Merge remote-tracking branch 'asoc/topic/arizona' into asoc-next
[deliverable/linux.git] / drivers / misc / mei / hw-me.c
1 /*
2 *
3 * Intel Management Engine Interface (Intel MEI) Linux driver
4 * Copyright (c) 2003-2012, Intel Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 */
16
17 #include <linux/pci.h>
18
19 #include <linux/kthread.h>
20 #include <linux/interrupt.h>
21
22 #include "mei_dev.h"
23 #include "hw-me.h"
24
25 #include "hbm.h"
26
27
28 /**
29 * mei_me_reg_read - Reads 32bit data from the mei device
30 *
31 * @dev: the device structure
32 * @offset: offset from which to read the data
33 *
34 * returns register value (u32)
35 */
36 static inline u32 mei_me_reg_read(const struct mei_me_hw *hw,
37 unsigned long offset)
38 {
39 return ioread32(hw->mem_addr + offset);
40 }
41
42
43 /**
44 * mei_me_reg_write - Writes 32bit data to the mei device
45 *
46 * @dev: the device structure
47 * @offset: offset from which to write the data
48 * @value: register value to write (u32)
49 */
50 static inline void mei_me_reg_write(const struct mei_me_hw *hw,
51 unsigned long offset, u32 value)
52 {
53 iowrite32(value, hw->mem_addr + offset);
54 }
55
56 /**
57 * mei_me_mecbrw_read - Reads 32bit data from ME circular buffer
58 * read window register
59 *
60 * @dev: the device structure
61 *
62 * returns ME_CB_RW register value (u32)
63 */
64 static u32 mei_me_mecbrw_read(const struct mei_device *dev)
65 {
66 return mei_me_reg_read(to_me_hw(dev), ME_CB_RW);
67 }
68 /**
69 * mei_me_mecsr_read - Reads 32bit data from the ME CSR
70 *
71 * @dev: the device structure
72 *
73 * returns ME_CSR_HA register value (u32)
74 */
75 static inline u32 mei_me_mecsr_read(const struct mei_me_hw *hw)
76 {
77 return mei_me_reg_read(hw, ME_CSR_HA);
78 }
79
80 /**
81 * mei_hcsr_read - Reads 32bit data from the host CSR
82 *
83 * @dev: the device structure
84 *
85 * returns H_CSR register value (u32)
86 */
87 static inline u32 mei_hcsr_read(const struct mei_me_hw *hw)
88 {
89 return mei_me_reg_read(hw, H_CSR);
90 }
91
92 /**
93 * mei_hcsr_set - writes H_CSR register to the mei device,
94 * and ignores the H_IS bit for it is write-one-to-zero.
95 *
96 * @dev: the device structure
97 */
98 static inline void mei_hcsr_set(struct mei_me_hw *hw, u32 hcsr)
99 {
100 hcsr &= ~H_IS;
101 mei_me_reg_write(hw, H_CSR, hcsr);
102 }
103
104
105 /**
106 * mei_me_hw_config - configure hw dependent settings
107 *
108 * @dev: mei device
109 */
110 static void mei_me_hw_config(struct mei_device *dev)
111 {
112 u32 hcsr = mei_hcsr_read(to_me_hw(dev));
113 /* Doesn't change in runtime */
114 dev->hbuf_depth = (hcsr & H_CBD) >> 24;
115 }
116 /**
117 * mei_clear_interrupts - clear and stop interrupts
118 *
119 * @dev: the device structure
120 */
121 static void mei_me_intr_clear(struct mei_device *dev)
122 {
123 struct mei_me_hw *hw = to_me_hw(dev);
124 u32 hcsr = mei_hcsr_read(hw);
125 if ((hcsr & H_IS) == H_IS)
126 mei_me_reg_write(hw, H_CSR, hcsr);
127 }
128 /**
129 * mei_me_intr_enable - enables mei device interrupts
130 *
131 * @dev: the device structure
132 */
133 static void mei_me_intr_enable(struct mei_device *dev)
134 {
135 struct mei_me_hw *hw = to_me_hw(dev);
136 u32 hcsr = mei_hcsr_read(hw);
137 hcsr |= H_IE;
138 mei_hcsr_set(hw, hcsr);
139 }
140
141 /**
142 * mei_disable_interrupts - disables mei device interrupts
143 *
144 * @dev: the device structure
145 */
146 static void mei_me_intr_disable(struct mei_device *dev)
147 {
148 struct mei_me_hw *hw = to_me_hw(dev);
149 u32 hcsr = mei_hcsr_read(hw);
150 hcsr &= ~H_IE;
151 mei_hcsr_set(hw, hcsr);
152 }
153
154 /**
155 * mei_me_hw_reset_release - release device from the reset
156 *
157 * @dev: the device structure
158 */
159 static void mei_me_hw_reset_release(struct mei_device *dev)
160 {
161 struct mei_me_hw *hw = to_me_hw(dev);
162 u32 hcsr = mei_hcsr_read(hw);
163
164 hcsr |= H_IG;
165 hcsr &= ~H_RST;
166 mei_hcsr_set(hw, hcsr);
167 }
168 /**
169 * mei_me_hw_reset - resets fw via mei csr register.
170 *
171 * @dev: the device structure
172 * @intr_enable: if interrupt should be enabled after reset.
173 */
174 static int mei_me_hw_reset(struct mei_device *dev, bool intr_enable)
175 {
176 struct mei_me_hw *hw = to_me_hw(dev);
177 u32 hcsr = mei_hcsr_read(hw);
178
179 dev_dbg(&dev->pdev->dev, "before reset HCSR = 0x%08x.\n", hcsr);
180
181 hcsr |= (H_RST | H_IG);
182
183 if (intr_enable)
184 hcsr |= H_IE;
185 else
186 hcsr |= ~H_IE;
187
188 mei_hcsr_set(hw, hcsr);
189
190 if (dev->dev_state == MEI_DEV_POWER_DOWN)
191 mei_me_hw_reset_release(dev);
192
193 dev_dbg(&dev->pdev->dev, "current HCSR = 0x%08x.\n", mei_hcsr_read(hw));
194 return 0;
195 }
196
197 /**
198 * mei_me_host_set_ready - enable device
199 *
200 * @dev - mei device
201 * returns bool
202 */
203
204 static void mei_me_host_set_ready(struct mei_device *dev)
205 {
206 struct mei_me_hw *hw = to_me_hw(dev);
207 hw->host_hw_state |= H_IE | H_IG | H_RDY;
208 mei_hcsr_set(hw, hw->host_hw_state);
209 }
210 /**
211 * mei_me_host_is_ready - check whether the host has turned ready
212 *
213 * @dev - mei device
214 * returns bool
215 */
216 static bool mei_me_host_is_ready(struct mei_device *dev)
217 {
218 struct mei_me_hw *hw = to_me_hw(dev);
219 hw->host_hw_state = mei_hcsr_read(hw);
220 return (hw->host_hw_state & H_RDY) == H_RDY;
221 }
222
223 /**
224 * mei_me_hw_is_ready - check whether the me(hw) has turned ready
225 *
226 * @dev - mei device
227 * returns bool
228 */
229 static bool mei_me_hw_is_ready(struct mei_device *dev)
230 {
231 struct mei_me_hw *hw = to_me_hw(dev);
232 hw->me_hw_state = mei_me_mecsr_read(hw);
233 return (hw->me_hw_state & ME_RDY_HRA) == ME_RDY_HRA;
234 }
235
236 static int mei_me_hw_ready_wait(struct mei_device *dev)
237 {
238 int err;
239 if (mei_me_hw_is_ready(dev))
240 return 0;
241
242 dev->recvd_hw_ready = false;
243 mutex_unlock(&dev->device_lock);
244 err = wait_event_interruptible_timeout(dev->wait_hw_ready,
245 dev->recvd_hw_ready,
246 mei_secs_to_jiffies(MEI_INTEROP_TIMEOUT));
247 mutex_lock(&dev->device_lock);
248 if (!err && !dev->recvd_hw_ready) {
249 if (!err)
250 err = -ETIMEDOUT;
251 dev_err(&dev->pdev->dev,
252 "wait hw ready failed. status = %d\n", err);
253 return err;
254 }
255
256 dev->recvd_hw_ready = false;
257 return 0;
258 }
259
260 static int mei_me_hw_start(struct mei_device *dev)
261 {
262 int ret = mei_me_hw_ready_wait(dev);
263 if (ret)
264 return ret;
265 dev_dbg(&dev->pdev->dev, "hw is ready\n");
266
267 mei_me_host_set_ready(dev);
268 return ret;
269 }
270
271
272 /**
273 * mei_hbuf_filled_slots - gets number of device filled buffer slots
274 *
275 * @dev: the device structure
276 *
277 * returns number of filled slots
278 */
279 static unsigned char mei_hbuf_filled_slots(struct mei_device *dev)
280 {
281 struct mei_me_hw *hw = to_me_hw(dev);
282 char read_ptr, write_ptr;
283
284 hw->host_hw_state = mei_hcsr_read(hw);
285
286 read_ptr = (char) ((hw->host_hw_state & H_CBRP) >> 8);
287 write_ptr = (char) ((hw->host_hw_state & H_CBWP) >> 16);
288
289 return (unsigned char) (write_ptr - read_ptr);
290 }
291
292 /**
293 * mei_me_hbuf_is_empty - checks if host buffer is empty.
294 *
295 * @dev: the device structure
296 *
297 * returns true if empty, false - otherwise.
298 */
299 static bool mei_me_hbuf_is_empty(struct mei_device *dev)
300 {
301 return mei_hbuf_filled_slots(dev) == 0;
302 }
303
304 /**
305 * mei_me_hbuf_empty_slots - counts write empty slots.
306 *
307 * @dev: the device structure
308 *
309 * returns -1(ESLOTS_OVERFLOW) if overflow, otherwise empty slots count
310 */
311 static int mei_me_hbuf_empty_slots(struct mei_device *dev)
312 {
313 unsigned char filled_slots, empty_slots;
314
315 filled_slots = mei_hbuf_filled_slots(dev);
316 empty_slots = dev->hbuf_depth - filled_slots;
317
318 /* check for overflow */
319 if (filled_slots > dev->hbuf_depth)
320 return -EOVERFLOW;
321
322 return empty_slots;
323 }
324
325 static size_t mei_me_hbuf_max_len(const struct mei_device *dev)
326 {
327 return dev->hbuf_depth * sizeof(u32) - sizeof(struct mei_msg_hdr);
328 }
329
330
331 /**
332 * mei_write_message - writes a message to mei device.
333 *
334 * @dev: the device structure
335 * @header: mei HECI header of message
336 * @buf: message payload will be written
337 *
338 * This function returns -EIO if write has failed
339 */
340 static int mei_me_write_message(struct mei_device *dev,
341 struct mei_msg_hdr *header,
342 unsigned char *buf)
343 {
344 struct mei_me_hw *hw = to_me_hw(dev);
345 unsigned long rem;
346 unsigned long length = header->length;
347 u32 *reg_buf = (u32 *)buf;
348 u32 hcsr;
349 u32 dw_cnt;
350 int i;
351 int empty_slots;
352
353 dev_dbg(&dev->pdev->dev, MEI_HDR_FMT, MEI_HDR_PRM(header));
354
355 empty_slots = mei_hbuf_empty_slots(dev);
356 dev_dbg(&dev->pdev->dev, "empty slots = %hu.\n", empty_slots);
357
358 dw_cnt = mei_data2slots(length);
359 if (empty_slots < 0 || dw_cnt > empty_slots)
360 return -EIO;
361
362 mei_me_reg_write(hw, H_CB_WW, *((u32 *) header));
363
364 for (i = 0; i < length / 4; i++)
365 mei_me_reg_write(hw, H_CB_WW, reg_buf[i]);
366
367 rem = length & 0x3;
368 if (rem > 0) {
369 u32 reg = 0;
370 memcpy(&reg, &buf[length - rem], rem);
371 mei_me_reg_write(hw, H_CB_WW, reg);
372 }
373
374 hcsr = mei_hcsr_read(hw) | H_IG;
375 mei_hcsr_set(hw, hcsr);
376 if (!mei_me_hw_is_ready(dev))
377 return -EIO;
378
379 return 0;
380 }
381
382 /**
383 * mei_me_count_full_read_slots - counts read full slots.
384 *
385 * @dev: the device structure
386 *
387 * returns -1(ESLOTS_OVERFLOW) if overflow, otherwise filled slots count
388 */
389 static int mei_me_count_full_read_slots(struct mei_device *dev)
390 {
391 struct mei_me_hw *hw = to_me_hw(dev);
392 char read_ptr, write_ptr;
393 unsigned char buffer_depth, filled_slots;
394
395 hw->me_hw_state = mei_me_mecsr_read(hw);
396 buffer_depth = (unsigned char)((hw->me_hw_state & ME_CBD_HRA) >> 24);
397 read_ptr = (char) ((hw->me_hw_state & ME_CBRP_HRA) >> 8);
398 write_ptr = (char) ((hw->me_hw_state & ME_CBWP_HRA) >> 16);
399 filled_slots = (unsigned char) (write_ptr - read_ptr);
400
401 /* check for overflow */
402 if (filled_slots > buffer_depth)
403 return -EOVERFLOW;
404
405 dev_dbg(&dev->pdev->dev, "filled_slots =%08x\n", filled_slots);
406 return (int)filled_slots;
407 }
408
409 /**
410 * mei_me_read_slots - reads a message from mei device.
411 *
412 * @dev: the device structure
413 * @buffer: message buffer will be written
414 * @buffer_length: message size will be read
415 */
416 static int mei_me_read_slots(struct mei_device *dev, unsigned char *buffer,
417 unsigned long buffer_length)
418 {
419 struct mei_me_hw *hw = to_me_hw(dev);
420 u32 *reg_buf = (u32 *)buffer;
421 u32 hcsr;
422
423 for (; buffer_length >= sizeof(u32); buffer_length -= sizeof(u32))
424 *reg_buf++ = mei_me_mecbrw_read(dev);
425
426 if (buffer_length > 0) {
427 u32 reg = mei_me_mecbrw_read(dev);
428 memcpy(reg_buf, &reg, buffer_length);
429 }
430
431 hcsr = mei_hcsr_read(hw) | H_IG;
432 mei_hcsr_set(hw, hcsr);
433 return 0;
434 }
435
436 /**
437 * mei_me_irq_quick_handler - The ISR of the MEI device
438 *
439 * @irq: The irq number
440 * @dev_id: pointer to the device structure
441 *
442 * returns irqreturn_t
443 */
444
445 irqreturn_t mei_me_irq_quick_handler(int irq, void *dev_id)
446 {
447 struct mei_device *dev = (struct mei_device *) dev_id;
448 struct mei_me_hw *hw = to_me_hw(dev);
449 u32 csr_reg = mei_hcsr_read(hw);
450
451 if ((csr_reg & H_IS) != H_IS)
452 return IRQ_NONE;
453
454 /* clear H_IS bit in H_CSR */
455 mei_me_reg_write(hw, H_CSR, csr_reg);
456
457 return IRQ_WAKE_THREAD;
458 }
459
460 /**
461 * mei_me_irq_thread_handler - function called after ISR to handle the interrupt
462 * processing.
463 *
464 * @irq: The irq number
465 * @dev_id: pointer to the device structure
466 *
467 * returns irqreturn_t
468 *
469 */
470 irqreturn_t mei_me_irq_thread_handler(int irq, void *dev_id)
471 {
472 struct mei_device *dev = (struct mei_device *) dev_id;
473 struct mei_cl_cb complete_list;
474 s32 slots;
475 int rets;
476
477 dev_dbg(&dev->pdev->dev, "function called after ISR to handle the interrupt processing.\n");
478 /* initialize our complete list */
479 mutex_lock(&dev->device_lock);
480 mei_io_list_init(&complete_list);
481
482 /* Ack the interrupt here
483 * In case of MSI we don't go through the quick handler */
484 if (pci_dev_msi_enabled(dev->pdev))
485 mei_clear_interrupts(dev);
486
487 /* check if ME wants a reset */
488 if (!mei_hw_is_ready(dev) &&
489 dev->dev_state != MEI_DEV_RESETTING &&
490 dev->dev_state != MEI_DEV_INITIALIZING &&
491 dev->dev_state != MEI_DEV_POWER_DOWN &&
492 dev->dev_state != MEI_DEV_POWER_UP) {
493 dev_dbg(&dev->pdev->dev, "FW not ready.\n");
494 mei_reset(dev, 1);
495 mutex_unlock(&dev->device_lock);
496 return IRQ_HANDLED;
497 }
498
499 /* check if we need to start the dev */
500 if (!mei_host_is_ready(dev)) {
501 if (mei_hw_is_ready(dev)) {
502 dev_dbg(&dev->pdev->dev, "we need to start the dev.\n");
503
504 dev->recvd_hw_ready = true;
505 wake_up_interruptible(&dev->wait_hw_ready);
506
507 mutex_unlock(&dev->device_lock);
508 return IRQ_HANDLED;
509 } else {
510 dev_dbg(&dev->pdev->dev, "Reset Completed.\n");
511 mei_me_hw_reset_release(dev);
512 mutex_unlock(&dev->device_lock);
513 return IRQ_HANDLED;
514 }
515 }
516 /* check slots available for reading */
517 slots = mei_count_full_read_slots(dev);
518 while (slots > 0) {
519 /* we have urgent data to send so break the read */
520 if (dev->wr_ext_msg.hdr.length)
521 break;
522 dev_dbg(&dev->pdev->dev, "slots =%08x\n", slots);
523 dev_dbg(&dev->pdev->dev, "call mei_irq_read_handler.\n");
524 rets = mei_irq_read_handler(dev, &complete_list, &slots);
525 if (rets)
526 goto end;
527 }
528 rets = mei_irq_write_handler(dev, &complete_list);
529 end:
530 dev_dbg(&dev->pdev->dev, "end of bottom half function.\n");
531 dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
532
533 mutex_unlock(&dev->device_lock);
534
535 mei_irq_compl_handler(dev, &complete_list);
536
537 return IRQ_HANDLED;
538 }
539 static const struct mei_hw_ops mei_me_hw_ops = {
540
541 .host_is_ready = mei_me_host_is_ready,
542
543 .hw_is_ready = mei_me_hw_is_ready,
544 .hw_reset = mei_me_hw_reset,
545 .hw_config = mei_me_hw_config,
546 .hw_start = mei_me_hw_start,
547
548 .intr_clear = mei_me_intr_clear,
549 .intr_enable = mei_me_intr_enable,
550 .intr_disable = mei_me_intr_disable,
551
552 .hbuf_free_slots = mei_me_hbuf_empty_slots,
553 .hbuf_is_ready = mei_me_hbuf_is_empty,
554 .hbuf_max_len = mei_me_hbuf_max_len,
555
556 .write = mei_me_write_message,
557
558 .rdbuf_full_slots = mei_me_count_full_read_slots,
559 .read_hdr = mei_me_mecbrw_read,
560 .read = mei_me_read_slots
561 };
562
563 /**
564 * mei_me_dev_init - allocates and initializes the mei device structure
565 *
566 * @pdev: The pci device structure
567 *
568 * returns The mei_device_device pointer on success, NULL on failure.
569 */
570 struct mei_device *mei_me_dev_init(struct pci_dev *pdev)
571 {
572 struct mei_device *dev;
573
574 dev = kzalloc(sizeof(struct mei_device) +
575 sizeof(struct mei_me_hw), GFP_KERNEL);
576 if (!dev)
577 return NULL;
578
579 mei_device_init(dev);
580
581 dev->ops = &mei_me_hw_ops;
582
583 dev->pdev = pdev;
584 return dev;
585 }
586
This page took 0.043853 seconds and 5 git commands to generate.