iwlwifi: rename CAPA_P2P_STANDALONE_UAPSD to CAPA_P2P_SCM_UAPSD
[deliverable/linux.git] / drivers / misc / lkdtm.c
1 /*
2 * Kprobe module for testing crash dumps
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright (C) IBM Corporation, 2006
19 *
20 * Author: Ankita Garg <ankita@in.ibm.com>
21 *
22 * This module induces system failures at predefined crashpoints to
23 * evaluate the reliability of crash dumps obtained using different dumping
24 * solutions.
25 *
26 * It is adapted from the Linux Kernel Dump Test Tool by
27 * Fernando Luis Vazquez Cao <http://lkdtt.sourceforge.net>
28 *
29 * Debugfs support added by Simon Kagstrom <simon.kagstrom@netinsight.net>
30 *
31 * See Documentation/fault-injection/provoke-crashes.txt for instructions
32 */
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34
35 #include <linux/kernel.h>
36 #include <linux/fs.h>
37 #include <linux/module.h>
38 #include <linux/buffer_head.h>
39 #include <linux/kprobes.h>
40 #include <linux/list.h>
41 #include <linux/init.h>
42 #include <linux/interrupt.h>
43 #include <linux/hrtimer.h>
44 #include <linux/slab.h>
45 #include <scsi/scsi_cmnd.h>
46 #include <linux/debugfs.h>
47 #include <linux/vmalloc.h>
48 #include <linux/mman.h>
49 #include <asm/cacheflush.h>
50
51 #ifdef CONFIG_IDE
52 #include <linux/ide.h>
53 #endif
54
55 /*
56 * Make sure our attempts to over run the kernel stack doesn't trigger
57 * a compiler warning when CONFIG_FRAME_WARN is set. Then make sure we
58 * recurse past the end of THREAD_SIZE by default.
59 */
60 #if defined(CONFIG_FRAME_WARN) && (CONFIG_FRAME_WARN > 0)
61 #define REC_STACK_SIZE (CONFIG_FRAME_WARN / 2)
62 #else
63 #define REC_STACK_SIZE (THREAD_SIZE / 8)
64 #endif
65 #define REC_NUM_DEFAULT ((THREAD_SIZE / REC_STACK_SIZE) * 2)
66
67 #define DEFAULT_COUNT 10
68 #define EXEC_SIZE 64
69
70 enum cname {
71 CN_INVALID,
72 CN_INT_HARDWARE_ENTRY,
73 CN_INT_HW_IRQ_EN,
74 CN_INT_TASKLET_ENTRY,
75 CN_FS_DEVRW,
76 CN_MEM_SWAPOUT,
77 CN_TIMERADD,
78 CN_SCSI_DISPATCH_CMD,
79 CN_IDE_CORE_CP,
80 CN_DIRECT,
81 };
82
83 enum ctype {
84 CT_NONE,
85 CT_PANIC,
86 CT_BUG,
87 CT_WARNING,
88 CT_EXCEPTION,
89 CT_LOOP,
90 CT_OVERFLOW,
91 CT_CORRUPT_STACK,
92 CT_UNALIGNED_LOAD_STORE_WRITE,
93 CT_OVERWRITE_ALLOCATION,
94 CT_WRITE_AFTER_FREE,
95 CT_READ_AFTER_FREE,
96 CT_WRITE_BUDDY_AFTER_FREE,
97 CT_READ_BUDDY_AFTER_FREE,
98 CT_SOFTLOCKUP,
99 CT_HARDLOCKUP,
100 CT_SPINLOCKUP,
101 CT_HUNG_TASK,
102 CT_EXEC_DATA,
103 CT_EXEC_STACK,
104 CT_EXEC_KMALLOC,
105 CT_EXEC_VMALLOC,
106 CT_EXEC_USERSPACE,
107 CT_ACCESS_USERSPACE,
108 CT_WRITE_RO,
109 CT_WRITE_RO_AFTER_INIT,
110 CT_WRITE_KERN,
111 CT_WRAP_ATOMIC
112 };
113
114 static char* cp_name[] = {
115 "INT_HARDWARE_ENTRY",
116 "INT_HW_IRQ_EN",
117 "INT_TASKLET_ENTRY",
118 "FS_DEVRW",
119 "MEM_SWAPOUT",
120 "TIMERADD",
121 "SCSI_DISPATCH_CMD",
122 "IDE_CORE_CP",
123 "DIRECT",
124 };
125
126 static char* cp_type[] = {
127 "PANIC",
128 "BUG",
129 "WARNING",
130 "EXCEPTION",
131 "LOOP",
132 "OVERFLOW",
133 "CORRUPT_STACK",
134 "UNALIGNED_LOAD_STORE_WRITE",
135 "OVERWRITE_ALLOCATION",
136 "WRITE_AFTER_FREE",
137 "READ_AFTER_FREE",
138 "WRITE_BUDDY_AFTER_FREE",
139 "READ_BUDDY_AFTER_FREE",
140 "SOFTLOCKUP",
141 "HARDLOCKUP",
142 "SPINLOCKUP",
143 "HUNG_TASK",
144 "EXEC_DATA",
145 "EXEC_STACK",
146 "EXEC_KMALLOC",
147 "EXEC_VMALLOC",
148 "EXEC_USERSPACE",
149 "ACCESS_USERSPACE",
150 "WRITE_RO",
151 "WRITE_RO_AFTER_INIT",
152 "WRITE_KERN",
153 "WRAP_ATOMIC"
154 };
155
156 static struct jprobe lkdtm;
157
158 static int lkdtm_parse_commandline(void);
159 static void lkdtm_handler(void);
160
161 static char* cpoint_name;
162 static char* cpoint_type;
163 static int cpoint_count = DEFAULT_COUNT;
164 static int recur_count = REC_NUM_DEFAULT;
165
166 static enum cname cpoint = CN_INVALID;
167 static enum ctype cptype = CT_NONE;
168 static int count = DEFAULT_COUNT;
169 static DEFINE_SPINLOCK(count_lock);
170 static DEFINE_SPINLOCK(lock_me_up);
171
172 static u8 data_area[EXEC_SIZE];
173
174 static const unsigned long rodata = 0xAA55AA55;
175 static unsigned long ro_after_init __ro_after_init = 0x55AA5500;
176
177 module_param(recur_count, int, 0644);
178 MODULE_PARM_DESC(recur_count, " Recursion level for the stack overflow test");
179 module_param(cpoint_name, charp, 0444);
180 MODULE_PARM_DESC(cpoint_name, " Crash Point, where kernel is to be crashed");
181 module_param(cpoint_type, charp, 0444);
182 MODULE_PARM_DESC(cpoint_type, " Crash Point Type, action to be taken on "\
183 "hitting the crash point");
184 module_param(cpoint_count, int, 0644);
185 MODULE_PARM_DESC(cpoint_count, " Crash Point Count, number of times the "\
186 "crash point is to be hit to trigger action");
187
188 static unsigned int jp_do_irq(unsigned int irq)
189 {
190 lkdtm_handler();
191 jprobe_return();
192 return 0;
193 }
194
195 static irqreturn_t jp_handle_irq_event(unsigned int irq,
196 struct irqaction *action)
197 {
198 lkdtm_handler();
199 jprobe_return();
200 return 0;
201 }
202
203 static void jp_tasklet_action(struct softirq_action *a)
204 {
205 lkdtm_handler();
206 jprobe_return();
207 }
208
209 static void jp_ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
210 {
211 lkdtm_handler();
212 jprobe_return();
213 }
214
215 struct scan_control;
216
217 static unsigned long jp_shrink_inactive_list(unsigned long max_scan,
218 struct zone *zone,
219 struct scan_control *sc)
220 {
221 lkdtm_handler();
222 jprobe_return();
223 return 0;
224 }
225
226 static int jp_hrtimer_start(struct hrtimer *timer, ktime_t tim,
227 const enum hrtimer_mode mode)
228 {
229 lkdtm_handler();
230 jprobe_return();
231 return 0;
232 }
233
234 static int jp_scsi_dispatch_cmd(struct scsi_cmnd *cmd)
235 {
236 lkdtm_handler();
237 jprobe_return();
238 return 0;
239 }
240
241 #ifdef CONFIG_IDE
242 static int jp_generic_ide_ioctl(ide_drive_t *drive, struct file *file,
243 struct block_device *bdev, unsigned int cmd,
244 unsigned long arg)
245 {
246 lkdtm_handler();
247 jprobe_return();
248 return 0;
249 }
250 #endif
251
252 /* Return the crashpoint number or NONE if the name is invalid */
253 static enum ctype parse_cp_type(const char *what, size_t count)
254 {
255 int i;
256
257 for (i = 0; i < ARRAY_SIZE(cp_type); i++) {
258 if (!strcmp(what, cp_type[i]))
259 return i + 1;
260 }
261
262 return CT_NONE;
263 }
264
265 static const char *cp_type_to_str(enum ctype type)
266 {
267 if (type == CT_NONE || type < 0 || type > ARRAY_SIZE(cp_type))
268 return "None";
269
270 return cp_type[type - 1];
271 }
272
273 static const char *cp_name_to_str(enum cname name)
274 {
275 if (name == CN_INVALID || name < 0 || name > ARRAY_SIZE(cp_name))
276 return "INVALID";
277
278 return cp_name[name - 1];
279 }
280
281
282 static int lkdtm_parse_commandline(void)
283 {
284 int i;
285 unsigned long flags;
286
287 if (cpoint_count < 1 || recur_count < 1)
288 return -EINVAL;
289
290 spin_lock_irqsave(&count_lock, flags);
291 count = cpoint_count;
292 spin_unlock_irqrestore(&count_lock, flags);
293
294 /* No special parameters */
295 if (!cpoint_type && !cpoint_name)
296 return 0;
297
298 /* Neither or both of these need to be set */
299 if (!cpoint_type || !cpoint_name)
300 return -EINVAL;
301
302 cptype = parse_cp_type(cpoint_type, strlen(cpoint_type));
303 if (cptype == CT_NONE)
304 return -EINVAL;
305
306 for (i = 0; i < ARRAY_SIZE(cp_name); i++) {
307 if (!strcmp(cpoint_name, cp_name[i])) {
308 cpoint = i + 1;
309 return 0;
310 }
311 }
312
313 /* Could not find a valid crash point */
314 return -EINVAL;
315 }
316
317 static int recursive_loop(int remaining)
318 {
319 char buf[REC_STACK_SIZE];
320
321 /* Make sure compiler does not optimize this away. */
322 memset(buf, (remaining & 0xff) | 0x1, REC_STACK_SIZE);
323 if (!remaining)
324 return 0;
325 else
326 return recursive_loop(remaining - 1);
327 }
328
329 static void do_nothing(void)
330 {
331 return;
332 }
333
334 /* Must immediately follow do_nothing for size calculuations to work out. */
335 static void do_overwritten(void)
336 {
337 pr_info("do_overwritten wasn't overwritten!\n");
338 return;
339 }
340
341 static noinline void corrupt_stack(void)
342 {
343 /* Use default char array length that triggers stack protection. */
344 char data[8];
345
346 memset((void *)data, 0, 64);
347 }
348
349 static void noinline execute_location(void *dst)
350 {
351 void (*func)(void) = dst;
352
353 pr_info("attempting ok execution at %p\n", do_nothing);
354 do_nothing();
355
356 memcpy(dst, do_nothing, EXEC_SIZE);
357 flush_icache_range((unsigned long)dst, (unsigned long)dst + EXEC_SIZE);
358 pr_info("attempting bad execution at %p\n", func);
359 func();
360 }
361
362 static void execute_user_location(void *dst)
363 {
364 /* Intentionally crossing kernel/user memory boundary. */
365 void (*func)(void) = dst;
366
367 pr_info("attempting ok execution at %p\n", do_nothing);
368 do_nothing();
369
370 if (copy_to_user((void __user *)dst, do_nothing, EXEC_SIZE))
371 return;
372 flush_icache_range((unsigned long)dst, (unsigned long)dst + EXEC_SIZE);
373 pr_info("attempting bad execution at %p\n", func);
374 func();
375 }
376
377 static void lkdtm_do_action(enum ctype which)
378 {
379 switch (which) {
380 case CT_PANIC:
381 panic("dumptest");
382 break;
383 case CT_BUG:
384 BUG();
385 break;
386 case CT_WARNING:
387 WARN_ON(1);
388 break;
389 case CT_EXCEPTION:
390 *((int *) 0) = 0;
391 break;
392 case CT_LOOP:
393 for (;;)
394 ;
395 break;
396 case CT_OVERFLOW:
397 (void) recursive_loop(recur_count);
398 break;
399 case CT_CORRUPT_STACK:
400 corrupt_stack();
401 break;
402 case CT_UNALIGNED_LOAD_STORE_WRITE: {
403 static u8 data[5] __attribute__((aligned(4))) = {1, 2,
404 3, 4, 5};
405 u32 *p;
406 u32 val = 0x12345678;
407
408 p = (u32 *)(data + 1);
409 if (*p == 0)
410 val = 0x87654321;
411 *p = val;
412 break;
413 }
414 case CT_OVERWRITE_ALLOCATION: {
415 size_t len = 1020;
416 u32 *data = kmalloc(len, GFP_KERNEL);
417
418 data[1024 / sizeof(u32)] = 0x12345678;
419 kfree(data);
420 break;
421 }
422 case CT_WRITE_AFTER_FREE: {
423 int *base, *again;
424 size_t len = 1024;
425 /*
426 * The slub allocator uses the first word to store the free
427 * pointer in some configurations. Use the middle of the
428 * allocation to avoid running into the freelist
429 */
430 size_t offset = (len / sizeof(*base)) / 2;
431
432 base = kmalloc(len, GFP_KERNEL);
433 pr_info("Allocated memory %p-%p\n", base, &base[offset * 2]);
434 pr_info("Attempting bad write to freed memory at %p\n",
435 &base[offset]);
436 kfree(base);
437 base[offset] = 0x0abcdef0;
438 /* Attempt to notice the overwrite. */
439 again = kmalloc(len, GFP_KERNEL);
440 kfree(again);
441 if (again != base)
442 pr_info("Hmm, didn't get the same memory range.\n");
443
444 break;
445 }
446 case CT_READ_AFTER_FREE: {
447 int *base, *val, saw;
448 size_t len = 1024;
449 /*
450 * The slub allocator uses the first word to store the free
451 * pointer in some configurations. Use the middle of the
452 * allocation to avoid running into the freelist
453 */
454 size_t offset = (len / sizeof(*base)) / 2;
455
456 base = kmalloc(len, GFP_KERNEL);
457 if (!base)
458 break;
459
460 val = kmalloc(len, GFP_KERNEL);
461 if (!val)
462 break;
463
464 *val = 0x12345678;
465 base[offset] = *val;
466 pr_info("Value in memory before free: %x\n", base[offset]);
467
468 kfree(base);
469
470 pr_info("Attempting bad read from freed memory\n");
471 saw = base[offset];
472 if (saw != *val) {
473 /* Good! Poisoning happened, so declare a win. */
474 pr_info("Memory correctly poisoned (%x)\n", saw);
475 BUG();
476 }
477 pr_info("Memory was not poisoned\n");
478
479 kfree(val);
480 break;
481 }
482 case CT_WRITE_BUDDY_AFTER_FREE: {
483 unsigned long p = __get_free_page(GFP_KERNEL);
484 if (!p)
485 break;
486 pr_info("Writing to the buddy page before free\n");
487 memset((void *)p, 0x3, PAGE_SIZE);
488 free_page(p);
489 schedule();
490 pr_info("Attempting bad write to the buddy page after free\n");
491 memset((void *)p, 0x78, PAGE_SIZE);
492 /* Attempt to notice the overwrite. */
493 p = __get_free_page(GFP_KERNEL);
494 free_page(p);
495 schedule();
496
497 break;
498 }
499 case CT_READ_BUDDY_AFTER_FREE: {
500 unsigned long p = __get_free_page(GFP_KERNEL);
501 int saw, *val = kmalloc(1024, GFP_KERNEL);
502 int *base;
503
504 if (!p)
505 break;
506
507 if (!val)
508 break;
509
510 base = (int *)p;
511
512 *val = 0x12345678;
513 base[0] = *val;
514 pr_info("Value in memory before free: %x\n", base[0]);
515 free_page(p);
516 pr_info("Attempting to read from freed memory\n");
517 saw = base[0];
518 if (saw != *val) {
519 /* Good! Poisoning happened, so declare a win. */
520 pr_info("Memory correctly poisoned (%x)\n", saw);
521 BUG();
522 }
523 pr_info("Buddy page was not poisoned\n");
524
525 kfree(val);
526 break;
527 }
528 case CT_SOFTLOCKUP:
529 preempt_disable();
530 for (;;)
531 cpu_relax();
532 break;
533 case CT_HARDLOCKUP:
534 local_irq_disable();
535 for (;;)
536 cpu_relax();
537 break;
538 case CT_SPINLOCKUP:
539 /* Must be called twice to trigger. */
540 spin_lock(&lock_me_up);
541 /* Let sparse know we intended to exit holding the lock. */
542 __release(&lock_me_up);
543 break;
544 case CT_HUNG_TASK:
545 set_current_state(TASK_UNINTERRUPTIBLE);
546 schedule();
547 break;
548 case CT_EXEC_DATA:
549 execute_location(data_area);
550 break;
551 case CT_EXEC_STACK: {
552 u8 stack_area[EXEC_SIZE];
553 execute_location(stack_area);
554 break;
555 }
556 case CT_EXEC_KMALLOC: {
557 u32 *kmalloc_area = kmalloc(EXEC_SIZE, GFP_KERNEL);
558 execute_location(kmalloc_area);
559 kfree(kmalloc_area);
560 break;
561 }
562 case CT_EXEC_VMALLOC: {
563 u32 *vmalloc_area = vmalloc(EXEC_SIZE);
564 execute_location(vmalloc_area);
565 vfree(vmalloc_area);
566 break;
567 }
568 case CT_EXEC_USERSPACE: {
569 unsigned long user_addr;
570
571 user_addr = vm_mmap(NULL, 0, PAGE_SIZE,
572 PROT_READ | PROT_WRITE | PROT_EXEC,
573 MAP_ANONYMOUS | MAP_PRIVATE, 0);
574 if (user_addr >= TASK_SIZE) {
575 pr_warn("Failed to allocate user memory\n");
576 return;
577 }
578 execute_user_location((void *)user_addr);
579 vm_munmap(user_addr, PAGE_SIZE);
580 break;
581 }
582 case CT_ACCESS_USERSPACE: {
583 unsigned long user_addr, tmp = 0;
584 unsigned long *ptr;
585
586 user_addr = vm_mmap(NULL, 0, PAGE_SIZE,
587 PROT_READ | PROT_WRITE | PROT_EXEC,
588 MAP_ANONYMOUS | MAP_PRIVATE, 0);
589 if (user_addr >= TASK_SIZE) {
590 pr_warn("Failed to allocate user memory\n");
591 return;
592 }
593
594 if (copy_to_user((void __user *)user_addr, &tmp, sizeof(tmp))) {
595 pr_warn("copy_to_user failed\n");
596 vm_munmap(user_addr, PAGE_SIZE);
597 return;
598 }
599
600 ptr = (unsigned long *)user_addr;
601
602 pr_info("attempting bad read at %p\n", ptr);
603 tmp = *ptr;
604 tmp += 0xc0dec0de;
605
606 pr_info("attempting bad write at %p\n", ptr);
607 *ptr = tmp;
608
609 vm_munmap(user_addr, PAGE_SIZE);
610
611 break;
612 }
613 case CT_WRITE_RO: {
614 /* Explicitly cast away "const" for the test. */
615 unsigned long *ptr = (unsigned long *)&rodata;
616
617 pr_info("attempting bad rodata write at %p\n", ptr);
618 *ptr ^= 0xabcd1234;
619
620 break;
621 }
622 case CT_WRITE_RO_AFTER_INIT: {
623 unsigned long *ptr = &ro_after_init;
624
625 /*
626 * Verify we were written to during init. Since an Oops
627 * is considered a "success", a failure is to just skip the
628 * real test.
629 */
630 if ((*ptr & 0xAA) != 0xAA) {
631 pr_info("%p was NOT written during init!?\n", ptr);
632 break;
633 }
634
635 pr_info("attempting bad ro_after_init write at %p\n", ptr);
636 *ptr ^= 0xabcd1234;
637
638 break;
639 }
640 case CT_WRITE_KERN: {
641 size_t size;
642 unsigned char *ptr;
643
644 size = (unsigned long)do_overwritten -
645 (unsigned long)do_nothing;
646 ptr = (unsigned char *)do_overwritten;
647
648 pr_info("attempting bad %zu byte write at %p\n", size, ptr);
649 memcpy(ptr, (unsigned char *)do_nothing, size);
650 flush_icache_range((unsigned long)ptr,
651 (unsigned long)(ptr + size));
652
653 do_overwritten();
654 break;
655 }
656 case CT_WRAP_ATOMIC: {
657 atomic_t under = ATOMIC_INIT(INT_MIN);
658 atomic_t over = ATOMIC_INIT(INT_MAX);
659
660 pr_info("attempting atomic underflow\n");
661 atomic_dec(&under);
662 pr_info("attempting atomic overflow\n");
663 atomic_inc(&over);
664
665 return;
666 }
667 case CT_NONE:
668 default:
669 break;
670 }
671
672 }
673
674 static void lkdtm_handler(void)
675 {
676 unsigned long flags;
677 bool do_it = false;
678
679 spin_lock_irqsave(&count_lock, flags);
680 count--;
681 pr_info("Crash point %s of type %s hit, trigger in %d rounds\n",
682 cp_name_to_str(cpoint), cp_type_to_str(cptype), count);
683
684 if (count == 0) {
685 do_it = true;
686 count = cpoint_count;
687 }
688 spin_unlock_irqrestore(&count_lock, flags);
689
690 if (do_it)
691 lkdtm_do_action(cptype);
692 }
693
694 static int lkdtm_register_cpoint(enum cname which)
695 {
696 int ret;
697
698 cpoint = CN_INVALID;
699 if (lkdtm.entry != NULL)
700 unregister_jprobe(&lkdtm);
701
702 switch (which) {
703 case CN_DIRECT:
704 lkdtm_do_action(cptype);
705 return 0;
706 case CN_INT_HARDWARE_ENTRY:
707 lkdtm.kp.symbol_name = "do_IRQ";
708 lkdtm.entry = (kprobe_opcode_t*) jp_do_irq;
709 break;
710 case CN_INT_HW_IRQ_EN:
711 lkdtm.kp.symbol_name = "handle_IRQ_event";
712 lkdtm.entry = (kprobe_opcode_t*) jp_handle_irq_event;
713 break;
714 case CN_INT_TASKLET_ENTRY:
715 lkdtm.kp.symbol_name = "tasklet_action";
716 lkdtm.entry = (kprobe_opcode_t*) jp_tasklet_action;
717 break;
718 case CN_FS_DEVRW:
719 lkdtm.kp.symbol_name = "ll_rw_block";
720 lkdtm.entry = (kprobe_opcode_t*) jp_ll_rw_block;
721 break;
722 case CN_MEM_SWAPOUT:
723 lkdtm.kp.symbol_name = "shrink_inactive_list";
724 lkdtm.entry = (kprobe_opcode_t*) jp_shrink_inactive_list;
725 break;
726 case CN_TIMERADD:
727 lkdtm.kp.symbol_name = "hrtimer_start";
728 lkdtm.entry = (kprobe_opcode_t*) jp_hrtimer_start;
729 break;
730 case CN_SCSI_DISPATCH_CMD:
731 lkdtm.kp.symbol_name = "scsi_dispatch_cmd";
732 lkdtm.entry = (kprobe_opcode_t*) jp_scsi_dispatch_cmd;
733 break;
734 case CN_IDE_CORE_CP:
735 #ifdef CONFIG_IDE
736 lkdtm.kp.symbol_name = "generic_ide_ioctl";
737 lkdtm.entry = (kprobe_opcode_t*) jp_generic_ide_ioctl;
738 #else
739 pr_info("Crash point not available\n");
740 return -EINVAL;
741 #endif
742 break;
743 default:
744 pr_info("Invalid Crash Point\n");
745 return -EINVAL;
746 }
747
748 cpoint = which;
749 if ((ret = register_jprobe(&lkdtm)) < 0) {
750 pr_info("Couldn't register jprobe\n");
751 cpoint = CN_INVALID;
752 }
753
754 return ret;
755 }
756
757 static ssize_t do_register_entry(enum cname which, struct file *f,
758 const char __user *user_buf, size_t count, loff_t *off)
759 {
760 char *buf;
761 int err;
762
763 if (count >= PAGE_SIZE)
764 return -EINVAL;
765
766 buf = (char *)__get_free_page(GFP_KERNEL);
767 if (!buf)
768 return -ENOMEM;
769 if (copy_from_user(buf, user_buf, count)) {
770 free_page((unsigned long) buf);
771 return -EFAULT;
772 }
773 /* NULL-terminate and remove enter */
774 buf[count] = '\0';
775 strim(buf);
776
777 cptype = parse_cp_type(buf, count);
778 free_page((unsigned long) buf);
779
780 if (cptype == CT_NONE)
781 return -EINVAL;
782
783 err = lkdtm_register_cpoint(which);
784 if (err < 0)
785 return err;
786
787 *off += count;
788
789 return count;
790 }
791
792 /* Generic read callback that just prints out the available crash types */
793 static ssize_t lkdtm_debugfs_read(struct file *f, char __user *user_buf,
794 size_t count, loff_t *off)
795 {
796 char *buf;
797 int i, n, out;
798
799 buf = (char *)__get_free_page(GFP_KERNEL);
800 if (buf == NULL)
801 return -ENOMEM;
802
803 n = snprintf(buf, PAGE_SIZE, "Available crash types:\n");
804 for (i = 0; i < ARRAY_SIZE(cp_type); i++)
805 n += snprintf(buf + n, PAGE_SIZE - n, "%s\n", cp_type[i]);
806 buf[n] = '\0';
807
808 out = simple_read_from_buffer(user_buf, count, off,
809 buf, n);
810 free_page((unsigned long) buf);
811
812 return out;
813 }
814
815 static int lkdtm_debugfs_open(struct inode *inode, struct file *file)
816 {
817 return 0;
818 }
819
820
821 static ssize_t int_hardware_entry(struct file *f, const char __user *buf,
822 size_t count, loff_t *off)
823 {
824 return do_register_entry(CN_INT_HARDWARE_ENTRY, f, buf, count, off);
825 }
826
827 static ssize_t int_hw_irq_en(struct file *f, const char __user *buf,
828 size_t count, loff_t *off)
829 {
830 return do_register_entry(CN_INT_HW_IRQ_EN, f, buf, count, off);
831 }
832
833 static ssize_t int_tasklet_entry(struct file *f, const char __user *buf,
834 size_t count, loff_t *off)
835 {
836 return do_register_entry(CN_INT_TASKLET_ENTRY, f, buf, count, off);
837 }
838
839 static ssize_t fs_devrw_entry(struct file *f, const char __user *buf,
840 size_t count, loff_t *off)
841 {
842 return do_register_entry(CN_FS_DEVRW, f, buf, count, off);
843 }
844
845 static ssize_t mem_swapout_entry(struct file *f, const char __user *buf,
846 size_t count, loff_t *off)
847 {
848 return do_register_entry(CN_MEM_SWAPOUT, f, buf, count, off);
849 }
850
851 static ssize_t timeradd_entry(struct file *f, const char __user *buf,
852 size_t count, loff_t *off)
853 {
854 return do_register_entry(CN_TIMERADD, f, buf, count, off);
855 }
856
857 static ssize_t scsi_dispatch_cmd_entry(struct file *f,
858 const char __user *buf, size_t count, loff_t *off)
859 {
860 return do_register_entry(CN_SCSI_DISPATCH_CMD, f, buf, count, off);
861 }
862
863 static ssize_t ide_core_cp_entry(struct file *f, const char __user *buf,
864 size_t count, loff_t *off)
865 {
866 return do_register_entry(CN_IDE_CORE_CP, f, buf, count, off);
867 }
868
869 /* Special entry to just crash directly. Available without KPROBEs */
870 static ssize_t direct_entry(struct file *f, const char __user *user_buf,
871 size_t count, loff_t *off)
872 {
873 enum ctype type;
874 char *buf;
875
876 if (count >= PAGE_SIZE)
877 return -EINVAL;
878 if (count < 1)
879 return -EINVAL;
880
881 buf = (char *)__get_free_page(GFP_KERNEL);
882 if (!buf)
883 return -ENOMEM;
884 if (copy_from_user(buf, user_buf, count)) {
885 free_page((unsigned long) buf);
886 return -EFAULT;
887 }
888 /* NULL-terminate and remove enter */
889 buf[count] = '\0';
890 strim(buf);
891
892 type = parse_cp_type(buf, count);
893 free_page((unsigned long) buf);
894 if (type == CT_NONE)
895 return -EINVAL;
896
897 pr_info("Performing direct entry %s\n", cp_type_to_str(type));
898 lkdtm_do_action(type);
899 *off += count;
900
901 return count;
902 }
903
904 struct crash_entry {
905 const char *name;
906 const struct file_operations fops;
907 };
908
909 static const struct crash_entry crash_entries[] = {
910 {"DIRECT", {.read = lkdtm_debugfs_read,
911 .llseek = generic_file_llseek,
912 .open = lkdtm_debugfs_open,
913 .write = direct_entry} },
914 {"INT_HARDWARE_ENTRY", {.read = lkdtm_debugfs_read,
915 .llseek = generic_file_llseek,
916 .open = lkdtm_debugfs_open,
917 .write = int_hardware_entry} },
918 {"INT_HW_IRQ_EN", {.read = lkdtm_debugfs_read,
919 .llseek = generic_file_llseek,
920 .open = lkdtm_debugfs_open,
921 .write = int_hw_irq_en} },
922 {"INT_TASKLET_ENTRY", {.read = lkdtm_debugfs_read,
923 .llseek = generic_file_llseek,
924 .open = lkdtm_debugfs_open,
925 .write = int_tasklet_entry} },
926 {"FS_DEVRW", {.read = lkdtm_debugfs_read,
927 .llseek = generic_file_llseek,
928 .open = lkdtm_debugfs_open,
929 .write = fs_devrw_entry} },
930 {"MEM_SWAPOUT", {.read = lkdtm_debugfs_read,
931 .llseek = generic_file_llseek,
932 .open = lkdtm_debugfs_open,
933 .write = mem_swapout_entry} },
934 {"TIMERADD", {.read = lkdtm_debugfs_read,
935 .llseek = generic_file_llseek,
936 .open = lkdtm_debugfs_open,
937 .write = timeradd_entry} },
938 {"SCSI_DISPATCH_CMD", {.read = lkdtm_debugfs_read,
939 .llseek = generic_file_llseek,
940 .open = lkdtm_debugfs_open,
941 .write = scsi_dispatch_cmd_entry} },
942 {"IDE_CORE_CP", {.read = lkdtm_debugfs_read,
943 .llseek = generic_file_llseek,
944 .open = lkdtm_debugfs_open,
945 .write = ide_core_cp_entry} },
946 };
947
948 static struct dentry *lkdtm_debugfs_root;
949
950 static int __init lkdtm_module_init(void)
951 {
952 int ret = -EINVAL;
953 int n_debugfs_entries = 1; /* Assume only the direct entry */
954 int i;
955
956 /* Make sure we can write to __ro_after_init values during __init */
957 ro_after_init |= 0xAA;
958
959 /* Register debugfs interface */
960 lkdtm_debugfs_root = debugfs_create_dir("provoke-crash", NULL);
961 if (!lkdtm_debugfs_root) {
962 pr_err("creating root dir failed\n");
963 return -ENODEV;
964 }
965
966 #ifdef CONFIG_KPROBES
967 n_debugfs_entries = ARRAY_SIZE(crash_entries);
968 #endif
969
970 for (i = 0; i < n_debugfs_entries; i++) {
971 const struct crash_entry *cur = &crash_entries[i];
972 struct dentry *de;
973
974 de = debugfs_create_file(cur->name, 0644, lkdtm_debugfs_root,
975 NULL, &cur->fops);
976 if (de == NULL) {
977 pr_err("could not create %s\n", cur->name);
978 goto out_err;
979 }
980 }
981
982 if (lkdtm_parse_commandline() == -EINVAL) {
983 pr_info("Invalid command\n");
984 goto out_err;
985 }
986
987 if (cpoint != CN_INVALID && cptype != CT_NONE) {
988 ret = lkdtm_register_cpoint(cpoint);
989 if (ret < 0) {
990 pr_info("Invalid crash point %d\n", cpoint);
991 goto out_err;
992 }
993 pr_info("Crash point %s of type %s registered\n",
994 cpoint_name, cpoint_type);
995 } else {
996 pr_info("No crash points registered, enable through debugfs\n");
997 }
998
999 return 0;
1000
1001 out_err:
1002 debugfs_remove_recursive(lkdtm_debugfs_root);
1003 return ret;
1004 }
1005
1006 static void __exit lkdtm_module_exit(void)
1007 {
1008 debugfs_remove_recursive(lkdtm_debugfs_root);
1009
1010 unregister_jprobe(&lkdtm);
1011 pr_info("Crash point unregistered\n");
1012 }
1013
1014 module_init(lkdtm_module_init);
1015 module_exit(lkdtm_module_exit);
1016
1017 MODULE_LICENSE("GPL");
1018 MODULE_DESCRIPTION("Kprobe module for testing crash dumps");
This page took 0.069915 seconds and 5 git commands to generate.