ACPI / LPSS: make code less confusing for reader
[deliverable/linux.git] / drivers / misc / mei / hw-me.c
1 /*
2 *
3 * Intel Management Engine Interface (Intel MEI) Linux driver
4 * Copyright (c) 2003-2012, Intel Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 */
16
17 #include <linux/pci.h>
18
19 #include <linux/kthread.h>
20 #include <linux/interrupt.h>
21
22 #include "mei_dev.h"
23 #include "hw-me.h"
24
25 #include "hbm.h"
26
27
28 /**
29 * mei_reg_read - Reads 32bit data from the mei device
30 *
31 * @dev: the device structure
32 * @offset: offset from which to read the data
33 *
34 * returns register value (u32)
35 */
36 static inline u32 mei_reg_read(const struct mei_me_hw *hw,
37 unsigned long offset)
38 {
39 return ioread32(hw->mem_addr + offset);
40 }
41
42
43 /**
44 * mei_reg_write - Writes 32bit data to the mei device
45 *
46 * @dev: the device structure
47 * @offset: offset from which to write the data
48 * @value: register value to write (u32)
49 */
50 static inline void mei_reg_write(const struct mei_me_hw *hw,
51 unsigned long offset, u32 value)
52 {
53 iowrite32(value, hw->mem_addr + offset);
54 }
55
56 /**
57 * mei_mecbrw_read - Reads 32bit data from ME circular buffer
58 * read window register
59 *
60 * @dev: the device structure
61 *
62 * returns ME_CB_RW register value (u32)
63 */
64 static u32 mei_me_mecbrw_read(const struct mei_device *dev)
65 {
66 return mei_reg_read(to_me_hw(dev), ME_CB_RW);
67 }
68 /**
69 * mei_mecsr_read - Reads 32bit data from the ME CSR
70 *
71 * @dev: the device structure
72 *
73 * returns ME_CSR_HA register value (u32)
74 */
75 static inline u32 mei_mecsr_read(const struct mei_me_hw *hw)
76 {
77 return mei_reg_read(hw, ME_CSR_HA);
78 }
79
80 /**
81 * mei_hcsr_read - Reads 32bit data from the host CSR
82 *
83 * @dev: the device structure
84 *
85 * returns H_CSR register value (u32)
86 */
87 static inline u32 mei_hcsr_read(const struct mei_me_hw *hw)
88 {
89 return mei_reg_read(hw, H_CSR);
90 }
91
92 /**
93 * mei_hcsr_set - writes H_CSR register to the mei device,
94 * and ignores the H_IS bit for it is write-one-to-zero.
95 *
96 * @dev: the device structure
97 */
98 static inline void mei_hcsr_set(struct mei_me_hw *hw, u32 hcsr)
99 {
100 hcsr &= ~H_IS;
101 mei_reg_write(hw, H_CSR, hcsr);
102 }
103
104
105 /**
106 * me_hw_config - configure hw dependent settings
107 *
108 * @dev: mei device
109 */
110 static void mei_me_hw_config(struct mei_device *dev)
111 {
112 u32 hcsr = mei_hcsr_read(to_me_hw(dev));
113 /* Doesn't change in runtime */
114 dev->hbuf_depth = (hcsr & H_CBD) >> 24;
115 }
116 /**
117 * mei_clear_interrupts - clear and stop interrupts
118 *
119 * @dev: the device structure
120 */
121 static void mei_me_intr_clear(struct mei_device *dev)
122 {
123 struct mei_me_hw *hw = to_me_hw(dev);
124 u32 hcsr = mei_hcsr_read(hw);
125 if ((hcsr & H_IS) == H_IS)
126 mei_reg_write(hw, H_CSR, hcsr);
127 }
128 /**
129 * mei_me_intr_enable - enables mei device interrupts
130 *
131 * @dev: the device structure
132 */
133 static void mei_me_intr_enable(struct mei_device *dev)
134 {
135 struct mei_me_hw *hw = to_me_hw(dev);
136 u32 hcsr = mei_hcsr_read(hw);
137 hcsr |= H_IE;
138 mei_hcsr_set(hw, hcsr);
139 }
140
141 /**
142 * mei_disable_interrupts - disables mei device interrupts
143 *
144 * @dev: the device structure
145 */
146 static void mei_me_intr_disable(struct mei_device *dev)
147 {
148 struct mei_me_hw *hw = to_me_hw(dev);
149 u32 hcsr = mei_hcsr_read(hw);
150 hcsr &= ~H_IE;
151 mei_hcsr_set(hw, hcsr);
152 }
153
154 /**
155 * mei_me_hw_reset - resets fw via mei csr register.
156 *
157 * @dev: the device structure
158 * @interrupts_enabled: if interrupt should be enabled after reset.
159 */
160 static void mei_me_hw_reset(struct mei_device *dev, bool intr_enable)
161 {
162 struct mei_me_hw *hw = to_me_hw(dev);
163 u32 hcsr = mei_hcsr_read(hw);
164
165 dev_dbg(&dev->pdev->dev, "before reset HCSR = 0x%08x.\n", hcsr);
166
167 hcsr |= (H_RST | H_IG);
168
169 if (intr_enable)
170 hcsr |= H_IE;
171 else
172 hcsr &= ~H_IE;
173
174 mei_hcsr_set(hw, hcsr);
175
176 hcsr = mei_hcsr_read(hw) | H_IG;
177 hcsr &= ~H_RST;
178
179 mei_hcsr_set(hw, hcsr);
180
181 hcsr = mei_hcsr_read(hw);
182
183 dev_dbg(&dev->pdev->dev, "current HCSR = 0x%08x.\n", hcsr);
184 }
185
186 /**
187 * mei_me_host_set_ready - enable device
188 *
189 * @dev - mei device
190 * returns bool
191 */
192
193 static void mei_me_host_set_ready(struct mei_device *dev)
194 {
195 struct mei_me_hw *hw = to_me_hw(dev);
196 hw->host_hw_state |= H_IE | H_IG | H_RDY;
197 mei_hcsr_set(hw, hw->host_hw_state);
198 }
199 /**
200 * mei_me_host_is_ready - check whether the host has turned ready
201 *
202 * @dev - mei device
203 * returns bool
204 */
205 static bool mei_me_host_is_ready(struct mei_device *dev)
206 {
207 struct mei_me_hw *hw = to_me_hw(dev);
208 hw->host_hw_state = mei_hcsr_read(hw);
209 return (hw->host_hw_state & H_RDY) == H_RDY;
210 }
211
212 /**
213 * mei_me_hw_is_ready - check whether the me(hw) has turned ready
214 *
215 * @dev - mei device
216 * returns bool
217 */
218 static bool mei_me_hw_is_ready(struct mei_device *dev)
219 {
220 struct mei_me_hw *hw = to_me_hw(dev);
221 hw->me_hw_state = mei_mecsr_read(hw);
222 return (hw->me_hw_state & ME_RDY_HRA) == ME_RDY_HRA;
223 }
224
225 /**
226 * mei_hbuf_filled_slots - gets number of device filled buffer slots
227 *
228 * @dev: the device structure
229 *
230 * returns number of filled slots
231 */
232 static unsigned char mei_hbuf_filled_slots(struct mei_device *dev)
233 {
234 struct mei_me_hw *hw = to_me_hw(dev);
235 char read_ptr, write_ptr;
236
237 hw->host_hw_state = mei_hcsr_read(hw);
238
239 read_ptr = (char) ((hw->host_hw_state & H_CBRP) >> 8);
240 write_ptr = (char) ((hw->host_hw_state & H_CBWP) >> 16);
241
242 return (unsigned char) (write_ptr - read_ptr);
243 }
244
245 /**
246 * mei_hbuf_is_empty - checks if host buffer is empty.
247 *
248 * @dev: the device structure
249 *
250 * returns true if empty, false - otherwise.
251 */
252 static bool mei_me_hbuf_is_empty(struct mei_device *dev)
253 {
254 return mei_hbuf_filled_slots(dev) == 0;
255 }
256
257 /**
258 * mei_me_hbuf_empty_slots - counts write empty slots.
259 *
260 * @dev: the device structure
261 *
262 * returns -1(ESLOTS_OVERFLOW) if overflow, otherwise empty slots count
263 */
264 static int mei_me_hbuf_empty_slots(struct mei_device *dev)
265 {
266 unsigned char filled_slots, empty_slots;
267
268 filled_slots = mei_hbuf_filled_slots(dev);
269 empty_slots = dev->hbuf_depth - filled_slots;
270
271 /* check for overflow */
272 if (filled_slots > dev->hbuf_depth)
273 return -EOVERFLOW;
274
275 return empty_slots;
276 }
277
278 static size_t mei_me_hbuf_max_len(const struct mei_device *dev)
279 {
280 return dev->hbuf_depth * sizeof(u32) - sizeof(struct mei_msg_hdr);
281 }
282
283
284 /**
285 * mei_write_message - writes a message to mei device.
286 *
287 * @dev: the device structure
288 * @header: mei HECI header of message
289 * @buf: message payload will be written
290 *
291 * This function returns -EIO if write has failed
292 */
293 static int mei_me_write_message(struct mei_device *dev,
294 struct mei_msg_hdr *header,
295 unsigned char *buf)
296 {
297 struct mei_me_hw *hw = to_me_hw(dev);
298 unsigned long rem, dw_cnt;
299 unsigned long length = header->length;
300 u32 *reg_buf = (u32 *)buf;
301 u32 hcsr;
302 int i;
303 int empty_slots;
304
305 dev_dbg(&dev->pdev->dev, MEI_HDR_FMT, MEI_HDR_PRM(header));
306
307 empty_slots = mei_hbuf_empty_slots(dev);
308 dev_dbg(&dev->pdev->dev, "empty slots = %hu.\n", empty_slots);
309
310 dw_cnt = mei_data2slots(length);
311 if (empty_slots < 0 || dw_cnt > empty_slots)
312 return -EIO;
313
314 mei_reg_write(hw, H_CB_WW, *((u32 *) header));
315
316 for (i = 0; i < length / 4; i++)
317 mei_reg_write(hw, H_CB_WW, reg_buf[i]);
318
319 rem = length & 0x3;
320 if (rem > 0) {
321 u32 reg = 0;
322 memcpy(&reg, &buf[length - rem], rem);
323 mei_reg_write(hw, H_CB_WW, reg);
324 }
325
326 hcsr = mei_hcsr_read(hw) | H_IG;
327 mei_hcsr_set(hw, hcsr);
328 if (!mei_me_hw_is_ready(dev))
329 return -EIO;
330
331 return 0;
332 }
333
334 /**
335 * mei_me_count_full_read_slots - counts read full slots.
336 *
337 * @dev: the device structure
338 *
339 * returns -1(ESLOTS_OVERFLOW) if overflow, otherwise filled slots count
340 */
341 static int mei_me_count_full_read_slots(struct mei_device *dev)
342 {
343 struct mei_me_hw *hw = to_me_hw(dev);
344 char read_ptr, write_ptr;
345 unsigned char buffer_depth, filled_slots;
346
347 hw->me_hw_state = mei_mecsr_read(hw);
348 buffer_depth = (unsigned char)((hw->me_hw_state & ME_CBD_HRA) >> 24);
349 read_ptr = (char) ((hw->me_hw_state & ME_CBRP_HRA) >> 8);
350 write_ptr = (char) ((hw->me_hw_state & ME_CBWP_HRA) >> 16);
351 filled_slots = (unsigned char) (write_ptr - read_ptr);
352
353 /* check for overflow */
354 if (filled_slots > buffer_depth)
355 return -EOVERFLOW;
356
357 dev_dbg(&dev->pdev->dev, "filled_slots =%08x\n", filled_slots);
358 return (int)filled_slots;
359 }
360
361 /**
362 * mei_me_read_slots - reads a message from mei device.
363 *
364 * @dev: the device structure
365 * @buffer: message buffer will be written
366 * @buffer_length: message size will be read
367 */
368 static int mei_me_read_slots(struct mei_device *dev, unsigned char *buffer,
369 unsigned long buffer_length)
370 {
371 struct mei_me_hw *hw = to_me_hw(dev);
372 u32 *reg_buf = (u32 *)buffer;
373 u32 hcsr;
374
375 for (; buffer_length >= sizeof(u32); buffer_length -= sizeof(u32))
376 *reg_buf++ = mei_me_mecbrw_read(dev);
377
378 if (buffer_length > 0) {
379 u32 reg = mei_me_mecbrw_read(dev);
380 memcpy(reg_buf, &reg, buffer_length);
381 }
382
383 hcsr = mei_hcsr_read(hw) | H_IG;
384 mei_hcsr_set(hw, hcsr);
385 return 0;
386 }
387
388 /**
389 * mei_me_irq_quick_handler - The ISR of the MEI device
390 *
391 * @irq: The irq number
392 * @dev_id: pointer to the device structure
393 *
394 * returns irqreturn_t
395 */
396
397 irqreturn_t mei_me_irq_quick_handler(int irq, void *dev_id)
398 {
399 struct mei_device *dev = (struct mei_device *) dev_id;
400 struct mei_me_hw *hw = to_me_hw(dev);
401 u32 csr_reg = mei_hcsr_read(hw);
402
403 if ((csr_reg & H_IS) != H_IS)
404 return IRQ_NONE;
405
406 /* clear H_IS bit in H_CSR */
407 mei_reg_write(hw, H_CSR, csr_reg);
408
409 return IRQ_WAKE_THREAD;
410 }
411
412 /**
413 * mei_me_irq_thread_handler - function called after ISR to handle the interrupt
414 * processing.
415 *
416 * @irq: The irq number
417 * @dev_id: pointer to the device structure
418 *
419 * returns irqreturn_t
420 *
421 */
422 irqreturn_t mei_me_irq_thread_handler(int irq, void *dev_id)
423 {
424 struct mei_device *dev = (struct mei_device *) dev_id;
425 struct mei_cl_cb complete_list;
426 struct mei_cl_cb *cb_pos = NULL, *cb_next = NULL;
427 struct mei_cl *cl;
428 s32 slots;
429 int rets;
430 bool bus_message_received;
431
432
433 dev_dbg(&dev->pdev->dev, "function called after ISR to handle the interrupt processing.\n");
434 /* initialize our complete list */
435 mutex_lock(&dev->device_lock);
436 mei_io_list_init(&complete_list);
437
438 /* Ack the interrupt here
439 * In case of MSI we don't go through the quick handler */
440 if (pci_dev_msi_enabled(dev->pdev))
441 mei_clear_interrupts(dev);
442
443 /* check if ME wants a reset */
444 if (!mei_hw_is_ready(dev) &&
445 dev->dev_state != MEI_DEV_RESETING &&
446 dev->dev_state != MEI_DEV_INITIALIZING) {
447 dev_dbg(&dev->pdev->dev, "FW not ready.\n");
448 mei_reset(dev, 1);
449 mutex_unlock(&dev->device_lock);
450 return IRQ_HANDLED;
451 }
452
453 /* check if we need to start the dev */
454 if (!mei_host_is_ready(dev)) {
455 if (mei_hw_is_ready(dev)) {
456 dev_dbg(&dev->pdev->dev, "we need to start the dev.\n");
457
458 mei_host_set_ready(dev);
459
460 dev_dbg(&dev->pdev->dev, "link is established start sending messages.\n");
461 /* link is established * start sending messages. */
462
463 dev->dev_state = MEI_DEV_INIT_CLIENTS;
464
465 mei_hbm_start_req(dev);
466 mutex_unlock(&dev->device_lock);
467 return IRQ_HANDLED;
468 } else {
469 dev_dbg(&dev->pdev->dev, "FW not ready.\n");
470 mutex_unlock(&dev->device_lock);
471 return IRQ_HANDLED;
472 }
473 }
474 /* check slots available for reading */
475 slots = mei_count_full_read_slots(dev);
476 while (slots > 0) {
477 /* we have urgent data to send so break the read */
478 if (dev->wr_ext_msg.hdr.length)
479 break;
480 dev_dbg(&dev->pdev->dev, "slots =%08x\n", slots);
481 dev_dbg(&dev->pdev->dev, "call mei_irq_read_handler.\n");
482 rets = mei_irq_read_handler(dev, &complete_list, &slots);
483 if (rets)
484 goto end;
485 }
486 rets = mei_irq_write_handler(dev, &complete_list);
487 end:
488 dev_dbg(&dev->pdev->dev, "end of bottom half function.\n");
489 dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
490
491 bus_message_received = false;
492 if (dev->recvd_msg && waitqueue_active(&dev->wait_recvd_msg)) {
493 dev_dbg(&dev->pdev->dev, "received waiting bus message\n");
494 bus_message_received = true;
495 }
496 mutex_unlock(&dev->device_lock);
497 if (bus_message_received) {
498 dev_dbg(&dev->pdev->dev, "wake up dev->wait_recvd_msg\n");
499 wake_up_interruptible(&dev->wait_recvd_msg);
500 bus_message_received = false;
501 }
502 if (list_empty(&complete_list.list))
503 return IRQ_HANDLED;
504
505
506 list_for_each_entry_safe(cb_pos, cb_next, &complete_list.list, list) {
507 cl = cb_pos->cl;
508 list_del(&cb_pos->list);
509 if (cl) {
510 if (cl != &dev->iamthif_cl) {
511 dev_dbg(&dev->pdev->dev, "completing call back.\n");
512 mei_irq_complete_handler(cl, cb_pos);
513 cb_pos = NULL;
514 } else if (cl == &dev->iamthif_cl) {
515 mei_amthif_complete(dev, cb_pos);
516 }
517 }
518 }
519 return IRQ_HANDLED;
520 }
521 static const struct mei_hw_ops mei_me_hw_ops = {
522
523 .host_set_ready = mei_me_host_set_ready,
524 .host_is_ready = mei_me_host_is_ready,
525
526 .hw_is_ready = mei_me_hw_is_ready,
527 .hw_reset = mei_me_hw_reset,
528 .hw_config = mei_me_hw_config,
529
530 .intr_clear = mei_me_intr_clear,
531 .intr_enable = mei_me_intr_enable,
532 .intr_disable = mei_me_intr_disable,
533
534 .hbuf_free_slots = mei_me_hbuf_empty_slots,
535 .hbuf_is_ready = mei_me_hbuf_is_empty,
536 .hbuf_max_len = mei_me_hbuf_max_len,
537
538 .write = mei_me_write_message,
539
540 .rdbuf_full_slots = mei_me_count_full_read_slots,
541 .read_hdr = mei_me_mecbrw_read,
542 .read = mei_me_read_slots
543 };
544
545 /**
546 * init_mei_device - allocates and initializes the mei device structure
547 *
548 * @pdev: The pci device structure
549 *
550 * returns The mei_device_device pointer on success, NULL on failure.
551 */
552 struct mei_device *mei_me_dev_init(struct pci_dev *pdev)
553 {
554 struct mei_device *dev;
555
556 dev = kzalloc(sizeof(struct mei_device) +
557 sizeof(struct mei_me_hw), GFP_KERNEL);
558 if (!dev)
559 return NULL;
560
561 mei_device_init(dev);
562
563 INIT_LIST_HEAD(&dev->wd_cl.link);
564 INIT_LIST_HEAD(&dev->iamthif_cl.link);
565 mei_io_list_init(&dev->amthif_cmd_list);
566 mei_io_list_init(&dev->amthif_rd_complete_list);
567
568 INIT_DELAYED_WORK(&dev->timer_work, mei_timer);
569 INIT_WORK(&dev->init_work, mei_host_client_init);
570
571 dev->ops = &mei_me_hw_ops;
572
573 dev->pdev = pdev;
574 return dev;
575 }
576
This page took 0.053426 seconds and 5 git commands to generate.