mmc: core: prevent aggressive clock gating racing with ios updates
[deliverable/linux.git] / drivers / mmc / core / core.c
1 /*
2 * linux/drivers/mmc/core/core.c
3 *
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/suspend.h>
27
28 #include <linux/mmc/card.h>
29 #include <linux/mmc/host.h>
30 #include <linux/mmc/mmc.h>
31 #include <linux/mmc/sd.h>
32
33 #include "core.h"
34 #include "bus.h"
35 #include "host.h"
36 #include "sdio_bus.h"
37
38 #include "mmc_ops.h"
39 #include "sd_ops.h"
40 #include "sdio_ops.h"
41
42 static struct workqueue_struct *workqueue;
43
44 /*
45 * Enabling software CRCs on the data blocks can be a significant (30%)
46 * performance cost, and for other reasons may not always be desired.
47 * So we allow it it to be disabled.
48 */
49 int use_spi_crc = 1;
50 module_param(use_spi_crc, bool, 0);
51
52 /*
53 * We normally treat cards as removed during suspend if they are not
54 * known to be on a non-removable bus, to avoid the risk of writing
55 * back data to a different card after resume. Allow this to be
56 * overridden if necessary.
57 */
58 #ifdef CONFIG_MMC_UNSAFE_RESUME
59 int mmc_assume_removable;
60 #else
61 int mmc_assume_removable = 1;
62 #endif
63 EXPORT_SYMBOL(mmc_assume_removable);
64 module_param_named(removable, mmc_assume_removable, bool, 0644);
65 MODULE_PARM_DESC(
66 removable,
67 "MMC/SD cards are removable and may be removed during suspend");
68
69 /*
70 * Internal function. Schedule delayed work in the MMC work queue.
71 */
72 static int mmc_schedule_delayed_work(struct delayed_work *work,
73 unsigned long delay)
74 {
75 return queue_delayed_work(workqueue, work, delay);
76 }
77
78 /*
79 * Internal function. Flush all scheduled work from the MMC work queue.
80 */
81 static void mmc_flush_scheduled_work(void)
82 {
83 flush_workqueue(workqueue);
84 }
85
86 /**
87 * mmc_request_done - finish processing an MMC request
88 * @host: MMC host which completed request
89 * @mrq: MMC request which request
90 *
91 * MMC drivers should call this function when they have completed
92 * their processing of a request.
93 */
94 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
95 {
96 struct mmc_command *cmd = mrq->cmd;
97 int err = cmd->error;
98
99 if (err && cmd->retries && mmc_host_is_spi(host)) {
100 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
101 cmd->retries = 0;
102 }
103
104 if (err && cmd->retries) {
105 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
106 mmc_hostname(host), cmd->opcode, err);
107
108 cmd->retries--;
109 cmd->error = 0;
110 host->ops->request(host, mrq);
111 } else {
112 led_trigger_event(host->led, LED_OFF);
113
114 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
115 mmc_hostname(host), cmd->opcode, err,
116 cmd->resp[0], cmd->resp[1],
117 cmd->resp[2], cmd->resp[3]);
118
119 if (mrq->data) {
120 pr_debug("%s: %d bytes transferred: %d\n",
121 mmc_hostname(host),
122 mrq->data->bytes_xfered, mrq->data->error);
123 }
124
125 if (mrq->stop) {
126 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
127 mmc_hostname(host), mrq->stop->opcode,
128 mrq->stop->error,
129 mrq->stop->resp[0], mrq->stop->resp[1],
130 mrq->stop->resp[2], mrq->stop->resp[3]);
131 }
132
133 if (mrq->done)
134 mrq->done(mrq);
135
136 mmc_host_clk_release(host);
137 }
138 }
139
140 EXPORT_SYMBOL(mmc_request_done);
141
142 static void
143 mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
144 {
145 #ifdef CONFIG_MMC_DEBUG
146 unsigned int i, sz;
147 struct scatterlist *sg;
148 #endif
149
150 pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
151 mmc_hostname(host), mrq->cmd->opcode,
152 mrq->cmd->arg, mrq->cmd->flags);
153
154 if (mrq->data) {
155 pr_debug("%s: blksz %d blocks %d flags %08x "
156 "tsac %d ms nsac %d\n",
157 mmc_hostname(host), mrq->data->blksz,
158 mrq->data->blocks, mrq->data->flags,
159 mrq->data->timeout_ns / 1000000,
160 mrq->data->timeout_clks);
161 }
162
163 if (mrq->stop) {
164 pr_debug("%s: CMD%u arg %08x flags %08x\n",
165 mmc_hostname(host), mrq->stop->opcode,
166 mrq->stop->arg, mrq->stop->flags);
167 }
168
169 WARN_ON(!host->claimed);
170
171 mrq->cmd->error = 0;
172 mrq->cmd->mrq = mrq;
173 if (mrq->data) {
174 BUG_ON(mrq->data->blksz > host->max_blk_size);
175 BUG_ON(mrq->data->blocks > host->max_blk_count);
176 BUG_ON(mrq->data->blocks * mrq->data->blksz >
177 host->max_req_size);
178
179 #ifdef CONFIG_MMC_DEBUG
180 sz = 0;
181 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
182 sz += sg->length;
183 BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
184 #endif
185
186 mrq->cmd->data = mrq->data;
187 mrq->data->error = 0;
188 mrq->data->mrq = mrq;
189 if (mrq->stop) {
190 mrq->data->stop = mrq->stop;
191 mrq->stop->error = 0;
192 mrq->stop->mrq = mrq;
193 }
194 }
195 mmc_host_clk_hold(host);
196 led_trigger_event(host->led, LED_FULL);
197 host->ops->request(host, mrq);
198 }
199
200 static void mmc_wait_done(struct mmc_request *mrq)
201 {
202 complete(&mrq->completion);
203 }
204
205 static void __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
206 {
207 init_completion(&mrq->completion);
208 mrq->done = mmc_wait_done;
209 mmc_start_request(host, mrq);
210 }
211
212 static void mmc_wait_for_req_done(struct mmc_host *host,
213 struct mmc_request *mrq)
214 {
215 wait_for_completion(&mrq->completion);
216 }
217
218 /**
219 * mmc_pre_req - Prepare for a new request
220 * @host: MMC host to prepare command
221 * @mrq: MMC request to prepare for
222 * @is_first_req: true if there is no previous started request
223 * that may run in parellel to this call, otherwise false
224 *
225 * mmc_pre_req() is called in prior to mmc_start_req() to let
226 * host prepare for the new request. Preparation of a request may be
227 * performed while another request is running on the host.
228 */
229 static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
230 bool is_first_req)
231 {
232 if (host->ops->pre_req)
233 host->ops->pre_req(host, mrq, is_first_req);
234 }
235
236 /**
237 * mmc_post_req - Post process a completed request
238 * @host: MMC host to post process command
239 * @mrq: MMC request to post process for
240 * @err: Error, if non zero, clean up any resources made in pre_req
241 *
242 * Let the host post process a completed request. Post processing of
243 * a request may be performed while another reuqest is running.
244 */
245 static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
246 int err)
247 {
248 if (host->ops->post_req)
249 host->ops->post_req(host, mrq, err);
250 }
251
252 /**
253 * mmc_start_req - start a non-blocking request
254 * @host: MMC host to start command
255 * @areq: async request to start
256 * @error: out parameter returns 0 for success, otherwise non zero
257 *
258 * Start a new MMC custom command request for a host.
259 * If there is on ongoing async request wait for completion
260 * of that request and start the new one and return.
261 * Does not wait for the new request to complete.
262 *
263 * Returns the completed request, NULL in case of none completed.
264 * Wait for the an ongoing request (previoulsy started) to complete and
265 * return the completed request. If there is no ongoing request, NULL
266 * is returned without waiting. NULL is not an error condition.
267 */
268 struct mmc_async_req *mmc_start_req(struct mmc_host *host,
269 struct mmc_async_req *areq, int *error)
270 {
271 int err = 0;
272 struct mmc_async_req *data = host->areq;
273
274 /* Prepare a new request */
275 if (areq)
276 mmc_pre_req(host, areq->mrq, !host->areq);
277
278 if (host->areq) {
279 mmc_wait_for_req_done(host, host->areq->mrq);
280 err = host->areq->err_check(host->card, host->areq);
281 if (err) {
282 mmc_post_req(host, host->areq->mrq, 0);
283 if (areq)
284 mmc_post_req(host, areq->mrq, -EINVAL);
285
286 host->areq = NULL;
287 goto out;
288 }
289 }
290
291 if (areq)
292 __mmc_start_req(host, areq->mrq);
293
294 if (host->areq)
295 mmc_post_req(host, host->areq->mrq, 0);
296
297 host->areq = areq;
298 out:
299 if (error)
300 *error = err;
301 return data;
302 }
303 EXPORT_SYMBOL(mmc_start_req);
304
305 /**
306 * mmc_wait_for_req - start a request and wait for completion
307 * @host: MMC host to start command
308 * @mrq: MMC request to start
309 *
310 * Start a new MMC custom command request for a host, and wait
311 * for the command to complete. Does not attempt to parse the
312 * response.
313 */
314 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
315 {
316 __mmc_start_req(host, mrq);
317 mmc_wait_for_req_done(host, mrq);
318 }
319 EXPORT_SYMBOL(mmc_wait_for_req);
320
321 /**
322 * mmc_wait_for_cmd - start a command and wait for completion
323 * @host: MMC host to start command
324 * @cmd: MMC command to start
325 * @retries: maximum number of retries
326 *
327 * Start a new MMC command for a host, and wait for the command
328 * to complete. Return any error that occurred while the command
329 * was executing. Do not attempt to parse the response.
330 */
331 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
332 {
333 struct mmc_request mrq = {0};
334
335 WARN_ON(!host->claimed);
336
337 memset(cmd->resp, 0, sizeof(cmd->resp));
338 cmd->retries = retries;
339
340 mrq.cmd = cmd;
341 cmd->data = NULL;
342
343 mmc_wait_for_req(host, &mrq);
344
345 return cmd->error;
346 }
347
348 EXPORT_SYMBOL(mmc_wait_for_cmd);
349
350 /**
351 * mmc_set_data_timeout - set the timeout for a data command
352 * @data: data phase for command
353 * @card: the MMC card associated with the data transfer
354 *
355 * Computes the data timeout parameters according to the
356 * correct algorithm given the card type.
357 */
358 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
359 {
360 unsigned int mult;
361
362 /*
363 * SDIO cards only define an upper 1 s limit on access.
364 */
365 if (mmc_card_sdio(card)) {
366 data->timeout_ns = 1000000000;
367 data->timeout_clks = 0;
368 return;
369 }
370
371 /*
372 * SD cards use a 100 multiplier rather than 10
373 */
374 mult = mmc_card_sd(card) ? 100 : 10;
375
376 /*
377 * Scale up the multiplier (and therefore the timeout) by
378 * the r2w factor for writes.
379 */
380 if (data->flags & MMC_DATA_WRITE)
381 mult <<= card->csd.r2w_factor;
382
383 data->timeout_ns = card->csd.tacc_ns * mult;
384 data->timeout_clks = card->csd.tacc_clks * mult;
385
386 /*
387 * SD cards also have an upper limit on the timeout.
388 */
389 if (mmc_card_sd(card)) {
390 unsigned int timeout_us, limit_us;
391
392 timeout_us = data->timeout_ns / 1000;
393 if (mmc_host_clk_rate(card->host))
394 timeout_us += data->timeout_clks * 1000 /
395 (mmc_host_clk_rate(card->host) / 1000);
396
397 if (data->flags & MMC_DATA_WRITE)
398 /*
399 * The limit is really 250 ms, but that is
400 * insufficient for some crappy cards.
401 */
402 limit_us = 300000;
403 else
404 limit_us = 100000;
405
406 /*
407 * SDHC cards always use these fixed values.
408 */
409 if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
410 data->timeout_ns = limit_us * 1000;
411 data->timeout_clks = 0;
412 }
413 }
414 /*
415 * Some cards need very high timeouts if driven in SPI mode.
416 * The worst observed timeout was 900ms after writing a
417 * continuous stream of data until the internal logic
418 * overflowed.
419 */
420 if (mmc_host_is_spi(card->host)) {
421 if (data->flags & MMC_DATA_WRITE) {
422 if (data->timeout_ns < 1000000000)
423 data->timeout_ns = 1000000000; /* 1s */
424 } else {
425 if (data->timeout_ns < 100000000)
426 data->timeout_ns = 100000000; /* 100ms */
427 }
428 }
429 }
430 EXPORT_SYMBOL(mmc_set_data_timeout);
431
432 /**
433 * mmc_align_data_size - pads a transfer size to a more optimal value
434 * @card: the MMC card associated with the data transfer
435 * @sz: original transfer size
436 *
437 * Pads the original data size with a number of extra bytes in
438 * order to avoid controller bugs and/or performance hits
439 * (e.g. some controllers revert to PIO for certain sizes).
440 *
441 * Returns the improved size, which might be unmodified.
442 *
443 * Note that this function is only relevant when issuing a
444 * single scatter gather entry.
445 */
446 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
447 {
448 /*
449 * FIXME: We don't have a system for the controller to tell
450 * the core about its problems yet, so for now we just 32-bit
451 * align the size.
452 */
453 sz = ((sz + 3) / 4) * 4;
454
455 return sz;
456 }
457 EXPORT_SYMBOL(mmc_align_data_size);
458
459 /**
460 * mmc_host_enable - enable a host.
461 * @host: mmc host to enable
462 *
463 * Hosts that support power saving can use the 'enable' and 'disable'
464 * methods to exit and enter power saving states. For more information
465 * see comments for struct mmc_host_ops.
466 */
467 int mmc_host_enable(struct mmc_host *host)
468 {
469 if (!(host->caps & MMC_CAP_DISABLE))
470 return 0;
471
472 if (host->en_dis_recurs)
473 return 0;
474
475 if (host->nesting_cnt++)
476 return 0;
477
478 cancel_delayed_work_sync(&host->disable);
479
480 if (host->enabled)
481 return 0;
482
483 if (host->ops->enable) {
484 int err;
485
486 host->en_dis_recurs = 1;
487 err = host->ops->enable(host);
488 host->en_dis_recurs = 0;
489
490 if (err) {
491 pr_debug("%s: enable error %d\n",
492 mmc_hostname(host), err);
493 return err;
494 }
495 }
496 host->enabled = 1;
497 return 0;
498 }
499 EXPORT_SYMBOL(mmc_host_enable);
500
501 static int mmc_host_do_disable(struct mmc_host *host, int lazy)
502 {
503 if (host->ops->disable) {
504 int err;
505
506 host->en_dis_recurs = 1;
507 err = host->ops->disable(host, lazy);
508 host->en_dis_recurs = 0;
509
510 if (err < 0) {
511 pr_debug("%s: disable error %d\n",
512 mmc_hostname(host), err);
513 return err;
514 }
515 if (err > 0) {
516 unsigned long delay = msecs_to_jiffies(err);
517
518 mmc_schedule_delayed_work(&host->disable, delay);
519 }
520 }
521 host->enabled = 0;
522 return 0;
523 }
524
525 /**
526 * mmc_host_disable - disable a host.
527 * @host: mmc host to disable
528 *
529 * Hosts that support power saving can use the 'enable' and 'disable'
530 * methods to exit and enter power saving states. For more information
531 * see comments for struct mmc_host_ops.
532 */
533 int mmc_host_disable(struct mmc_host *host)
534 {
535 int err;
536
537 if (!(host->caps & MMC_CAP_DISABLE))
538 return 0;
539
540 if (host->en_dis_recurs)
541 return 0;
542
543 if (--host->nesting_cnt)
544 return 0;
545
546 if (!host->enabled)
547 return 0;
548
549 err = mmc_host_do_disable(host, 0);
550 return err;
551 }
552 EXPORT_SYMBOL(mmc_host_disable);
553
554 /**
555 * __mmc_claim_host - exclusively claim a host
556 * @host: mmc host to claim
557 * @abort: whether or not the operation should be aborted
558 *
559 * Claim a host for a set of operations. If @abort is non null and
560 * dereference a non-zero value then this will return prematurely with
561 * that non-zero value without acquiring the lock. Returns zero
562 * with the lock held otherwise.
563 */
564 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
565 {
566 DECLARE_WAITQUEUE(wait, current);
567 unsigned long flags;
568 int stop;
569
570 might_sleep();
571
572 add_wait_queue(&host->wq, &wait);
573 spin_lock_irqsave(&host->lock, flags);
574 while (1) {
575 set_current_state(TASK_UNINTERRUPTIBLE);
576 stop = abort ? atomic_read(abort) : 0;
577 if (stop || !host->claimed || host->claimer == current)
578 break;
579 spin_unlock_irqrestore(&host->lock, flags);
580 schedule();
581 spin_lock_irqsave(&host->lock, flags);
582 }
583 set_current_state(TASK_RUNNING);
584 if (!stop) {
585 host->claimed = 1;
586 host->claimer = current;
587 host->claim_cnt += 1;
588 } else
589 wake_up(&host->wq);
590 spin_unlock_irqrestore(&host->lock, flags);
591 remove_wait_queue(&host->wq, &wait);
592 if (!stop)
593 mmc_host_enable(host);
594 return stop;
595 }
596
597 EXPORT_SYMBOL(__mmc_claim_host);
598
599 /**
600 * mmc_try_claim_host - try exclusively to claim a host
601 * @host: mmc host to claim
602 *
603 * Returns %1 if the host is claimed, %0 otherwise.
604 */
605 int mmc_try_claim_host(struct mmc_host *host)
606 {
607 int claimed_host = 0;
608 unsigned long flags;
609
610 spin_lock_irqsave(&host->lock, flags);
611 if (!host->claimed || host->claimer == current) {
612 host->claimed = 1;
613 host->claimer = current;
614 host->claim_cnt += 1;
615 claimed_host = 1;
616 }
617 spin_unlock_irqrestore(&host->lock, flags);
618 return claimed_host;
619 }
620 EXPORT_SYMBOL(mmc_try_claim_host);
621
622 /**
623 * mmc_do_release_host - release a claimed host
624 * @host: mmc host to release
625 *
626 * If you successfully claimed a host, this function will
627 * release it again.
628 */
629 void mmc_do_release_host(struct mmc_host *host)
630 {
631 unsigned long flags;
632
633 spin_lock_irqsave(&host->lock, flags);
634 if (--host->claim_cnt) {
635 /* Release for nested claim */
636 spin_unlock_irqrestore(&host->lock, flags);
637 } else {
638 host->claimed = 0;
639 host->claimer = NULL;
640 spin_unlock_irqrestore(&host->lock, flags);
641 wake_up(&host->wq);
642 }
643 }
644 EXPORT_SYMBOL(mmc_do_release_host);
645
646 void mmc_host_deeper_disable(struct work_struct *work)
647 {
648 struct mmc_host *host =
649 container_of(work, struct mmc_host, disable.work);
650
651 /* If the host is claimed then we do not want to disable it anymore */
652 if (!mmc_try_claim_host(host))
653 return;
654 mmc_host_do_disable(host, 1);
655 mmc_do_release_host(host);
656 }
657
658 /**
659 * mmc_host_lazy_disable - lazily disable a host.
660 * @host: mmc host to disable
661 *
662 * Hosts that support power saving can use the 'enable' and 'disable'
663 * methods to exit and enter power saving states. For more information
664 * see comments for struct mmc_host_ops.
665 */
666 int mmc_host_lazy_disable(struct mmc_host *host)
667 {
668 if (!(host->caps & MMC_CAP_DISABLE))
669 return 0;
670
671 if (host->en_dis_recurs)
672 return 0;
673
674 if (--host->nesting_cnt)
675 return 0;
676
677 if (!host->enabled)
678 return 0;
679
680 if (host->disable_delay) {
681 mmc_schedule_delayed_work(&host->disable,
682 msecs_to_jiffies(host->disable_delay));
683 return 0;
684 } else
685 return mmc_host_do_disable(host, 1);
686 }
687 EXPORT_SYMBOL(mmc_host_lazy_disable);
688
689 /**
690 * mmc_release_host - release a host
691 * @host: mmc host to release
692 *
693 * Release a MMC host, allowing others to claim the host
694 * for their operations.
695 */
696 void mmc_release_host(struct mmc_host *host)
697 {
698 WARN_ON(!host->claimed);
699
700 mmc_host_lazy_disable(host);
701
702 mmc_do_release_host(host);
703 }
704
705 EXPORT_SYMBOL(mmc_release_host);
706
707 /*
708 * Internal function that does the actual ios call to the host driver,
709 * optionally printing some debug output.
710 */
711 static inline void mmc_set_ios(struct mmc_host *host)
712 {
713 struct mmc_ios *ios = &host->ios;
714
715 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
716 "width %u timing %u\n",
717 mmc_hostname(host), ios->clock, ios->bus_mode,
718 ios->power_mode, ios->chip_select, ios->vdd,
719 ios->bus_width, ios->timing);
720
721 if (ios->clock > 0)
722 mmc_set_ungated(host);
723 host->ops->set_ios(host, ios);
724 }
725
726 /*
727 * Control chip select pin on a host.
728 */
729 void mmc_set_chip_select(struct mmc_host *host, int mode)
730 {
731 mmc_host_clk_hold(host);
732 host->ios.chip_select = mode;
733 mmc_set_ios(host);
734 mmc_host_clk_release(host);
735 }
736
737 /*
738 * Sets the host clock to the highest possible frequency that
739 * is below "hz".
740 */
741 static void __mmc_set_clock(struct mmc_host *host, unsigned int hz)
742 {
743 WARN_ON(hz < host->f_min);
744
745 if (hz > host->f_max)
746 hz = host->f_max;
747
748 host->ios.clock = hz;
749 mmc_set_ios(host);
750 }
751
752 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
753 {
754 mmc_host_clk_hold(host);
755 __mmc_set_clock(host, hz);
756 mmc_host_clk_release(host);
757 }
758
759 #ifdef CONFIG_MMC_CLKGATE
760 /*
761 * This gates the clock by setting it to 0 Hz.
762 */
763 void mmc_gate_clock(struct mmc_host *host)
764 {
765 unsigned long flags;
766
767 spin_lock_irqsave(&host->clk_lock, flags);
768 host->clk_old = host->ios.clock;
769 host->ios.clock = 0;
770 host->clk_gated = true;
771 spin_unlock_irqrestore(&host->clk_lock, flags);
772 mmc_set_ios(host);
773 }
774
775 /*
776 * This restores the clock from gating by using the cached
777 * clock value.
778 */
779 void mmc_ungate_clock(struct mmc_host *host)
780 {
781 /*
782 * We should previously have gated the clock, so the clock shall
783 * be 0 here! The clock may however be 0 during initialization,
784 * when some request operations are performed before setting
785 * the frequency. When ungate is requested in that situation
786 * we just ignore the call.
787 */
788 if (host->clk_old) {
789 BUG_ON(host->ios.clock);
790 /* This call will also set host->clk_gated to false */
791 __mmc_set_clock(host, host->clk_old);
792 }
793 }
794
795 void mmc_set_ungated(struct mmc_host *host)
796 {
797 unsigned long flags;
798
799 /*
800 * We've been given a new frequency while the clock is gated,
801 * so make sure we regard this as ungating it.
802 */
803 spin_lock_irqsave(&host->clk_lock, flags);
804 host->clk_gated = false;
805 spin_unlock_irqrestore(&host->clk_lock, flags);
806 }
807
808 #else
809 void mmc_set_ungated(struct mmc_host *host)
810 {
811 }
812 #endif
813
814 /*
815 * Change the bus mode (open drain/push-pull) of a host.
816 */
817 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
818 {
819 mmc_host_clk_hold(host);
820 host->ios.bus_mode = mode;
821 mmc_set_ios(host);
822 mmc_host_clk_release(host);
823 }
824
825 /*
826 * Change data bus width of a host.
827 */
828 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
829 {
830 mmc_host_clk_hold(host);
831 host->ios.bus_width = width;
832 mmc_set_ios(host);
833 mmc_host_clk_release(host);
834 }
835
836 /**
837 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
838 * @vdd: voltage (mV)
839 * @low_bits: prefer low bits in boundary cases
840 *
841 * This function returns the OCR bit number according to the provided @vdd
842 * value. If conversion is not possible a negative errno value returned.
843 *
844 * Depending on the @low_bits flag the function prefers low or high OCR bits
845 * on boundary voltages. For example,
846 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
847 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
848 *
849 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
850 */
851 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
852 {
853 const int max_bit = ilog2(MMC_VDD_35_36);
854 int bit;
855
856 if (vdd < 1650 || vdd > 3600)
857 return -EINVAL;
858
859 if (vdd >= 1650 && vdd <= 1950)
860 return ilog2(MMC_VDD_165_195);
861
862 if (low_bits)
863 vdd -= 1;
864
865 /* Base 2000 mV, step 100 mV, bit's base 8. */
866 bit = (vdd - 2000) / 100 + 8;
867 if (bit > max_bit)
868 return max_bit;
869 return bit;
870 }
871
872 /**
873 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
874 * @vdd_min: minimum voltage value (mV)
875 * @vdd_max: maximum voltage value (mV)
876 *
877 * This function returns the OCR mask bits according to the provided @vdd_min
878 * and @vdd_max values. If conversion is not possible the function returns 0.
879 *
880 * Notes wrt boundary cases:
881 * This function sets the OCR bits for all boundary voltages, for example
882 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
883 * MMC_VDD_34_35 mask.
884 */
885 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
886 {
887 u32 mask = 0;
888
889 if (vdd_max < vdd_min)
890 return 0;
891
892 /* Prefer high bits for the boundary vdd_max values. */
893 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
894 if (vdd_max < 0)
895 return 0;
896
897 /* Prefer low bits for the boundary vdd_min values. */
898 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
899 if (vdd_min < 0)
900 return 0;
901
902 /* Fill the mask, from max bit to min bit. */
903 while (vdd_max >= vdd_min)
904 mask |= 1 << vdd_max--;
905
906 return mask;
907 }
908 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
909
910 #ifdef CONFIG_REGULATOR
911
912 /**
913 * mmc_regulator_get_ocrmask - return mask of supported voltages
914 * @supply: regulator to use
915 *
916 * This returns either a negative errno, or a mask of voltages that
917 * can be provided to MMC/SD/SDIO devices using the specified voltage
918 * regulator. This would normally be called before registering the
919 * MMC host adapter.
920 */
921 int mmc_regulator_get_ocrmask(struct regulator *supply)
922 {
923 int result = 0;
924 int count;
925 int i;
926
927 count = regulator_count_voltages(supply);
928 if (count < 0)
929 return count;
930
931 for (i = 0; i < count; i++) {
932 int vdd_uV;
933 int vdd_mV;
934
935 vdd_uV = regulator_list_voltage(supply, i);
936 if (vdd_uV <= 0)
937 continue;
938
939 vdd_mV = vdd_uV / 1000;
940 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
941 }
942
943 return result;
944 }
945 EXPORT_SYMBOL(mmc_regulator_get_ocrmask);
946
947 /**
948 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
949 * @mmc: the host to regulate
950 * @supply: regulator to use
951 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
952 *
953 * Returns zero on success, else negative errno.
954 *
955 * MMC host drivers may use this to enable or disable a regulator using
956 * a particular supply voltage. This would normally be called from the
957 * set_ios() method.
958 */
959 int mmc_regulator_set_ocr(struct mmc_host *mmc,
960 struct regulator *supply,
961 unsigned short vdd_bit)
962 {
963 int result = 0;
964 int min_uV, max_uV;
965
966 if (vdd_bit) {
967 int tmp;
968 int voltage;
969
970 /* REVISIT mmc_vddrange_to_ocrmask() may have set some
971 * bits this regulator doesn't quite support ... don't
972 * be too picky, most cards and regulators are OK with
973 * a 0.1V range goof (it's a small error percentage).
974 */
975 tmp = vdd_bit - ilog2(MMC_VDD_165_195);
976 if (tmp == 0) {
977 min_uV = 1650 * 1000;
978 max_uV = 1950 * 1000;
979 } else {
980 min_uV = 1900 * 1000 + tmp * 100 * 1000;
981 max_uV = min_uV + 100 * 1000;
982 }
983
984 /* avoid needless changes to this voltage; the regulator
985 * might not allow this operation
986 */
987 voltage = regulator_get_voltage(supply);
988 if (voltage < 0)
989 result = voltage;
990 else if (voltage < min_uV || voltage > max_uV)
991 result = regulator_set_voltage(supply, min_uV, max_uV);
992 else
993 result = 0;
994
995 if (result == 0 && !mmc->regulator_enabled) {
996 result = regulator_enable(supply);
997 if (!result)
998 mmc->regulator_enabled = true;
999 }
1000 } else if (mmc->regulator_enabled) {
1001 result = regulator_disable(supply);
1002 if (result == 0)
1003 mmc->regulator_enabled = false;
1004 }
1005
1006 if (result)
1007 dev_err(mmc_dev(mmc),
1008 "could not set regulator OCR (%d)\n", result);
1009 return result;
1010 }
1011 EXPORT_SYMBOL(mmc_regulator_set_ocr);
1012
1013 #endif /* CONFIG_REGULATOR */
1014
1015 /*
1016 * Mask off any voltages we don't support and select
1017 * the lowest voltage
1018 */
1019 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1020 {
1021 int bit;
1022
1023 ocr &= host->ocr_avail;
1024
1025 bit = ffs(ocr);
1026 if (bit) {
1027 bit -= 1;
1028
1029 ocr &= 3 << bit;
1030
1031 mmc_host_clk_hold(host);
1032 host->ios.vdd = bit;
1033 mmc_set_ios(host);
1034 mmc_host_clk_release(host);
1035 } else {
1036 pr_warning("%s: host doesn't support card's voltages\n",
1037 mmc_hostname(host));
1038 ocr = 0;
1039 }
1040
1041 return ocr;
1042 }
1043
1044 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, bool cmd11)
1045 {
1046 struct mmc_command cmd = {0};
1047 int err = 0;
1048
1049 BUG_ON(!host);
1050
1051 /*
1052 * Send CMD11 only if the request is to switch the card to
1053 * 1.8V signalling.
1054 */
1055 if ((signal_voltage != MMC_SIGNAL_VOLTAGE_330) && cmd11) {
1056 cmd.opcode = SD_SWITCH_VOLTAGE;
1057 cmd.arg = 0;
1058 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1059
1060 err = mmc_wait_for_cmd(host, &cmd, 0);
1061 if (err)
1062 return err;
1063
1064 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1065 return -EIO;
1066 }
1067
1068 host->ios.signal_voltage = signal_voltage;
1069
1070 if (host->ops->start_signal_voltage_switch)
1071 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1072
1073 return err;
1074 }
1075
1076 /*
1077 * Select timing parameters for host.
1078 */
1079 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1080 {
1081 mmc_host_clk_hold(host);
1082 host->ios.timing = timing;
1083 mmc_set_ios(host);
1084 mmc_host_clk_release(host);
1085 }
1086
1087 /*
1088 * Select appropriate driver type for host.
1089 */
1090 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1091 {
1092 mmc_host_clk_hold(host);
1093 host->ios.drv_type = drv_type;
1094 mmc_set_ios(host);
1095 mmc_host_clk_release(host);
1096 }
1097
1098 /*
1099 * Apply power to the MMC stack. This is a two-stage process.
1100 * First, we enable power to the card without the clock running.
1101 * We then wait a bit for the power to stabilise. Finally,
1102 * enable the bus drivers and clock to the card.
1103 *
1104 * We must _NOT_ enable the clock prior to power stablising.
1105 *
1106 * If a host does all the power sequencing itself, ignore the
1107 * initial MMC_POWER_UP stage.
1108 */
1109 static void mmc_power_up(struct mmc_host *host)
1110 {
1111 int bit;
1112
1113 mmc_host_clk_hold(host);
1114
1115 /* If ocr is set, we use it */
1116 if (host->ocr)
1117 bit = ffs(host->ocr) - 1;
1118 else
1119 bit = fls(host->ocr_avail) - 1;
1120
1121 host->ios.vdd = bit;
1122 if (mmc_host_is_spi(host)) {
1123 host->ios.chip_select = MMC_CS_HIGH;
1124 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1125 } else {
1126 host->ios.chip_select = MMC_CS_DONTCARE;
1127 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1128 }
1129 host->ios.power_mode = MMC_POWER_UP;
1130 host->ios.bus_width = MMC_BUS_WIDTH_1;
1131 host->ios.timing = MMC_TIMING_LEGACY;
1132 mmc_set_ios(host);
1133
1134 /*
1135 * This delay should be sufficient to allow the power supply
1136 * to reach the minimum voltage.
1137 */
1138 mmc_delay(10);
1139
1140 host->ios.clock = host->f_init;
1141
1142 host->ios.power_mode = MMC_POWER_ON;
1143 mmc_set_ios(host);
1144
1145 /*
1146 * This delay must be at least 74 clock sizes, or 1 ms, or the
1147 * time required to reach a stable voltage.
1148 */
1149 mmc_delay(10);
1150
1151 mmc_host_clk_release(host);
1152 }
1153
1154 static void mmc_power_off(struct mmc_host *host)
1155 {
1156 mmc_host_clk_hold(host);
1157
1158 host->ios.clock = 0;
1159 host->ios.vdd = 0;
1160
1161 /*
1162 * Reset ocr mask to be the highest possible voltage supported for
1163 * this mmc host. This value will be used at next power up.
1164 */
1165 host->ocr = 1 << (fls(host->ocr_avail) - 1);
1166
1167 if (!mmc_host_is_spi(host)) {
1168 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1169 host->ios.chip_select = MMC_CS_DONTCARE;
1170 }
1171 host->ios.power_mode = MMC_POWER_OFF;
1172 host->ios.bus_width = MMC_BUS_WIDTH_1;
1173 host->ios.timing = MMC_TIMING_LEGACY;
1174 mmc_set_ios(host);
1175
1176 mmc_host_clk_release(host);
1177 }
1178
1179 /*
1180 * Cleanup when the last reference to the bus operator is dropped.
1181 */
1182 static void __mmc_release_bus(struct mmc_host *host)
1183 {
1184 BUG_ON(!host);
1185 BUG_ON(host->bus_refs);
1186 BUG_ON(!host->bus_dead);
1187
1188 host->bus_ops = NULL;
1189 }
1190
1191 /*
1192 * Increase reference count of bus operator
1193 */
1194 static inline void mmc_bus_get(struct mmc_host *host)
1195 {
1196 unsigned long flags;
1197
1198 spin_lock_irqsave(&host->lock, flags);
1199 host->bus_refs++;
1200 spin_unlock_irqrestore(&host->lock, flags);
1201 }
1202
1203 /*
1204 * Decrease reference count of bus operator and free it if
1205 * it is the last reference.
1206 */
1207 static inline void mmc_bus_put(struct mmc_host *host)
1208 {
1209 unsigned long flags;
1210
1211 spin_lock_irqsave(&host->lock, flags);
1212 host->bus_refs--;
1213 if ((host->bus_refs == 0) && host->bus_ops)
1214 __mmc_release_bus(host);
1215 spin_unlock_irqrestore(&host->lock, flags);
1216 }
1217
1218 /*
1219 * Assign a mmc bus handler to a host. Only one bus handler may control a
1220 * host at any given time.
1221 */
1222 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1223 {
1224 unsigned long flags;
1225
1226 BUG_ON(!host);
1227 BUG_ON(!ops);
1228
1229 WARN_ON(!host->claimed);
1230
1231 spin_lock_irqsave(&host->lock, flags);
1232
1233 BUG_ON(host->bus_ops);
1234 BUG_ON(host->bus_refs);
1235
1236 host->bus_ops = ops;
1237 host->bus_refs = 1;
1238 host->bus_dead = 0;
1239
1240 spin_unlock_irqrestore(&host->lock, flags);
1241 }
1242
1243 /*
1244 * Remove the current bus handler from a host. Assumes that there are
1245 * no interesting cards left, so the bus is powered down.
1246 */
1247 void mmc_detach_bus(struct mmc_host *host)
1248 {
1249 unsigned long flags;
1250
1251 BUG_ON(!host);
1252
1253 WARN_ON(!host->claimed);
1254 WARN_ON(!host->bus_ops);
1255
1256 spin_lock_irqsave(&host->lock, flags);
1257
1258 host->bus_dead = 1;
1259
1260 spin_unlock_irqrestore(&host->lock, flags);
1261
1262 mmc_power_off(host);
1263
1264 mmc_bus_put(host);
1265 }
1266
1267 /**
1268 * mmc_detect_change - process change of state on a MMC socket
1269 * @host: host which changed state.
1270 * @delay: optional delay to wait before detection (jiffies)
1271 *
1272 * MMC drivers should call this when they detect a card has been
1273 * inserted or removed. The MMC layer will confirm that any
1274 * present card is still functional, and initialize any newly
1275 * inserted.
1276 */
1277 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1278 {
1279 #ifdef CONFIG_MMC_DEBUG
1280 unsigned long flags;
1281 spin_lock_irqsave(&host->lock, flags);
1282 WARN_ON(host->removed);
1283 spin_unlock_irqrestore(&host->lock, flags);
1284 #endif
1285
1286 mmc_schedule_delayed_work(&host->detect, delay);
1287 }
1288
1289 EXPORT_SYMBOL(mmc_detect_change);
1290
1291 void mmc_init_erase(struct mmc_card *card)
1292 {
1293 unsigned int sz;
1294
1295 if (is_power_of_2(card->erase_size))
1296 card->erase_shift = ffs(card->erase_size) - 1;
1297 else
1298 card->erase_shift = 0;
1299
1300 /*
1301 * It is possible to erase an arbitrarily large area of an SD or MMC
1302 * card. That is not desirable because it can take a long time
1303 * (minutes) potentially delaying more important I/O, and also the
1304 * timeout calculations become increasingly hugely over-estimated.
1305 * Consequently, 'pref_erase' is defined as a guide to limit erases
1306 * to that size and alignment.
1307 *
1308 * For SD cards that define Allocation Unit size, limit erases to one
1309 * Allocation Unit at a time. For MMC cards that define High Capacity
1310 * Erase Size, whether it is switched on or not, limit to that size.
1311 * Otherwise just have a stab at a good value. For modern cards it
1312 * will end up being 4MiB. Note that if the value is too small, it
1313 * can end up taking longer to erase.
1314 */
1315 if (mmc_card_sd(card) && card->ssr.au) {
1316 card->pref_erase = card->ssr.au;
1317 card->erase_shift = ffs(card->ssr.au) - 1;
1318 } else if (card->ext_csd.hc_erase_size) {
1319 card->pref_erase = card->ext_csd.hc_erase_size;
1320 } else {
1321 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1322 if (sz < 128)
1323 card->pref_erase = 512 * 1024 / 512;
1324 else if (sz < 512)
1325 card->pref_erase = 1024 * 1024 / 512;
1326 else if (sz < 1024)
1327 card->pref_erase = 2 * 1024 * 1024 / 512;
1328 else
1329 card->pref_erase = 4 * 1024 * 1024 / 512;
1330 if (card->pref_erase < card->erase_size)
1331 card->pref_erase = card->erase_size;
1332 else {
1333 sz = card->pref_erase % card->erase_size;
1334 if (sz)
1335 card->pref_erase += card->erase_size - sz;
1336 }
1337 }
1338 }
1339
1340 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1341 unsigned int arg, unsigned int qty)
1342 {
1343 unsigned int erase_timeout;
1344
1345 if (card->ext_csd.erase_group_def & 1) {
1346 /* High Capacity Erase Group Size uses HC timeouts */
1347 if (arg == MMC_TRIM_ARG)
1348 erase_timeout = card->ext_csd.trim_timeout;
1349 else
1350 erase_timeout = card->ext_csd.hc_erase_timeout;
1351 } else {
1352 /* CSD Erase Group Size uses write timeout */
1353 unsigned int mult = (10 << card->csd.r2w_factor);
1354 unsigned int timeout_clks = card->csd.tacc_clks * mult;
1355 unsigned int timeout_us;
1356
1357 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1358 if (card->csd.tacc_ns < 1000000)
1359 timeout_us = (card->csd.tacc_ns * mult) / 1000;
1360 else
1361 timeout_us = (card->csd.tacc_ns / 1000) * mult;
1362
1363 /*
1364 * ios.clock is only a target. The real clock rate might be
1365 * less but not that much less, so fudge it by multiplying by 2.
1366 */
1367 timeout_clks <<= 1;
1368 timeout_us += (timeout_clks * 1000) /
1369 (mmc_host_clk_rate(card->host) / 1000);
1370
1371 erase_timeout = timeout_us / 1000;
1372
1373 /*
1374 * Theoretically, the calculation could underflow so round up
1375 * to 1ms in that case.
1376 */
1377 if (!erase_timeout)
1378 erase_timeout = 1;
1379 }
1380
1381 /* Multiplier for secure operations */
1382 if (arg & MMC_SECURE_ARGS) {
1383 if (arg == MMC_SECURE_ERASE_ARG)
1384 erase_timeout *= card->ext_csd.sec_erase_mult;
1385 else
1386 erase_timeout *= card->ext_csd.sec_trim_mult;
1387 }
1388
1389 erase_timeout *= qty;
1390
1391 /*
1392 * Ensure at least a 1 second timeout for SPI as per
1393 * 'mmc_set_data_timeout()'
1394 */
1395 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1396 erase_timeout = 1000;
1397
1398 return erase_timeout;
1399 }
1400
1401 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1402 unsigned int arg,
1403 unsigned int qty)
1404 {
1405 unsigned int erase_timeout;
1406
1407 if (card->ssr.erase_timeout) {
1408 /* Erase timeout specified in SD Status Register (SSR) */
1409 erase_timeout = card->ssr.erase_timeout * qty +
1410 card->ssr.erase_offset;
1411 } else {
1412 /*
1413 * Erase timeout not specified in SD Status Register (SSR) so
1414 * use 250ms per write block.
1415 */
1416 erase_timeout = 250 * qty;
1417 }
1418
1419 /* Must not be less than 1 second */
1420 if (erase_timeout < 1000)
1421 erase_timeout = 1000;
1422
1423 return erase_timeout;
1424 }
1425
1426 static unsigned int mmc_erase_timeout(struct mmc_card *card,
1427 unsigned int arg,
1428 unsigned int qty)
1429 {
1430 if (mmc_card_sd(card))
1431 return mmc_sd_erase_timeout(card, arg, qty);
1432 else
1433 return mmc_mmc_erase_timeout(card, arg, qty);
1434 }
1435
1436 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1437 unsigned int to, unsigned int arg)
1438 {
1439 struct mmc_command cmd = {0};
1440 unsigned int qty = 0;
1441 int err;
1442
1443 /*
1444 * qty is used to calculate the erase timeout which depends on how many
1445 * erase groups (or allocation units in SD terminology) are affected.
1446 * We count erasing part of an erase group as one erase group.
1447 * For SD, the allocation units are always a power of 2. For MMC, the
1448 * erase group size is almost certainly also power of 2, but it does not
1449 * seem to insist on that in the JEDEC standard, so we fall back to
1450 * division in that case. SD may not specify an allocation unit size,
1451 * in which case the timeout is based on the number of write blocks.
1452 *
1453 * Note that the timeout for secure trim 2 will only be correct if the
1454 * number of erase groups specified is the same as the total of all
1455 * preceding secure trim 1 commands. Since the power may have been
1456 * lost since the secure trim 1 commands occurred, it is generally
1457 * impossible to calculate the secure trim 2 timeout correctly.
1458 */
1459 if (card->erase_shift)
1460 qty += ((to >> card->erase_shift) -
1461 (from >> card->erase_shift)) + 1;
1462 else if (mmc_card_sd(card))
1463 qty += to - from + 1;
1464 else
1465 qty += ((to / card->erase_size) -
1466 (from / card->erase_size)) + 1;
1467
1468 if (!mmc_card_blockaddr(card)) {
1469 from <<= 9;
1470 to <<= 9;
1471 }
1472
1473 if (mmc_card_sd(card))
1474 cmd.opcode = SD_ERASE_WR_BLK_START;
1475 else
1476 cmd.opcode = MMC_ERASE_GROUP_START;
1477 cmd.arg = from;
1478 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1479 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1480 if (err) {
1481 printk(KERN_ERR "mmc_erase: group start error %d, "
1482 "status %#x\n", err, cmd.resp[0]);
1483 err = -EINVAL;
1484 goto out;
1485 }
1486
1487 memset(&cmd, 0, sizeof(struct mmc_command));
1488 if (mmc_card_sd(card))
1489 cmd.opcode = SD_ERASE_WR_BLK_END;
1490 else
1491 cmd.opcode = MMC_ERASE_GROUP_END;
1492 cmd.arg = to;
1493 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1494 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1495 if (err) {
1496 printk(KERN_ERR "mmc_erase: group end error %d, status %#x\n",
1497 err, cmd.resp[0]);
1498 err = -EINVAL;
1499 goto out;
1500 }
1501
1502 memset(&cmd, 0, sizeof(struct mmc_command));
1503 cmd.opcode = MMC_ERASE;
1504 cmd.arg = arg;
1505 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1506 cmd.cmd_timeout_ms = mmc_erase_timeout(card, arg, qty);
1507 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1508 if (err) {
1509 printk(KERN_ERR "mmc_erase: erase error %d, status %#x\n",
1510 err, cmd.resp[0]);
1511 err = -EIO;
1512 goto out;
1513 }
1514
1515 if (mmc_host_is_spi(card->host))
1516 goto out;
1517
1518 do {
1519 memset(&cmd, 0, sizeof(struct mmc_command));
1520 cmd.opcode = MMC_SEND_STATUS;
1521 cmd.arg = card->rca << 16;
1522 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1523 /* Do not retry else we can't see errors */
1524 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1525 if (err || (cmd.resp[0] & 0xFDF92000)) {
1526 printk(KERN_ERR "error %d requesting status %#x\n",
1527 err, cmd.resp[0]);
1528 err = -EIO;
1529 goto out;
1530 }
1531 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
1532 R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG);
1533 out:
1534 return err;
1535 }
1536
1537 /**
1538 * mmc_erase - erase sectors.
1539 * @card: card to erase
1540 * @from: first sector to erase
1541 * @nr: number of sectors to erase
1542 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
1543 *
1544 * Caller must claim host before calling this function.
1545 */
1546 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1547 unsigned int arg)
1548 {
1549 unsigned int rem, to = from + nr;
1550
1551 if (!(card->host->caps & MMC_CAP_ERASE) ||
1552 !(card->csd.cmdclass & CCC_ERASE))
1553 return -EOPNOTSUPP;
1554
1555 if (!card->erase_size)
1556 return -EOPNOTSUPP;
1557
1558 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
1559 return -EOPNOTSUPP;
1560
1561 if ((arg & MMC_SECURE_ARGS) &&
1562 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1563 return -EOPNOTSUPP;
1564
1565 if ((arg & MMC_TRIM_ARGS) &&
1566 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1567 return -EOPNOTSUPP;
1568
1569 if (arg == MMC_SECURE_ERASE_ARG) {
1570 if (from % card->erase_size || nr % card->erase_size)
1571 return -EINVAL;
1572 }
1573
1574 if (arg == MMC_ERASE_ARG) {
1575 rem = from % card->erase_size;
1576 if (rem) {
1577 rem = card->erase_size - rem;
1578 from += rem;
1579 if (nr > rem)
1580 nr -= rem;
1581 else
1582 return 0;
1583 }
1584 rem = nr % card->erase_size;
1585 if (rem)
1586 nr -= rem;
1587 }
1588
1589 if (nr == 0)
1590 return 0;
1591
1592 to = from + nr;
1593
1594 if (to <= from)
1595 return -EINVAL;
1596
1597 /* 'from' and 'to' are inclusive */
1598 to -= 1;
1599
1600 return mmc_do_erase(card, from, to, arg);
1601 }
1602 EXPORT_SYMBOL(mmc_erase);
1603
1604 int mmc_can_erase(struct mmc_card *card)
1605 {
1606 if ((card->host->caps & MMC_CAP_ERASE) &&
1607 (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
1608 return 1;
1609 return 0;
1610 }
1611 EXPORT_SYMBOL(mmc_can_erase);
1612
1613 int mmc_can_trim(struct mmc_card *card)
1614 {
1615 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
1616 return 1;
1617 return 0;
1618 }
1619 EXPORT_SYMBOL(mmc_can_trim);
1620
1621 int mmc_can_secure_erase_trim(struct mmc_card *card)
1622 {
1623 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)
1624 return 1;
1625 return 0;
1626 }
1627 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1628
1629 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1630 unsigned int nr)
1631 {
1632 if (!card->erase_size)
1633 return 0;
1634 if (from % card->erase_size || nr % card->erase_size)
1635 return 0;
1636 return 1;
1637 }
1638 EXPORT_SYMBOL(mmc_erase_group_aligned);
1639
1640 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1641 unsigned int arg)
1642 {
1643 struct mmc_host *host = card->host;
1644 unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
1645 unsigned int last_timeout = 0;
1646
1647 if (card->erase_shift)
1648 max_qty = UINT_MAX >> card->erase_shift;
1649 else if (mmc_card_sd(card))
1650 max_qty = UINT_MAX;
1651 else
1652 max_qty = UINT_MAX / card->erase_size;
1653
1654 /* Find the largest qty with an OK timeout */
1655 do {
1656 y = 0;
1657 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1658 timeout = mmc_erase_timeout(card, arg, qty + x);
1659 if (timeout > host->max_discard_to)
1660 break;
1661 if (timeout < last_timeout)
1662 break;
1663 last_timeout = timeout;
1664 y = x;
1665 }
1666 qty += y;
1667 } while (y);
1668
1669 if (!qty)
1670 return 0;
1671
1672 if (qty == 1)
1673 return 1;
1674
1675 /* Convert qty to sectors */
1676 if (card->erase_shift)
1677 max_discard = --qty << card->erase_shift;
1678 else if (mmc_card_sd(card))
1679 max_discard = qty;
1680 else
1681 max_discard = --qty * card->erase_size;
1682
1683 return max_discard;
1684 }
1685
1686 unsigned int mmc_calc_max_discard(struct mmc_card *card)
1687 {
1688 struct mmc_host *host = card->host;
1689 unsigned int max_discard, max_trim;
1690
1691 if (!host->max_discard_to)
1692 return UINT_MAX;
1693
1694 /*
1695 * Without erase_group_def set, MMC erase timeout depends on clock
1696 * frequence which can change. In that case, the best choice is
1697 * just the preferred erase size.
1698 */
1699 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
1700 return card->pref_erase;
1701
1702 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
1703 if (mmc_can_trim(card)) {
1704 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
1705 if (max_trim < max_discard)
1706 max_discard = max_trim;
1707 } else if (max_discard < card->erase_size) {
1708 max_discard = 0;
1709 }
1710 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
1711 mmc_hostname(host), max_discard, host->max_discard_to);
1712 return max_discard;
1713 }
1714 EXPORT_SYMBOL(mmc_calc_max_discard);
1715
1716 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
1717 {
1718 struct mmc_command cmd = {0};
1719
1720 if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card))
1721 return 0;
1722
1723 cmd.opcode = MMC_SET_BLOCKLEN;
1724 cmd.arg = blocklen;
1725 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1726 return mmc_wait_for_cmd(card->host, &cmd, 5);
1727 }
1728 EXPORT_SYMBOL(mmc_set_blocklen);
1729
1730 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
1731 {
1732 host->f_init = freq;
1733
1734 #ifdef CONFIG_MMC_DEBUG
1735 pr_info("%s: %s: trying to init card at %u Hz\n",
1736 mmc_hostname(host), __func__, host->f_init);
1737 #endif
1738 mmc_power_up(host);
1739
1740 /*
1741 * sdio_reset sends CMD52 to reset card. Since we do not know
1742 * if the card is being re-initialized, just send it. CMD52
1743 * should be ignored by SD/eMMC cards.
1744 */
1745 sdio_reset(host);
1746 mmc_go_idle(host);
1747
1748 mmc_send_if_cond(host, host->ocr_avail);
1749
1750 /* Order's important: probe SDIO, then SD, then MMC */
1751 if (!mmc_attach_sdio(host))
1752 return 0;
1753 if (!mmc_attach_sd(host))
1754 return 0;
1755 if (!mmc_attach_mmc(host))
1756 return 0;
1757
1758 mmc_power_off(host);
1759 return -EIO;
1760 }
1761
1762 void mmc_rescan(struct work_struct *work)
1763 {
1764 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
1765 struct mmc_host *host =
1766 container_of(work, struct mmc_host, detect.work);
1767 int i;
1768
1769 if (host->rescan_disable)
1770 return;
1771
1772 mmc_bus_get(host);
1773
1774 /*
1775 * if there is a _removable_ card registered, check whether it is
1776 * still present
1777 */
1778 if (host->bus_ops && host->bus_ops->detect && !host->bus_dead
1779 && !(host->caps & MMC_CAP_NONREMOVABLE))
1780 host->bus_ops->detect(host);
1781
1782 /*
1783 * Let mmc_bus_put() free the bus/bus_ops if we've found that
1784 * the card is no longer present.
1785 */
1786 mmc_bus_put(host);
1787 mmc_bus_get(host);
1788
1789 /* if there still is a card present, stop here */
1790 if (host->bus_ops != NULL) {
1791 mmc_bus_put(host);
1792 goto out;
1793 }
1794
1795 /*
1796 * Only we can add a new handler, so it's safe to
1797 * release the lock here.
1798 */
1799 mmc_bus_put(host);
1800
1801 if (host->ops->get_cd && host->ops->get_cd(host) == 0)
1802 goto out;
1803
1804 mmc_claim_host(host);
1805 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
1806 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
1807 break;
1808 if (freqs[i] <= host->f_min)
1809 break;
1810 }
1811 mmc_release_host(host);
1812
1813 out:
1814 if (host->caps & MMC_CAP_NEEDS_POLL)
1815 mmc_schedule_delayed_work(&host->detect, HZ);
1816 }
1817
1818 void mmc_start_host(struct mmc_host *host)
1819 {
1820 mmc_power_off(host);
1821 mmc_detect_change(host, 0);
1822 }
1823
1824 void mmc_stop_host(struct mmc_host *host)
1825 {
1826 #ifdef CONFIG_MMC_DEBUG
1827 unsigned long flags;
1828 spin_lock_irqsave(&host->lock, flags);
1829 host->removed = 1;
1830 spin_unlock_irqrestore(&host->lock, flags);
1831 #endif
1832
1833 if (host->caps & MMC_CAP_DISABLE)
1834 cancel_delayed_work(&host->disable);
1835 cancel_delayed_work_sync(&host->detect);
1836 mmc_flush_scheduled_work();
1837
1838 /* clear pm flags now and let card drivers set them as needed */
1839 host->pm_flags = 0;
1840
1841 mmc_bus_get(host);
1842 if (host->bus_ops && !host->bus_dead) {
1843 if (host->bus_ops->remove)
1844 host->bus_ops->remove(host);
1845
1846 mmc_claim_host(host);
1847 mmc_detach_bus(host);
1848 mmc_release_host(host);
1849 mmc_bus_put(host);
1850 return;
1851 }
1852 mmc_bus_put(host);
1853
1854 BUG_ON(host->card);
1855
1856 mmc_power_off(host);
1857 }
1858
1859 int mmc_power_save_host(struct mmc_host *host)
1860 {
1861 int ret = 0;
1862
1863 #ifdef CONFIG_MMC_DEBUG
1864 pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
1865 #endif
1866
1867 mmc_bus_get(host);
1868
1869 if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
1870 mmc_bus_put(host);
1871 return -EINVAL;
1872 }
1873
1874 if (host->bus_ops->power_save)
1875 ret = host->bus_ops->power_save(host);
1876
1877 mmc_bus_put(host);
1878
1879 mmc_power_off(host);
1880
1881 return ret;
1882 }
1883 EXPORT_SYMBOL(mmc_power_save_host);
1884
1885 int mmc_power_restore_host(struct mmc_host *host)
1886 {
1887 int ret;
1888
1889 #ifdef CONFIG_MMC_DEBUG
1890 pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
1891 #endif
1892
1893 mmc_bus_get(host);
1894
1895 if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
1896 mmc_bus_put(host);
1897 return -EINVAL;
1898 }
1899
1900 mmc_power_up(host);
1901 ret = host->bus_ops->power_restore(host);
1902
1903 mmc_bus_put(host);
1904
1905 return ret;
1906 }
1907 EXPORT_SYMBOL(mmc_power_restore_host);
1908
1909 int mmc_card_awake(struct mmc_host *host)
1910 {
1911 int err = -ENOSYS;
1912
1913 mmc_bus_get(host);
1914
1915 if (host->bus_ops && !host->bus_dead && host->bus_ops->awake)
1916 err = host->bus_ops->awake(host);
1917
1918 mmc_bus_put(host);
1919
1920 return err;
1921 }
1922 EXPORT_SYMBOL(mmc_card_awake);
1923
1924 int mmc_card_sleep(struct mmc_host *host)
1925 {
1926 int err = -ENOSYS;
1927
1928 mmc_bus_get(host);
1929
1930 if (host->bus_ops && !host->bus_dead && host->bus_ops->awake)
1931 err = host->bus_ops->sleep(host);
1932
1933 mmc_bus_put(host);
1934
1935 return err;
1936 }
1937 EXPORT_SYMBOL(mmc_card_sleep);
1938
1939 int mmc_card_can_sleep(struct mmc_host *host)
1940 {
1941 struct mmc_card *card = host->card;
1942
1943 if (card && mmc_card_mmc(card) && card->ext_csd.rev >= 3)
1944 return 1;
1945 return 0;
1946 }
1947 EXPORT_SYMBOL(mmc_card_can_sleep);
1948
1949 #ifdef CONFIG_PM
1950
1951 /**
1952 * mmc_suspend_host - suspend a host
1953 * @host: mmc host
1954 */
1955 int mmc_suspend_host(struct mmc_host *host)
1956 {
1957 int err = 0;
1958
1959 if (host->caps & MMC_CAP_DISABLE)
1960 cancel_delayed_work(&host->disable);
1961 cancel_delayed_work(&host->detect);
1962 mmc_flush_scheduled_work();
1963
1964 mmc_bus_get(host);
1965 if (host->bus_ops && !host->bus_dead) {
1966 if (host->bus_ops->suspend)
1967 err = host->bus_ops->suspend(host);
1968 if (err == -ENOSYS || !host->bus_ops->resume) {
1969 /*
1970 * We simply "remove" the card in this case.
1971 * It will be redetected on resume.
1972 */
1973 if (host->bus_ops->remove)
1974 host->bus_ops->remove(host);
1975 mmc_claim_host(host);
1976 mmc_detach_bus(host);
1977 mmc_release_host(host);
1978 host->pm_flags = 0;
1979 err = 0;
1980 }
1981 }
1982 mmc_bus_put(host);
1983
1984 if (!err && !mmc_card_keep_power(host))
1985 mmc_power_off(host);
1986
1987 return err;
1988 }
1989
1990 EXPORT_SYMBOL(mmc_suspend_host);
1991
1992 /**
1993 * mmc_resume_host - resume a previously suspended host
1994 * @host: mmc host
1995 */
1996 int mmc_resume_host(struct mmc_host *host)
1997 {
1998 int err = 0;
1999
2000 mmc_bus_get(host);
2001 if (host->bus_ops && !host->bus_dead) {
2002 if (!mmc_card_keep_power(host)) {
2003 mmc_power_up(host);
2004 mmc_select_voltage(host, host->ocr);
2005 /*
2006 * Tell runtime PM core we just powered up the card,
2007 * since it still believes the card is powered off.
2008 * Note that currently runtime PM is only enabled
2009 * for SDIO cards that are MMC_CAP_POWER_OFF_CARD
2010 */
2011 if (mmc_card_sdio(host->card) &&
2012 (host->caps & MMC_CAP_POWER_OFF_CARD)) {
2013 pm_runtime_disable(&host->card->dev);
2014 pm_runtime_set_active(&host->card->dev);
2015 pm_runtime_enable(&host->card->dev);
2016 }
2017 }
2018 BUG_ON(!host->bus_ops->resume);
2019 err = host->bus_ops->resume(host);
2020 if (err) {
2021 printk(KERN_WARNING "%s: error %d during resume "
2022 "(card was removed?)\n",
2023 mmc_hostname(host), err);
2024 err = 0;
2025 }
2026 }
2027 host->pm_flags &= ~MMC_PM_KEEP_POWER;
2028 mmc_bus_put(host);
2029
2030 return err;
2031 }
2032 EXPORT_SYMBOL(mmc_resume_host);
2033
2034 /* Do the card removal on suspend if card is assumed removeable
2035 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2036 to sync the card.
2037 */
2038 int mmc_pm_notify(struct notifier_block *notify_block,
2039 unsigned long mode, void *unused)
2040 {
2041 struct mmc_host *host = container_of(
2042 notify_block, struct mmc_host, pm_notify);
2043 unsigned long flags;
2044
2045
2046 switch (mode) {
2047 case PM_HIBERNATION_PREPARE:
2048 case PM_SUSPEND_PREPARE:
2049
2050 spin_lock_irqsave(&host->lock, flags);
2051 host->rescan_disable = 1;
2052 spin_unlock_irqrestore(&host->lock, flags);
2053 cancel_delayed_work_sync(&host->detect);
2054
2055 if (!host->bus_ops || host->bus_ops->suspend)
2056 break;
2057
2058 mmc_claim_host(host);
2059
2060 if (host->bus_ops->remove)
2061 host->bus_ops->remove(host);
2062
2063 mmc_detach_bus(host);
2064 mmc_release_host(host);
2065 host->pm_flags = 0;
2066 break;
2067
2068 case PM_POST_SUSPEND:
2069 case PM_POST_HIBERNATION:
2070 case PM_POST_RESTORE:
2071
2072 spin_lock_irqsave(&host->lock, flags);
2073 host->rescan_disable = 0;
2074 spin_unlock_irqrestore(&host->lock, flags);
2075 mmc_detect_change(host, 0);
2076
2077 }
2078
2079 return 0;
2080 }
2081 #endif
2082
2083 static int __init mmc_init(void)
2084 {
2085 int ret;
2086
2087 workqueue = alloc_ordered_workqueue("kmmcd", 0);
2088 if (!workqueue)
2089 return -ENOMEM;
2090
2091 ret = mmc_register_bus();
2092 if (ret)
2093 goto destroy_workqueue;
2094
2095 ret = mmc_register_host_class();
2096 if (ret)
2097 goto unregister_bus;
2098
2099 ret = sdio_register_bus();
2100 if (ret)
2101 goto unregister_host_class;
2102
2103 return 0;
2104
2105 unregister_host_class:
2106 mmc_unregister_host_class();
2107 unregister_bus:
2108 mmc_unregister_bus();
2109 destroy_workqueue:
2110 destroy_workqueue(workqueue);
2111
2112 return ret;
2113 }
2114
2115 static void __exit mmc_exit(void)
2116 {
2117 sdio_unregister_bus();
2118 mmc_unregister_host_class();
2119 mmc_unregister_bus();
2120 destroy_workqueue(workqueue);
2121 }
2122
2123 subsys_initcall(mmc_init);
2124 module_exit(mmc_exit);
2125
2126 MODULE_LICENSE("GPL");
This page took 0.125463 seconds and 5 git commands to generate.