAULT;
757
758 r[*i].addr = addr;
759 r[*i].idx = idx;
760 r[*i].val = val;
761 ++*i;
762 return 0;
763 }
764
765 static int set_reg(struct genwqe_dev *cd, struct genwqe_reg *r,
766 unsigned int *i, unsigned int m, u32 addr, u64 val)
767 {
768 return set_reg_idx(cd, r, i, m, addr, 0, val);
769 }
770
771 int genwqe_read_ffdc_regs(struct genwqe_dev *cd, struct genwqe_reg *regs,
772 unsigned int max_regs, int all)
773 {
774 unsigned int i, j, idx = 0;
775 u32 ufir_addr, ufec_addr, sfir_addr, sfec_addr;
776 u64 gfir, sluid, appid, ufir, ufec, sfir, sfec;
777
778 /* Global FIR */
779 gfir = __genwqe_readq(cd, IO_SLC_CFGREG_GFIR);
780 set_reg(cd, regs, &idx, max_regs, IO_SLC_CFGREG_GFIR, gfir);
781
782 /* UnitCfg for SLU */
783 sluid = __genwqe_readq(cd, IO_SLU_UNITCFG); /* 0x00000000 */
784 set_reg(cd, regs, &idx, max_regs, IO_SLU_UNITCFG, sluid);
785
786 /* UnitCfg for APP */
787 appid = __genwqe_readq(cd, IO_APP_UNITCFG); /* 0x02000000 */
788 set_reg(cd, regs, &idx, max_regs, IO_APP_UNITCFG, appid);
789
790 /* Check all chip Units */
791 for (i = 0; i < GENWQE_MAX_UNITS; i++) {
792
793 /* Unit FIR */
794 ufir_addr = (i << 24) | 0x008;
795 ufir = __genwqe_readq(cd, ufir_addr);
796 set_reg(cd, regs, &idx, max_regs, ufir_addr, ufir);
797
798 /* Unit FEC */
799 ufec_addr = (i << 24) | 0x018;
800 ufec = __genwqe_readq(cd, ufec_addr);
801 set_reg(cd, regs, &idx, max_regs, ufec_addr, ufec);
802
803 for (j = 0; j < 64; j++) {
804 /* wherever there is a primary 1, read the 2ndary */
805 if (!all && (!(ufir & (1ull << j))))
806 continue;
807
808 sfir_addr = (i << 24) | (0x100 + 8 * j);
809 sfir = __genwqe_readq(cd, sfir_addr);
810 set_reg(cd, regs, &idx, max_regs, sfir_addr, sfir);
811
812 sfec_addr = (i << 24) | (0x300 + 8 * j);
813 sfec = __genwqe_readq(cd, sfec_addr);
814 set_reg(cd, regs, &idx, max_regs, sfec_addr, sfec);
815 }
816 }
817
818 /* fill with invalid data until end */
819 for (i = idx; i < max_regs; i++) {
820 regs[i].addr = 0xffffffff;
821 regs[i].val = 0xffffffffffffffffull;
822 }
823 return idx;
824 }
825
826 /**
827 * genwqe_ffdc_buff_size() - Calculates the number of dump registers
828 */
829 int genwqe_ffdc_buff_size(struct genwqe_dev *cd, int uid)
830 {
831 int entries = 0, ring, traps, traces, trace_entries;
832 u32 eevptr_addr, l_addr, d_len, d_type;
833 u64 eevptr, val, addr;
834
835 eevptr_addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_ERROR_POINTER;
836 eevptr = __genwqe_readq(cd, eevptr_addr);
837
838 if ((eevptr != 0x0) && (eevptr != -1ull)) {
839 l_addr = GENWQE_UID_OFFS(uid) | eevptr;
840
841 while (1) {
842 val = __genwqe_readq(cd, l_addr);
843
844 if ((val == 0x0) || (val == -1ull))
845 break;
846
847 /* 38:24 */
848 d_len = (val & 0x0000007fff000000ull) >> 24;
849
850 /* 39 */
851 d_type = (val & 0x0000008000000000ull) >> 36;
852
853 if (d_type) { /* repeat */
854 entries += d_len;
855 } else { /* size in bytes! */
856 entries += d_len >> 3;
857 }
858
859 l_addr += 8;
860 }
861 }
862
863 for (ring = 0; ring < 8; ring++) {
864 addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_DIAG_MAP(ring);
865 val = __genwqe_readq(cd, addr);
866
867 if ((val == 0x0ull) || (val == -1ull))
868 continue;
869
870 traps = (val >> 24) & 0xff;
871 traces = (val >> 16) & 0xff;
872 trace_entries = val & 0xffff;
873
874 entries += traps + (traces * trace_entries);
875 }
876 return entries;
877 }
878
879 /**
880 * genwqe_ffdc_buff_read() - Implements LogoutExtendedErrorRegisters procedure
881 */
882 int genwqe_ffdc_buff_read(struct genwqe_dev *cd, int uid,
883 struct genwqe_reg *regs, unsigned int max_regs)
884 {
885 int i, traps, traces, trace, trace_entries, trace_entry, ring;
886 unsigned int idx = 0;
887 u32 eevptr_addr, l_addr, d_addr, d_len, d_type;
888 u64 eevptr, e, val, addr;
889
890 eevptr_addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_ERROR_POINTER;
891 eevptr = __genwqe_readq(cd, eevptr_addr);
892
893 if ((eevptr != 0x0) && (eevptr != 0xffffffffffffffffull)) {
894 l_addr = GENWQE_UID_OFFS(uid) | eevptr;
895 while (1) {
896 e = __genwqe_readq(cd, l_addr);
897 if ((e == 0x0) || (e == 0xffffffffffffffffull))
898 break;
899
900 d_addr = (e & 0x0000000000ffffffull); /* 23:0 */
901 d_len = (e & 0x0000007fff000000ull) >> 24; /* 38:24 */
902 d_type = (e & 0x0000008000000000ull) >> 36; /* 39 */
903 d_addr |= GENWQE_UID_OFFS(uid);
904
905 if (d_type) {
906 for (i = 0; i < (int)d_len; i++) {
907 val = __genwqe_readq(cd, d_addr);
908 set_reg_idx(cd, regs, &idx, max_regs,
909 d_addr, i, val);
910 }
911 } else {
912 d_len >>= 3; /* Size in bytes! */
913 for (i = 0; i < (int)d_len; i++, d_addr += 8) {
914 val = __genwqe_readq(cd, d_addr);
915 set_reg_idx(cd, regs, &idx, max_regs,
916 d_addr, 0, val);
917 }
918 }
919 l_addr += 8;
920 }
921 }
922
923 /*
924 * To save time, there are only 6 traces poplulated on Uid=2,
925 * Ring=1. each with iters=512.
926 */
927 for (ring = 0; ring < 8; ring++) { /* 0 is fls, 1 is fds,
928 2...7 are ASI rings */
929 addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_DIAG_MAP(ring);
930 val = __genwqe_readq(cd, addr);
931
932 if ((val == 0x0ull) || (val == -1ull))
933 continue;
934
935 traps = (val >> 24) & 0xff; /* Number of Traps */
936 traces = (val >> 16) & 0xff; /* Number of Traces */
937 trace_entries = val & 0xffff; /* Entries per trace */
938
939 /* Note: This is a combined loop that dumps both the traps */
940 /* (for the trace == 0 case) as well as the traces 1 to */
941 /* 'traces'. */
942 for (trace = 0; trace <= traces; trace++) {
943 u32 diag_sel =
944 GENWQE_EXTENDED_DIAG_SELECTOR(ring, trace);
945
946 addr = (GENWQE_UID_OFFS(uid) |
947 IO_EXTENDED_DIAG_SELECTOR);
948 __genwqe_writeq(cd, addr, diag_sel);
949
950 for (trace_entry = 0;
951 trace_entry < (trace ? trace_entries : traps);
952 trace_entry++) {
953 addr = (GENWQE_UID_OFFS(uid) |
954 IO_EXTENDED_DIAG_READ_MBX);
955 val = __genwqe_readq(cd, addr);
956 set_reg_idx(cd, regs, &idx, max_regs, addr,
957 (diag_sel<<16) | trace_entry, val);
958 }
959 }
960 }
961 return 0;
962 }
963
964 /**
965 * genwqe_write_vreg() - Write register in virtual window
966 *
967 * Note, these registers are only accessible to the PF through the
968 * VF-window. It is not intended for the VF to access.
969 */
970 int genwqe_write_vreg(struct genwqe_dev *cd, u32 reg, u64 val, int func)
971 {
972 __genwqe_writeq(cd, IO_PF_SLC_VIRTUAL_WINDOW, func & 0xf);
973 __genwqe_writeq(cd, reg, val);
974 return 0;
975 }
976
977 /**
978 * genwqe_read_vreg() - Read register in virtual window
979 *
980 * Note, these registers are only accessible to the PF through the
981 * VF-window. It is not intended for the VF to access.
982 */
983 u64 genwqe_read_vreg(struct genwqe_dev *cd, u32 reg, int func)
984 {
985 __genwqe_writeq(cd, IO_PF_SLC_VIRTUAL_WINDOW, func & 0xf);
986 return __genwqe_readq(cd, reg);
987 }
988
989 /**
990 * genwqe_base_clock_frequency() - Deteremine base clock frequency of the card
991 *
992 * Note: From a design perspective it turned out to be a bad idea to
993 * use codes here to specifiy the frequency/speed values. An old
994 * driver cannot understand new codes and is therefore always a
995 * problem. Better is to measure out the value or put the
996 * speed/frequency directly into a register which is always a valid
997 * value for old as well as for new software.
998 *
999 * Return: Card clock in MHz
1000 */
1001 int genwqe_base_clock_frequency(struct genwqe_dev *cd)
1002 {
1003 u16 speed; /* MHz MHz MHz MHz */
1004 static const int speed_grade[] = { 250, 200, 166, 175 };
1005
1006 speed = (u16)((cd->slu_unitcfg >> 28) & 0x0full);
1007 if (speed >= ARRAY_SIZE(speed_grade))
1008 return 0; /* illegal value */
1009
1010 return speed_grade[speed];
1011 }
1012
1013 /**
1014 * genwqe_stop_traps() - Stop traps
1015 *
1016 * Before reading out the analysis data, we need to stop the traps.
1017 */
1018 void genwqe_stop_traps(struct genwqe_dev *cd)
1019 {
1020 __genwqe_writeq(cd, IO_SLC_MISC_DEBUG_SET, 0xcull);
1021 }
1022
1023 /**
1024 * genwqe_start_traps() - Start traps
1025 *
1026 * After having read the data, we can/must enable the traps again.
1027 */
1028 void genwqe_start_traps(struct genwqe_dev *cd)
1029 {
1030 __genwqe_writeq(cd, IO_SLC_MISC_DEBUG_CLR, 0xcull);
1031
1032 if (genwqe_need_err_masking(cd))
1033 __genwqe_writeq(cd, IO_SLC_MISC_DEBUG, 0x0aull);
1034 }
This page took 0.065626 seconds and 5 git commands to generate.