mmc: rename dev_to_mmc_card() to mmc_dev_to_card()
[deliverable/linux.git] / drivers / mmc / card / mmc_test.c
1 /*
2 * linux/drivers/mmc/card/mmc_test.c
3 *
4 * Copyright 2007-2008 Pierre Ossman
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or (at
9 * your option) any later version.
10 */
11
12 #include <linux/mmc/core.h>
13 #include <linux/mmc/card.h>
14 #include <linux/mmc/host.h>
15 #include <linux/mmc/mmc.h>
16 #include <linux/slab.h>
17
18 #include <linux/scatterlist.h>
19 #include <linux/swap.h> /* For nr_free_buffer_pages() */
20
21 #define RESULT_OK 0
22 #define RESULT_FAIL 1
23 #define RESULT_UNSUP_HOST 2
24 #define RESULT_UNSUP_CARD 3
25
26 #define BUFFER_ORDER 2
27 #define BUFFER_SIZE (PAGE_SIZE << BUFFER_ORDER)
28
29 /*
30 * Limit the test area size to the maximum MMC HC erase group size. Note that
31 * the maximum SD allocation unit size is just 4MiB.
32 */
33 #define TEST_AREA_MAX_SIZE (128 * 1024 * 1024)
34
35 /**
36 * struct mmc_test_pages - pages allocated by 'alloc_pages()'.
37 * @page: first page in the allocation
38 * @order: order of the number of pages allocated
39 */
40 struct mmc_test_pages {
41 struct page *page;
42 unsigned int order;
43 };
44
45 /**
46 * struct mmc_test_mem - allocated memory.
47 * @arr: array of allocations
48 * @cnt: number of allocations
49 */
50 struct mmc_test_mem {
51 struct mmc_test_pages *arr;
52 unsigned int cnt;
53 };
54
55 /**
56 * struct mmc_test_area - information for performance tests.
57 * @max_sz: test area size (in bytes)
58 * @dev_addr: address on card at which to do performance tests
59 * @max_segs: maximum segments in scatterlist @sg
60 * @blocks: number of (512 byte) blocks currently mapped by @sg
61 * @sg_len: length of currently mapped scatterlist @sg
62 * @mem: allocated memory
63 * @sg: scatterlist
64 */
65 struct mmc_test_area {
66 unsigned long max_sz;
67 unsigned int dev_addr;
68 unsigned int max_segs;
69 unsigned int blocks;
70 unsigned int sg_len;
71 struct mmc_test_mem *mem;
72 struct scatterlist *sg;
73 };
74
75 /**
76 * struct mmc_test_card - test information.
77 * @card: card under test
78 * @scratch: transfer buffer
79 * @buffer: transfer buffer
80 * @highmem: buffer for highmem tests
81 * @area: information for performance tests
82 */
83 struct mmc_test_card {
84 struct mmc_card *card;
85
86 u8 scratch[BUFFER_SIZE];
87 u8 *buffer;
88 #ifdef CONFIG_HIGHMEM
89 struct page *highmem;
90 #endif
91 struct mmc_test_area area;
92 };
93
94 /*******************************************************************/
95 /* General helper functions */
96 /*******************************************************************/
97
98 /*
99 * Configure correct block size in card
100 */
101 static int mmc_test_set_blksize(struct mmc_test_card *test, unsigned size)
102 {
103 struct mmc_command cmd;
104 int ret;
105
106 cmd.opcode = MMC_SET_BLOCKLEN;
107 cmd.arg = size;
108 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
109 ret = mmc_wait_for_cmd(test->card->host, &cmd, 0);
110 if (ret)
111 return ret;
112
113 return 0;
114 }
115
116 /*
117 * Fill in the mmc_request structure given a set of transfer parameters.
118 */
119 static void mmc_test_prepare_mrq(struct mmc_test_card *test,
120 struct mmc_request *mrq, struct scatterlist *sg, unsigned sg_len,
121 unsigned dev_addr, unsigned blocks, unsigned blksz, int write)
122 {
123 BUG_ON(!mrq || !mrq->cmd || !mrq->data || !mrq->stop);
124
125 if (blocks > 1) {
126 mrq->cmd->opcode = write ?
127 MMC_WRITE_MULTIPLE_BLOCK : MMC_READ_MULTIPLE_BLOCK;
128 } else {
129 mrq->cmd->opcode = write ?
130 MMC_WRITE_BLOCK : MMC_READ_SINGLE_BLOCK;
131 }
132
133 mrq->cmd->arg = dev_addr;
134 if (!mmc_card_blockaddr(test->card))
135 mrq->cmd->arg <<= 9;
136
137 mrq->cmd->flags = MMC_RSP_R1 | MMC_CMD_ADTC;
138
139 if (blocks == 1)
140 mrq->stop = NULL;
141 else {
142 mrq->stop->opcode = MMC_STOP_TRANSMISSION;
143 mrq->stop->arg = 0;
144 mrq->stop->flags = MMC_RSP_R1B | MMC_CMD_AC;
145 }
146
147 mrq->data->blksz = blksz;
148 mrq->data->blocks = blocks;
149 mrq->data->flags = write ? MMC_DATA_WRITE : MMC_DATA_READ;
150 mrq->data->sg = sg;
151 mrq->data->sg_len = sg_len;
152
153 mmc_set_data_timeout(mrq->data, test->card);
154 }
155
156 static int mmc_test_busy(struct mmc_command *cmd)
157 {
158 return !(cmd->resp[0] & R1_READY_FOR_DATA) ||
159 (R1_CURRENT_STATE(cmd->resp[0]) == 7);
160 }
161
162 /*
163 * Wait for the card to finish the busy state
164 */
165 static int mmc_test_wait_busy(struct mmc_test_card *test)
166 {
167 int ret, busy;
168 struct mmc_command cmd;
169
170 busy = 0;
171 do {
172 memset(&cmd, 0, sizeof(struct mmc_command));
173
174 cmd.opcode = MMC_SEND_STATUS;
175 cmd.arg = test->card->rca << 16;
176 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
177
178 ret = mmc_wait_for_cmd(test->card->host, &cmd, 0);
179 if (ret)
180 break;
181
182 if (!busy && mmc_test_busy(&cmd)) {
183 busy = 1;
184 printk(KERN_INFO "%s: Warning: Host did not "
185 "wait for busy state to end.\n",
186 mmc_hostname(test->card->host));
187 }
188 } while (mmc_test_busy(&cmd));
189
190 return ret;
191 }
192
193 /*
194 * Transfer a single sector of kernel addressable data
195 */
196 static int mmc_test_buffer_transfer(struct mmc_test_card *test,
197 u8 *buffer, unsigned addr, unsigned blksz, int write)
198 {
199 int ret;
200
201 struct mmc_request mrq;
202 struct mmc_command cmd;
203 struct mmc_command stop;
204 struct mmc_data data;
205
206 struct scatterlist sg;
207
208 memset(&mrq, 0, sizeof(struct mmc_request));
209 memset(&cmd, 0, sizeof(struct mmc_command));
210 memset(&data, 0, sizeof(struct mmc_data));
211 memset(&stop, 0, sizeof(struct mmc_command));
212
213 mrq.cmd = &cmd;
214 mrq.data = &data;
215 mrq.stop = &stop;
216
217 sg_init_one(&sg, buffer, blksz);
218
219 mmc_test_prepare_mrq(test, &mrq, &sg, 1, addr, 1, blksz, write);
220
221 mmc_wait_for_req(test->card->host, &mrq);
222
223 if (cmd.error)
224 return cmd.error;
225 if (data.error)
226 return data.error;
227
228 ret = mmc_test_wait_busy(test);
229 if (ret)
230 return ret;
231
232 return 0;
233 }
234
235 static void mmc_test_free_mem(struct mmc_test_mem *mem)
236 {
237 if (!mem)
238 return;
239 while (mem->cnt--)
240 __free_pages(mem->arr[mem->cnt].page,
241 mem->arr[mem->cnt].order);
242 kfree(mem->arr);
243 kfree(mem);
244 }
245
246 /*
247 * Allocate a lot of memory, preferrably max_sz but at least min_sz. In case
248 * there isn't much memory do not exceed 1/16th total lowmem pages.
249 */
250 static struct mmc_test_mem *mmc_test_alloc_mem(unsigned long min_sz,
251 unsigned long max_sz)
252 {
253 unsigned long max_page_cnt = DIV_ROUND_UP(max_sz, PAGE_SIZE);
254 unsigned long min_page_cnt = DIV_ROUND_UP(min_sz, PAGE_SIZE);
255 unsigned long page_cnt = 0;
256 unsigned long limit = nr_free_buffer_pages() >> 4;
257 struct mmc_test_mem *mem;
258
259 if (max_page_cnt > limit)
260 max_page_cnt = limit;
261 if (max_page_cnt < min_page_cnt)
262 max_page_cnt = min_page_cnt;
263
264 mem = kzalloc(sizeof(struct mmc_test_mem), GFP_KERNEL);
265 if (!mem)
266 return NULL;
267
268 mem->arr = kzalloc(sizeof(struct mmc_test_pages) * max_page_cnt,
269 GFP_KERNEL);
270 if (!mem->arr)
271 goto out_free;
272
273 while (max_page_cnt) {
274 struct page *page;
275 unsigned int order;
276 gfp_t flags = GFP_KERNEL | GFP_DMA | __GFP_NOWARN |
277 __GFP_NORETRY;
278
279 order = get_order(max_page_cnt << PAGE_SHIFT);
280 while (1) {
281 page = alloc_pages(flags, order);
282 if (page || !order)
283 break;
284 order -= 1;
285 }
286 if (!page) {
287 if (page_cnt < min_page_cnt)
288 goto out_free;
289 break;
290 }
291 mem->arr[mem->cnt].page = page;
292 mem->arr[mem->cnt].order = order;
293 mem->cnt += 1;
294 if (max_page_cnt <= (1UL << order))
295 break;
296 max_page_cnt -= 1UL << order;
297 page_cnt += 1UL << order;
298 }
299
300 return mem;
301
302 out_free:
303 mmc_test_free_mem(mem);
304 return NULL;
305 }
306
307 /*
308 * Map memory into a scatterlist. Optionally allow the same memory to be
309 * mapped more than once.
310 */
311 static int mmc_test_map_sg(struct mmc_test_mem *mem, unsigned long sz,
312 struct scatterlist *sglist, int repeat,
313 unsigned int max_segs, unsigned int *sg_len)
314 {
315 struct scatterlist *sg = NULL;
316 unsigned int i;
317
318 sg_init_table(sglist, max_segs);
319
320 *sg_len = 0;
321 do {
322 for (i = 0; i < mem->cnt; i++) {
323 unsigned long len = PAGE_SIZE << mem->arr[i].order;
324
325 if (sz < len)
326 len = sz;
327 if (sg)
328 sg = sg_next(sg);
329 else
330 sg = sglist;
331 if (!sg)
332 return -EINVAL;
333 sg_set_page(sg, mem->arr[i].page, len, 0);
334 sz -= len;
335 *sg_len += 1;
336 if (!sz)
337 break;
338 }
339 } while (sz && repeat);
340
341 if (sz)
342 return -EINVAL;
343
344 if (sg)
345 sg_mark_end(sg);
346
347 return 0;
348 }
349
350 /*
351 * Map memory into a scatterlist so that no pages are contiguous. Allow the
352 * same memory to be mapped more than once.
353 */
354 static int mmc_test_map_sg_max_scatter(struct mmc_test_mem *mem,
355 unsigned long sz,
356 struct scatterlist *sglist,
357 unsigned int max_segs,
358 unsigned int *sg_len)
359 {
360 struct scatterlist *sg = NULL;
361 unsigned int i = mem->cnt, cnt;
362 unsigned long len;
363 void *base, *addr, *last_addr = NULL;
364
365 sg_init_table(sglist, max_segs);
366
367 *sg_len = 0;
368 while (sz && i) {
369 base = page_address(mem->arr[--i].page);
370 cnt = 1 << mem->arr[i].order;
371 while (sz && cnt) {
372 addr = base + PAGE_SIZE * --cnt;
373 if (last_addr && last_addr + PAGE_SIZE == addr)
374 continue;
375 last_addr = addr;
376 len = PAGE_SIZE;
377 if (sz < len)
378 len = sz;
379 if (sg)
380 sg = sg_next(sg);
381 else
382 sg = sglist;
383 if (!sg)
384 return -EINVAL;
385 sg_set_page(sg, virt_to_page(addr), len, 0);
386 sz -= len;
387 *sg_len += 1;
388 }
389 }
390
391 if (sg)
392 sg_mark_end(sg);
393
394 return 0;
395 }
396
397 /*
398 * Calculate transfer rate in bytes per second.
399 */
400 static unsigned int mmc_test_rate(uint64_t bytes, struct timespec *ts)
401 {
402 uint64_t ns;
403
404 ns = ts->tv_sec;
405 ns *= 1000000000;
406 ns += ts->tv_nsec;
407
408 bytes *= 1000000000;
409
410 while (ns > UINT_MAX) {
411 bytes >>= 1;
412 ns >>= 1;
413 }
414
415 if (!ns)
416 return 0;
417
418 do_div(bytes, (uint32_t)ns);
419
420 return bytes;
421 }
422
423 /*
424 * Print the transfer rate.
425 */
426 static void mmc_test_print_rate(struct mmc_test_card *test, uint64_t bytes,
427 struct timespec *ts1, struct timespec *ts2)
428 {
429 unsigned int rate, sectors = bytes >> 9;
430 struct timespec ts;
431
432 ts = timespec_sub(*ts2, *ts1);
433
434 rate = mmc_test_rate(bytes, &ts);
435
436 printk(KERN_INFO "%s: Transfer of %u sectors (%u%s KiB) took %lu.%09lu "
437 "seconds (%u kB/s, %u KiB/s)\n",
438 mmc_hostname(test->card->host), sectors, sectors >> 1,
439 (sectors == 1 ? ".5" : ""), (unsigned long)ts.tv_sec,
440 (unsigned long)ts.tv_nsec, rate / 1000, rate / 1024);
441 }
442
443 /*
444 * Print the average transfer rate.
445 */
446 static void mmc_test_print_avg_rate(struct mmc_test_card *test, uint64_t bytes,
447 unsigned int count, struct timespec *ts1,
448 struct timespec *ts2)
449 {
450 unsigned int rate, sectors = bytes >> 9;
451 uint64_t tot = bytes * count;
452 struct timespec ts;
453
454 ts = timespec_sub(*ts2, *ts1);
455
456 rate = mmc_test_rate(tot, &ts);
457
458 printk(KERN_INFO "%s: Transfer of %u x %u sectors (%u x %u%s KiB) took "
459 "%lu.%09lu seconds (%u kB/s, %u KiB/s)\n",
460 mmc_hostname(test->card->host), count, sectors, count,
461 sectors >> 1, (sectors == 1 ? ".5" : ""),
462 (unsigned long)ts.tv_sec, (unsigned long)ts.tv_nsec,
463 rate / 1000, rate / 1024);
464 }
465
466 /*
467 * Return the card size in sectors.
468 */
469 static unsigned int mmc_test_capacity(struct mmc_card *card)
470 {
471 if (!mmc_card_sd(card) && mmc_card_blockaddr(card))
472 return card->ext_csd.sectors;
473 else
474 return card->csd.capacity << (card->csd.read_blkbits - 9);
475 }
476
477 /*******************************************************************/
478 /* Test preparation and cleanup */
479 /*******************************************************************/
480
481 /*
482 * Fill the first couple of sectors of the card with known data
483 * so that bad reads/writes can be detected
484 */
485 static int __mmc_test_prepare(struct mmc_test_card *test, int write)
486 {
487 int ret, i;
488
489 ret = mmc_test_set_blksize(test, 512);
490 if (ret)
491 return ret;
492
493 if (write)
494 memset(test->buffer, 0xDF, 512);
495 else {
496 for (i = 0;i < 512;i++)
497 test->buffer[i] = i;
498 }
499
500 for (i = 0;i < BUFFER_SIZE / 512;i++) {
501 ret = mmc_test_buffer_transfer(test, test->buffer, i, 512, 1);
502 if (ret)
503 return ret;
504 }
505
506 return 0;
507 }
508
509 static int mmc_test_prepare_write(struct mmc_test_card *test)
510 {
511 return __mmc_test_prepare(test, 1);
512 }
513
514 static int mmc_test_prepare_read(struct mmc_test_card *test)
515 {
516 return __mmc_test_prepare(test, 0);
517 }
518
519 static int mmc_test_cleanup(struct mmc_test_card *test)
520 {
521 int ret, i;
522
523 ret = mmc_test_set_blksize(test, 512);
524 if (ret)
525 return ret;
526
527 memset(test->buffer, 0, 512);
528
529 for (i = 0;i < BUFFER_SIZE / 512;i++) {
530 ret = mmc_test_buffer_transfer(test, test->buffer, i, 512, 1);
531 if (ret)
532 return ret;
533 }
534
535 return 0;
536 }
537
538 /*******************************************************************/
539 /* Test execution helpers */
540 /*******************************************************************/
541
542 /*
543 * Modifies the mmc_request to perform the "short transfer" tests
544 */
545 static void mmc_test_prepare_broken_mrq(struct mmc_test_card *test,
546 struct mmc_request *mrq, int write)
547 {
548 BUG_ON(!mrq || !mrq->cmd || !mrq->data);
549
550 if (mrq->data->blocks > 1) {
551 mrq->cmd->opcode = write ?
552 MMC_WRITE_BLOCK : MMC_READ_SINGLE_BLOCK;
553 mrq->stop = NULL;
554 } else {
555 mrq->cmd->opcode = MMC_SEND_STATUS;
556 mrq->cmd->arg = test->card->rca << 16;
557 }
558 }
559
560 /*
561 * Checks that a normal transfer didn't have any errors
562 */
563 static int mmc_test_check_result(struct mmc_test_card *test,
564 struct mmc_request *mrq)
565 {
566 int ret;
567
568 BUG_ON(!mrq || !mrq->cmd || !mrq->data);
569
570 ret = 0;
571
572 if (!ret && mrq->cmd->error)
573 ret = mrq->cmd->error;
574 if (!ret && mrq->data->error)
575 ret = mrq->data->error;
576 if (!ret && mrq->stop && mrq->stop->error)
577 ret = mrq->stop->error;
578 if (!ret && mrq->data->bytes_xfered !=
579 mrq->data->blocks * mrq->data->blksz)
580 ret = RESULT_FAIL;
581
582 if (ret == -EINVAL)
583 ret = RESULT_UNSUP_HOST;
584
585 return ret;
586 }
587
588 /*
589 * Checks that a "short transfer" behaved as expected
590 */
591 static int mmc_test_check_broken_result(struct mmc_test_card *test,
592 struct mmc_request *mrq)
593 {
594 int ret;
595
596 BUG_ON(!mrq || !mrq->cmd || !mrq->data);
597
598 ret = 0;
599
600 if (!ret && mrq->cmd->error)
601 ret = mrq->cmd->error;
602 if (!ret && mrq->data->error == 0)
603 ret = RESULT_FAIL;
604 if (!ret && mrq->data->error != -ETIMEDOUT)
605 ret = mrq->data->error;
606 if (!ret && mrq->stop && mrq->stop->error)
607 ret = mrq->stop->error;
608 if (mrq->data->blocks > 1) {
609 if (!ret && mrq->data->bytes_xfered > mrq->data->blksz)
610 ret = RESULT_FAIL;
611 } else {
612 if (!ret && mrq->data->bytes_xfered > 0)
613 ret = RESULT_FAIL;
614 }
615
616 if (ret == -EINVAL)
617 ret = RESULT_UNSUP_HOST;
618
619 return ret;
620 }
621
622 /*
623 * Tests a basic transfer with certain parameters
624 */
625 static int mmc_test_simple_transfer(struct mmc_test_card *test,
626 struct scatterlist *sg, unsigned sg_len, unsigned dev_addr,
627 unsigned blocks, unsigned blksz, int write)
628 {
629 struct mmc_request mrq;
630 struct mmc_command cmd;
631 struct mmc_command stop;
632 struct mmc_data data;
633
634 memset(&mrq, 0, sizeof(struct mmc_request));
635 memset(&cmd, 0, sizeof(struct mmc_command));
636 memset(&data, 0, sizeof(struct mmc_data));
637 memset(&stop, 0, sizeof(struct mmc_command));
638
639 mrq.cmd = &cmd;
640 mrq.data = &data;
641 mrq.stop = &stop;
642
643 mmc_test_prepare_mrq(test, &mrq, sg, sg_len, dev_addr,
644 blocks, blksz, write);
645
646 mmc_wait_for_req(test->card->host, &mrq);
647
648 mmc_test_wait_busy(test);
649
650 return mmc_test_check_result(test, &mrq);
651 }
652
653 /*
654 * Tests a transfer where the card will fail completely or partly
655 */
656 static int mmc_test_broken_transfer(struct mmc_test_card *test,
657 unsigned blocks, unsigned blksz, int write)
658 {
659 struct mmc_request mrq;
660 struct mmc_command cmd;
661 struct mmc_command stop;
662 struct mmc_data data;
663
664 struct scatterlist sg;
665
666 memset(&mrq, 0, sizeof(struct mmc_request));
667 memset(&cmd, 0, sizeof(struct mmc_command));
668 memset(&data, 0, sizeof(struct mmc_data));
669 memset(&stop, 0, sizeof(struct mmc_command));
670
671 mrq.cmd = &cmd;
672 mrq.data = &data;
673 mrq.stop = &stop;
674
675 sg_init_one(&sg, test->buffer, blocks * blksz);
676
677 mmc_test_prepare_mrq(test, &mrq, &sg, 1, 0, blocks, blksz, write);
678 mmc_test_prepare_broken_mrq(test, &mrq, write);
679
680 mmc_wait_for_req(test->card->host, &mrq);
681
682 mmc_test_wait_busy(test);
683
684 return mmc_test_check_broken_result(test, &mrq);
685 }
686
687 /*
688 * Does a complete transfer test where data is also validated
689 *
690 * Note: mmc_test_prepare() must have been done before this call
691 */
692 static int mmc_test_transfer(struct mmc_test_card *test,
693 struct scatterlist *sg, unsigned sg_len, unsigned dev_addr,
694 unsigned blocks, unsigned blksz, int write)
695 {
696 int ret, i;
697 unsigned long flags;
698
699 if (write) {
700 for (i = 0;i < blocks * blksz;i++)
701 test->scratch[i] = i;
702 } else {
703 memset(test->scratch, 0, BUFFER_SIZE);
704 }
705 local_irq_save(flags);
706 sg_copy_from_buffer(sg, sg_len, test->scratch, BUFFER_SIZE);
707 local_irq_restore(flags);
708
709 ret = mmc_test_set_blksize(test, blksz);
710 if (ret)
711 return ret;
712
713 ret = mmc_test_simple_transfer(test, sg, sg_len, dev_addr,
714 blocks, blksz, write);
715 if (ret)
716 return ret;
717
718 if (write) {
719 int sectors;
720
721 ret = mmc_test_set_blksize(test, 512);
722 if (ret)
723 return ret;
724
725 sectors = (blocks * blksz + 511) / 512;
726 if ((sectors * 512) == (blocks * blksz))
727 sectors++;
728
729 if ((sectors * 512) > BUFFER_SIZE)
730 return -EINVAL;
731
732 memset(test->buffer, 0, sectors * 512);
733
734 for (i = 0;i < sectors;i++) {
735 ret = mmc_test_buffer_transfer(test,
736 test->buffer + i * 512,
737 dev_addr + i, 512, 0);
738 if (ret)
739 return ret;
740 }
741
742 for (i = 0;i < blocks * blksz;i++) {
743 if (test->buffer[i] != (u8)i)
744 return RESULT_FAIL;
745 }
746
747 for (;i < sectors * 512;i++) {
748 if (test->buffer[i] != 0xDF)
749 return RESULT_FAIL;
750 }
751 } else {
752 local_irq_save(flags);
753 sg_copy_to_buffer(sg, sg_len, test->scratch, BUFFER_SIZE);
754 local_irq_restore(flags);
755 for (i = 0;i < blocks * blksz;i++) {
756 if (test->scratch[i] != (u8)i)
757 return RESULT_FAIL;
758 }
759 }
760
761 return 0;
762 }
763
764 /*******************************************************************/
765 /* Tests */
766 /*******************************************************************/
767
768 struct mmc_test_case {
769 const char *name;
770
771 int (*prepare)(struct mmc_test_card *);
772 int (*run)(struct mmc_test_card *);
773 int (*cleanup)(struct mmc_test_card *);
774 };
775
776 static int mmc_test_basic_write(struct mmc_test_card *test)
777 {
778 int ret;
779 struct scatterlist sg;
780
781 ret = mmc_test_set_blksize(test, 512);
782 if (ret)
783 return ret;
784
785 sg_init_one(&sg, test->buffer, 512);
786
787 ret = mmc_test_simple_transfer(test, &sg, 1, 0, 1, 512, 1);
788 if (ret)
789 return ret;
790
791 return 0;
792 }
793
794 static int mmc_test_basic_read(struct mmc_test_card *test)
795 {
796 int ret;
797 struct scatterlist sg;
798
799 ret = mmc_test_set_blksize(test, 512);
800 if (ret)
801 return ret;
802
803 sg_init_one(&sg, test->buffer, 512);
804
805 ret = mmc_test_simple_transfer(test, &sg, 1, 0, 1, 512, 0);
806 if (ret)
807 return ret;
808
809 return 0;
810 }
811
812 static int mmc_test_verify_write(struct mmc_test_card *test)
813 {
814 int ret;
815 struct scatterlist sg;
816
817 sg_init_one(&sg, test->buffer, 512);
818
819 ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
820 if (ret)
821 return ret;
822
823 return 0;
824 }
825
826 static int mmc_test_verify_read(struct mmc_test_card *test)
827 {
828 int ret;
829 struct scatterlist sg;
830
831 sg_init_one(&sg, test->buffer, 512);
832
833 ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
834 if (ret)
835 return ret;
836
837 return 0;
838 }
839
840 static int mmc_test_multi_write(struct mmc_test_card *test)
841 {
842 int ret;
843 unsigned int size;
844 struct scatterlist sg;
845
846 if (test->card->host->max_blk_count == 1)
847 return RESULT_UNSUP_HOST;
848
849 size = PAGE_SIZE * 2;
850 size = min(size, test->card->host->max_req_size);
851 size = min(size, test->card->host->max_seg_size);
852 size = min(size, test->card->host->max_blk_count * 512);
853
854 if (size < 1024)
855 return RESULT_UNSUP_HOST;
856
857 sg_init_one(&sg, test->buffer, size);
858
859 ret = mmc_test_transfer(test, &sg, 1, 0, size/512, 512, 1);
860 if (ret)
861 return ret;
862
863 return 0;
864 }
865
866 static int mmc_test_multi_read(struct mmc_test_card *test)
867 {
868 int ret;
869 unsigned int size;
870 struct scatterlist sg;
871
872 if (test->card->host->max_blk_count == 1)
873 return RESULT_UNSUP_HOST;
874
875 size = PAGE_SIZE * 2;
876 size = min(size, test->card->host->max_req_size);
877 size = min(size, test->card->host->max_seg_size);
878 size = min(size, test->card->host->max_blk_count * 512);
879
880 if (size < 1024)
881 return RESULT_UNSUP_HOST;
882
883 sg_init_one(&sg, test->buffer, size);
884
885 ret = mmc_test_transfer(test, &sg, 1, 0, size/512, 512, 0);
886 if (ret)
887 return ret;
888
889 return 0;
890 }
891
892 static int mmc_test_pow2_write(struct mmc_test_card *test)
893 {
894 int ret, i;
895 struct scatterlist sg;
896
897 if (!test->card->csd.write_partial)
898 return RESULT_UNSUP_CARD;
899
900 for (i = 1; i < 512;i <<= 1) {
901 sg_init_one(&sg, test->buffer, i);
902 ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 1);
903 if (ret)
904 return ret;
905 }
906
907 return 0;
908 }
909
910 static int mmc_test_pow2_read(struct mmc_test_card *test)
911 {
912 int ret, i;
913 struct scatterlist sg;
914
915 if (!test->card->csd.read_partial)
916 return RESULT_UNSUP_CARD;
917
918 for (i = 1; i < 512;i <<= 1) {
919 sg_init_one(&sg, test->buffer, i);
920 ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 0);
921 if (ret)
922 return ret;
923 }
924
925 return 0;
926 }
927
928 static int mmc_test_weird_write(struct mmc_test_card *test)
929 {
930 int ret, i;
931 struct scatterlist sg;
932
933 if (!test->card->csd.write_partial)
934 return RESULT_UNSUP_CARD;
935
936 for (i = 3; i < 512;i += 7) {
937 sg_init_one(&sg, test->buffer, i);
938 ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 1);
939 if (ret)
940 return ret;
941 }
942
943 return 0;
944 }
945
946 static int mmc_test_weird_read(struct mmc_test_card *test)
947 {
948 int ret, i;
949 struct scatterlist sg;
950
951 if (!test->card->csd.read_partial)
952 return RESULT_UNSUP_CARD;
953
954 for (i = 3; i < 512;i += 7) {
955 sg_init_one(&sg, test->buffer, i);
956 ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 0);
957 if (ret)
958 return ret;
959 }
960
961 return 0;
962 }
963
964 static int mmc_test_align_write(struct mmc_test_card *test)
965 {
966 int ret, i;
967 struct scatterlist sg;
968
969 for (i = 1;i < 4;i++) {
970 sg_init_one(&sg, test->buffer + i, 512);
971 ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
972 if (ret)
973 return ret;
974 }
975
976 return 0;
977 }
978
979 static int mmc_test_align_read(struct mmc_test_card *test)
980 {
981 int ret, i;
982 struct scatterlist sg;
983
984 for (i = 1;i < 4;i++) {
985 sg_init_one(&sg, test->buffer + i, 512);
986 ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
987 if (ret)
988 return ret;
989 }
990
991 return 0;
992 }
993
994 static int mmc_test_align_multi_write(struct mmc_test_card *test)
995 {
996 int ret, i;
997 unsigned int size;
998 struct scatterlist sg;
999
1000 if (test->card->host->max_blk_count == 1)
1001 return RESULT_UNSUP_HOST;
1002
1003 size = PAGE_SIZE * 2;
1004 size = min(size, test->card->host->max_req_size);
1005 size = min(size, test->card->host->max_seg_size);
1006 size = min(size, test->card->host->max_blk_count * 512);
1007
1008 if (size < 1024)
1009 return RESULT_UNSUP_HOST;
1010
1011 for (i = 1;i < 4;i++) {
1012 sg_init_one(&sg, test->buffer + i, size);
1013 ret = mmc_test_transfer(test, &sg, 1, 0, size/512, 512, 1);
1014 if (ret)
1015 return ret;
1016 }
1017
1018 return 0;
1019 }
1020
1021 static int mmc_test_align_multi_read(struct mmc_test_card *test)
1022 {
1023 int ret, i;
1024 unsigned int size;
1025 struct scatterlist sg;
1026
1027 if (test->card->host->max_blk_count == 1)
1028 return RESULT_UNSUP_HOST;
1029
1030 size = PAGE_SIZE * 2;
1031 size = min(size, test->card->host->max_req_size);
1032 size = min(size, test->card->host->max_seg_size);
1033 size = min(size, test->card->host->max_blk_count * 512);
1034
1035 if (size < 1024)
1036 return RESULT_UNSUP_HOST;
1037
1038 for (i = 1;i < 4;i++) {
1039 sg_init_one(&sg, test->buffer + i, size);
1040 ret = mmc_test_transfer(test, &sg, 1, 0, size/512, 512, 0);
1041 if (ret)
1042 return ret;
1043 }
1044
1045 return 0;
1046 }
1047
1048 static int mmc_test_xfersize_write(struct mmc_test_card *test)
1049 {
1050 int ret;
1051
1052 ret = mmc_test_set_blksize(test, 512);
1053 if (ret)
1054 return ret;
1055
1056 ret = mmc_test_broken_transfer(test, 1, 512, 1);
1057 if (ret)
1058 return ret;
1059
1060 return 0;
1061 }
1062
1063 static int mmc_test_xfersize_read(struct mmc_test_card *test)
1064 {
1065 int ret;
1066
1067 ret = mmc_test_set_blksize(test, 512);
1068 if (ret)
1069 return ret;
1070
1071 ret = mmc_test_broken_transfer(test, 1, 512, 0);
1072 if (ret)
1073 return ret;
1074
1075 return 0;
1076 }
1077
1078 static int mmc_test_multi_xfersize_write(struct mmc_test_card *test)
1079 {
1080 int ret;
1081
1082 if (test->card->host->max_blk_count == 1)
1083 return RESULT_UNSUP_HOST;
1084
1085 ret = mmc_test_set_blksize(test, 512);
1086 if (ret)
1087 return ret;
1088
1089 ret = mmc_test_broken_transfer(test, 2, 512, 1);
1090 if (ret)
1091 return ret;
1092
1093 return 0;
1094 }
1095
1096 static int mmc_test_multi_xfersize_read(struct mmc_test_card *test)
1097 {
1098 int ret;
1099
1100 if (test->card->host->max_blk_count == 1)
1101 return RESULT_UNSUP_HOST;
1102
1103 ret = mmc_test_set_blksize(test, 512);
1104 if (ret)
1105 return ret;
1106
1107 ret = mmc_test_broken_transfer(test, 2, 512, 0);
1108 if (ret)
1109 return ret;
1110
1111 return 0;
1112 }
1113
1114 #ifdef CONFIG_HIGHMEM
1115
1116 static int mmc_test_write_high(struct mmc_test_card *test)
1117 {
1118 int ret;
1119 struct scatterlist sg;
1120
1121 sg_init_table(&sg, 1);
1122 sg_set_page(&sg, test->highmem, 512, 0);
1123
1124 ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1125 if (ret)
1126 return ret;
1127
1128 return 0;
1129 }
1130
1131 static int mmc_test_read_high(struct mmc_test_card *test)
1132 {
1133 int ret;
1134 struct scatterlist sg;
1135
1136 sg_init_table(&sg, 1);
1137 sg_set_page(&sg, test->highmem, 512, 0);
1138
1139 ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1140 if (ret)
1141 return ret;
1142
1143 return 0;
1144 }
1145
1146 static int mmc_test_multi_write_high(struct mmc_test_card *test)
1147 {
1148 int ret;
1149 unsigned int size;
1150 struct scatterlist sg;
1151
1152 if (test->card->host->max_blk_count == 1)
1153 return RESULT_UNSUP_HOST;
1154
1155 size = PAGE_SIZE * 2;
1156 size = min(size, test->card->host->max_req_size);
1157 size = min(size, test->card->host->max_seg_size);
1158 size = min(size, test->card->host->max_blk_count * 512);
1159
1160 if (size < 1024)
1161 return RESULT_UNSUP_HOST;
1162
1163 sg_init_table(&sg, 1);
1164 sg_set_page(&sg, test->highmem, size, 0);
1165
1166 ret = mmc_test_transfer(test, &sg, 1, 0, size/512, 512, 1);
1167 if (ret)
1168 return ret;
1169
1170 return 0;
1171 }
1172
1173 static int mmc_test_multi_read_high(struct mmc_test_card *test)
1174 {
1175 int ret;
1176 unsigned int size;
1177 struct scatterlist sg;
1178
1179 if (test->card->host->max_blk_count == 1)
1180 return RESULT_UNSUP_HOST;
1181
1182 size = PAGE_SIZE * 2;
1183 size = min(size, test->card->host->max_req_size);
1184 size = min(size, test->card->host->max_seg_size);
1185 size = min(size, test->card->host->max_blk_count * 512);
1186
1187 if (size < 1024)
1188 return RESULT_UNSUP_HOST;
1189
1190 sg_init_table(&sg, 1);
1191 sg_set_page(&sg, test->highmem, size, 0);
1192
1193 ret = mmc_test_transfer(test, &sg, 1, 0, size/512, 512, 0);
1194 if (ret)
1195 return ret;
1196
1197 return 0;
1198 }
1199
1200 #else
1201
1202 static int mmc_test_no_highmem(struct mmc_test_card *test)
1203 {
1204 printk(KERN_INFO "%s: Highmem not configured - test skipped\n",
1205 mmc_hostname(test->card->host));
1206 return 0;
1207 }
1208
1209 #endif /* CONFIG_HIGHMEM */
1210
1211 /*
1212 * Map sz bytes so that it can be transferred.
1213 */
1214 static int mmc_test_area_map(struct mmc_test_card *test, unsigned long sz,
1215 int max_scatter)
1216 {
1217 struct mmc_test_area *t = &test->area;
1218
1219 t->blocks = sz >> 9;
1220
1221 if (max_scatter) {
1222 return mmc_test_map_sg_max_scatter(t->mem, sz, t->sg,
1223 t->max_segs, &t->sg_len);
1224 } else {
1225 return mmc_test_map_sg(t->mem, sz, t->sg, 1, t->max_segs,
1226 &t->sg_len);
1227 }
1228 }
1229
1230 /*
1231 * Transfer bytes mapped by mmc_test_area_map().
1232 */
1233 static int mmc_test_area_transfer(struct mmc_test_card *test,
1234 unsigned int dev_addr, int write)
1235 {
1236 struct mmc_test_area *t = &test->area;
1237
1238 return mmc_test_simple_transfer(test, t->sg, t->sg_len, dev_addr,
1239 t->blocks, 512, write);
1240 }
1241
1242 /*
1243 * Map and transfer bytes.
1244 */
1245 static int mmc_test_area_io(struct mmc_test_card *test, unsigned long sz,
1246 unsigned int dev_addr, int write, int max_scatter,
1247 int timed)
1248 {
1249 struct timespec ts1, ts2;
1250 int ret;
1251
1252 ret = mmc_test_area_map(test, sz, max_scatter);
1253 if (ret)
1254 return ret;
1255
1256 if (timed)
1257 getnstimeofday(&ts1);
1258
1259 ret = mmc_test_area_transfer(test, dev_addr, write);
1260 if (ret)
1261 return ret;
1262
1263 if (timed)
1264 getnstimeofday(&ts2);
1265
1266 if (timed)
1267 mmc_test_print_rate(test, sz, &ts1, &ts2);
1268
1269 return 0;
1270 }
1271
1272 /*
1273 * Write the test area entirely.
1274 */
1275 static int mmc_test_area_fill(struct mmc_test_card *test)
1276 {
1277 return mmc_test_area_io(test, test->area.max_sz, test->area.dev_addr,
1278 1, 0, 0);
1279 }
1280
1281 /*
1282 * Erase the test area entirely.
1283 */
1284 static int mmc_test_area_erase(struct mmc_test_card *test)
1285 {
1286 struct mmc_test_area *t = &test->area;
1287
1288 if (!mmc_can_erase(test->card))
1289 return 0;
1290
1291 return mmc_erase(test->card, t->dev_addr, test->area.max_sz >> 9,
1292 MMC_ERASE_ARG);
1293 }
1294
1295 /*
1296 * Cleanup struct mmc_test_area.
1297 */
1298 static int mmc_test_area_cleanup(struct mmc_test_card *test)
1299 {
1300 struct mmc_test_area *t = &test->area;
1301
1302 kfree(t->sg);
1303 mmc_test_free_mem(t->mem);
1304
1305 return 0;
1306 }
1307
1308 /*
1309 * Initialize an area for testing large transfers. The size of the area is the
1310 * preferred erase size which is a good size for optimal transfer speed. Note
1311 * that is typically 4MiB for modern cards. The test area is set to the middle
1312 * of the card because cards may have different charateristics at the front
1313 * (for FAT file system optimization). Optionally, the area is erased (if the
1314 * card supports it) which may improve write performance. Optionally, the area
1315 * is filled with data for subsequent read tests.
1316 */
1317 static int mmc_test_area_init(struct mmc_test_card *test, int erase, int fill)
1318 {
1319 struct mmc_test_area *t = &test->area;
1320 unsigned long min_sz = 64 * 1024;
1321 int ret;
1322
1323 ret = mmc_test_set_blksize(test, 512);
1324 if (ret)
1325 return ret;
1326
1327 if (test->card->pref_erase > TEST_AREA_MAX_SIZE >> 9)
1328 t->max_sz = TEST_AREA_MAX_SIZE;
1329 else
1330 t->max_sz = (unsigned long)test->card->pref_erase << 9;
1331 /*
1332 * Try to allocate enough memory for the whole area. Less is OK
1333 * because the same memory can be mapped into the scatterlist more than
1334 * once.
1335 */
1336 t->mem = mmc_test_alloc_mem(min_sz, t->max_sz);
1337 if (!t->mem)
1338 return -ENOMEM;
1339
1340 t->max_segs = DIV_ROUND_UP(t->max_sz, PAGE_SIZE);
1341 t->sg = kmalloc(sizeof(struct scatterlist) * t->max_segs, GFP_KERNEL);
1342 if (!t->sg) {
1343 ret = -ENOMEM;
1344 goto out_free;
1345 }
1346
1347 t->dev_addr = mmc_test_capacity(test->card) / 2;
1348 t->dev_addr -= t->dev_addr % (t->max_sz >> 9);
1349
1350 if (erase) {
1351 ret = mmc_test_area_erase(test);
1352 if (ret)
1353 goto out_free;
1354 }
1355
1356 if (fill) {
1357 ret = mmc_test_area_fill(test);
1358 if (ret)
1359 goto out_free;
1360 }
1361
1362 return 0;
1363
1364 out_free:
1365 mmc_test_area_cleanup(test);
1366 return ret;
1367 }
1368
1369 /*
1370 * Prepare for large transfers. Do not erase the test area.
1371 */
1372 static int mmc_test_area_prepare(struct mmc_test_card *test)
1373 {
1374 return mmc_test_area_init(test, 0, 0);
1375 }
1376
1377 /*
1378 * Prepare for large transfers. Do erase the test area.
1379 */
1380 static int mmc_test_area_prepare_erase(struct mmc_test_card *test)
1381 {
1382 return mmc_test_area_init(test, 1, 0);
1383 }
1384
1385 /*
1386 * Prepare for large transfers. Erase and fill the test area.
1387 */
1388 static int mmc_test_area_prepare_fill(struct mmc_test_card *test)
1389 {
1390 return mmc_test_area_init(test, 1, 1);
1391 }
1392
1393 /*
1394 * Test best-case performance. Best-case performance is expected from
1395 * a single large transfer.
1396 *
1397 * An additional option (max_scatter) allows the measurement of the same
1398 * transfer but with no contiguous pages in the scatter list. This tests
1399 * the efficiency of DMA to handle scattered pages.
1400 */
1401 static int mmc_test_best_performance(struct mmc_test_card *test, int write,
1402 int max_scatter)
1403 {
1404 return mmc_test_area_io(test, test->area.max_sz, test->area.dev_addr,
1405 write, max_scatter, 1);
1406 }
1407
1408 /*
1409 * Best-case read performance.
1410 */
1411 static int mmc_test_best_read_performance(struct mmc_test_card *test)
1412 {
1413 return mmc_test_best_performance(test, 0, 0);
1414 }
1415
1416 /*
1417 * Best-case write performance.
1418 */
1419 static int mmc_test_best_write_performance(struct mmc_test_card *test)
1420 {
1421 return mmc_test_best_performance(test, 1, 0);
1422 }
1423
1424 /*
1425 * Best-case read performance into scattered pages.
1426 */
1427 static int mmc_test_best_read_perf_max_scatter(struct mmc_test_card *test)
1428 {
1429 return mmc_test_best_performance(test, 0, 1);
1430 }
1431
1432 /*
1433 * Best-case write performance from scattered pages.
1434 */
1435 static int mmc_test_best_write_perf_max_scatter(struct mmc_test_card *test)
1436 {
1437 return mmc_test_best_performance(test, 1, 1);
1438 }
1439
1440 /*
1441 * Single read performance by transfer size.
1442 */
1443 static int mmc_test_profile_read_perf(struct mmc_test_card *test)
1444 {
1445 unsigned long sz;
1446 unsigned int dev_addr;
1447 int ret;
1448
1449 for (sz = 512; sz < test->area.max_sz; sz <<= 1) {
1450 dev_addr = test->area.dev_addr + (sz >> 9);
1451 ret = mmc_test_area_io(test, sz, dev_addr, 0, 0, 1);
1452 if (ret)
1453 return ret;
1454 }
1455 dev_addr = test->area.dev_addr;
1456 return mmc_test_area_io(test, sz, dev_addr, 0, 0, 1);
1457 }
1458
1459 /*
1460 * Single write performance by transfer size.
1461 */
1462 static int mmc_test_profile_write_perf(struct mmc_test_card *test)
1463 {
1464 unsigned long sz;
1465 unsigned int dev_addr;
1466 int ret;
1467
1468 ret = mmc_test_area_erase(test);
1469 if (ret)
1470 return ret;
1471 for (sz = 512; sz < test->area.max_sz; sz <<= 1) {
1472 dev_addr = test->area.dev_addr + (sz >> 9);
1473 ret = mmc_test_area_io(test, sz, dev_addr, 1, 0, 1);
1474 if (ret)
1475 return ret;
1476 }
1477 ret = mmc_test_area_erase(test);
1478 if (ret)
1479 return ret;
1480 dev_addr = test->area.dev_addr;
1481 return mmc_test_area_io(test, sz, dev_addr, 1, 0, 1);
1482 }
1483
1484 /*
1485 * Single trim performance by transfer size.
1486 */
1487 static int mmc_test_profile_trim_perf(struct mmc_test_card *test)
1488 {
1489 unsigned long sz;
1490 unsigned int dev_addr;
1491 struct timespec ts1, ts2;
1492 int ret;
1493
1494 if (!mmc_can_trim(test->card))
1495 return RESULT_UNSUP_CARD;
1496
1497 if (!mmc_can_erase(test->card))
1498 return RESULT_UNSUP_HOST;
1499
1500 for (sz = 512; sz < test->area.max_sz; sz <<= 1) {
1501 dev_addr = test->area.dev_addr + (sz >> 9);
1502 getnstimeofday(&ts1);
1503 ret = mmc_erase(test->card, dev_addr, sz >> 9, MMC_TRIM_ARG);
1504 if (ret)
1505 return ret;
1506 getnstimeofday(&ts2);
1507 mmc_test_print_rate(test, sz, &ts1, &ts2);
1508 }
1509 dev_addr = test->area.dev_addr;
1510 getnstimeofday(&ts1);
1511 ret = mmc_erase(test->card, dev_addr, sz >> 9, MMC_TRIM_ARG);
1512 if (ret)
1513 return ret;
1514 getnstimeofday(&ts2);
1515 mmc_test_print_rate(test, sz, &ts1, &ts2);
1516 return 0;
1517 }
1518
1519 /*
1520 * Consecutive read performance by transfer size.
1521 */
1522 static int mmc_test_profile_seq_read_perf(struct mmc_test_card *test)
1523 {
1524 unsigned long sz;
1525 unsigned int dev_addr, i, cnt;
1526 struct timespec ts1, ts2;
1527 int ret;
1528
1529 for (sz = 512; sz <= test->area.max_sz; sz <<= 1) {
1530 cnt = test->area.max_sz / sz;
1531 dev_addr = test->area.dev_addr;
1532 getnstimeofday(&ts1);
1533 for (i = 0; i < cnt; i++) {
1534 ret = mmc_test_area_io(test, sz, dev_addr, 0, 0, 0);
1535 if (ret)
1536 return ret;
1537 dev_addr += (sz >> 9);
1538 }
1539 getnstimeofday(&ts2);
1540 mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1541 }
1542 return 0;
1543 }
1544
1545 /*
1546 * Consecutive write performance by transfer size.
1547 */
1548 static int mmc_test_profile_seq_write_perf(struct mmc_test_card *test)
1549 {
1550 unsigned long sz;
1551 unsigned int dev_addr, i, cnt;
1552 struct timespec ts1, ts2;
1553 int ret;
1554
1555 for (sz = 512; sz <= test->area.max_sz; sz <<= 1) {
1556 ret = mmc_test_area_erase(test);
1557 if (ret)
1558 return ret;
1559 cnt = test->area.max_sz / sz;
1560 dev_addr = test->area.dev_addr;
1561 getnstimeofday(&ts1);
1562 for (i = 0; i < cnt; i++) {
1563 ret = mmc_test_area_io(test, sz, dev_addr, 1, 0, 0);
1564 if (ret)
1565 return ret;
1566 dev_addr += (sz >> 9);
1567 }
1568 getnstimeofday(&ts2);
1569 mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1570 }
1571 return 0;
1572 }
1573
1574 /*
1575 * Consecutive trim performance by transfer size.
1576 */
1577 static int mmc_test_profile_seq_trim_perf(struct mmc_test_card *test)
1578 {
1579 unsigned long sz;
1580 unsigned int dev_addr, i, cnt;
1581 struct timespec ts1, ts2;
1582 int ret;
1583
1584 if (!mmc_can_trim(test->card))
1585 return RESULT_UNSUP_CARD;
1586
1587 if (!mmc_can_erase(test->card))
1588 return RESULT_UNSUP_HOST;
1589
1590 for (sz = 512; sz <= test->area.max_sz; sz <<= 1) {
1591 ret = mmc_test_area_erase(test);
1592 if (ret)
1593 return ret;
1594 ret = mmc_test_area_fill(test);
1595 if (ret)
1596 return ret;
1597 cnt = test->area.max_sz / sz;
1598 dev_addr = test->area.dev_addr;
1599 getnstimeofday(&ts1);
1600 for (i = 0; i < cnt; i++) {
1601 ret = mmc_erase(test->card, dev_addr, sz >> 9,
1602 MMC_TRIM_ARG);
1603 if (ret)
1604 return ret;
1605 dev_addr += (sz >> 9);
1606 }
1607 getnstimeofday(&ts2);
1608 mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1609 }
1610 return 0;
1611 }
1612
1613 static const struct mmc_test_case mmc_test_cases[] = {
1614 {
1615 .name = "Basic write (no data verification)",
1616 .run = mmc_test_basic_write,
1617 },
1618
1619 {
1620 .name = "Basic read (no data verification)",
1621 .run = mmc_test_basic_read,
1622 },
1623
1624 {
1625 .name = "Basic write (with data verification)",
1626 .prepare = mmc_test_prepare_write,
1627 .run = mmc_test_verify_write,
1628 .cleanup = mmc_test_cleanup,
1629 },
1630
1631 {
1632 .name = "Basic read (with data verification)",
1633 .prepare = mmc_test_prepare_read,
1634 .run = mmc_test_verify_read,
1635 .cleanup = mmc_test_cleanup,
1636 },
1637
1638 {
1639 .name = "Multi-block write",
1640 .prepare = mmc_test_prepare_write,
1641 .run = mmc_test_multi_write,
1642 .cleanup = mmc_test_cleanup,
1643 },
1644
1645 {
1646 .name = "Multi-block read",
1647 .prepare = mmc_test_prepare_read,
1648 .run = mmc_test_multi_read,
1649 .cleanup = mmc_test_cleanup,
1650 },
1651
1652 {
1653 .name = "Power of two block writes",
1654 .prepare = mmc_test_prepare_write,
1655 .run = mmc_test_pow2_write,
1656 .cleanup = mmc_test_cleanup,
1657 },
1658
1659 {
1660 .name = "Power of two block reads",
1661 .prepare = mmc_test_prepare_read,
1662 .run = mmc_test_pow2_read,
1663 .cleanup = mmc_test_cleanup,
1664 },
1665
1666 {
1667 .name = "Weird sized block writes",
1668 .prepare = mmc_test_prepare_write,
1669 .run = mmc_test_weird_write,
1670 .cleanup = mmc_test_cleanup,
1671 },
1672
1673 {
1674 .name = "Weird sized block reads",
1675 .prepare = mmc_test_prepare_read,
1676 .run = mmc_test_weird_read,
1677 .cleanup = mmc_test_cleanup,
1678 },
1679
1680 {
1681 .name = "Badly aligned write",
1682 .prepare = mmc_test_prepare_write,
1683 .run = mmc_test_align_write,
1684 .cleanup = mmc_test_cleanup,
1685 },
1686
1687 {
1688 .name = "Badly aligned read",
1689 .prepare = mmc_test_prepare_read,
1690 .run = mmc_test_align_read,
1691 .cleanup = mmc_test_cleanup,
1692 },
1693
1694 {
1695 .name = "Badly aligned multi-block write",
1696 .prepare = mmc_test_prepare_write,
1697 .run = mmc_test_align_multi_write,
1698 .cleanup = mmc_test_cleanup,
1699 },
1700
1701 {
1702 .name = "Badly aligned multi-block read",
1703 .prepare = mmc_test_prepare_read,
1704 .run = mmc_test_align_multi_read,
1705 .cleanup = mmc_test_cleanup,
1706 },
1707
1708 {
1709 .name = "Correct xfer_size at write (start failure)",
1710 .run = mmc_test_xfersize_write,
1711 },
1712
1713 {
1714 .name = "Correct xfer_size at read (start failure)",
1715 .run = mmc_test_xfersize_read,
1716 },
1717
1718 {
1719 .name = "Correct xfer_size at write (midway failure)",
1720 .run = mmc_test_multi_xfersize_write,
1721 },
1722
1723 {
1724 .name = "Correct xfer_size at read (midway failure)",
1725 .run = mmc_test_multi_xfersize_read,
1726 },
1727
1728 #ifdef CONFIG_HIGHMEM
1729
1730 {
1731 .name = "Highmem write",
1732 .prepare = mmc_test_prepare_write,
1733 .run = mmc_test_write_high,
1734 .cleanup = mmc_test_cleanup,
1735 },
1736
1737 {
1738 .name = "Highmem read",
1739 .prepare = mmc_test_prepare_read,
1740 .run = mmc_test_read_high,
1741 .cleanup = mmc_test_cleanup,
1742 },
1743
1744 {
1745 .name = "Multi-block highmem write",
1746 .prepare = mmc_test_prepare_write,
1747 .run = mmc_test_multi_write_high,
1748 .cleanup = mmc_test_cleanup,
1749 },
1750
1751 {
1752 .name = "Multi-block highmem read",
1753 .prepare = mmc_test_prepare_read,
1754 .run = mmc_test_multi_read_high,
1755 .cleanup = mmc_test_cleanup,
1756 },
1757
1758 #else
1759
1760 {
1761 .name = "Highmem write",
1762 .run = mmc_test_no_highmem,
1763 },
1764
1765 {
1766 .name = "Highmem read",
1767 .run = mmc_test_no_highmem,
1768 },
1769
1770 {
1771 .name = "Multi-block highmem write",
1772 .run = mmc_test_no_highmem,
1773 },
1774
1775 {
1776 .name = "Multi-block highmem read",
1777 .run = mmc_test_no_highmem,
1778 },
1779
1780 #endif /* CONFIG_HIGHMEM */
1781
1782 {
1783 .name = "Best-case read performance",
1784 .prepare = mmc_test_area_prepare_fill,
1785 .run = mmc_test_best_read_performance,
1786 .cleanup = mmc_test_area_cleanup,
1787 },
1788
1789 {
1790 .name = "Best-case write performance",
1791 .prepare = mmc_test_area_prepare_erase,
1792 .run = mmc_test_best_write_performance,
1793 .cleanup = mmc_test_area_cleanup,
1794 },
1795
1796 {
1797 .name = "Best-case read performance into scattered pages",
1798 .prepare = mmc_test_area_prepare_fill,
1799 .run = mmc_test_best_read_perf_max_scatter,
1800 .cleanup = mmc_test_area_cleanup,
1801 },
1802
1803 {
1804 .name = "Best-case write performance from scattered pages",
1805 .prepare = mmc_test_area_prepare_erase,
1806 .run = mmc_test_best_write_perf_max_scatter,
1807 .cleanup = mmc_test_area_cleanup,
1808 },
1809
1810 {
1811 .name = "Single read performance by transfer size",
1812 .prepare = mmc_test_area_prepare_fill,
1813 .run = mmc_test_profile_read_perf,
1814 .cleanup = mmc_test_area_cleanup,
1815 },
1816
1817 {
1818 .name = "Single write performance by transfer size",
1819 .prepare = mmc_test_area_prepare,
1820 .run = mmc_test_profile_write_perf,
1821 .cleanup = mmc_test_area_cleanup,
1822 },
1823
1824 {
1825 .name = "Single trim performance by transfer size",
1826 .prepare = mmc_test_area_prepare_fill,
1827 .run = mmc_test_profile_trim_perf,
1828 .cleanup = mmc_test_area_cleanup,
1829 },
1830
1831 {
1832 .name = "Consecutive read performance by transfer size",
1833 .prepare = mmc_test_area_prepare_fill,
1834 .run = mmc_test_profile_seq_read_perf,
1835 .cleanup = mmc_test_area_cleanup,
1836 },
1837
1838 {
1839 .name = "Consecutive write performance by transfer size",
1840 .prepare = mmc_test_area_prepare,
1841 .run = mmc_test_profile_seq_write_perf,
1842 .cleanup = mmc_test_area_cleanup,
1843 },
1844
1845 {
1846 .name = "Consecutive trim performance by transfer size",
1847 .prepare = mmc_test_area_prepare,
1848 .run = mmc_test_profile_seq_trim_perf,
1849 .cleanup = mmc_test_area_cleanup,
1850 },
1851
1852 };
1853
1854 static DEFINE_MUTEX(mmc_test_lock);
1855
1856 static void mmc_test_run(struct mmc_test_card *test, int testcase)
1857 {
1858 int i, ret;
1859
1860 printk(KERN_INFO "%s: Starting tests of card %s...\n",
1861 mmc_hostname(test->card->host), mmc_card_id(test->card));
1862
1863 mmc_claim_host(test->card->host);
1864
1865 for (i = 0;i < ARRAY_SIZE(mmc_test_cases);i++) {
1866 if (testcase && ((i + 1) != testcase))
1867 continue;
1868
1869 printk(KERN_INFO "%s: Test case %d. %s...\n",
1870 mmc_hostname(test->card->host), i + 1,
1871 mmc_test_cases[i].name);
1872
1873 if (mmc_test_cases[i].prepare) {
1874 ret = mmc_test_cases[i].prepare(test);
1875 if (ret) {
1876 printk(KERN_INFO "%s: Result: Prepare "
1877 "stage failed! (%d)\n",
1878 mmc_hostname(test->card->host),
1879 ret);
1880 continue;
1881 }
1882 }
1883
1884 ret = mmc_test_cases[i].run(test);
1885 switch (ret) {
1886 case RESULT_OK:
1887 printk(KERN_INFO "%s: Result: OK\n",
1888 mmc_hostname(test->card->host));
1889 break;
1890 case RESULT_FAIL:
1891 printk(KERN_INFO "%s: Result: FAILED\n",
1892 mmc_hostname(test->card->host));
1893 break;
1894 case RESULT_UNSUP_HOST:
1895 printk(KERN_INFO "%s: Result: UNSUPPORTED "
1896 "(by host)\n",
1897 mmc_hostname(test->card->host));
1898 break;
1899 case RESULT_UNSUP_CARD:
1900 printk(KERN_INFO "%s: Result: UNSUPPORTED "
1901 "(by card)\n",
1902 mmc_hostname(test->card->host));
1903 break;
1904 default:
1905 printk(KERN_INFO "%s: Result: ERROR (%d)\n",
1906 mmc_hostname(test->card->host), ret);
1907 }
1908
1909 if (mmc_test_cases[i].cleanup) {
1910 ret = mmc_test_cases[i].cleanup(test);
1911 if (ret) {
1912 printk(KERN_INFO "%s: Warning: Cleanup "
1913 "stage failed! (%d)\n",
1914 mmc_hostname(test->card->host),
1915 ret);
1916 }
1917 }
1918 }
1919
1920 mmc_release_host(test->card->host);
1921
1922 printk(KERN_INFO "%s: Tests completed.\n",
1923 mmc_hostname(test->card->host));
1924 }
1925
1926 static ssize_t mmc_test_show(struct device *dev,
1927 struct device_attribute *attr, char *buf)
1928 {
1929 mutex_lock(&mmc_test_lock);
1930 mutex_unlock(&mmc_test_lock);
1931
1932 return 0;
1933 }
1934
1935 static ssize_t mmc_test_store(struct device *dev,
1936 struct device_attribute *attr, const char *buf, size_t count)
1937 {
1938 struct mmc_card *card = mmc_dev_to_card(dev);
1939 struct mmc_test_card *test;
1940 int testcase;
1941
1942 testcase = simple_strtol(buf, NULL, 10);
1943
1944 test = kzalloc(sizeof(struct mmc_test_card), GFP_KERNEL);
1945 if (!test)
1946 return -ENOMEM;
1947
1948 test->card = card;
1949
1950 test->buffer = kzalloc(BUFFER_SIZE, GFP_KERNEL);
1951 #ifdef CONFIG_HIGHMEM
1952 test->highmem = alloc_pages(GFP_KERNEL | __GFP_HIGHMEM, BUFFER_ORDER);
1953 #endif
1954
1955 #ifdef CONFIG_HIGHMEM
1956 if (test->buffer && test->highmem) {
1957 #else
1958 if (test->buffer) {
1959 #endif
1960 mutex_lock(&mmc_test_lock);
1961 mmc_test_run(test, testcase);
1962 mutex_unlock(&mmc_test_lock);
1963 }
1964
1965 #ifdef CONFIG_HIGHMEM
1966 __free_pages(test->highmem, BUFFER_ORDER);
1967 #endif
1968 kfree(test->buffer);
1969 kfree(test);
1970
1971 return count;
1972 }
1973
1974 static DEVICE_ATTR(test, S_IWUSR | S_IRUGO, mmc_test_show, mmc_test_store);
1975
1976 static int mmc_test_probe(struct mmc_card *card)
1977 {
1978 int ret;
1979
1980 if ((card->type != MMC_TYPE_MMC) && (card->type != MMC_TYPE_SD))
1981 return -ENODEV;
1982
1983 ret = device_create_file(&card->dev, &dev_attr_test);
1984 if (ret)
1985 return ret;
1986
1987 dev_info(&card->dev, "Card claimed for testing.\n");
1988
1989 return 0;
1990 }
1991
1992 static void mmc_test_remove(struct mmc_card *card)
1993 {
1994 device_remove_file(&card->dev, &dev_attr_test);
1995 }
1996
1997 static struct mmc_driver mmc_driver = {
1998 .drv = {
1999 .name = "mmc_test",
2000 },
2001 .probe = mmc_test_probe,
2002 .remove = mmc_test_remove,
2003 };
2004
2005 static int __init mmc_test_init(void)
2006 {
2007 return mmc_register_driver(&mmc_driver);
2008 }
2009
2010 static void __exit mmc_test_exit(void)
2011 {
2012 mmc_unregister_driver(&mmc_driver);
2013 }
2014
2015 module_init(mmc_test_init);
2016 module_exit(mmc_test_exit);
2017
2018 MODULE_LICENSE("GPL");
2019 MODULE_DESCRIPTION("Multimedia Card (MMC) host test driver");
2020 MODULE_AUTHOR("Pierre Ossman");
This page took 0.138674 seconds and 6 git commands to generate.