9698d8a2e16638b8a06a3b1efbd949cff9f5ea00
[deliverable/linux.git] / drivers / mmc / core / core.c
1 /*
2 * linux/drivers/mmc/core/core.c
3 *
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/suspend.h>
27 #include <linux/fault-inject.h>
28 #include <linux/random.h>
29
30 #include <linux/mmc/card.h>
31 #include <linux/mmc/host.h>
32 #include <linux/mmc/mmc.h>
33 #include <linux/mmc/sd.h>
34
35 #include "core.h"
36 #include "bus.h"
37 #include "host.h"
38 #include "sdio_bus.h"
39
40 #include "mmc_ops.h"
41 #include "sd_ops.h"
42 #include "sdio_ops.h"
43
44 static struct workqueue_struct *workqueue;
45
46 /*
47 * Enabling software CRCs on the data blocks can be a significant (30%)
48 * performance cost, and for other reasons may not always be desired.
49 * So we allow it it to be disabled.
50 */
51 int use_spi_crc = 1;
52 module_param(use_spi_crc, bool, 0);
53
54 /*
55 * We normally treat cards as removed during suspend if they are not
56 * known to be on a non-removable bus, to avoid the risk of writing
57 * back data to a different card after resume. Allow this to be
58 * overridden if necessary.
59 */
60 #ifdef CONFIG_MMC_UNSAFE_RESUME
61 int mmc_assume_removable;
62 #else
63 int mmc_assume_removable = 1;
64 #endif
65 EXPORT_SYMBOL(mmc_assume_removable);
66 module_param_named(removable, mmc_assume_removable, bool, 0644);
67 MODULE_PARM_DESC(
68 removable,
69 "MMC/SD cards are removable and may be removed during suspend");
70
71 /*
72 * Internal function. Schedule delayed work in the MMC work queue.
73 */
74 static int mmc_schedule_delayed_work(struct delayed_work *work,
75 unsigned long delay)
76 {
77 return queue_delayed_work(workqueue, work, delay);
78 }
79
80 /*
81 * Internal function. Flush all scheduled work from the MMC work queue.
82 */
83 static void mmc_flush_scheduled_work(void)
84 {
85 flush_workqueue(workqueue);
86 }
87
88 #ifdef CONFIG_FAIL_MMC_REQUEST
89
90 /*
91 * Internal function. Inject random data errors.
92 * If mmc_data is NULL no errors are injected.
93 */
94 static void mmc_should_fail_request(struct mmc_host *host,
95 struct mmc_request *mrq)
96 {
97 struct mmc_command *cmd = mrq->cmd;
98 struct mmc_data *data = mrq->data;
99 static const int data_errors[] = {
100 -ETIMEDOUT,
101 -EILSEQ,
102 -EIO,
103 };
104
105 if (!data)
106 return;
107
108 if (cmd->error || data->error ||
109 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
110 return;
111
112 data->error = data_errors[random32() % ARRAY_SIZE(data_errors)];
113 data->bytes_xfered = (random32() % (data->bytes_xfered >> 9)) << 9;
114 }
115
116 #else /* CONFIG_FAIL_MMC_REQUEST */
117
118 static inline void mmc_should_fail_request(struct mmc_host *host,
119 struct mmc_request *mrq)
120 {
121 }
122
123 #endif /* CONFIG_FAIL_MMC_REQUEST */
124
125 /**
126 * mmc_request_done - finish processing an MMC request
127 * @host: MMC host which completed request
128 * @mrq: MMC request which request
129 *
130 * MMC drivers should call this function when they have completed
131 * their processing of a request.
132 */
133 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
134 {
135 struct mmc_command *cmd = mrq->cmd;
136 int err = cmd->error;
137
138 if (err && cmd->retries && mmc_host_is_spi(host)) {
139 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
140 cmd->retries = 0;
141 }
142
143 if (err && cmd->retries) {
144 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
145 mmc_hostname(host), cmd->opcode, err);
146
147 cmd->retries--;
148 cmd->error = 0;
149 host->ops->request(host, mrq);
150 } else {
151 mmc_should_fail_request(host, mrq);
152
153 led_trigger_event(host->led, LED_OFF);
154
155 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
156 mmc_hostname(host), cmd->opcode, err,
157 cmd->resp[0], cmd->resp[1],
158 cmd->resp[2], cmd->resp[3]);
159
160 if (mrq->data) {
161 pr_debug("%s: %d bytes transferred: %d\n",
162 mmc_hostname(host),
163 mrq->data->bytes_xfered, mrq->data->error);
164 }
165
166 if (mrq->stop) {
167 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
168 mmc_hostname(host), mrq->stop->opcode,
169 mrq->stop->error,
170 mrq->stop->resp[0], mrq->stop->resp[1],
171 mrq->stop->resp[2], mrq->stop->resp[3]);
172 }
173
174 if (mrq->done)
175 mrq->done(mrq);
176
177 mmc_host_clk_release(host);
178 }
179 }
180
181 EXPORT_SYMBOL(mmc_request_done);
182
183 static void
184 mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
185 {
186 #ifdef CONFIG_MMC_DEBUG
187 unsigned int i, sz;
188 struct scatterlist *sg;
189 #endif
190
191 pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
192 mmc_hostname(host), mrq->cmd->opcode,
193 mrq->cmd->arg, mrq->cmd->flags);
194
195 if (mrq->data) {
196 pr_debug("%s: blksz %d blocks %d flags %08x "
197 "tsac %d ms nsac %d\n",
198 mmc_hostname(host), mrq->data->blksz,
199 mrq->data->blocks, mrq->data->flags,
200 mrq->data->timeout_ns / 1000000,
201 mrq->data->timeout_clks);
202 }
203
204 if (mrq->stop) {
205 pr_debug("%s: CMD%u arg %08x flags %08x\n",
206 mmc_hostname(host), mrq->stop->opcode,
207 mrq->stop->arg, mrq->stop->flags);
208 }
209
210 WARN_ON(!host->claimed);
211
212 mrq->cmd->error = 0;
213 mrq->cmd->mrq = mrq;
214 if (mrq->data) {
215 BUG_ON(mrq->data->blksz > host->max_blk_size);
216 BUG_ON(mrq->data->blocks > host->max_blk_count);
217 BUG_ON(mrq->data->blocks * mrq->data->blksz >
218 host->max_req_size);
219
220 #ifdef CONFIG_MMC_DEBUG
221 sz = 0;
222 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
223 sz += sg->length;
224 BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
225 #endif
226
227 mrq->cmd->data = mrq->data;
228 mrq->data->error = 0;
229 mrq->data->mrq = mrq;
230 if (mrq->stop) {
231 mrq->data->stop = mrq->stop;
232 mrq->stop->error = 0;
233 mrq->stop->mrq = mrq;
234 }
235 }
236 mmc_host_clk_hold(host);
237 led_trigger_event(host->led, LED_FULL);
238 host->ops->request(host, mrq);
239 }
240
241 static void mmc_wait_done(struct mmc_request *mrq)
242 {
243 complete(&mrq->completion);
244 }
245
246 static void __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
247 {
248 init_completion(&mrq->completion);
249 mrq->done = mmc_wait_done;
250 mmc_start_request(host, mrq);
251 }
252
253 static void mmc_wait_for_req_done(struct mmc_host *host,
254 struct mmc_request *mrq)
255 {
256 wait_for_completion(&mrq->completion);
257 }
258
259 /**
260 * mmc_pre_req - Prepare for a new request
261 * @host: MMC host to prepare command
262 * @mrq: MMC request to prepare for
263 * @is_first_req: true if there is no previous started request
264 * that may run in parellel to this call, otherwise false
265 *
266 * mmc_pre_req() is called in prior to mmc_start_req() to let
267 * host prepare for the new request. Preparation of a request may be
268 * performed while another request is running on the host.
269 */
270 static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
271 bool is_first_req)
272 {
273 if (host->ops->pre_req)
274 host->ops->pre_req(host, mrq, is_first_req);
275 }
276
277 /**
278 * mmc_post_req - Post process a completed request
279 * @host: MMC host to post process command
280 * @mrq: MMC request to post process for
281 * @err: Error, if non zero, clean up any resources made in pre_req
282 *
283 * Let the host post process a completed request. Post processing of
284 * a request may be performed while another reuqest is running.
285 */
286 static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
287 int err)
288 {
289 if (host->ops->post_req)
290 host->ops->post_req(host, mrq, err);
291 }
292
293 /**
294 * mmc_start_req - start a non-blocking request
295 * @host: MMC host to start command
296 * @areq: async request to start
297 * @error: out parameter returns 0 for success, otherwise non zero
298 *
299 * Start a new MMC custom command request for a host.
300 * If there is on ongoing async request wait for completion
301 * of that request and start the new one and return.
302 * Does not wait for the new request to complete.
303 *
304 * Returns the completed request, NULL in case of none completed.
305 * Wait for the an ongoing request (previoulsy started) to complete and
306 * return the completed request. If there is no ongoing request, NULL
307 * is returned without waiting. NULL is not an error condition.
308 */
309 struct mmc_async_req *mmc_start_req(struct mmc_host *host,
310 struct mmc_async_req *areq, int *error)
311 {
312 int err = 0;
313 struct mmc_async_req *data = host->areq;
314
315 /* Prepare a new request */
316 if (areq)
317 mmc_pre_req(host, areq->mrq, !host->areq);
318
319 if (host->areq) {
320 mmc_wait_for_req_done(host, host->areq->mrq);
321 err = host->areq->err_check(host->card, host->areq);
322 if (err) {
323 /* post process the completed failed request */
324 mmc_post_req(host, host->areq->mrq, 0);
325 if (areq)
326 /*
327 * Cancel the new prepared request, because
328 * it can't run until the failed
329 * request has been properly handled.
330 */
331 mmc_post_req(host, areq->mrq, -EINVAL);
332
333 host->areq = NULL;
334 goto out;
335 }
336 }
337
338 if (areq)
339 __mmc_start_req(host, areq->mrq);
340
341 if (host->areq)
342 mmc_post_req(host, host->areq->mrq, 0);
343
344 host->areq = areq;
345 out:
346 if (error)
347 *error = err;
348 return data;
349 }
350 EXPORT_SYMBOL(mmc_start_req);
351
352 /**
353 * mmc_wait_for_req - start a request and wait for completion
354 * @host: MMC host to start command
355 * @mrq: MMC request to start
356 *
357 * Start a new MMC custom command request for a host, and wait
358 * for the command to complete. Does not attempt to parse the
359 * response.
360 */
361 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
362 {
363 __mmc_start_req(host, mrq);
364 mmc_wait_for_req_done(host, mrq);
365 }
366 EXPORT_SYMBOL(mmc_wait_for_req);
367
368 /**
369 * mmc_wait_for_cmd - start a command and wait for completion
370 * @host: MMC host to start command
371 * @cmd: MMC command to start
372 * @retries: maximum number of retries
373 *
374 * Start a new MMC command for a host, and wait for the command
375 * to complete. Return any error that occurred while the command
376 * was executing. Do not attempt to parse the response.
377 */
378 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
379 {
380 struct mmc_request mrq = {NULL};
381
382 WARN_ON(!host->claimed);
383
384 memset(cmd->resp, 0, sizeof(cmd->resp));
385 cmd->retries = retries;
386
387 mrq.cmd = cmd;
388 cmd->data = NULL;
389
390 mmc_wait_for_req(host, &mrq);
391
392 return cmd->error;
393 }
394
395 EXPORT_SYMBOL(mmc_wait_for_cmd);
396
397 /**
398 * mmc_set_data_timeout - set the timeout for a data command
399 * @data: data phase for command
400 * @card: the MMC card associated with the data transfer
401 *
402 * Computes the data timeout parameters according to the
403 * correct algorithm given the card type.
404 */
405 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
406 {
407 unsigned int mult;
408
409 /*
410 * SDIO cards only define an upper 1 s limit on access.
411 */
412 if (mmc_card_sdio(card)) {
413 data->timeout_ns = 1000000000;
414 data->timeout_clks = 0;
415 return;
416 }
417
418 /*
419 * SD cards use a 100 multiplier rather than 10
420 */
421 mult = mmc_card_sd(card) ? 100 : 10;
422
423 /*
424 * Scale up the multiplier (and therefore the timeout) by
425 * the r2w factor for writes.
426 */
427 if (data->flags & MMC_DATA_WRITE)
428 mult <<= card->csd.r2w_factor;
429
430 data->timeout_ns = card->csd.tacc_ns * mult;
431 data->timeout_clks = card->csd.tacc_clks * mult;
432
433 /*
434 * SD cards also have an upper limit on the timeout.
435 */
436 if (mmc_card_sd(card)) {
437 unsigned int timeout_us, limit_us;
438
439 timeout_us = data->timeout_ns / 1000;
440 if (mmc_host_clk_rate(card->host))
441 timeout_us += data->timeout_clks * 1000 /
442 (mmc_host_clk_rate(card->host) / 1000);
443
444 if (data->flags & MMC_DATA_WRITE)
445 /*
446 * The limit is really 250 ms, but that is
447 * insufficient for some crappy cards.
448 */
449 limit_us = 300000;
450 else
451 limit_us = 100000;
452
453 /*
454 * SDHC cards always use these fixed values.
455 */
456 if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
457 data->timeout_ns = limit_us * 1000;
458 data->timeout_clks = 0;
459 }
460 }
461 /*
462 * Some cards need very high timeouts if driven in SPI mode.
463 * The worst observed timeout was 900ms after writing a
464 * continuous stream of data until the internal logic
465 * overflowed.
466 */
467 if (mmc_host_is_spi(card->host)) {
468 if (data->flags & MMC_DATA_WRITE) {
469 if (data->timeout_ns < 1000000000)
470 data->timeout_ns = 1000000000; /* 1s */
471 } else {
472 if (data->timeout_ns < 100000000)
473 data->timeout_ns = 100000000; /* 100ms */
474 }
475 }
476 }
477 EXPORT_SYMBOL(mmc_set_data_timeout);
478
479 /**
480 * mmc_align_data_size - pads a transfer size to a more optimal value
481 * @card: the MMC card associated with the data transfer
482 * @sz: original transfer size
483 *
484 * Pads the original data size with a number of extra bytes in
485 * order to avoid controller bugs and/or performance hits
486 * (e.g. some controllers revert to PIO for certain sizes).
487 *
488 * Returns the improved size, which might be unmodified.
489 *
490 * Note that this function is only relevant when issuing a
491 * single scatter gather entry.
492 */
493 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
494 {
495 /*
496 * FIXME: We don't have a system for the controller to tell
497 * the core about its problems yet, so for now we just 32-bit
498 * align the size.
499 */
500 sz = ((sz + 3) / 4) * 4;
501
502 return sz;
503 }
504 EXPORT_SYMBOL(mmc_align_data_size);
505
506 /**
507 * mmc_host_enable - enable a host.
508 * @host: mmc host to enable
509 *
510 * Hosts that support power saving can use the 'enable' and 'disable'
511 * methods to exit and enter power saving states. For more information
512 * see comments for struct mmc_host_ops.
513 */
514 int mmc_host_enable(struct mmc_host *host)
515 {
516 if (!(host->caps & MMC_CAP_DISABLE))
517 return 0;
518
519 if (host->en_dis_recurs)
520 return 0;
521
522 if (host->nesting_cnt++)
523 return 0;
524
525 cancel_delayed_work_sync(&host->disable);
526
527 if (host->enabled)
528 return 0;
529
530 if (host->ops->enable) {
531 int err;
532
533 host->en_dis_recurs = 1;
534 err = host->ops->enable(host);
535 host->en_dis_recurs = 0;
536
537 if (err) {
538 pr_debug("%s: enable error %d\n",
539 mmc_hostname(host), err);
540 return err;
541 }
542 }
543 host->enabled = 1;
544 return 0;
545 }
546 EXPORT_SYMBOL(mmc_host_enable);
547
548 static int mmc_host_do_disable(struct mmc_host *host, int lazy)
549 {
550 if (host->ops->disable) {
551 int err;
552
553 host->en_dis_recurs = 1;
554 err = host->ops->disable(host, lazy);
555 host->en_dis_recurs = 0;
556
557 if (err < 0) {
558 pr_debug("%s: disable error %d\n",
559 mmc_hostname(host), err);
560 return err;
561 }
562 if (err > 0) {
563 unsigned long delay = msecs_to_jiffies(err);
564
565 mmc_schedule_delayed_work(&host->disable, delay);
566 }
567 }
568 host->enabled = 0;
569 return 0;
570 }
571
572 /**
573 * mmc_host_disable - disable a host.
574 * @host: mmc host to disable
575 *
576 * Hosts that support power saving can use the 'enable' and 'disable'
577 * methods to exit and enter power saving states. For more information
578 * see comments for struct mmc_host_ops.
579 */
580 int mmc_host_disable(struct mmc_host *host)
581 {
582 int err;
583
584 if (!(host->caps & MMC_CAP_DISABLE))
585 return 0;
586
587 if (host->en_dis_recurs)
588 return 0;
589
590 if (--host->nesting_cnt)
591 return 0;
592
593 if (!host->enabled)
594 return 0;
595
596 err = mmc_host_do_disable(host, 0);
597 return err;
598 }
599 EXPORT_SYMBOL(mmc_host_disable);
600
601 /**
602 * __mmc_claim_host - exclusively claim a host
603 * @host: mmc host to claim
604 * @abort: whether or not the operation should be aborted
605 *
606 * Claim a host for a set of operations. If @abort is non null and
607 * dereference a non-zero value then this will return prematurely with
608 * that non-zero value without acquiring the lock. Returns zero
609 * with the lock held otherwise.
610 */
611 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
612 {
613 DECLARE_WAITQUEUE(wait, current);
614 unsigned long flags;
615 int stop;
616
617 might_sleep();
618
619 add_wait_queue(&host->wq, &wait);
620 spin_lock_irqsave(&host->lock, flags);
621 while (1) {
622 set_current_state(TASK_UNINTERRUPTIBLE);
623 stop = abort ? atomic_read(abort) : 0;
624 if (stop || !host->claimed || host->claimer == current)
625 break;
626 spin_unlock_irqrestore(&host->lock, flags);
627 schedule();
628 spin_lock_irqsave(&host->lock, flags);
629 }
630 set_current_state(TASK_RUNNING);
631 if (!stop) {
632 host->claimed = 1;
633 host->claimer = current;
634 host->claim_cnt += 1;
635 } else
636 wake_up(&host->wq);
637 spin_unlock_irqrestore(&host->lock, flags);
638 remove_wait_queue(&host->wq, &wait);
639 if (!stop)
640 mmc_host_enable(host);
641 return stop;
642 }
643
644 EXPORT_SYMBOL(__mmc_claim_host);
645
646 /**
647 * mmc_try_claim_host - try exclusively to claim a host
648 * @host: mmc host to claim
649 *
650 * Returns %1 if the host is claimed, %0 otherwise.
651 */
652 int mmc_try_claim_host(struct mmc_host *host)
653 {
654 int claimed_host = 0;
655 unsigned long flags;
656
657 spin_lock_irqsave(&host->lock, flags);
658 if (!host->claimed || host->claimer == current) {
659 host->claimed = 1;
660 host->claimer = current;
661 host->claim_cnt += 1;
662 claimed_host = 1;
663 }
664 spin_unlock_irqrestore(&host->lock, flags);
665 return claimed_host;
666 }
667 EXPORT_SYMBOL(mmc_try_claim_host);
668
669 /**
670 * mmc_do_release_host - release a claimed host
671 * @host: mmc host to release
672 *
673 * If you successfully claimed a host, this function will
674 * release it again.
675 */
676 void mmc_do_release_host(struct mmc_host *host)
677 {
678 unsigned long flags;
679
680 spin_lock_irqsave(&host->lock, flags);
681 if (--host->claim_cnt) {
682 /* Release for nested claim */
683 spin_unlock_irqrestore(&host->lock, flags);
684 } else {
685 host->claimed = 0;
686 host->claimer = NULL;
687 spin_unlock_irqrestore(&host->lock, flags);
688 wake_up(&host->wq);
689 }
690 }
691 EXPORT_SYMBOL(mmc_do_release_host);
692
693 void mmc_host_deeper_disable(struct work_struct *work)
694 {
695 struct mmc_host *host =
696 container_of(work, struct mmc_host, disable.work);
697
698 /* If the host is claimed then we do not want to disable it anymore */
699 if (!mmc_try_claim_host(host))
700 return;
701 mmc_host_do_disable(host, 1);
702 mmc_do_release_host(host);
703 }
704
705 /**
706 * mmc_host_lazy_disable - lazily disable a host.
707 * @host: mmc host to disable
708 *
709 * Hosts that support power saving can use the 'enable' and 'disable'
710 * methods to exit and enter power saving states. For more information
711 * see comments for struct mmc_host_ops.
712 */
713 int mmc_host_lazy_disable(struct mmc_host *host)
714 {
715 if (!(host->caps & MMC_CAP_DISABLE))
716 return 0;
717
718 if (host->en_dis_recurs)
719 return 0;
720
721 if (--host->nesting_cnt)
722 return 0;
723
724 if (!host->enabled)
725 return 0;
726
727 if (host->disable_delay) {
728 mmc_schedule_delayed_work(&host->disable,
729 msecs_to_jiffies(host->disable_delay));
730 return 0;
731 } else
732 return mmc_host_do_disable(host, 1);
733 }
734 EXPORT_SYMBOL(mmc_host_lazy_disable);
735
736 /**
737 * mmc_release_host - release a host
738 * @host: mmc host to release
739 *
740 * Release a MMC host, allowing others to claim the host
741 * for their operations.
742 */
743 void mmc_release_host(struct mmc_host *host)
744 {
745 WARN_ON(!host->claimed);
746
747 mmc_host_lazy_disable(host);
748
749 mmc_do_release_host(host);
750 }
751
752 EXPORT_SYMBOL(mmc_release_host);
753
754 /*
755 * Internal function that does the actual ios call to the host driver,
756 * optionally printing some debug output.
757 */
758 static inline void mmc_set_ios(struct mmc_host *host)
759 {
760 struct mmc_ios *ios = &host->ios;
761
762 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
763 "width %u timing %u\n",
764 mmc_hostname(host), ios->clock, ios->bus_mode,
765 ios->power_mode, ios->chip_select, ios->vdd,
766 ios->bus_width, ios->timing);
767
768 if (ios->clock > 0)
769 mmc_set_ungated(host);
770 host->ops->set_ios(host, ios);
771 }
772
773 /*
774 * Control chip select pin on a host.
775 */
776 void mmc_set_chip_select(struct mmc_host *host, int mode)
777 {
778 mmc_host_clk_hold(host);
779 host->ios.chip_select = mode;
780 mmc_set_ios(host);
781 mmc_host_clk_release(host);
782 }
783
784 /*
785 * Sets the host clock to the highest possible frequency that
786 * is below "hz".
787 */
788 static void __mmc_set_clock(struct mmc_host *host, unsigned int hz)
789 {
790 WARN_ON(hz < host->f_min);
791
792 if (hz > host->f_max)
793 hz = host->f_max;
794
795 host->ios.clock = hz;
796 mmc_set_ios(host);
797 }
798
799 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
800 {
801 mmc_host_clk_hold(host);
802 __mmc_set_clock(host, hz);
803 mmc_host_clk_release(host);
804 }
805
806 #ifdef CONFIG_MMC_CLKGATE
807 /*
808 * This gates the clock by setting it to 0 Hz.
809 */
810 void mmc_gate_clock(struct mmc_host *host)
811 {
812 unsigned long flags;
813
814 spin_lock_irqsave(&host->clk_lock, flags);
815 host->clk_old = host->ios.clock;
816 host->ios.clock = 0;
817 host->clk_gated = true;
818 spin_unlock_irqrestore(&host->clk_lock, flags);
819 mmc_set_ios(host);
820 }
821
822 /*
823 * This restores the clock from gating by using the cached
824 * clock value.
825 */
826 void mmc_ungate_clock(struct mmc_host *host)
827 {
828 /*
829 * We should previously have gated the clock, so the clock shall
830 * be 0 here! The clock may however be 0 during initialization,
831 * when some request operations are performed before setting
832 * the frequency. When ungate is requested in that situation
833 * we just ignore the call.
834 */
835 if (host->clk_old) {
836 BUG_ON(host->ios.clock);
837 /* This call will also set host->clk_gated to false */
838 __mmc_set_clock(host, host->clk_old);
839 }
840 }
841
842 void mmc_set_ungated(struct mmc_host *host)
843 {
844 unsigned long flags;
845
846 /*
847 * We've been given a new frequency while the clock is gated,
848 * so make sure we regard this as ungating it.
849 */
850 spin_lock_irqsave(&host->clk_lock, flags);
851 host->clk_gated = false;
852 spin_unlock_irqrestore(&host->clk_lock, flags);
853 }
854
855 #else
856 void mmc_set_ungated(struct mmc_host *host)
857 {
858 }
859 #endif
860
861 /*
862 * Change the bus mode (open drain/push-pull) of a host.
863 */
864 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
865 {
866 mmc_host_clk_hold(host);
867 host->ios.bus_mode = mode;
868 mmc_set_ios(host);
869 mmc_host_clk_release(host);
870 }
871
872 /*
873 * Change data bus width of a host.
874 */
875 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
876 {
877 mmc_host_clk_hold(host);
878 host->ios.bus_width = width;
879 mmc_set_ios(host);
880 mmc_host_clk_release(host);
881 }
882
883 /**
884 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
885 * @vdd: voltage (mV)
886 * @low_bits: prefer low bits in boundary cases
887 *
888 * This function returns the OCR bit number according to the provided @vdd
889 * value. If conversion is not possible a negative errno value returned.
890 *
891 * Depending on the @low_bits flag the function prefers low or high OCR bits
892 * on boundary voltages. For example,
893 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
894 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
895 *
896 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
897 */
898 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
899 {
900 const int max_bit = ilog2(MMC_VDD_35_36);
901 int bit;
902
903 if (vdd < 1650 || vdd > 3600)
904 return -EINVAL;
905
906 if (vdd >= 1650 && vdd <= 1950)
907 return ilog2(MMC_VDD_165_195);
908
909 if (low_bits)
910 vdd -= 1;
911
912 /* Base 2000 mV, step 100 mV, bit's base 8. */
913 bit = (vdd - 2000) / 100 + 8;
914 if (bit > max_bit)
915 return max_bit;
916 return bit;
917 }
918
919 /**
920 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
921 * @vdd_min: minimum voltage value (mV)
922 * @vdd_max: maximum voltage value (mV)
923 *
924 * This function returns the OCR mask bits according to the provided @vdd_min
925 * and @vdd_max values. If conversion is not possible the function returns 0.
926 *
927 * Notes wrt boundary cases:
928 * This function sets the OCR bits for all boundary voltages, for example
929 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
930 * MMC_VDD_34_35 mask.
931 */
932 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
933 {
934 u32 mask = 0;
935
936 if (vdd_max < vdd_min)
937 return 0;
938
939 /* Prefer high bits for the boundary vdd_max values. */
940 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
941 if (vdd_max < 0)
942 return 0;
943
944 /* Prefer low bits for the boundary vdd_min values. */
945 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
946 if (vdd_min < 0)
947 return 0;
948
949 /* Fill the mask, from max bit to min bit. */
950 while (vdd_max >= vdd_min)
951 mask |= 1 << vdd_max--;
952
953 return mask;
954 }
955 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
956
957 #ifdef CONFIG_REGULATOR
958
959 /**
960 * mmc_regulator_get_ocrmask - return mask of supported voltages
961 * @supply: regulator to use
962 *
963 * This returns either a negative errno, or a mask of voltages that
964 * can be provided to MMC/SD/SDIO devices using the specified voltage
965 * regulator. This would normally be called before registering the
966 * MMC host adapter.
967 */
968 int mmc_regulator_get_ocrmask(struct regulator *supply)
969 {
970 int result = 0;
971 int count;
972 int i;
973
974 count = regulator_count_voltages(supply);
975 if (count < 0)
976 return count;
977
978 for (i = 0; i < count; i++) {
979 int vdd_uV;
980 int vdd_mV;
981
982 vdd_uV = regulator_list_voltage(supply, i);
983 if (vdd_uV <= 0)
984 continue;
985
986 vdd_mV = vdd_uV / 1000;
987 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
988 }
989
990 return result;
991 }
992 EXPORT_SYMBOL(mmc_regulator_get_ocrmask);
993
994 /**
995 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
996 * @mmc: the host to regulate
997 * @supply: regulator to use
998 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
999 *
1000 * Returns zero on success, else negative errno.
1001 *
1002 * MMC host drivers may use this to enable or disable a regulator using
1003 * a particular supply voltage. This would normally be called from the
1004 * set_ios() method.
1005 */
1006 int mmc_regulator_set_ocr(struct mmc_host *mmc,
1007 struct regulator *supply,
1008 unsigned short vdd_bit)
1009 {
1010 int result = 0;
1011 int min_uV, max_uV;
1012
1013 if (vdd_bit) {
1014 int tmp;
1015 int voltage;
1016
1017 /* REVISIT mmc_vddrange_to_ocrmask() may have set some
1018 * bits this regulator doesn't quite support ... don't
1019 * be too picky, most cards and regulators are OK with
1020 * a 0.1V range goof (it's a small error percentage).
1021 */
1022 tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1023 if (tmp == 0) {
1024 min_uV = 1650 * 1000;
1025 max_uV = 1950 * 1000;
1026 } else {
1027 min_uV = 1900 * 1000 + tmp * 100 * 1000;
1028 max_uV = min_uV + 100 * 1000;
1029 }
1030
1031 /* avoid needless changes to this voltage; the regulator
1032 * might not allow this operation
1033 */
1034 voltage = regulator_get_voltage(supply);
1035 if (voltage < 0)
1036 result = voltage;
1037 else if (voltage < min_uV || voltage > max_uV)
1038 result = regulator_set_voltage(supply, min_uV, max_uV);
1039 else
1040 result = 0;
1041
1042 if (result == 0 && !mmc->regulator_enabled) {
1043 result = regulator_enable(supply);
1044 if (!result)
1045 mmc->regulator_enabled = true;
1046 }
1047 } else if (mmc->regulator_enabled) {
1048 result = regulator_disable(supply);
1049 if (result == 0)
1050 mmc->regulator_enabled = false;
1051 }
1052
1053 if (result)
1054 dev_err(mmc_dev(mmc),
1055 "could not set regulator OCR (%d)\n", result);
1056 return result;
1057 }
1058 EXPORT_SYMBOL(mmc_regulator_set_ocr);
1059
1060 #endif /* CONFIG_REGULATOR */
1061
1062 /*
1063 * Mask off any voltages we don't support and select
1064 * the lowest voltage
1065 */
1066 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1067 {
1068 int bit;
1069
1070 ocr &= host->ocr_avail;
1071
1072 bit = ffs(ocr);
1073 if (bit) {
1074 bit -= 1;
1075
1076 ocr &= 3 << bit;
1077
1078 mmc_host_clk_hold(host);
1079 host->ios.vdd = bit;
1080 mmc_set_ios(host);
1081 mmc_host_clk_release(host);
1082 } else {
1083 pr_warning("%s: host doesn't support card's voltages\n",
1084 mmc_hostname(host));
1085 ocr = 0;
1086 }
1087
1088 return ocr;
1089 }
1090
1091 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, bool cmd11)
1092 {
1093 struct mmc_command cmd = {0};
1094 int err = 0;
1095
1096 BUG_ON(!host);
1097
1098 /*
1099 * Send CMD11 only if the request is to switch the card to
1100 * 1.8V signalling.
1101 */
1102 if ((signal_voltage != MMC_SIGNAL_VOLTAGE_330) && cmd11) {
1103 cmd.opcode = SD_SWITCH_VOLTAGE;
1104 cmd.arg = 0;
1105 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1106
1107 err = mmc_wait_for_cmd(host, &cmd, 0);
1108 if (err)
1109 return err;
1110
1111 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1112 return -EIO;
1113 }
1114
1115 host->ios.signal_voltage = signal_voltage;
1116
1117 if (host->ops->start_signal_voltage_switch)
1118 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1119
1120 return err;
1121 }
1122
1123 /*
1124 * Select timing parameters for host.
1125 */
1126 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1127 {
1128 mmc_host_clk_hold(host);
1129 host->ios.timing = timing;
1130 mmc_set_ios(host);
1131 mmc_host_clk_release(host);
1132 }
1133
1134 /*
1135 * Select appropriate driver type for host.
1136 */
1137 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1138 {
1139 mmc_host_clk_hold(host);
1140 host->ios.drv_type = drv_type;
1141 mmc_set_ios(host);
1142 mmc_host_clk_release(host);
1143 }
1144
1145 /*
1146 * Apply power to the MMC stack. This is a two-stage process.
1147 * First, we enable power to the card without the clock running.
1148 * We then wait a bit for the power to stabilise. Finally,
1149 * enable the bus drivers and clock to the card.
1150 *
1151 * We must _NOT_ enable the clock prior to power stablising.
1152 *
1153 * If a host does all the power sequencing itself, ignore the
1154 * initial MMC_POWER_UP stage.
1155 */
1156 static void mmc_power_up(struct mmc_host *host)
1157 {
1158 int bit;
1159
1160 mmc_host_clk_hold(host);
1161
1162 /* If ocr is set, we use it */
1163 if (host->ocr)
1164 bit = ffs(host->ocr) - 1;
1165 else
1166 bit = fls(host->ocr_avail) - 1;
1167
1168 host->ios.vdd = bit;
1169 if (mmc_host_is_spi(host))
1170 host->ios.chip_select = MMC_CS_HIGH;
1171 else
1172 host->ios.chip_select = MMC_CS_DONTCARE;
1173 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1174 host->ios.power_mode = MMC_POWER_UP;
1175 host->ios.bus_width = MMC_BUS_WIDTH_1;
1176 host->ios.timing = MMC_TIMING_LEGACY;
1177 mmc_set_ios(host);
1178
1179 /*
1180 * This delay should be sufficient to allow the power supply
1181 * to reach the minimum voltage.
1182 */
1183 mmc_delay(10);
1184
1185 host->ios.clock = host->f_init;
1186
1187 host->ios.power_mode = MMC_POWER_ON;
1188 mmc_set_ios(host);
1189
1190 /*
1191 * This delay must be at least 74 clock sizes, or 1 ms, or the
1192 * time required to reach a stable voltage.
1193 */
1194 mmc_delay(10);
1195
1196 mmc_host_clk_release(host);
1197 }
1198
1199 void mmc_power_off(struct mmc_host *host)
1200 {
1201 mmc_host_clk_hold(host);
1202
1203 host->ios.clock = 0;
1204 host->ios.vdd = 0;
1205
1206 /*
1207 * Reset ocr mask to be the highest possible voltage supported for
1208 * this mmc host. This value will be used at next power up.
1209 */
1210 host->ocr = 1 << (fls(host->ocr_avail) - 1);
1211
1212 if (!mmc_host_is_spi(host)) {
1213 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1214 host->ios.chip_select = MMC_CS_DONTCARE;
1215 }
1216 host->ios.power_mode = MMC_POWER_OFF;
1217 host->ios.bus_width = MMC_BUS_WIDTH_1;
1218 host->ios.timing = MMC_TIMING_LEGACY;
1219 mmc_set_ios(host);
1220
1221 /*
1222 * Some configurations, such as the 802.11 SDIO card in the OLPC
1223 * XO-1.5, require a short delay after poweroff before the card
1224 * can be successfully turned on again.
1225 */
1226 mmc_delay(1);
1227
1228 mmc_host_clk_release(host);
1229 }
1230
1231 /*
1232 * Cleanup when the last reference to the bus operator is dropped.
1233 */
1234 static void __mmc_release_bus(struct mmc_host *host)
1235 {
1236 BUG_ON(!host);
1237 BUG_ON(host->bus_refs);
1238 BUG_ON(!host->bus_dead);
1239
1240 host->bus_ops = NULL;
1241 }
1242
1243 /*
1244 * Increase reference count of bus operator
1245 */
1246 static inline void mmc_bus_get(struct mmc_host *host)
1247 {
1248 unsigned long flags;
1249
1250 spin_lock_irqsave(&host->lock, flags);
1251 host->bus_refs++;
1252 spin_unlock_irqrestore(&host->lock, flags);
1253 }
1254
1255 /*
1256 * Decrease reference count of bus operator and free it if
1257 * it is the last reference.
1258 */
1259 static inline void mmc_bus_put(struct mmc_host *host)
1260 {
1261 unsigned long flags;
1262
1263 spin_lock_irqsave(&host->lock, flags);
1264 host->bus_refs--;
1265 if ((host->bus_refs == 0) && host->bus_ops)
1266 __mmc_release_bus(host);
1267 spin_unlock_irqrestore(&host->lock, flags);
1268 }
1269
1270 /*
1271 * Assign a mmc bus handler to a host. Only one bus handler may control a
1272 * host at any given time.
1273 */
1274 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1275 {
1276 unsigned long flags;
1277
1278 BUG_ON(!host);
1279 BUG_ON(!ops);
1280
1281 WARN_ON(!host->claimed);
1282
1283 spin_lock_irqsave(&host->lock, flags);
1284
1285 BUG_ON(host->bus_ops);
1286 BUG_ON(host->bus_refs);
1287
1288 host->bus_ops = ops;
1289 host->bus_refs = 1;
1290 host->bus_dead = 0;
1291
1292 spin_unlock_irqrestore(&host->lock, flags);
1293 }
1294
1295 /*
1296 * Remove the current bus handler from a host.
1297 */
1298 void mmc_detach_bus(struct mmc_host *host)
1299 {
1300 unsigned long flags;
1301
1302 BUG_ON(!host);
1303
1304 WARN_ON(!host->claimed);
1305 WARN_ON(!host->bus_ops);
1306
1307 spin_lock_irqsave(&host->lock, flags);
1308
1309 host->bus_dead = 1;
1310
1311 spin_unlock_irqrestore(&host->lock, flags);
1312
1313 mmc_bus_put(host);
1314 }
1315
1316 /**
1317 * mmc_detect_change - process change of state on a MMC socket
1318 * @host: host which changed state.
1319 * @delay: optional delay to wait before detection (jiffies)
1320 *
1321 * MMC drivers should call this when they detect a card has been
1322 * inserted or removed. The MMC layer will confirm that any
1323 * present card is still functional, and initialize any newly
1324 * inserted.
1325 */
1326 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1327 {
1328 #ifdef CONFIG_MMC_DEBUG
1329 unsigned long flags;
1330 spin_lock_irqsave(&host->lock, flags);
1331 WARN_ON(host->removed);
1332 spin_unlock_irqrestore(&host->lock, flags);
1333 #endif
1334
1335 mmc_schedule_delayed_work(&host->detect, delay);
1336 }
1337
1338 EXPORT_SYMBOL(mmc_detect_change);
1339
1340 void mmc_init_erase(struct mmc_card *card)
1341 {
1342 unsigned int sz;
1343
1344 if (is_power_of_2(card->erase_size))
1345 card->erase_shift = ffs(card->erase_size) - 1;
1346 else
1347 card->erase_shift = 0;
1348
1349 /*
1350 * It is possible to erase an arbitrarily large area of an SD or MMC
1351 * card. That is not desirable because it can take a long time
1352 * (minutes) potentially delaying more important I/O, and also the
1353 * timeout calculations become increasingly hugely over-estimated.
1354 * Consequently, 'pref_erase' is defined as a guide to limit erases
1355 * to that size and alignment.
1356 *
1357 * For SD cards that define Allocation Unit size, limit erases to one
1358 * Allocation Unit at a time. For MMC cards that define High Capacity
1359 * Erase Size, whether it is switched on or not, limit to that size.
1360 * Otherwise just have a stab at a good value. For modern cards it
1361 * will end up being 4MiB. Note that if the value is too small, it
1362 * can end up taking longer to erase.
1363 */
1364 if (mmc_card_sd(card) && card->ssr.au) {
1365 card->pref_erase = card->ssr.au;
1366 card->erase_shift = ffs(card->ssr.au) - 1;
1367 } else if (card->ext_csd.hc_erase_size) {
1368 card->pref_erase = card->ext_csd.hc_erase_size;
1369 } else {
1370 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1371 if (sz < 128)
1372 card->pref_erase = 512 * 1024 / 512;
1373 else if (sz < 512)
1374 card->pref_erase = 1024 * 1024 / 512;
1375 else if (sz < 1024)
1376 card->pref_erase = 2 * 1024 * 1024 / 512;
1377 else
1378 card->pref_erase = 4 * 1024 * 1024 / 512;
1379 if (card->pref_erase < card->erase_size)
1380 card->pref_erase = card->erase_size;
1381 else {
1382 sz = card->pref_erase % card->erase_size;
1383 if (sz)
1384 card->pref_erase += card->erase_size - sz;
1385 }
1386 }
1387 }
1388
1389 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1390 unsigned int arg, unsigned int qty)
1391 {
1392 unsigned int erase_timeout;
1393
1394 if (card->ext_csd.erase_group_def & 1) {
1395 /* High Capacity Erase Group Size uses HC timeouts */
1396 if (arg == MMC_TRIM_ARG)
1397 erase_timeout = card->ext_csd.trim_timeout;
1398 else
1399 erase_timeout = card->ext_csd.hc_erase_timeout;
1400 } else {
1401 /* CSD Erase Group Size uses write timeout */
1402 unsigned int mult = (10 << card->csd.r2w_factor);
1403 unsigned int timeout_clks = card->csd.tacc_clks * mult;
1404 unsigned int timeout_us;
1405
1406 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1407 if (card->csd.tacc_ns < 1000000)
1408 timeout_us = (card->csd.tacc_ns * mult) / 1000;
1409 else
1410 timeout_us = (card->csd.tacc_ns / 1000) * mult;
1411
1412 /*
1413 * ios.clock is only a target. The real clock rate might be
1414 * less but not that much less, so fudge it by multiplying by 2.
1415 */
1416 timeout_clks <<= 1;
1417 timeout_us += (timeout_clks * 1000) /
1418 (mmc_host_clk_rate(card->host) / 1000);
1419
1420 erase_timeout = timeout_us / 1000;
1421
1422 /*
1423 * Theoretically, the calculation could underflow so round up
1424 * to 1ms in that case.
1425 */
1426 if (!erase_timeout)
1427 erase_timeout = 1;
1428 }
1429
1430 /* Multiplier for secure operations */
1431 if (arg & MMC_SECURE_ARGS) {
1432 if (arg == MMC_SECURE_ERASE_ARG)
1433 erase_timeout *= card->ext_csd.sec_erase_mult;
1434 else
1435 erase_timeout *= card->ext_csd.sec_trim_mult;
1436 }
1437
1438 erase_timeout *= qty;
1439
1440 /*
1441 * Ensure at least a 1 second timeout for SPI as per
1442 * 'mmc_set_data_timeout()'
1443 */
1444 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1445 erase_timeout = 1000;
1446
1447 return erase_timeout;
1448 }
1449
1450 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1451 unsigned int arg,
1452 unsigned int qty)
1453 {
1454 unsigned int erase_timeout;
1455
1456 if (card->ssr.erase_timeout) {
1457 /* Erase timeout specified in SD Status Register (SSR) */
1458 erase_timeout = card->ssr.erase_timeout * qty +
1459 card->ssr.erase_offset;
1460 } else {
1461 /*
1462 * Erase timeout not specified in SD Status Register (SSR) so
1463 * use 250ms per write block.
1464 */
1465 erase_timeout = 250 * qty;
1466 }
1467
1468 /* Must not be less than 1 second */
1469 if (erase_timeout < 1000)
1470 erase_timeout = 1000;
1471
1472 return erase_timeout;
1473 }
1474
1475 static unsigned int mmc_erase_timeout(struct mmc_card *card,
1476 unsigned int arg,
1477 unsigned int qty)
1478 {
1479 if (mmc_card_sd(card))
1480 return mmc_sd_erase_timeout(card, arg, qty);
1481 else
1482 return mmc_mmc_erase_timeout(card, arg, qty);
1483 }
1484
1485 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1486 unsigned int to, unsigned int arg)
1487 {
1488 struct mmc_command cmd = {0};
1489 unsigned int qty = 0;
1490 int err;
1491
1492 /*
1493 * qty is used to calculate the erase timeout which depends on how many
1494 * erase groups (or allocation units in SD terminology) are affected.
1495 * We count erasing part of an erase group as one erase group.
1496 * For SD, the allocation units are always a power of 2. For MMC, the
1497 * erase group size is almost certainly also power of 2, but it does not
1498 * seem to insist on that in the JEDEC standard, so we fall back to
1499 * division in that case. SD may not specify an allocation unit size,
1500 * in which case the timeout is based on the number of write blocks.
1501 *
1502 * Note that the timeout for secure trim 2 will only be correct if the
1503 * number of erase groups specified is the same as the total of all
1504 * preceding secure trim 1 commands. Since the power may have been
1505 * lost since the secure trim 1 commands occurred, it is generally
1506 * impossible to calculate the secure trim 2 timeout correctly.
1507 */
1508 if (card->erase_shift)
1509 qty += ((to >> card->erase_shift) -
1510 (from >> card->erase_shift)) + 1;
1511 else if (mmc_card_sd(card))
1512 qty += to - from + 1;
1513 else
1514 qty += ((to / card->erase_size) -
1515 (from / card->erase_size)) + 1;
1516
1517 if (!mmc_card_blockaddr(card)) {
1518 from <<= 9;
1519 to <<= 9;
1520 }
1521
1522 if (mmc_card_sd(card))
1523 cmd.opcode = SD_ERASE_WR_BLK_START;
1524 else
1525 cmd.opcode = MMC_ERASE_GROUP_START;
1526 cmd.arg = from;
1527 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1528 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1529 if (err) {
1530 printk(KERN_ERR "mmc_erase: group start error %d, "
1531 "status %#x\n", err, cmd.resp[0]);
1532 err = -EIO;
1533 goto out;
1534 }
1535
1536 memset(&cmd, 0, sizeof(struct mmc_command));
1537 if (mmc_card_sd(card))
1538 cmd.opcode = SD_ERASE_WR_BLK_END;
1539 else
1540 cmd.opcode = MMC_ERASE_GROUP_END;
1541 cmd.arg = to;
1542 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1543 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1544 if (err) {
1545 printk(KERN_ERR "mmc_erase: group end error %d, status %#x\n",
1546 err, cmd.resp[0]);
1547 err = -EIO;
1548 goto out;
1549 }
1550
1551 memset(&cmd, 0, sizeof(struct mmc_command));
1552 cmd.opcode = MMC_ERASE;
1553 cmd.arg = arg;
1554 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1555 cmd.cmd_timeout_ms = mmc_erase_timeout(card, arg, qty);
1556 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1557 if (err) {
1558 printk(KERN_ERR "mmc_erase: erase error %d, status %#x\n",
1559 err, cmd.resp[0]);
1560 err = -EIO;
1561 goto out;
1562 }
1563
1564 if (mmc_host_is_spi(card->host))
1565 goto out;
1566
1567 do {
1568 memset(&cmd, 0, sizeof(struct mmc_command));
1569 cmd.opcode = MMC_SEND_STATUS;
1570 cmd.arg = card->rca << 16;
1571 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1572 /* Do not retry else we can't see errors */
1573 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1574 if (err || (cmd.resp[0] & 0xFDF92000)) {
1575 printk(KERN_ERR "error %d requesting status %#x\n",
1576 err, cmd.resp[0]);
1577 err = -EIO;
1578 goto out;
1579 }
1580 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
1581 R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG);
1582 out:
1583 return err;
1584 }
1585
1586 /**
1587 * mmc_erase - erase sectors.
1588 * @card: card to erase
1589 * @from: first sector to erase
1590 * @nr: number of sectors to erase
1591 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
1592 *
1593 * Caller must claim host before calling this function.
1594 */
1595 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1596 unsigned int arg)
1597 {
1598 unsigned int rem, to = from + nr;
1599
1600 if (!(card->host->caps & MMC_CAP_ERASE) ||
1601 !(card->csd.cmdclass & CCC_ERASE))
1602 return -EOPNOTSUPP;
1603
1604 if (!card->erase_size)
1605 return -EOPNOTSUPP;
1606
1607 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
1608 return -EOPNOTSUPP;
1609
1610 if ((arg & MMC_SECURE_ARGS) &&
1611 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1612 return -EOPNOTSUPP;
1613
1614 if ((arg & MMC_TRIM_ARGS) &&
1615 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1616 return -EOPNOTSUPP;
1617
1618 if (arg == MMC_SECURE_ERASE_ARG) {
1619 if (from % card->erase_size || nr % card->erase_size)
1620 return -EINVAL;
1621 }
1622
1623 if (arg == MMC_ERASE_ARG) {
1624 rem = from % card->erase_size;
1625 if (rem) {
1626 rem = card->erase_size - rem;
1627 from += rem;
1628 if (nr > rem)
1629 nr -= rem;
1630 else
1631 return 0;
1632 }
1633 rem = nr % card->erase_size;
1634 if (rem)
1635 nr -= rem;
1636 }
1637
1638 if (nr == 0)
1639 return 0;
1640
1641 to = from + nr;
1642
1643 if (to <= from)
1644 return -EINVAL;
1645
1646 /* 'from' and 'to' are inclusive */
1647 to -= 1;
1648
1649 return mmc_do_erase(card, from, to, arg);
1650 }
1651 EXPORT_SYMBOL(mmc_erase);
1652
1653 int mmc_can_erase(struct mmc_card *card)
1654 {
1655 if ((card->host->caps & MMC_CAP_ERASE) &&
1656 (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
1657 return 1;
1658 return 0;
1659 }
1660 EXPORT_SYMBOL(mmc_can_erase);
1661
1662 int mmc_can_trim(struct mmc_card *card)
1663 {
1664 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
1665 return 1;
1666 return 0;
1667 }
1668 EXPORT_SYMBOL(mmc_can_trim);
1669
1670 int mmc_can_secure_erase_trim(struct mmc_card *card)
1671 {
1672 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)
1673 return 1;
1674 return 0;
1675 }
1676 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1677
1678 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1679 unsigned int nr)
1680 {
1681 if (!card->erase_size)
1682 return 0;
1683 if (from % card->erase_size || nr % card->erase_size)
1684 return 0;
1685 return 1;
1686 }
1687 EXPORT_SYMBOL(mmc_erase_group_aligned);
1688
1689 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1690 unsigned int arg)
1691 {
1692 struct mmc_host *host = card->host;
1693 unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
1694 unsigned int last_timeout = 0;
1695
1696 if (card->erase_shift)
1697 max_qty = UINT_MAX >> card->erase_shift;
1698 else if (mmc_card_sd(card))
1699 max_qty = UINT_MAX;
1700 else
1701 max_qty = UINT_MAX / card->erase_size;
1702
1703 /* Find the largest qty with an OK timeout */
1704 do {
1705 y = 0;
1706 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1707 timeout = mmc_erase_timeout(card, arg, qty + x);
1708 if (timeout > host->max_discard_to)
1709 break;
1710 if (timeout < last_timeout)
1711 break;
1712 last_timeout = timeout;
1713 y = x;
1714 }
1715 qty += y;
1716 } while (y);
1717
1718 if (!qty)
1719 return 0;
1720
1721 if (qty == 1)
1722 return 1;
1723
1724 /* Convert qty to sectors */
1725 if (card->erase_shift)
1726 max_discard = --qty << card->erase_shift;
1727 else if (mmc_card_sd(card))
1728 max_discard = qty;
1729 else
1730 max_discard = --qty * card->erase_size;
1731
1732 return max_discard;
1733 }
1734
1735 unsigned int mmc_calc_max_discard(struct mmc_card *card)
1736 {
1737 struct mmc_host *host = card->host;
1738 unsigned int max_discard, max_trim;
1739
1740 if (!host->max_discard_to)
1741 return UINT_MAX;
1742
1743 /*
1744 * Without erase_group_def set, MMC erase timeout depends on clock
1745 * frequence which can change. In that case, the best choice is
1746 * just the preferred erase size.
1747 */
1748 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
1749 return card->pref_erase;
1750
1751 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
1752 if (mmc_can_trim(card)) {
1753 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
1754 if (max_trim < max_discard)
1755 max_discard = max_trim;
1756 } else if (max_discard < card->erase_size) {
1757 max_discard = 0;
1758 }
1759 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
1760 mmc_hostname(host), max_discard, host->max_discard_to);
1761 return max_discard;
1762 }
1763 EXPORT_SYMBOL(mmc_calc_max_discard);
1764
1765 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
1766 {
1767 struct mmc_command cmd = {0};
1768
1769 if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card))
1770 return 0;
1771
1772 cmd.opcode = MMC_SET_BLOCKLEN;
1773 cmd.arg = blocklen;
1774 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1775 return mmc_wait_for_cmd(card->host, &cmd, 5);
1776 }
1777 EXPORT_SYMBOL(mmc_set_blocklen);
1778
1779 static void mmc_hw_reset_for_init(struct mmc_host *host)
1780 {
1781 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
1782 return;
1783 mmc_host_clk_hold(host);
1784 host->ops->hw_reset(host);
1785 mmc_host_clk_release(host);
1786 }
1787
1788 int mmc_can_reset(struct mmc_card *card)
1789 {
1790 u8 rst_n_function;
1791
1792 if (!mmc_card_mmc(card))
1793 return 0;
1794 rst_n_function = card->ext_csd.rst_n_function;
1795 if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
1796 return 0;
1797 return 1;
1798 }
1799 EXPORT_SYMBOL(mmc_can_reset);
1800
1801 static int mmc_do_hw_reset(struct mmc_host *host, int check)
1802 {
1803 struct mmc_card *card = host->card;
1804
1805 if (!host->bus_ops->power_restore)
1806 return -EOPNOTSUPP;
1807
1808 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
1809 return -EOPNOTSUPP;
1810
1811 if (!card)
1812 return -EINVAL;
1813
1814 if (!mmc_can_reset(card))
1815 return -EOPNOTSUPP;
1816
1817 mmc_host_clk_hold(host);
1818 mmc_set_clock(host, host->f_init);
1819
1820 host->ops->hw_reset(host);
1821
1822 /* If the reset has happened, then a status command will fail */
1823 if (check) {
1824 struct mmc_command cmd = {0};
1825 int err;
1826
1827 cmd.opcode = MMC_SEND_STATUS;
1828 if (!mmc_host_is_spi(card->host))
1829 cmd.arg = card->rca << 16;
1830 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
1831 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1832 if (!err) {
1833 mmc_host_clk_release(host);
1834 return -ENOSYS;
1835 }
1836 }
1837
1838 host->card->state &= ~(MMC_STATE_HIGHSPEED | MMC_STATE_HIGHSPEED_DDR);
1839 if (mmc_host_is_spi(host)) {
1840 host->ios.chip_select = MMC_CS_HIGH;
1841 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1842 } else {
1843 host->ios.chip_select = MMC_CS_DONTCARE;
1844 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1845 }
1846 host->ios.bus_width = MMC_BUS_WIDTH_1;
1847 host->ios.timing = MMC_TIMING_LEGACY;
1848 mmc_set_ios(host);
1849
1850 mmc_host_clk_release(host);
1851
1852 return host->bus_ops->power_restore(host);
1853 }
1854
1855 int mmc_hw_reset(struct mmc_host *host)
1856 {
1857 return mmc_do_hw_reset(host, 0);
1858 }
1859 EXPORT_SYMBOL(mmc_hw_reset);
1860
1861 int mmc_hw_reset_check(struct mmc_host *host)
1862 {
1863 return mmc_do_hw_reset(host, 1);
1864 }
1865 EXPORT_SYMBOL(mmc_hw_reset_check);
1866
1867 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
1868 {
1869 host->f_init = freq;
1870
1871 #ifdef CONFIG_MMC_DEBUG
1872 pr_info("%s: %s: trying to init card at %u Hz\n",
1873 mmc_hostname(host), __func__, host->f_init);
1874 #endif
1875 mmc_power_up(host);
1876
1877 /*
1878 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
1879 * do a hardware reset if possible.
1880 */
1881 mmc_hw_reset_for_init(host);
1882
1883 /*
1884 * sdio_reset sends CMD52 to reset card. Since we do not know
1885 * if the card is being re-initialized, just send it. CMD52
1886 * should be ignored by SD/eMMC cards.
1887 */
1888 sdio_reset(host);
1889 mmc_go_idle(host);
1890
1891 mmc_send_if_cond(host, host->ocr_avail);
1892
1893 /* Order's important: probe SDIO, then SD, then MMC */
1894 if (!mmc_attach_sdio(host))
1895 return 0;
1896 if (!mmc_attach_sd(host))
1897 return 0;
1898 if (!mmc_attach_mmc(host))
1899 return 0;
1900
1901 mmc_power_off(host);
1902 return -EIO;
1903 }
1904
1905 void mmc_rescan(struct work_struct *work)
1906 {
1907 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
1908 struct mmc_host *host =
1909 container_of(work, struct mmc_host, detect.work);
1910 int i;
1911
1912 if (host->rescan_disable)
1913 return;
1914
1915 mmc_bus_get(host);
1916
1917 /*
1918 * if there is a _removable_ card registered, check whether it is
1919 * still present
1920 */
1921 if (host->bus_ops && host->bus_ops->detect && !host->bus_dead
1922 && !(host->caps & MMC_CAP_NONREMOVABLE))
1923 host->bus_ops->detect(host);
1924
1925 /*
1926 * Let mmc_bus_put() free the bus/bus_ops if we've found that
1927 * the card is no longer present.
1928 */
1929 mmc_bus_put(host);
1930 mmc_bus_get(host);
1931
1932 /* if there still is a card present, stop here */
1933 if (host->bus_ops != NULL) {
1934 mmc_bus_put(host);
1935 goto out;
1936 }
1937
1938 /*
1939 * Only we can add a new handler, so it's safe to
1940 * release the lock here.
1941 */
1942 mmc_bus_put(host);
1943
1944 if (host->ops->get_cd && host->ops->get_cd(host) == 0)
1945 goto out;
1946
1947 mmc_claim_host(host);
1948 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
1949 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
1950 break;
1951 if (freqs[i] <= host->f_min)
1952 break;
1953 }
1954 mmc_release_host(host);
1955
1956 out:
1957 if (host->caps & MMC_CAP_NEEDS_POLL)
1958 mmc_schedule_delayed_work(&host->detect, HZ);
1959 }
1960
1961 void mmc_start_host(struct mmc_host *host)
1962 {
1963 mmc_power_off(host);
1964 mmc_detect_change(host, 0);
1965 }
1966
1967 void mmc_stop_host(struct mmc_host *host)
1968 {
1969 #ifdef CONFIG_MMC_DEBUG
1970 unsigned long flags;
1971 spin_lock_irqsave(&host->lock, flags);
1972 host->removed = 1;
1973 spin_unlock_irqrestore(&host->lock, flags);
1974 #endif
1975
1976 if (host->caps & MMC_CAP_DISABLE)
1977 cancel_delayed_work(&host->disable);
1978 cancel_delayed_work_sync(&host->detect);
1979 mmc_flush_scheduled_work();
1980
1981 /* clear pm flags now and let card drivers set them as needed */
1982 host->pm_flags = 0;
1983
1984 mmc_bus_get(host);
1985 if (host->bus_ops && !host->bus_dead) {
1986 if (host->bus_ops->remove)
1987 host->bus_ops->remove(host);
1988
1989 mmc_claim_host(host);
1990 mmc_detach_bus(host);
1991 mmc_power_off(host);
1992 mmc_release_host(host);
1993 mmc_bus_put(host);
1994 return;
1995 }
1996 mmc_bus_put(host);
1997
1998 BUG_ON(host->card);
1999
2000 mmc_power_off(host);
2001 }
2002
2003 int mmc_power_save_host(struct mmc_host *host)
2004 {
2005 int ret = 0;
2006
2007 #ifdef CONFIG_MMC_DEBUG
2008 pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2009 #endif
2010
2011 mmc_bus_get(host);
2012
2013 if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
2014 mmc_bus_put(host);
2015 return -EINVAL;
2016 }
2017
2018 if (host->bus_ops->power_save)
2019 ret = host->bus_ops->power_save(host);
2020
2021 mmc_bus_put(host);
2022
2023 mmc_power_off(host);
2024
2025 return ret;
2026 }
2027 EXPORT_SYMBOL(mmc_power_save_host);
2028
2029 int mmc_power_restore_host(struct mmc_host *host)
2030 {
2031 int ret;
2032
2033 #ifdef CONFIG_MMC_DEBUG
2034 pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2035 #endif
2036
2037 mmc_bus_get(host);
2038
2039 if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
2040 mmc_bus_put(host);
2041 return -EINVAL;
2042 }
2043
2044 mmc_power_up(host);
2045 ret = host->bus_ops->power_restore(host);
2046
2047 mmc_bus_put(host);
2048
2049 return ret;
2050 }
2051 EXPORT_SYMBOL(mmc_power_restore_host);
2052
2053 int mmc_card_awake(struct mmc_host *host)
2054 {
2055 int err = -ENOSYS;
2056
2057 mmc_bus_get(host);
2058
2059 if (host->bus_ops && !host->bus_dead && host->bus_ops->awake)
2060 err = host->bus_ops->awake(host);
2061
2062 mmc_bus_put(host);
2063
2064 return err;
2065 }
2066 EXPORT_SYMBOL(mmc_card_awake);
2067
2068 int mmc_card_sleep(struct mmc_host *host)
2069 {
2070 int err = -ENOSYS;
2071
2072 mmc_bus_get(host);
2073
2074 if (host->bus_ops && !host->bus_dead && host->bus_ops->awake)
2075 err = host->bus_ops->sleep(host);
2076
2077 mmc_bus_put(host);
2078
2079 return err;
2080 }
2081 EXPORT_SYMBOL(mmc_card_sleep);
2082
2083 int mmc_card_can_sleep(struct mmc_host *host)
2084 {
2085 struct mmc_card *card = host->card;
2086
2087 if (card && mmc_card_mmc(card) && card->ext_csd.rev >= 3)
2088 return 1;
2089 return 0;
2090 }
2091 EXPORT_SYMBOL(mmc_card_can_sleep);
2092
2093 #ifdef CONFIG_PM
2094
2095 /**
2096 * mmc_suspend_host - suspend a host
2097 * @host: mmc host
2098 */
2099 int mmc_suspend_host(struct mmc_host *host)
2100 {
2101 int err = 0;
2102
2103 if (host->caps & MMC_CAP_DISABLE)
2104 cancel_delayed_work(&host->disable);
2105 cancel_delayed_work(&host->detect);
2106 mmc_flush_scheduled_work();
2107
2108 mmc_bus_get(host);
2109 if (host->bus_ops && !host->bus_dead) {
2110 if (host->bus_ops->suspend)
2111 err = host->bus_ops->suspend(host);
2112 if (err == -ENOSYS || !host->bus_ops->resume) {
2113 /*
2114 * We simply "remove" the card in this case.
2115 * It will be redetected on resume.
2116 */
2117 if (host->bus_ops->remove)
2118 host->bus_ops->remove(host);
2119 mmc_claim_host(host);
2120 mmc_detach_bus(host);
2121 mmc_power_off(host);
2122 mmc_release_host(host);
2123 host->pm_flags = 0;
2124 err = 0;
2125 }
2126 }
2127 mmc_bus_put(host);
2128
2129 if (!err && !mmc_card_keep_power(host))
2130 mmc_power_off(host);
2131
2132 return err;
2133 }
2134
2135 EXPORT_SYMBOL(mmc_suspend_host);
2136
2137 /**
2138 * mmc_resume_host - resume a previously suspended host
2139 * @host: mmc host
2140 */
2141 int mmc_resume_host(struct mmc_host *host)
2142 {
2143 int err = 0;
2144
2145 mmc_bus_get(host);
2146 if (host->bus_ops && !host->bus_dead) {
2147 if (!mmc_card_keep_power(host)) {
2148 mmc_power_up(host);
2149 mmc_select_voltage(host, host->ocr);
2150 /*
2151 * Tell runtime PM core we just powered up the card,
2152 * since it still believes the card is powered off.
2153 * Note that currently runtime PM is only enabled
2154 * for SDIO cards that are MMC_CAP_POWER_OFF_CARD
2155 */
2156 if (mmc_card_sdio(host->card) &&
2157 (host->caps & MMC_CAP_POWER_OFF_CARD)) {
2158 pm_runtime_disable(&host->card->dev);
2159 pm_runtime_set_active(&host->card->dev);
2160 pm_runtime_enable(&host->card->dev);
2161 }
2162 }
2163 BUG_ON(!host->bus_ops->resume);
2164 err = host->bus_ops->resume(host);
2165 if (err) {
2166 printk(KERN_WARNING "%s: error %d during resume "
2167 "(card was removed?)\n",
2168 mmc_hostname(host), err);
2169 err = 0;
2170 }
2171 }
2172 host->pm_flags &= ~MMC_PM_KEEP_POWER;
2173 mmc_bus_put(host);
2174
2175 return err;
2176 }
2177 EXPORT_SYMBOL(mmc_resume_host);
2178
2179 /* Do the card removal on suspend if card is assumed removeable
2180 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2181 to sync the card.
2182 */
2183 int mmc_pm_notify(struct notifier_block *notify_block,
2184 unsigned long mode, void *unused)
2185 {
2186 struct mmc_host *host = container_of(
2187 notify_block, struct mmc_host, pm_notify);
2188 unsigned long flags;
2189
2190
2191 switch (mode) {
2192 case PM_HIBERNATION_PREPARE:
2193 case PM_SUSPEND_PREPARE:
2194
2195 spin_lock_irqsave(&host->lock, flags);
2196 host->rescan_disable = 1;
2197 spin_unlock_irqrestore(&host->lock, flags);
2198 cancel_delayed_work_sync(&host->detect);
2199
2200 if (!host->bus_ops || host->bus_ops->suspend)
2201 break;
2202
2203 mmc_claim_host(host);
2204
2205 if (host->bus_ops->remove)
2206 host->bus_ops->remove(host);
2207
2208 mmc_detach_bus(host);
2209 mmc_power_off(host);
2210 mmc_release_host(host);
2211 host->pm_flags = 0;
2212 break;
2213
2214 case PM_POST_SUSPEND:
2215 case PM_POST_HIBERNATION:
2216 case PM_POST_RESTORE:
2217
2218 spin_lock_irqsave(&host->lock, flags);
2219 host->rescan_disable = 0;
2220 spin_unlock_irqrestore(&host->lock, flags);
2221 mmc_detect_change(host, 0);
2222
2223 }
2224
2225 return 0;
2226 }
2227 #endif
2228
2229 static int __init mmc_init(void)
2230 {
2231 int ret;
2232
2233 workqueue = alloc_ordered_workqueue("kmmcd", 0);
2234 if (!workqueue)
2235 return -ENOMEM;
2236
2237 ret = mmc_register_bus();
2238 if (ret)
2239 goto destroy_workqueue;
2240
2241 ret = mmc_register_host_class();
2242 if (ret)
2243 goto unregister_bus;
2244
2245 ret = sdio_register_bus();
2246 if (ret)
2247 goto unregister_host_class;
2248
2249 return 0;
2250
2251 unregister_host_class:
2252 mmc_unregister_host_class();
2253 unregister_bus:
2254 mmc_unregister_bus();
2255 destroy_workqueue:
2256 destroy_workqueue(workqueue);
2257
2258 return ret;
2259 }
2260
2261 static void __exit mmc_exit(void)
2262 {
2263 sdio_unregister_bus();
2264 mmc_unregister_host_class();
2265 mmc_unregister_bus();
2266 destroy_workqueue(workqueue);
2267 }
2268
2269 subsys_initcall(mmc_init);
2270 module_exit(mmc_exit);
2271
2272 MODULE_LICENSE("GPL");
This page took 0.074702 seconds and 4 git commands to generate.