ASoC: wm8997: Add inputs for noise and mic mixers
[deliverable/linux.git] / drivers / misc / mei / hw-me.c
1 /*
2 *
3 * Intel Management Engine Interface (Intel MEI) Linux driver
4 * Copyright (c) 2003-2012, Intel Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 */
16
17 #include <linux/pci.h>
18
19 #include <linux/kthread.h>
20 #include <linux/interrupt.h>
21
22 #include "mei_dev.h"
23 #include "hw-me.h"
24
25 #include "hbm.h"
26
27
28 /**
29 * mei_me_reg_read - Reads 32bit data from the mei device
30 *
31 * @dev: the device structure
32 * @offset: offset from which to read the data
33 *
34 * returns register value (u32)
35 */
36 static inline u32 mei_me_reg_read(const struct mei_me_hw *hw,
37 unsigned long offset)
38 {
39 return ioread32(hw->mem_addr + offset);
40 }
41
42
43 /**
44 * mei_me_reg_write - Writes 32bit data to the mei device
45 *
46 * @dev: the device structure
47 * @offset: offset from which to write the data
48 * @value: register value to write (u32)
49 */
50 static inline void mei_me_reg_write(const struct mei_me_hw *hw,
51 unsigned long offset, u32 value)
52 {
53 iowrite32(value, hw->mem_addr + offset);
54 }
55
56 /**
57 * mei_me_mecbrw_read - Reads 32bit data from ME circular buffer
58 * read window register
59 *
60 * @dev: the device structure
61 *
62 * returns ME_CB_RW register value (u32)
63 */
64 static u32 mei_me_mecbrw_read(const struct mei_device *dev)
65 {
66 return mei_me_reg_read(to_me_hw(dev), ME_CB_RW);
67 }
68 /**
69 * mei_me_mecsr_read - Reads 32bit data from the ME CSR
70 *
71 * @dev: the device structure
72 *
73 * returns ME_CSR_HA register value (u32)
74 */
75 static inline u32 mei_me_mecsr_read(const struct mei_me_hw *hw)
76 {
77 return mei_me_reg_read(hw, ME_CSR_HA);
78 }
79
80 /**
81 * mei_hcsr_read - Reads 32bit data from the host CSR
82 *
83 * @dev: the device structure
84 *
85 * returns H_CSR register value (u32)
86 */
87 static inline u32 mei_hcsr_read(const struct mei_me_hw *hw)
88 {
89 return mei_me_reg_read(hw, H_CSR);
90 }
91
92 /**
93 * mei_hcsr_set - writes H_CSR register to the mei device,
94 * and ignores the H_IS bit for it is write-one-to-zero.
95 *
96 * @dev: the device structure
97 */
98 static inline void mei_hcsr_set(struct mei_me_hw *hw, u32 hcsr)
99 {
100 hcsr &= ~H_IS;
101 mei_me_reg_write(hw, H_CSR, hcsr);
102 }
103
104
105 /**
106 * mei_me_hw_config - configure hw dependent settings
107 *
108 * @dev: mei device
109 */
110 static void mei_me_hw_config(struct mei_device *dev)
111 {
112 u32 hcsr = mei_hcsr_read(to_me_hw(dev));
113 /* Doesn't change in runtime */
114 dev->hbuf_depth = (hcsr & H_CBD) >> 24;
115 }
116 /**
117 * mei_clear_interrupts - clear and stop interrupts
118 *
119 * @dev: the device structure
120 */
121 static void mei_me_intr_clear(struct mei_device *dev)
122 {
123 struct mei_me_hw *hw = to_me_hw(dev);
124 u32 hcsr = mei_hcsr_read(hw);
125 if ((hcsr & H_IS) == H_IS)
126 mei_me_reg_write(hw, H_CSR, hcsr);
127 }
128 /**
129 * mei_me_intr_enable - enables mei device interrupts
130 *
131 * @dev: the device structure
132 */
133 static void mei_me_intr_enable(struct mei_device *dev)
134 {
135 struct mei_me_hw *hw = to_me_hw(dev);
136 u32 hcsr = mei_hcsr_read(hw);
137 hcsr |= H_IE;
138 mei_hcsr_set(hw, hcsr);
139 }
140
141 /**
142 * mei_disable_interrupts - disables mei device interrupts
143 *
144 * @dev: the device structure
145 */
146 static void mei_me_intr_disable(struct mei_device *dev)
147 {
148 struct mei_me_hw *hw = to_me_hw(dev);
149 u32 hcsr = mei_hcsr_read(hw);
150 hcsr &= ~H_IE;
151 mei_hcsr_set(hw, hcsr);
152 }
153
154 /**
155 * mei_me_hw_reset_release - release device from the reset
156 *
157 * @dev: the device structure
158 */
159 static void mei_me_hw_reset_release(struct mei_device *dev)
160 {
161 struct mei_me_hw *hw = to_me_hw(dev);
162 u32 hcsr = mei_hcsr_read(hw);
163
164 hcsr |= H_IG;
165 hcsr &= ~H_RST;
166 mei_hcsr_set(hw, hcsr);
167 }
168 /**
169 * mei_me_hw_reset - resets fw via mei csr register.
170 *
171 * @dev: the device structure
172 * @intr_enable: if interrupt should be enabled after reset.
173 */
174 static int mei_me_hw_reset(struct mei_device *dev, bool intr_enable)
175 {
176 struct mei_me_hw *hw = to_me_hw(dev);
177 u32 hcsr = mei_hcsr_read(hw);
178
179 dev_dbg(&dev->pdev->dev, "before reset HCSR = 0x%08x.\n", hcsr);
180
181 hcsr |= (H_RST | H_IG);
182
183 if (intr_enable)
184 hcsr |= H_IE;
185 else
186 hcsr |= ~H_IE;
187
188 mei_hcsr_set(hw, hcsr);
189
190 if (dev->dev_state == MEI_DEV_POWER_DOWN)
191 mei_me_hw_reset_release(dev);
192
193 dev_dbg(&dev->pdev->dev, "current HCSR = 0x%08x.\n", mei_hcsr_read(hw));
194 return 0;
195 }
196
197 /**
198 * mei_me_host_set_ready - enable device
199 *
200 * @dev - mei device
201 * returns bool
202 */
203
204 static void mei_me_host_set_ready(struct mei_device *dev)
205 {
206 struct mei_me_hw *hw = to_me_hw(dev);
207 hw->host_hw_state |= H_IE | H_IG | H_RDY;
208 mei_hcsr_set(hw, hw->host_hw_state);
209 }
210 /**
211 * mei_me_host_is_ready - check whether the host has turned ready
212 *
213 * @dev - mei device
214 * returns bool
215 */
216 static bool mei_me_host_is_ready(struct mei_device *dev)
217 {
218 struct mei_me_hw *hw = to_me_hw(dev);
219 hw->host_hw_state = mei_hcsr_read(hw);
220 return (hw->host_hw_state & H_RDY) == H_RDY;
221 }
222
223 /**
224 * mei_me_hw_is_ready - check whether the me(hw) has turned ready
225 *
226 * @dev - mei device
227 * returns bool
228 */
229 static bool mei_me_hw_is_ready(struct mei_device *dev)
230 {
231 struct mei_me_hw *hw = to_me_hw(dev);
232 hw->me_hw_state = mei_me_mecsr_read(hw);
233 return (hw->me_hw_state & ME_RDY_HRA) == ME_RDY_HRA;
234 }
235
236 static int mei_me_hw_ready_wait(struct mei_device *dev)
237 {
238 int err;
239 if (mei_me_hw_is_ready(dev))
240 return 0;
241
242 mutex_unlock(&dev->device_lock);
243 err = wait_event_interruptible_timeout(dev->wait_hw_ready,
244 dev->recvd_hw_ready, MEI_INTEROP_TIMEOUT);
245 mutex_lock(&dev->device_lock);
246 if (!err && !dev->recvd_hw_ready) {
247 dev_err(&dev->pdev->dev,
248 "wait hw ready failed. status = 0x%x\n", err);
249 return -ETIMEDOUT;
250 }
251
252 dev->recvd_hw_ready = false;
253 return 0;
254 }
255
256 static int mei_me_hw_start(struct mei_device *dev)
257 {
258 int ret = mei_me_hw_ready_wait(dev);
259 if (ret)
260 return ret;
261 dev_dbg(&dev->pdev->dev, "hw is ready\n");
262
263 mei_me_host_set_ready(dev);
264 return ret;
265 }
266
267
268 /**
269 * mei_hbuf_filled_slots - gets number of device filled buffer slots
270 *
271 * @dev: the device structure
272 *
273 * returns number of filled slots
274 */
275 static unsigned char mei_hbuf_filled_slots(struct mei_device *dev)
276 {
277 struct mei_me_hw *hw = to_me_hw(dev);
278 char read_ptr, write_ptr;
279
280 hw->host_hw_state = mei_hcsr_read(hw);
281
282 read_ptr = (char) ((hw->host_hw_state & H_CBRP) >> 8);
283 write_ptr = (char) ((hw->host_hw_state & H_CBWP) >> 16);
284
285 return (unsigned char) (write_ptr - read_ptr);
286 }
287
288 /**
289 * mei_me_hbuf_is_empty - checks if host buffer is empty.
290 *
291 * @dev: the device structure
292 *
293 * returns true if empty, false - otherwise.
294 */
295 static bool mei_me_hbuf_is_empty(struct mei_device *dev)
296 {
297 return mei_hbuf_filled_slots(dev) == 0;
298 }
299
300 /**
301 * mei_me_hbuf_empty_slots - counts write empty slots.
302 *
303 * @dev: the device structure
304 *
305 * returns -1(ESLOTS_OVERFLOW) if overflow, otherwise empty slots count
306 */
307 static int mei_me_hbuf_empty_slots(struct mei_device *dev)
308 {
309 unsigned char filled_slots, empty_slots;
310
311 filled_slots = mei_hbuf_filled_slots(dev);
312 empty_slots = dev->hbuf_depth - filled_slots;
313
314 /* check for overflow */
315 if (filled_slots > dev->hbuf_depth)
316 return -EOVERFLOW;
317
318 return empty_slots;
319 }
320
321 static size_t mei_me_hbuf_max_len(const struct mei_device *dev)
322 {
323 return dev->hbuf_depth * sizeof(u32) - sizeof(struct mei_msg_hdr);
324 }
325
326
327 /**
328 * mei_write_message - writes a message to mei device.
329 *
330 * @dev: the device structure
331 * @header: mei HECI header of message
332 * @buf: message payload will be written
333 *
334 * This function returns -EIO if write has failed
335 */
336 static int mei_me_write_message(struct mei_device *dev,
337 struct mei_msg_hdr *header,
338 unsigned char *buf)
339 {
340 struct mei_me_hw *hw = to_me_hw(dev);
341 unsigned long rem;
342 unsigned long length = header->length;
343 u32 *reg_buf = (u32 *)buf;
344 u32 hcsr;
345 u32 dw_cnt;
346 int i;
347 int empty_slots;
348
349 dev_dbg(&dev->pdev->dev, MEI_HDR_FMT, MEI_HDR_PRM(header));
350
351 empty_slots = mei_hbuf_empty_slots(dev);
352 dev_dbg(&dev->pdev->dev, "empty slots = %hu.\n", empty_slots);
353
354 dw_cnt = mei_data2slots(length);
355 if (empty_slots < 0 || dw_cnt > empty_slots)
356 return -EIO;
357
358 mei_me_reg_write(hw, H_CB_WW, *((u32 *) header));
359
360 for (i = 0; i < length / 4; i++)
361 mei_me_reg_write(hw, H_CB_WW, reg_buf[i]);
362
363 rem = length & 0x3;
364 if (rem > 0) {
365 u32 reg = 0;
366 memcpy(&reg, &buf[length - rem], rem);
367 mei_me_reg_write(hw, H_CB_WW, reg);
368 }
369
370 hcsr = mei_hcsr_read(hw) | H_IG;
371 mei_hcsr_set(hw, hcsr);
372 if (!mei_me_hw_is_ready(dev))
373 return -EIO;
374
375 return 0;
376 }
377
378 /**
379 * mei_me_count_full_read_slots - counts read full slots.
380 *
381 * @dev: the device structure
382 *
383 * returns -1(ESLOTS_OVERFLOW) if overflow, otherwise filled slots count
384 */
385 static int mei_me_count_full_read_slots(struct mei_device *dev)
386 {
387 struct mei_me_hw *hw = to_me_hw(dev);
388 char read_ptr, write_ptr;
389 unsigned char buffer_depth, filled_slots;
390
391 hw->me_hw_state = mei_me_mecsr_read(hw);
392 buffer_depth = (unsigned char)((hw->me_hw_state & ME_CBD_HRA) >> 24);
393 read_ptr = (char) ((hw->me_hw_state & ME_CBRP_HRA) >> 8);
394 write_ptr = (char) ((hw->me_hw_state & ME_CBWP_HRA) >> 16);
395 filled_slots = (unsigned char) (write_ptr - read_ptr);
396
397 /* check for overflow */
398 if (filled_slots > buffer_depth)
399 return -EOVERFLOW;
400
401 dev_dbg(&dev->pdev->dev, "filled_slots =%08x\n", filled_slots);
402 return (int)filled_slots;
403 }
404
405 /**
406 * mei_me_read_slots - reads a message from mei device.
407 *
408 * @dev: the device structure
409 * @buffer: message buffer will be written
410 * @buffer_length: message size will be read
411 */
412 static int mei_me_read_slots(struct mei_device *dev, unsigned char *buffer,
413 unsigned long buffer_length)
414 {
415 struct mei_me_hw *hw = to_me_hw(dev);
416 u32 *reg_buf = (u32 *)buffer;
417 u32 hcsr;
418
419 for (; buffer_length >= sizeof(u32); buffer_length -= sizeof(u32))
420 *reg_buf++ = mei_me_mecbrw_read(dev);
421
422 if (buffer_length > 0) {
423 u32 reg = mei_me_mecbrw_read(dev);
424 memcpy(reg_buf, &reg, buffer_length);
425 }
426
427 hcsr = mei_hcsr_read(hw) | H_IG;
428 mei_hcsr_set(hw, hcsr);
429 return 0;
430 }
431
432 /**
433 * mei_me_irq_quick_handler - The ISR of the MEI device
434 *
435 * @irq: The irq number
436 * @dev_id: pointer to the device structure
437 *
438 * returns irqreturn_t
439 */
440
441 irqreturn_t mei_me_irq_quick_handler(int irq, void *dev_id)
442 {
443 struct mei_device *dev = (struct mei_device *) dev_id;
444 struct mei_me_hw *hw = to_me_hw(dev);
445 u32 csr_reg = mei_hcsr_read(hw);
446
447 if ((csr_reg & H_IS) != H_IS)
448 return IRQ_NONE;
449
450 /* clear H_IS bit in H_CSR */
451 mei_me_reg_write(hw, H_CSR, csr_reg);
452
453 return IRQ_WAKE_THREAD;
454 }
455
456 /**
457 * mei_me_irq_thread_handler - function called after ISR to handle the interrupt
458 * processing.
459 *
460 * @irq: The irq number
461 * @dev_id: pointer to the device structure
462 *
463 * returns irqreturn_t
464 *
465 */
466 irqreturn_t mei_me_irq_thread_handler(int irq, void *dev_id)
467 {
468 struct mei_device *dev = (struct mei_device *) dev_id;
469 struct mei_cl_cb complete_list;
470 s32 slots;
471 int rets;
472
473 dev_dbg(&dev->pdev->dev, "function called after ISR to handle the interrupt processing.\n");
474 /* initialize our complete list */
475 mutex_lock(&dev->device_lock);
476 mei_io_list_init(&complete_list);
477
478 /* Ack the interrupt here
479 * In case of MSI we don't go through the quick handler */
480 if (pci_dev_msi_enabled(dev->pdev))
481 mei_clear_interrupts(dev);
482
483 /* check if ME wants a reset */
484 if (!mei_hw_is_ready(dev) &&
485 dev->dev_state != MEI_DEV_RESETTING &&
486 dev->dev_state != MEI_DEV_INITIALIZING) {
487 dev_dbg(&dev->pdev->dev, "FW not ready.\n");
488 mei_reset(dev, 1);
489 mutex_unlock(&dev->device_lock);
490 return IRQ_HANDLED;
491 }
492
493 /* check if we need to start the dev */
494 if (!mei_host_is_ready(dev)) {
495 if (mei_hw_is_ready(dev)) {
496 dev_dbg(&dev->pdev->dev, "we need to start the dev.\n");
497
498 dev->recvd_hw_ready = true;
499 wake_up_interruptible(&dev->wait_hw_ready);
500
501 mutex_unlock(&dev->device_lock);
502 return IRQ_HANDLED;
503 } else {
504 dev_dbg(&dev->pdev->dev, "Reset Completed.\n");
505 mei_me_hw_reset_release(dev);
506 mutex_unlock(&dev->device_lock);
507 return IRQ_HANDLED;
508 }
509 }
510 /* check slots available for reading */
511 slots = mei_count_full_read_slots(dev);
512 while (slots > 0) {
513 /* we have urgent data to send so break the read */
514 if (dev->wr_ext_msg.hdr.length)
515 break;
516 dev_dbg(&dev->pdev->dev, "slots =%08x\n", slots);
517 dev_dbg(&dev->pdev->dev, "call mei_irq_read_handler.\n");
518 rets = mei_irq_read_handler(dev, &complete_list, &slots);
519 if (rets)
520 goto end;
521 }
522 rets = mei_irq_write_handler(dev, &complete_list);
523 end:
524 dev_dbg(&dev->pdev->dev, "end of bottom half function.\n");
525 dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
526
527 mutex_unlock(&dev->device_lock);
528
529 mei_irq_compl_handler(dev, &complete_list);
530
531 return IRQ_HANDLED;
532 }
533 static const struct mei_hw_ops mei_me_hw_ops = {
534
535 .host_is_ready = mei_me_host_is_ready,
536
537 .hw_is_ready = mei_me_hw_is_ready,
538 .hw_reset = mei_me_hw_reset,
539 .hw_config = mei_me_hw_config,
540 .hw_start = mei_me_hw_start,
541
542 .intr_clear = mei_me_intr_clear,
543 .intr_enable = mei_me_intr_enable,
544 .intr_disable = mei_me_intr_disable,
545
546 .hbuf_free_slots = mei_me_hbuf_empty_slots,
547 .hbuf_is_ready = mei_me_hbuf_is_empty,
548 .hbuf_max_len = mei_me_hbuf_max_len,
549
550 .write = mei_me_write_message,
551
552 .rdbuf_full_slots = mei_me_count_full_read_slots,
553 .read_hdr = mei_me_mecbrw_read,
554 .read = mei_me_read_slots
555 };
556
557 /**
558 * mei_me_dev_init - allocates and initializes the mei device structure
559 *
560 * @pdev: The pci device structure
561 *
562 * returns The mei_device_device pointer on success, NULL on failure.
563 */
564 struct mei_device *mei_me_dev_init(struct pci_dev *pdev)
565 {
566 struct mei_device *dev;
567
568 dev = kzalloc(sizeof(struct mei_device) +
569 sizeof(struct mei_me_hw), GFP_KERNEL);
570 if (!dev)
571 return NULL;
572
573 mei_device_init(dev);
574
575 dev->ops = &mei_me_hw_ops;
576
577 dev->pdev = pdev;
578 return dev;
579 }
580
This page took 0.043503 seconds and 5 git commands to generate.