notifiers: pm: move pm notifiers into suspend.h
[deliverable/linux.git] / drivers / mmc / core / core.c
1 /*
2 * linux/drivers/mmc/core/core.c
3 *
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/suspend.h>
27
28 #include <linux/mmc/card.h>
29 #include <linux/mmc/host.h>
30 #include <linux/mmc/mmc.h>
31 #include <linux/mmc/sd.h>
32
33 #include "core.h"
34 #include "bus.h"
35 #include "host.h"
36 #include "sdio_bus.h"
37
38 #include "mmc_ops.h"
39 #include "sd_ops.h"
40 #include "sdio_ops.h"
41
42 static struct workqueue_struct *workqueue;
43
44 /*
45 * Enabling software CRCs on the data blocks can be a significant (30%)
46 * performance cost, and for other reasons may not always be desired.
47 * So we allow it it to be disabled.
48 */
49 int use_spi_crc = 1;
50 module_param(use_spi_crc, bool, 0);
51
52 /*
53 * We normally treat cards as removed during suspend if they are not
54 * known to be on a non-removable bus, to avoid the risk of writing
55 * back data to a different card after resume. Allow this to be
56 * overridden if necessary.
57 */
58 #ifdef CONFIG_MMC_UNSAFE_RESUME
59 int mmc_assume_removable;
60 #else
61 int mmc_assume_removable = 1;
62 #endif
63 EXPORT_SYMBOL(mmc_assume_removable);
64 module_param_named(removable, mmc_assume_removable, bool, 0644);
65 MODULE_PARM_DESC(
66 removable,
67 "MMC/SD cards are removable and may be removed during suspend");
68
69 /*
70 * Internal function. Schedule delayed work in the MMC work queue.
71 */
72 static int mmc_schedule_delayed_work(struct delayed_work *work,
73 unsigned long delay)
74 {
75 return queue_delayed_work(workqueue, work, delay);
76 }
77
78 /*
79 * Internal function. Flush all scheduled work from the MMC work queue.
80 */
81 static void mmc_flush_scheduled_work(void)
82 {
83 flush_workqueue(workqueue);
84 }
85
86 /**
87 * mmc_request_done - finish processing an MMC request
88 * @host: MMC host which completed request
89 * @mrq: MMC request which request
90 *
91 * MMC drivers should call this function when they have completed
92 * their processing of a request.
93 */
94 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
95 {
96 struct mmc_command *cmd = mrq->cmd;
97 int err = cmd->error;
98
99 if (err && cmd->retries && mmc_host_is_spi(host)) {
100 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
101 cmd->retries = 0;
102 }
103
104 if (err && cmd->retries) {
105 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
106 mmc_hostname(host), cmd->opcode, err);
107
108 cmd->retries--;
109 cmd->error = 0;
110 host->ops->request(host, mrq);
111 } else {
112 led_trigger_event(host->led, LED_OFF);
113
114 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
115 mmc_hostname(host), cmd->opcode, err,
116 cmd->resp[0], cmd->resp[1],
117 cmd->resp[2], cmd->resp[3]);
118
119 if (mrq->data) {
120 pr_debug("%s: %d bytes transferred: %d\n",
121 mmc_hostname(host),
122 mrq->data->bytes_xfered, mrq->data->error);
123 }
124
125 if (mrq->stop) {
126 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
127 mmc_hostname(host), mrq->stop->opcode,
128 mrq->stop->error,
129 mrq->stop->resp[0], mrq->stop->resp[1],
130 mrq->stop->resp[2], mrq->stop->resp[3]);
131 }
132
133 if (mrq->done)
134 mrq->done(mrq);
135
136 mmc_host_clk_gate(host);
137 }
138 }
139
140 EXPORT_SYMBOL(mmc_request_done);
141
142 static void
143 mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
144 {
145 #ifdef CONFIG_MMC_DEBUG
146 unsigned int i, sz;
147 struct scatterlist *sg;
148 #endif
149
150 pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
151 mmc_hostname(host), mrq->cmd->opcode,
152 mrq->cmd->arg, mrq->cmd->flags);
153
154 if (mrq->data) {
155 pr_debug("%s: blksz %d blocks %d flags %08x "
156 "tsac %d ms nsac %d\n",
157 mmc_hostname(host), mrq->data->blksz,
158 mrq->data->blocks, mrq->data->flags,
159 mrq->data->timeout_ns / 1000000,
160 mrq->data->timeout_clks);
161 }
162
163 if (mrq->stop) {
164 pr_debug("%s: CMD%u arg %08x flags %08x\n",
165 mmc_hostname(host), mrq->stop->opcode,
166 mrq->stop->arg, mrq->stop->flags);
167 }
168
169 WARN_ON(!host->claimed);
170
171 mrq->cmd->error = 0;
172 mrq->cmd->mrq = mrq;
173 if (mrq->data) {
174 BUG_ON(mrq->data->blksz > host->max_blk_size);
175 BUG_ON(mrq->data->blocks > host->max_blk_count);
176 BUG_ON(mrq->data->blocks * mrq->data->blksz >
177 host->max_req_size);
178
179 #ifdef CONFIG_MMC_DEBUG
180 sz = 0;
181 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
182 sz += sg->length;
183 BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
184 #endif
185
186 mrq->cmd->data = mrq->data;
187 mrq->data->error = 0;
188 mrq->data->mrq = mrq;
189 if (mrq->stop) {
190 mrq->data->stop = mrq->stop;
191 mrq->stop->error = 0;
192 mrq->stop->mrq = mrq;
193 }
194 }
195 mmc_host_clk_ungate(host);
196 led_trigger_event(host->led, LED_FULL);
197 host->ops->request(host, mrq);
198 }
199
200 static void mmc_wait_done(struct mmc_request *mrq)
201 {
202 complete(&mrq->completion);
203 }
204
205 static void __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
206 {
207 init_completion(&mrq->completion);
208 mrq->done = mmc_wait_done;
209 mmc_start_request(host, mrq);
210 }
211
212 static void mmc_wait_for_req_done(struct mmc_host *host,
213 struct mmc_request *mrq)
214 {
215 wait_for_completion(&mrq->completion);
216 }
217
218 /**
219 * mmc_pre_req - Prepare for a new request
220 * @host: MMC host to prepare command
221 * @mrq: MMC request to prepare for
222 * @is_first_req: true if there is no previous started request
223 * that may run in parellel to this call, otherwise false
224 *
225 * mmc_pre_req() is called in prior to mmc_start_req() to let
226 * host prepare for the new request. Preparation of a request may be
227 * performed while another request is running on the host.
228 */
229 static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
230 bool is_first_req)
231 {
232 if (host->ops->pre_req)
233 host->ops->pre_req(host, mrq, is_first_req);
234 }
235
236 /**
237 * mmc_post_req - Post process a completed request
238 * @host: MMC host to post process command
239 * @mrq: MMC request to post process for
240 * @err: Error, if non zero, clean up any resources made in pre_req
241 *
242 * Let the host post process a completed request. Post processing of
243 * a request may be performed while another reuqest is running.
244 */
245 static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
246 int err)
247 {
248 if (host->ops->post_req)
249 host->ops->post_req(host, mrq, err);
250 }
251
252 /**
253 * mmc_start_req - start a non-blocking request
254 * @host: MMC host to start command
255 * @areq: async request to start
256 * @error: out parameter returns 0 for success, otherwise non zero
257 *
258 * Start a new MMC custom command request for a host.
259 * If there is on ongoing async request wait for completion
260 * of that request and start the new one and return.
261 * Does not wait for the new request to complete.
262 *
263 * Returns the completed request, NULL in case of none completed.
264 * Wait for the an ongoing request (previoulsy started) to complete and
265 * return the completed request. If there is no ongoing request, NULL
266 * is returned without waiting. NULL is not an error condition.
267 */
268 struct mmc_async_req *mmc_start_req(struct mmc_host *host,
269 struct mmc_async_req *areq, int *error)
270 {
271 int err = 0;
272 struct mmc_async_req *data = host->areq;
273
274 /* Prepare a new request */
275 if (areq)
276 mmc_pre_req(host, areq->mrq, !host->areq);
277
278 if (host->areq) {
279 mmc_wait_for_req_done(host, host->areq->mrq);
280 err = host->areq->err_check(host->card, host->areq);
281 if (err) {
282 mmc_post_req(host, host->areq->mrq, 0);
283 if (areq)
284 mmc_post_req(host, areq->mrq, -EINVAL);
285
286 host->areq = NULL;
287 goto out;
288 }
289 }
290
291 if (areq)
292 __mmc_start_req(host, areq->mrq);
293
294 if (host->areq)
295 mmc_post_req(host, host->areq->mrq, 0);
296
297 host->areq = areq;
298 out:
299 if (error)
300 *error = err;
301 return data;
302 }
303 EXPORT_SYMBOL(mmc_start_req);
304
305 /**
306 * mmc_wait_for_req - start a request and wait for completion
307 * @host: MMC host to start command
308 * @mrq: MMC request to start
309 *
310 * Start a new MMC custom command request for a host, and wait
311 * for the command to complete. Does not attempt to parse the
312 * response.
313 */
314 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
315 {
316 __mmc_start_req(host, mrq);
317 mmc_wait_for_req_done(host, mrq);
318 }
319 EXPORT_SYMBOL(mmc_wait_for_req);
320
321 /**
322 * mmc_wait_for_cmd - start a command and wait for completion
323 * @host: MMC host to start command
324 * @cmd: MMC command to start
325 * @retries: maximum number of retries
326 *
327 * Start a new MMC command for a host, and wait for the command
328 * to complete. Return any error that occurred while the command
329 * was executing. Do not attempt to parse the response.
330 */
331 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
332 {
333 struct mmc_request mrq = {0};
334
335 WARN_ON(!host->claimed);
336
337 memset(cmd->resp, 0, sizeof(cmd->resp));
338 cmd->retries = retries;
339
340 mrq.cmd = cmd;
341 cmd->data = NULL;
342
343 mmc_wait_for_req(host, &mrq);
344
345 return cmd->error;
346 }
347
348 EXPORT_SYMBOL(mmc_wait_for_cmd);
349
350 /**
351 * mmc_set_data_timeout - set the timeout for a data command
352 * @data: data phase for command
353 * @card: the MMC card associated with the data transfer
354 *
355 * Computes the data timeout parameters according to the
356 * correct algorithm given the card type.
357 */
358 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
359 {
360 unsigned int mult;
361
362 /*
363 * SDIO cards only define an upper 1 s limit on access.
364 */
365 if (mmc_card_sdio(card)) {
366 data->timeout_ns = 1000000000;
367 data->timeout_clks = 0;
368 return;
369 }
370
371 /*
372 * SD cards use a 100 multiplier rather than 10
373 */
374 mult = mmc_card_sd(card) ? 100 : 10;
375
376 /*
377 * Scale up the multiplier (and therefore the timeout) by
378 * the r2w factor for writes.
379 */
380 if (data->flags & MMC_DATA_WRITE)
381 mult <<= card->csd.r2w_factor;
382
383 data->timeout_ns = card->csd.tacc_ns * mult;
384 data->timeout_clks = card->csd.tacc_clks * mult;
385
386 /*
387 * SD cards also have an upper limit on the timeout.
388 */
389 if (mmc_card_sd(card)) {
390 unsigned int timeout_us, limit_us;
391
392 timeout_us = data->timeout_ns / 1000;
393 if (mmc_host_clk_rate(card->host))
394 timeout_us += data->timeout_clks * 1000 /
395 (mmc_host_clk_rate(card->host) / 1000);
396
397 if (data->flags & MMC_DATA_WRITE)
398 /*
399 * The limit is really 250 ms, but that is
400 * insufficient for some crappy cards.
401 */
402 limit_us = 300000;
403 else
404 limit_us = 100000;
405
406 /*
407 * SDHC cards always use these fixed values.
408 */
409 if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
410 data->timeout_ns = limit_us * 1000;
411 data->timeout_clks = 0;
412 }
413 }
414 /*
415 * Some cards need very high timeouts if driven in SPI mode.
416 * The worst observed timeout was 900ms after writing a
417 * continuous stream of data until the internal logic
418 * overflowed.
419 */
420 if (mmc_host_is_spi(card->host)) {
421 if (data->flags & MMC_DATA_WRITE) {
422 if (data->timeout_ns < 1000000000)
423 data->timeout_ns = 1000000000; /* 1s */
424 } else {
425 if (data->timeout_ns < 100000000)
426 data->timeout_ns = 100000000; /* 100ms */
427 }
428 }
429 }
430 EXPORT_SYMBOL(mmc_set_data_timeout);
431
432 /**
433 * mmc_align_data_size - pads a transfer size to a more optimal value
434 * @card: the MMC card associated with the data transfer
435 * @sz: original transfer size
436 *
437 * Pads the original data size with a number of extra bytes in
438 * order to avoid controller bugs and/or performance hits
439 * (e.g. some controllers revert to PIO for certain sizes).
440 *
441 * Returns the improved size, which might be unmodified.
442 *
443 * Note that this function is only relevant when issuing a
444 * single scatter gather entry.
445 */
446 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
447 {
448 /*
449 * FIXME: We don't have a system for the controller to tell
450 * the core about its problems yet, so for now we just 32-bit
451 * align the size.
452 */
453 sz = ((sz + 3) / 4) * 4;
454
455 return sz;
456 }
457 EXPORT_SYMBOL(mmc_align_data_size);
458
459 /**
460 * mmc_host_enable - enable a host.
461 * @host: mmc host to enable
462 *
463 * Hosts that support power saving can use the 'enable' and 'disable'
464 * methods to exit and enter power saving states. For more information
465 * see comments for struct mmc_host_ops.
466 */
467 int mmc_host_enable(struct mmc_host *host)
468 {
469 if (!(host->caps & MMC_CAP_DISABLE))
470 return 0;
471
472 if (host->en_dis_recurs)
473 return 0;
474
475 if (host->nesting_cnt++)
476 return 0;
477
478 cancel_delayed_work_sync(&host->disable);
479
480 if (host->enabled)
481 return 0;
482
483 if (host->ops->enable) {
484 int err;
485
486 host->en_dis_recurs = 1;
487 err = host->ops->enable(host);
488 host->en_dis_recurs = 0;
489
490 if (err) {
491 pr_debug("%s: enable error %d\n",
492 mmc_hostname(host), err);
493 return err;
494 }
495 }
496 host->enabled = 1;
497 return 0;
498 }
499 EXPORT_SYMBOL(mmc_host_enable);
500
501 static int mmc_host_do_disable(struct mmc_host *host, int lazy)
502 {
503 if (host->ops->disable) {
504 int err;
505
506 host->en_dis_recurs = 1;
507 err = host->ops->disable(host, lazy);
508 host->en_dis_recurs = 0;
509
510 if (err < 0) {
511 pr_debug("%s: disable error %d\n",
512 mmc_hostname(host), err);
513 return err;
514 }
515 if (err > 0) {
516 unsigned long delay = msecs_to_jiffies(err);
517
518 mmc_schedule_delayed_work(&host->disable, delay);
519 }
520 }
521 host->enabled = 0;
522 return 0;
523 }
524
525 /**
526 * mmc_host_disable - disable a host.
527 * @host: mmc host to disable
528 *
529 * Hosts that support power saving can use the 'enable' and 'disable'
530 * methods to exit and enter power saving states. For more information
531 * see comments for struct mmc_host_ops.
532 */
533 int mmc_host_disable(struct mmc_host *host)
534 {
535 int err;
536
537 if (!(host->caps & MMC_CAP_DISABLE))
538 return 0;
539
540 if (host->en_dis_recurs)
541 return 0;
542
543 if (--host->nesting_cnt)
544 return 0;
545
546 if (!host->enabled)
547 return 0;
548
549 err = mmc_host_do_disable(host, 0);
550 return err;
551 }
552 EXPORT_SYMBOL(mmc_host_disable);
553
554 /**
555 * __mmc_claim_host - exclusively claim a host
556 * @host: mmc host to claim
557 * @abort: whether or not the operation should be aborted
558 *
559 * Claim a host for a set of operations. If @abort is non null and
560 * dereference a non-zero value then this will return prematurely with
561 * that non-zero value without acquiring the lock. Returns zero
562 * with the lock held otherwise.
563 */
564 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
565 {
566 DECLARE_WAITQUEUE(wait, current);
567 unsigned long flags;
568 int stop;
569
570 might_sleep();
571
572 add_wait_queue(&host->wq, &wait);
573 spin_lock_irqsave(&host->lock, flags);
574 while (1) {
575 set_current_state(TASK_UNINTERRUPTIBLE);
576 stop = abort ? atomic_read(abort) : 0;
577 if (stop || !host->claimed || host->claimer == current)
578 break;
579 spin_unlock_irqrestore(&host->lock, flags);
580 schedule();
581 spin_lock_irqsave(&host->lock, flags);
582 }
583 set_current_state(TASK_RUNNING);
584 if (!stop) {
585 host->claimed = 1;
586 host->claimer = current;
587 host->claim_cnt += 1;
588 } else
589 wake_up(&host->wq);
590 spin_unlock_irqrestore(&host->lock, flags);
591 remove_wait_queue(&host->wq, &wait);
592 if (!stop)
593 mmc_host_enable(host);
594 return stop;
595 }
596
597 EXPORT_SYMBOL(__mmc_claim_host);
598
599 /**
600 * mmc_try_claim_host - try exclusively to claim a host
601 * @host: mmc host to claim
602 *
603 * Returns %1 if the host is claimed, %0 otherwise.
604 */
605 int mmc_try_claim_host(struct mmc_host *host)
606 {
607 int claimed_host = 0;
608 unsigned long flags;
609
610 spin_lock_irqsave(&host->lock, flags);
611 if (!host->claimed || host->claimer == current) {
612 host->claimed = 1;
613 host->claimer = current;
614 host->claim_cnt += 1;
615 claimed_host = 1;
616 }
617 spin_unlock_irqrestore(&host->lock, flags);
618 return claimed_host;
619 }
620 EXPORT_SYMBOL(mmc_try_claim_host);
621
622 /**
623 * mmc_do_release_host - release a claimed host
624 * @host: mmc host to release
625 *
626 * If you successfully claimed a host, this function will
627 * release it again.
628 */
629 void mmc_do_release_host(struct mmc_host *host)
630 {
631 unsigned long flags;
632
633 spin_lock_irqsave(&host->lock, flags);
634 if (--host->claim_cnt) {
635 /* Release for nested claim */
636 spin_unlock_irqrestore(&host->lock, flags);
637 } else {
638 host->claimed = 0;
639 host->claimer = NULL;
640 spin_unlock_irqrestore(&host->lock, flags);
641 wake_up(&host->wq);
642 }
643 }
644 EXPORT_SYMBOL(mmc_do_release_host);
645
646 void mmc_host_deeper_disable(struct work_struct *work)
647 {
648 struct mmc_host *host =
649 container_of(work, struct mmc_host, disable.work);
650
651 /* If the host is claimed then we do not want to disable it anymore */
652 if (!mmc_try_claim_host(host))
653 return;
654 mmc_host_do_disable(host, 1);
655 mmc_do_release_host(host);
656 }
657
658 /**
659 * mmc_host_lazy_disable - lazily disable a host.
660 * @host: mmc host to disable
661 *
662 * Hosts that support power saving can use the 'enable' and 'disable'
663 * methods to exit and enter power saving states. For more information
664 * see comments for struct mmc_host_ops.
665 */
666 int mmc_host_lazy_disable(struct mmc_host *host)
667 {
668 if (!(host->caps & MMC_CAP_DISABLE))
669 return 0;
670
671 if (host->en_dis_recurs)
672 return 0;
673
674 if (--host->nesting_cnt)
675 return 0;
676
677 if (!host->enabled)
678 return 0;
679
680 if (host->disable_delay) {
681 mmc_schedule_delayed_work(&host->disable,
682 msecs_to_jiffies(host->disable_delay));
683 return 0;
684 } else
685 return mmc_host_do_disable(host, 1);
686 }
687 EXPORT_SYMBOL(mmc_host_lazy_disable);
688
689 /**
690 * mmc_release_host - release a host
691 * @host: mmc host to release
692 *
693 * Release a MMC host, allowing others to claim the host
694 * for their operations.
695 */
696 void mmc_release_host(struct mmc_host *host)
697 {
698 WARN_ON(!host->claimed);
699
700 mmc_host_lazy_disable(host);
701
702 mmc_do_release_host(host);
703 }
704
705 EXPORT_SYMBOL(mmc_release_host);
706
707 /*
708 * Internal function that does the actual ios call to the host driver,
709 * optionally printing some debug output.
710 */
711 static inline void mmc_set_ios(struct mmc_host *host)
712 {
713 struct mmc_ios *ios = &host->ios;
714
715 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
716 "width %u timing %u\n",
717 mmc_hostname(host), ios->clock, ios->bus_mode,
718 ios->power_mode, ios->chip_select, ios->vdd,
719 ios->bus_width, ios->timing);
720
721 if (ios->clock > 0)
722 mmc_set_ungated(host);
723 host->ops->set_ios(host, ios);
724 }
725
726 /*
727 * Control chip select pin on a host.
728 */
729 void mmc_set_chip_select(struct mmc_host *host, int mode)
730 {
731 host->ios.chip_select = mode;
732 mmc_set_ios(host);
733 }
734
735 /*
736 * Sets the host clock to the highest possible frequency that
737 * is below "hz".
738 */
739 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
740 {
741 WARN_ON(hz < host->f_min);
742
743 if (hz > host->f_max)
744 hz = host->f_max;
745
746 host->ios.clock = hz;
747 mmc_set_ios(host);
748 }
749
750 #ifdef CONFIG_MMC_CLKGATE
751 /*
752 * This gates the clock by setting it to 0 Hz.
753 */
754 void mmc_gate_clock(struct mmc_host *host)
755 {
756 unsigned long flags;
757
758 spin_lock_irqsave(&host->clk_lock, flags);
759 host->clk_old = host->ios.clock;
760 host->ios.clock = 0;
761 host->clk_gated = true;
762 spin_unlock_irqrestore(&host->clk_lock, flags);
763 mmc_set_ios(host);
764 }
765
766 /*
767 * This restores the clock from gating by using the cached
768 * clock value.
769 */
770 void mmc_ungate_clock(struct mmc_host *host)
771 {
772 /*
773 * We should previously have gated the clock, so the clock shall
774 * be 0 here! The clock may however be 0 during initialization,
775 * when some request operations are performed before setting
776 * the frequency. When ungate is requested in that situation
777 * we just ignore the call.
778 */
779 if (host->clk_old) {
780 BUG_ON(host->ios.clock);
781 /* This call will also set host->clk_gated to false */
782 mmc_set_clock(host, host->clk_old);
783 }
784 }
785
786 void mmc_set_ungated(struct mmc_host *host)
787 {
788 unsigned long flags;
789
790 /*
791 * We've been given a new frequency while the clock is gated,
792 * so make sure we regard this as ungating it.
793 */
794 spin_lock_irqsave(&host->clk_lock, flags);
795 host->clk_gated = false;
796 spin_unlock_irqrestore(&host->clk_lock, flags);
797 }
798
799 #else
800 void mmc_set_ungated(struct mmc_host *host)
801 {
802 }
803 #endif
804
805 /*
806 * Change the bus mode (open drain/push-pull) of a host.
807 */
808 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
809 {
810 host->ios.bus_mode = mode;
811 mmc_set_ios(host);
812 }
813
814 /*
815 * Change data bus width of a host.
816 */
817 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
818 {
819 host->ios.bus_width = width;
820 mmc_set_ios(host);
821 }
822
823 /**
824 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
825 * @vdd: voltage (mV)
826 * @low_bits: prefer low bits in boundary cases
827 *
828 * This function returns the OCR bit number according to the provided @vdd
829 * value. If conversion is not possible a negative errno value returned.
830 *
831 * Depending on the @low_bits flag the function prefers low or high OCR bits
832 * on boundary voltages. For example,
833 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
834 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
835 *
836 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
837 */
838 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
839 {
840 const int max_bit = ilog2(MMC_VDD_35_36);
841 int bit;
842
843 if (vdd < 1650 || vdd > 3600)
844 return -EINVAL;
845
846 if (vdd >= 1650 && vdd <= 1950)
847 return ilog2(MMC_VDD_165_195);
848
849 if (low_bits)
850 vdd -= 1;
851
852 /* Base 2000 mV, step 100 mV, bit's base 8. */
853 bit = (vdd - 2000) / 100 + 8;
854 if (bit > max_bit)
855 return max_bit;
856 return bit;
857 }
858
859 /**
860 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
861 * @vdd_min: minimum voltage value (mV)
862 * @vdd_max: maximum voltage value (mV)
863 *
864 * This function returns the OCR mask bits according to the provided @vdd_min
865 * and @vdd_max values. If conversion is not possible the function returns 0.
866 *
867 * Notes wrt boundary cases:
868 * This function sets the OCR bits for all boundary voltages, for example
869 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
870 * MMC_VDD_34_35 mask.
871 */
872 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
873 {
874 u32 mask = 0;
875
876 if (vdd_max < vdd_min)
877 return 0;
878
879 /* Prefer high bits for the boundary vdd_max values. */
880 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
881 if (vdd_max < 0)
882 return 0;
883
884 /* Prefer low bits for the boundary vdd_min values. */
885 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
886 if (vdd_min < 0)
887 return 0;
888
889 /* Fill the mask, from max bit to min bit. */
890 while (vdd_max >= vdd_min)
891 mask |= 1 << vdd_max--;
892
893 return mask;
894 }
895 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
896
897 #ifdef CONFIG_REGULATOR
898
899 /**
900 * mmc_regulator_get_ocrmask - return mask of supported voltages
901 * @supply: regulator to use
902 *
903 * This returns either a negative errno, or a mask of voltages that
904 * can be provided to MMC/SD/SDIO devices using the specified voltage
905 * regulator. This would normally be called before registering the
906 * MMC host adapter.
907 */
908 int mmc_regulator_get_ocrmask(struct regulator *supply)
909 {
910 int result = 0;
911 int count;
912 int i;
913
914 count = regulator_count_voltages(supply);
915 if (count < 0)
916 return count;
917
918 for (i = 0; i < count; i++) {
919 int vdd_uV;
920 int vdd_mV;
921
922 vdd_uV = regulator_list_voltage(supply, i);
923 if (vdd_uV <= 0)
924 continue;
925
926 vdd_mV = vdd_uV / 1000;
927 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
928 }
929
930 return result;
931 }
932 EXPORT_SYMBOL(mmc_regulator_get_ocrmask);
933
934 /**
935 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
936 * @mmc: the host to regulate
937 * @supply: regulator to use
938 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
939 *
940 * Returns zero on success, else negative errno.
941 *
942 * MMC host drivers may use this to enable or disable a regulator using
943 * a particular supply voltage. This would normally be called from the
944 * set_ios() method.
945 */
946 int mmc_regulator_set_ocr(struct mmc_host *mmc,
947 struct regulator *supply,
948 unsigned short vdd_bit)
949 {
950 int result = 0;
951 int min_uV, max_uV;
952
953 if (vdd_bit) {
954 int tmp;
955 int voltage;
956
957 /* REVISIT mmc_vddrange_to_ocrmask() may have set some
958 * bits this regulator doesn't quite support ... don't
959 * be too picky, most cards and regulators are OK with
960 * a 0.1V range goof (it's a small error percentage).
961 */
962 tmp = vdd_bit - ilog2(MMC_VDD_165_195);
963 if (tmp == 0) {
964 min_uV = 1650 * 1000;
965 max_uV = 1950 * 1000;
966 } else {
967 min_uV = 1900 * 1000 + tmp * 100 * 1000;
968 max_uV = min_uV + 100 * 1000;
969 }
970
971 /* avoid needless changes to this voltage; the regulator
972 * might not allow this operation
973 */
974 voltage = regulator_get_voltage(supply);
975 if (voltage < 0)
976 result = voltage;
977 else if (voltage < min_uV || voltage > max_uV)
978 result = regulator_set_voltage(supply, min_uV, max_uV);
979 else
980 result = 0;
981
982 if (result == 0 && !mmc->regulator_enabled) {
983 result = regulator_enable(supply);
984 if (!result)
985 mmc->regulator_enabled = true;
986 }
987 } else if (mmc->regulator_enabled) {
988 result = regulator_disable(supply);
989 if (result == 0)
990 mmc->regulator_enabled = false;
991 }
992
993 if (result)
994 dev_err(mmc_dev(mmc),
995 "could not set regulator OCR (%d)\n", result);
996 return result;
997 }
998 EXPORT_SYMBOL(mmc_regulator_set_ocr);
999
1000 #endif /* CONFIG_REGULATOR */
1001
1002 /*
1003 * Mask off any voltages we don't support and select
1004 * the lowest voltage
1005 */
1006 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1007 {
1008 int bit;
1009
1010 ocr &= host->ocr_avail;
1011
1012 bit = ffs(ocr);
1013 if (bit) {
1014 bit -= 1;
1015
1016 ocr &= 3 << bit;
1017
1018 host->ios.vdd = bit;
1019 mmc_set_ios(host);
1020 } else {
1021 pr_warning("%s: host doesn't support card's voltages\n",
1022 mmc_hostname(host));
1023 ocr = 0;
1024 }
1025
1026 return ocr;
1027 }
1028
1029 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, bool cmd11)
1030 {
1031 struct mmc_command cmd = {0};
1032 int err = 0;
1033
1034 BUG_ON(!host);
1035
1036 /*
1037 * Send CMD11 only if the request is to switch the card to
1038 * 1.8V signalling.
1039 */
1040 if ((signal_voltage != MMC_SIGNAL_VOLTAGE_330) && cmd11) {
1041 cmd.opcode = SD_SWITCH_VOLTAGE;
1042 cmd.arg = 0;
1043 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1044
1045 err = mmc_wait_for_cmd(host, &cmd, 0);
1046 if (err)
1047 return err;
1048
1049 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1050 return -EIO;
1051 }
1052
1053 host->ios.signal_voltage = signal_voltage;
1054
1055 if (host->ops->start_signal_voltage_switch)
1056 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1057
1058 return err;
1059 }
1060
1061 /*
1062 * Select timing parameters for host.
1063 */
1064 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1065 {
1066 host->ios.timing = timing;
1067 mmc_set_ios(host);
1068 }
1069
1070 /*
1071 * Select appropriate driver type for host.
1072 */
1073 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1074 {
1075 host->ios.drv_type = drv_type;
1076 mmc_set_ios(host);
1077 }
1078
1079 /*
1080 * Apply power to the MMC stack. This is a two-stage process.
1081 * First, we enable power to the card without the clock running.
1082 * We then wait a bit for the power to stabilise. Finally,
1083 * enable the bus drivers and clock to the card.
1084 *
1085 * We must _NOT_ enable the clock prior to power stablising.
1086 *
1087 * If a host does all the power sequencing itself, ignore the
1088 * initial MMC_POWER_UP stage.
1089 */
1090 static void mmc_power_up(struct mmc_host *host)
1091 {
1092 int bit;
1093
1094 /* If ocr is set, we use it */
1095 if (host->ocr)
1096 bit = ffs(host->ocr) - 1;
1097 else
1098 bit = fls(host->ocr_avail) - 1;
1099
1100 host->ios.vdd = bit;
1101 if (mmc_host_is_spi(host)) {
1102 host->ios.chip_select = MMC_CS_HIGH;
1103 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1104 } else {
1105 host->ios.chip_select = MMC_CS_DONTCARE;
1106 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1107 }
1108 host->ios.power_mode = MMC_POWER_UP;
1109 host->ios.bus_width = MMC_BUS_WIDTH_1;
1110 host->ios.timing = MMC_TIMING_LEGACY;
1111 mmc_set_ios(host);
1112
1113 /*
1114 * This delay should be sufficient to allow the power supply
1115 * to reach the minimum voltage.
1116 */
1117 mmc_delay(10);
1118
1119 host->ios.clock = host->f_init;
1120
1121 host->ios.power_mode = MMC_POWER_ON;
1122 mmc_set_ios(host);
1123
1124 /*
1125 * This delay must be at least 74 clock sizes, or 1 ms, or the
1126 * time required to reach a stable voltage.
1127 */
1128 mmc_delay(10);
1129 }
1130
1131 static void mmc_power_off(struct mmc_host *host)
1132 {
1133 host->ios.clock = 0;
1134 host->ios.vdd = 0;
1135
1136 /*
1137 * Reset ocr mask to be the highest possible voltage supported for
1138 * this mmc host. This value will be used at next power up.
1139 */
1140 host->ocr = 1 << (fls(host->ocr_avail) - 1);
1141
1142 if (!mmc_host_is_spi(host)) {
1143 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1144 host->ios.chip_select = MMC_CS_DONTCARE;
1145 }
1146 host->ios.power_mode = MMC_POWER_OFF;
1147 host->ios.bus_width = MMC_BUS_WIDTH_1;
1148 host->ios.timing = MMC_TIMING_LEGACY;
1149 mmc_set_ios(host);
1150 }
1151
1152 /*
1153 * Cleanup when the last reference to the bus operator is dropped.
1154 */
1155 static void __mmc_release_bus(struct mmc_host *host)
1156 {
1157 BUG_ON(!host);
1158 BUG_ON(host->bus_refs);
1159 BUG_ON(!host->bus_dead);
1160
1161 host->bus_ops = NULL;
1162 }
1163
1164 /*
1165 * Increase reference count of bus operator
1166 */
1167 static inline void mmc_bus_get(struct mmc_host *host)
1168 {
1169 unsigned long flags;
1170
1171 spin_lock_irqsave(&host->lock, flags);
1172 host->bus_refs++;
1173 spin_unlock_irqrestore(&host->lock, flags);
1174 }
1175
1176 /*
1177 * Decrease reference count of bus operator and free it if
1178 * it is the last reference.
1179 */
1180 static inline void mmc_bus_put(struct mmc_host *host)
1181 {
1182 unsigned long flags;
1183
1184 spin_lock_irqsave(&host->lock, flags);
1185 host->bus_refs--;
1186 if ((host->bus_refs == 0) && host->bus_ops)
1187 __mmc_release_bus(host);
1188 spin_unlock_irqrestore(&host->lock, flags);
1189 }
1190
1191 /*
1192 * Assign a mmc bus handler to a host. Only one bus handler may control a
1193 * host at any given time.
1194 */
1195 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1196 {
1197 unsigned long flags;
1198
1199 BUG_ON(!host);
1200 BUG_ON(!ops);
1201
1202 WARN_ON(!host->claimed);
1203
1204 spin_lock_irqsave(&host->lock, flags);
1205
1206 BUG_ON(host->bus_ops);
1207 BUG_ON(host->bus_refs);
1208
1209 host->bus_ops = ops;
1210 host->bus_refs = 1;
1211 host->bus_dead = 0;
1212
1213 spin_unlock_irqrestore(&host->lock, flags);
1214 }
1215
1216 /*
1217 * Remove the current bus handler from a host. Assumes that there are
1218 * no interesting cards left, so the bus is powered down.
1219 */
1220 void mmc_detach_bus(struct mmc_host *host)
1221 {
1222 unsigned long flags;
1223
1224 BUG_ON(!host);
1225
1226 WARN_ON(!host->claimed);
1227 WARN_ON(!host->bus_ops);
1228
1229 spin_lock_irqsave(&host->lock, flags);
1230
1231 host->bus_dead = 1;
1232
1233 spin_unlock_irqrestore(&host->lock, flags);
1234
1235 mmc_power_off(host);
1236
1237 mmc_bus_put(host);
1238 }
1239
1240 /**
1241 * mmc_detect_change - process change of state on a MMC socket
1242 * @host: host which changed state.
1243 * @delay: optional delay to wait before detection (jiffies)
1244 *
1245 * MMC drivers should call this when they detect a card has been
1246 * inserted or removed. The MMC layer will confirm that any
1247 * present card is still functional, and initialize any newly
1248 * inserted.
1249 */
1250 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1251 {
1252 #ifdef CONFIG_MMC_DEBUG
1253 unsigned long flags;
1254 spin_lock_irqsave(&host->lock, flags);
1255 WARN_ON(host->removed);
1256 spin_unlock_irqrestore(&host->lock, flags);
1257 #endif
1258
1259 mmc_schedule_delayed_work(&host->detect, delay);
1260 }
1261
1262 EXPORT_SYMBOL(mmc_detect_change);
1263
1264 void mmc_init_erase(struct mmc_card *card)
1265 {
1266 unsigned int sz;
1267
1268 if (is_power_of_2(card->erase_size))
1269 card->erase_shift = ffs(card->erase_size) - 1;
1270 else
1271 card->erase_shift = 0;
1272
1273 /*
1274 * It is possible to erase an arbitrarily large area of an SD or MMC
1275 * card. That is not desirable because it can take a long time
1276 * (minutes) potentially delaying more important I/O, and also the
1277 * timeout calculations become increasingly hugely over-estimated.
1278 * Consequently, 'pref_erase' is defined as a guide to limit erases
1279 * to that size and alignment.
1280 *
1281 * For SD cards that define Allocation Unit size, limit erases to one
1282 * Allocation Unit at a time. For MMC cards that define High Capacity
1283 * Erase Size, whether it is switched on or not, limit to that size.
1284 * Otherwise just have a stab at a good value. For modern cards it
1285 * will end up being 4MiB. Note that if the value is too small, it
1286 * can end up taking longer to erase.
1287 */
1288 if (mmc_card_sd(card) && card->ssr.au) {
1289 card->pref_erase = card->ssr.au;
1290 card->erase_shift = ffs(card->ssr.au) - 1;
1291 } else if (card->ext_csd.hc_erase_size) {
1292 card->pref_erase = card->ext_csd.hc_erase_size;
1293 } else {
1294 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1295 if (sz < 128)
1296 card->pref_erase = 512 * 1024 / 512;
1297 else if (sz < 512)
1298 card->pref_erase = 1024 * 1024 / 512;
1299 else if (sz < 1024)
1300 card->pref_erase = 2 * 1024 * 1024 / 512;
1301 else
1302 card->pref_erase = 4 * 1024 * 1024 / 512;
1303 if (card->pref_erase < card->erase_size)
1304 card->pref_erase = card->erase_size;
1305 else {
1306 sz = card->pref_erase % card->erase_size;
1307 if (sz)
1308 card->pref_erase += card->erase_size - sz;
1309 }
1310 }
1311 }
1312
1313 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1314 unsigned int arg, unsigned int qty)
1315 {
1316 unsigned int erase_timeout;
1317
1318 if (card->ext_csd.erase_group_def & 1) {
1319 /* High Capacity Erase Group Size uses HC timeouts */
1320 if (arg == MMC_TRIM_ARG)
1321 erase_timeout = card->ext_csd.trim_timeout;
1322 else
1323 erase_timeout = card->ext_csd.hc_erase_timeout;
1324 } else {
1325 /* CSD Erase Group Size uses write timeout */
1326 unsigned int mult = (10 << card->csd.r2w_factor);
1327 unsigned int timeout_clks = card->csd.tacc_clks * mult;
1328 unsigned int timeout_us;
1329
1330 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1331 if (card->csd.tacc_ns < 1000000)
1332 timeout_us = (card->csd.tacc_ns * mult) / 1000;
1333 else
1334 timeout_us = (card->csd.tacc_ns / 1000) * mult;
1335
1336 /*
1337 * ios.clock is only a target. The real clock rate might be
1338 * less but not that much less, so fudge it by multiplying by 2.
1339 */
1340 timeout_clks <<= 1;
1341 timeout_us += (timeout_clks * 1000) /
1342 (mmc_host_clk_rate(card->host) / 1000);
1343
1344 erase_timeout = timeout_us / 1000;
1345
1346 /*
1347 * Theoretically, the calculation could underflow so round up
1348 * to 1ms in that case.
1349 */
1350 if (!erase_timeout)
1351 erase_timeout = 1;
1352 }
1353
1354 /* Multiplier for secure operations */
1355 if (arg & MMC_SECURE_ARGS) {
1356 if (arg == MMC_SECURE_ERASE_ARG)
1357 erase_timeout *= card->ext_csd.sec_erase_mult;
1358 else
1359 erase_timeout *= card->ext_csd.sec_trim_mult;
1360 }
1361
1362 erase_timeout *= qty;
1363
1364 /*
1365 * Ensure at least a 1 second timeout for SPI as per
1366 * 'mmc_set_data_timeout()'
1367 */
1368 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1369 erase_timeout = 1000;
1370
1371 return erase_timeout;
1372 }
1373
1374 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1375 unsigned int arg,
1376 unsigned int qty)
1377 {
1378 unsigned int erase_timeout;
1379
1380 if (card->ssr.erase_timeout) {
1381 /* Erase timeout specified in SD Status Register (SSR) */
1382 erase_timeout = card->ssr.erase_timeout * qty +
1383 card->ssr.erase_offset;
1384 } else {
1385 /*
1386 * Erase timeout not specified in SD Status Register (SSR) so
1387 * use 250ms per write block.
1388 */
1389 erase_timeout = 250 * qty;
1390 }
1391
1392 /* Must not be less than 1 second */
1393 if (erase_timeout < 1000)
1394 erase_timeout = 1000;
1395
1396 return erase_timeout;
1397 }
1398
1399 static unsigned int mmc_erase_timeout(struct mmc_card *card,
1400 unsigned int arg,
1401 unsigned int qty)
1402 {
1403 if (mmc_card_sd(card))
1404 return mmc_sd_erase_timeout(card, arg, qty);
1405 else
1406 return mmc_mmc_erase_timeout(card, arg, qty);
1407 }
1408
1409 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1410 unsigned int to, unsigned int arg)
1411 {
1412 struct mmc_command cmd = {0};
1413 unsigned int qty = 0;
1414 int err;
1415
1416 /*
1417 * qty is used to calculate the erase timeout which depends on how many
1418 * erase groups (or allocation units in SD terminology) are affected.
1419 * We count erasing part of an erase group as one erase group.
1420 * For SD, the allocation units are always a power of 2. For MMC, the
1421 * erase group size is almost certainly also power of 2, but it does not
1422 * seem to insist on that in the JEDEC standard, so we fall back to
1423 * division in that case. SD may not specify an allocation unit size,
1424 * in which case the timeout is based on the number of write blocks.
1425 *
1426 * Note that the timeout for secure trim 2 will only be correct if the
1427 * number of erase groups specified is the same as the total of all
1428 * preceding secure trim 1 commands. Since the power may have been
1429 * lost since the secure trim 1 commands occurred, it is generally
1430 * impossible to calculate the secure trim 2 timeout correctly.
1431 */
1432 if (card->erase_shift)
1433 qty += ((to >> card->erase_shift) -
1434 (from >> card->erase_shift)) + 1;
1435 else if (mmc_card_sd(card))
1436 qty += to - from + 1;
1437 else
1438 qty += ((to / card->erase_size) -
1439 (from / card->erase_size)) + 1;
1440
1441 if (!mmc_card_blockaddr(card)) {
1442 from <<= 9;
1443 to <<= 9;
1444 }
1445
1446 if (mmc_card_sd(card))
1447 cmd.opcode = SD_ERASE_WR_BLK_START;
1448 else
1449 cmd.opcode = MMC_ERASE_GROUP_START;
1450 cmd.arg = from;
1451 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1452 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1453 if (err) {
1454 printk(KERN_ERR "mmc_erase: group start error %d, "
1455 "status %#x\n", err, cmd.resp[0]);
1456 err = -EINVAL;
1457 goto out;
1458 }
1459
1460 memset(&cmd, 0, sizeof(struct mmc_command));
1461 if (mmc_card_sd(card))
1462 cmd.opcode = SD_ERASE_WR_BLK_END;
1463 else
1464 cmd.opcode = MMC_ERASE_GROUP_END;
1465 cmd.arg = to;
1466 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1467 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1468 if (err) {
1469 printk(KERN_ERR "mmc_erase: group end error %d, status %#x\n",
1470 err, cmd.resp[0]);
1471 err = -EINVAL;
1472 goto out;
1473 }
1474
1475 memset(&cmd, 0, sizeof(struct mmc_command));
1476 cmd.opcode = MMC_ERASE;
1477 cmd.arg = arg;
1478 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1479 cmd.cmd_timeout_ms = mmc_erase_timeout(card, arg, qty);
1480 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1481 if (err) {
1482 printk(KERN_ERR "mmc_erase: erase error %d, status %#x\n",
1483 err, cmd.resp[0]);
1484 err = -EIO;
1485 goto out;
1486 }
1487
1488 if (mmc_host_is_spi(card->host))
1489 goto out;
1490
1491 do {
1492 memset(&cmd, 0, sizeof(struct mmc_command));
1493 cmd.opcode = MMC_SEND_STATUS;
1494 cmd.arg = card->rca << 16;
1495 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1496 /* Do not retry else we can't see errors */
1497 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1498 if (err || (cmd.resp[0] & 0xFDF92000)) {
1499 printk(KERN_ERR "error %d requesting status %#x\n",
1500 err, cmd.resp[0]);
1501 err = -EIO;
1502 goto out;
1503 }
1504 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
1505 R1_CURRENT_STATE(cmd.resp[0]) == 7);
1506 out:
1507 return err;
1508 }
1509
1510 /**
1511 * mmc_erase - erase sectors.
1512 * @card: card to erase
1513 * @from: first sector to erase
1514 * @nr: number of sectors to erase
1515 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
1516 *
1517 * Caller must claim host before calling this function.
1518 */
1519 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1520 unsigned int arg)
1521 {
1522 unsigned int rem, to = from + nr;
1523
1524 if (!(card->host->caps & MMC_CAP_ERASE) ||
1525 !(card->csd.cmdclass & CCC_ERASE))
1526 return -EOPNOTSUPP;
1527
1528 if (!card->erase_size)
1529 return -EOPNOTSUPP;
1530
1531 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
1532 return -EOPNOTSUPP;
1533
1534 if ((arg & MMC_SECURE_ARGS) &&
1535 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1536 return -EOPNOTSUPP;
1537
1538 if ((arg & MMC_TRIM_ARGS) &&
1539 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1540 return -EOPNOTSUPP;
1541
1542 if (arg == MMC_SECURE_ERASE_ARG) {
1543 if (from % card->erase_size || nr % card->erase_size)
1544 return -EINVAL;
1545 }
1546
1547 if (arg == MMC_ERASE_ARG) {
1548 rem = from % card->erase_size;
1549 if (rem) {
1550 rem = card->erase_size - rem;
1551 from += rem;
1552 if (nr > rem)
1553 nr -= rem;
1554 else
1555 return 0;
1556 }
1557 rem = nr % card->erase_size;
1558 if (rem)
1559 nr -= rem;
1560 }
1561
1562 if (nr == 0)
1563 return 0;
1564
1565 to = from + nr;
1566
1567 if (to <= from)
1568 return -EINVAL;
1569
1570 /* 'from' and 'to' are inclusive */
1571 to -= 1;
1572
1573 return mmc_do_erase(card, from, to, arg);
1574 }
1575 EXPORT_SYMBOL(mmc_erase);
1576
1577 int mmc_can_erase(struct mmc_card *card)
1578 {
1579 if ((card->host->caps & MMC_CAP_ERASE) &&
1580 (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
1581 return 1;
1582 return 0;
1583 }
1584 EXPORT_SYMBOL(mmc_can_erase);
1585
1586 int mmc_can_trim(struct mmc_card *card)
1587 {
1588 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
1589 return 1;
1590 return 0;
1591 }
1592 EXPORT_SYMBOL(mmc_can_trim);
1593
1594 int mmc_can_secure_erase_trim(struct mmc_card *card)
1595 {
1596 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)
1597 return 1;
1598 return 0;
1599 }
1600 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1601
1602 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1603 unsigned int nr)
1604 {
1605 if (!card->erase_size)
1606 return 0;
1607 if (from % card->erase_size || nr % card->erase_size)
1608 return 0;
1609 return 1;
1610 }
1611 EXPORT_SYMBOL(mmc_erase_group_aligned);
1612
1613 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1614 unsigned int arg)
1615 {
1616 struct mmc_host *host = card->host;
1617 unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
1618 unsigned int last_timeout = 0;
1619
1620 if (card->erase_shift)
1621 max_qty = UINT_MAX >> card->erase_shift;
1622 else if (mmc_card_sd(card))
1623 max_qty = UINT_MAX;
1624 else
1625 max_qty = UINT_MAX / card->erase_size;
1626
1627 /* Find the largest qty with an OK timeout */
1628 do {
1629 y = 0;
1630 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1631 timeout = mmc_erase_timeout(card, arg, qty + x);
1632 if (timeout > host->max_discard_to)
1633 break;
1634 if (timeout < last_timeout)
1635 break;
1636 last_timeout = timeout;
1637 y = x;
1638 }
1639 qty += y;
1640 } while (y);
1641
1642 if (!qty)
1643 return 0;
1644
1645 if (qty == 1)
1646 return 1;
1647
1648 /* Convert qty to sectors */
1649 if (card->erase_shift)
1650 max_discard = --qty << card->erase_shift;
1651 else if (mmc_card_sd(card))
1652 max_discard = qty;
1653 else
1654 max_discard = --qty * card->erase_size;
1655
1656 return max_discard;
1657 }
1658
1659 unsigned int mmc_calc_max_discard(struct mmc_card *card)
1660 {
1661 struct mmc_host *host = card->host;
1662 unsigned int max_discard, max_trim;
1663
1664 if (!host->max_discard_to)
1665 return UINT_MAX;
1666
1667 /*
1668 * Without erase_group_def set, MMC erase timeout depends on clock
1669 * frequence which can change. In that case, the best choice is
1670 * just the preferred erase size.
1671 */
1672 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
1673 return card->pref_erase;
1674
1675 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
1676 if (mmc_can_trim(card)) {
1677 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
1678 if (max_trim < max_discard)
1679 max_discard = max_trim;
1680 } else if (max_discard < card->erase_size) {
1681 max_discard = 0;
1682 }
1683 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
1684 mmc_hostname(host), max_discard, host->max_discard_to);
1685 return max_discard;
1686 }
1687 EXPORT_SYMBOL(mmc_calc_max_discard);
1688
1689 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
1690 {
1691 struct mmc_command cmd = {0};
1692
1693 if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card))
1694 return 0;
1695
1696 cmd.opcode = MMC_SET_BLOCKLEN;
1697 cmd.arg = blocklen;
1698 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1699 return mmc_wait_for_cmd(card->host, &cmd, 5);
1700 }
1701 EXPORT_SYMBOL(mmc_set_blocklen);
1702
1703 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
1704 {
1705 host->f_init = freq;
1706
1707 #ifdef CONFIG_MMC_DEBUG
1708 pr_info("%s: %s: trying to init card at %u Hz\n",
1709 mmc_hostname(host), __func__, host->f_init);
1710 #endif
1711 mmc_power_up(host);
1712
1713 /*
1714 * sdio_reset sends CMD52 to reset card. Since we do not know
1715 * if the card is being re-initialized, just send it. CMD52
1716 * should be ignored by SD/eMMC cards.
1717 */
1718 sdio_reset(host);
1719 mmc_go_idle(host);
1720
1721 mmc_send_if_cond(host, host->ocr_avail);
1722
1723 /* Order's important: probe SDIO, then SD, then MMC */
1724 if (!mmc_attach_sdio(host))
1725 return 0;
1726 if (!mmc_attach_sd(host))
1727 return 0;
1728 if (!mmc_attach_mmc(host))
1729 return 0;
1730
1731 mmc_power_off(host);
1732 return -EIO;
1733 }
1734
1735 void mmc_rescan(struct work_struct *work)
1736 {
1737 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
1738 struct mmc_host *host =
1739 container_of(work, struct mmc_host, detect.work);
1740 int i;
1741
1742 if (host->rescan_disable)
1743 return;
1744
1745 mmc_bus_get(host);
1746
1747 /*
1748 * if there is a _removable_ card registered, check whether it is
1749 * still present
1750 */
1751 if (host->bus_ops && host->bus_ops->detect && !host->bus_dead
1752 && !(host->caps & MMC_CAP_NONREMOVABLE))
1753 host->bus_ops->detect(host);
1754
1755 /*
1756 * Let mmc_bus_put() free the bus/bus_ops if we've found that
1757 * the card is no longer present.
1758 */
1759 mmc_bus_put(host);
1760 mmc_bus_get(host);
1761
1762 /* if there still is a card present, stop here */
1763 if (host->bus_ops != NULL) {
1764 mmc_bus_put(host);
1765 goto out;
1766 }
1767
1768 /*
1769 * Only we can add a new handler, so it's safe to
1770 * release the lock here.
1771 */
1772 mmc_bus_put(host);
1773
1774 if (host->ops->get_cd && host->ops->get_cd(host) == 0)
1775 goto out;
1776
1777 mmc_claim_host(host);
1778 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
1779 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
1780 break;
1781 if (freqs[i] <= host->f_min)
1782 break;
1783 }
1784 mmc_release_host(host);
1785
1786 out:
1787 if (host->caps & MMC_CAP_NEEDS_POLL)
1788 mmc_schedule_delayed_work(&host->detect, HZ);
1789 }
1790
1791 void mmc_start_host(struct mmc_host *host)
1792 {
1793 mmc_power_off(host);
1794 mmc_detect_change(host, 0);
1795 }
1796
1797 void mmc_stop_host(struct mmc_host *host)
1798 {
1799 #ifdef CONFIG_MMC_DEBUG
1800 unsigned long flags;
1801 spin_lock_irqsave(&host->lock, flags);
1802 host->removed = 1;
1803 spin_unlock_irqrestore(&host->lock, flags);
1804 #endif
1805
1806 if (host->caps & MMC_CAP_DISABLE)
1807 cancel_delayed_work(&host->disable);
1808 cancel_delayed_work_sync(&host->detect);
1809 mmc_flush_scheduled_work();
1810
1811 /* clear pm flags now and let card drivers set them as needed */
1812 host->pm_flags = 0;
1813
1814 mmc_bus_get(host);
1815 if (host->bus_ops && !host->bus_dead) {
1816 if (host->bus_ops->remove)
1817 host->bus_ops->remove(host);
1818
1819 mmc_claim_host(host);
1820 mmc_detach_bus(host);
1821 mmc_release_host(host);
1822 mmc_bus_put(host);
1823 return;
1824 }
1825 mmc_bus_put(host);
1826
1827 BUG_ON(host->card);
1828
1829 mmc_power_off(host);
1830 }
1831
1832 int mmc_power_save_host(struct mmc_host *host)
1833 {
1834 int ret = 0;
1835
1836 #ifdef CONFIG_MMC_DEBUG
1837 pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
1838 #endif
1839
1840 mmc_bus_get(host);
1841
1842 if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
1843 mmc_bus_put(host);
1844 return -EINVAL;
1845 }
1846
1847 if (host->bus_ops->power_save)
1848 ret = host->bus_ops->power_save(host);
1849
1850 mmc_bus_put(host);
1851
1852 mmc_power_off(host);
1853
1854 return ret;
1855 }
1856 EXPORT_SYMBOL(mmc_power_save_host);
1857
1858 int mmc_power_restore_host(struct mmc_host *host)
1859 {
1860 int ret;
1861
1862 #ifdef CONFIG_MMC_DEBUG
1863 pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
1864 #endif
1865
1866 mmc_bus_get(host);
1867
1868 if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
1869 mmc_bus_put(host);
1870 return -EINVAL;
1871 }
1872
1873 mmc_power_up(host);
1874 ret = host->bus_ops->power_restore(host);
1875
1876 mmc_bus_put(host);
1877
1878 return ret;
1879 }
1880 EXPORT_SYMBOL(mmc_power_restore_host);
1881
1882 int mmc_card_awake(struct mmc_host *host)
1883 {
1884 int err = -ENOSYS;
1885
1886 mmc_bus_get(host);
1887
1888 if (host->bus_ops && !host->bus_dead && host->bus_ops->awake)
1889 err = host->bus_ops->awake(host);
1890
1891 mmc_bus_put(host);
1892
1893 return err;
1894 }
1895 EXPORT_SYMBOL(mmc_card_awake);
1896
1897 int mmc_card_sleep(struct mmc_host *host)
1898 {
1899 int err = -ENOSYS;
1900
1901 mmc_bus_get(host);
1902
1903 if (host->bus_ops && !host->bus_dead && host->bus_ops->awake)
1904 err = host->bus_ops->sleep(host);
1905
1906 mmc_bus_put(host);
1907
1908 return err;
1909 }
1910 EXPORT_SYMBOL(mmc_card_sleep);
1911
1912 int mmc_card_can_sleep(struct mmc_host *host)
1913 {
1914 struct mmc_card *card = host->card;
1915
1916 if (card && mmc_card_mmc(card) && card->ext_csd.rev >= 3)
1917 return 1;
1918 return 0;
1919 }
1920 EXPORT_SYMBOL(mmc_card_can_sleep);
1921
1922 #ifdef CONFIG_PM
1923
1924 /**
1925 * mmc_suspend_host - suspend a host
1926 * @host: mmc host
1927 */
1928 int mmc_suspend_host(struct mmc_host *host)
1929 {
1930 int err = 0;
1931
1932 if (host->caps & MMC_CAP_DISABLE)
1933 cancel_delayed_work(&host->disable);
1934 cancel_delayed_work(&host->detect);
1935 mmc_flush_scheduled_work();
1936
1937 mmc_bus_get(host);
1938 if (host->bus_ops && !host->bus_dead) {
1939 if (host->bus_ops->suspend)
1940 err = host->bus_ops->suspend(host);
1941 if (err == -ENOSYS || !host->bus_ops->resume) {
1942 /*
1943 * We simply "remove" the card in this case.
1944 * It will be redetected on resume.
1945 */
1946 if (host->bus_ops->remove)
1947 host->bus_ops->remove(host);
1948 mmc_claim_host(host);
1949 mmc_detach_bus(host);
1950 mmc_release_host(host);
1951 host->pm_flags = 0;
1952 err = 0;
1953 }
1954 }
1955 mmc_bus_put(host);
1956
1957 if (!err && !mmc_card_keep_power(host))
1958 mmc_power_off(host);
1959
1960 return err;
1961 }
1962
1963 EXPORT_SYMBOL(mmc_suspend_host);
1964
1965 /**
1966 * mmc_resume_host - resume a previously suspended host
1967 * @host: mmc host
1968 */
1969 int mmc_resume_host(struct mmc_host *host)
1970 {
1971 int err = 0;
1972
1973 mmc_bus_get(host);
1974 if (host->bus_ops && !host->bus_dead) {
1975 if (!mmc_card_keep_power(host)) {
1976 mmc_power_up(host);
1977 mmc_select_voltage(host, host->ocr);
1978 /*
1979 * Tell runtime PM core we just powered up the card,
1980 * since it still believes the card is powered off.
1981 * Note that currently runtime PM is only enabled
1982 * for SDIO cards that are MMC_CAP_POWER_OFF_CARD
1983 */
1984 if (mmc_card_sdio(host->card) &&
1985 (host->caps & MMC_CAP_POWER_OFF_CARD)) {
1986 pm_runtime_disable(&host->card->dev);
1987 pm_runtime_set_active(&host->card->dev);
1988 pm_runtime_enable(&host->card->dev);
1989 }
1990 }
1991 BUG_ON(!host->bus_ops->resume);
1992 err = host->bus_ops->resume(host);
1993 if (err) {
1994 printk(KERN_WARNING "%s: error %d during resume "
1995 "(card was removed?)\n",
1996 mmc_hostname(host), err);
1997 err = 0;
1998 }
1999 }
2000 host->pm_flags &= ~MMC_PM_KEEP_POWER;
2001 mmc_bus_put(host);
2002
2003 return err;
2004 }
2005 EXPORT_SYMBOL(mmc_resume_host);
2006
2007 /* Do the card removal on suspend if card is assumed removeable
2008 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2009 to sync the card.
2010 */
2011 int mmc_pm_notify(struct notifier_block *notify_block,
2012 unsigned long mode, void *unused)
2013 {
2014 struct mmc_host *host = container_of(
2015 notify_block, struct mmc_host, pm_notify);
2016 unsigned long flags;
2017
2018
2019 switch (mode) {
2020 case PM_HIBERNATION_PREPARE:
2021 case PM_SUSPEND_PREPARE:
2022
2023 spin_lock_irqsave(&host->lock, flags);
2024 host->rescan_disable = 1;
2025 spin_unlock_irqrestore(&host->lock, flags);
2026 cancel_delayed_work_sync(&host->detect);
2027
2028 if (!host->bus_ops || host->bus_ops->suspend)
2029 break;
2030
2031 mmc_claim_host(host);
2032
2033 if (host->bus_ops->remove)
2034 host->bus_ops->remove(host);
2035
2036 mmc_detach_bus(host);
2037 mmc_release_host(host);
2038 host->pm_flags = 0;
2039 break;
2040
2041 case PM_POST_SUSPEND:
2042 case PM_POST_HIBERNATION:
2043 case PM_POST_RESTORE:
2044
2045 spin_lock_irqsave(&host->lock, flags);
2046 host->rescan_disable = 0;
2047 spin_unlock_irqrestore(&host->lock, flags);
2048 mmc_detect_change(host, 0);
2049
2050 }
2051
2052 return 0;
2053 }
2054 #endif
2055
2056 static int __init mmc_init(void)
2057 {
2058 int ret;
2059
2060 workqueue = alloc_ordered_workqueue("kmmcd", 0);
2061 if (!workqueue)
2062 return -ENOMEM;
2063
2064 ret = mmc_register_bus();
2065 if (ret)
2066 goto destroy_workqueue;
2067
2068 ret = mmc_register_host_class();
2069 if (ret)
2070 goto unregister_bus;
2071
2072 ret = sdio_register_bus();
2073 if (ret)
2074 goto unregister_host_class;
2075
2076 return 0;
2077
2078 unregister_host_class:
2079 mmc_unregister_host_class();
2080 unregister_bus:
2081 mmc_unregister_bus();
2082 destroy_workqueue:
2083 destroy_workqueue(workqueue);
2084
2085 return ret;
2086 }
2087
2088 static void __exit mmc_exit(void)
2089 {
2090 sdio_unregister_bus();
2091 mmc_unregister_host_class();
2092 mmc_unregister_bus();
2093 destroy_workqueue(workqueue);
2094 }
2095
2096 subsys_initcall(mmc_init);
2097 module_exit(mmc_exit);
2098
2099 MODULE_LICENSE("GPL");
This page took 0.101329 seconds and 5 git commands to generate.