mmc: dw_mmc: add hw_reset support
[deliverable/linux.git] / drivers / mmc / host / dw_mmc.c
1 /*
2 * Synopsys DesignWare Multimedia Card Interface driver
3 * (Based on NXP driver for lpc 31xx)
4 *
5 * Copyright (C) 2009 NXP Semiconductors
6 * Copyright (C) 2009, 2010 Imagination Technologies Ltd.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 */
13
14 #include <linux/blkdev.h>
15 #include <linux/clk.h>
16 #include <linux/debugfs.h>
17 #include <linux/device.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/err.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/ioport.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/seq_file.h>
26 #include <linux/slab.h>
27 #include <linux/stat.h>
28 #include <linux/delay.h>
29 #include <linux/irq.h>
30 #include <linux/mmc/card.h>
31 #include <linux/mmc/host.h>
32 #include <linux/mmc/mmc.h>
33 #include <linux/mmc/sd.h>
34 #include <linux/mmc/sdio.h>
35 #include <linux/mmc/dw_mmc.h>
36 #include <linux/bitops.h>
37 #include <linux/regulator/consumer.h>
38 #include <linux/of.h>
39 #include <linux/of_gpio.h>
40 #include <linux/mmc/slot-gpio.h>
41
42 #include "dw_mmc.h"
43
44 /* Common flag combinations */
45 #define DW_MCI_DATA_ERROR_FLAGS (SDMMC_INT_DRTO | SDMMC_INT_DCRC | \
46 SDMMC_INT_HTO | SDMMC_INT_SBE | \
47 SDMMC_INT_EBE)
48 #define DW_MCI_CMD_ERROR_FLAGS (SDMMC_INT_RTO | SDMMC_INT_RCRC | \
49 SDMMC_INT_RESP_ERR)
50 #define DW_MCI_ERROR_FLAGS (DW_MCI_DATA_ERROR_FLAGS | \
51 DW_MCI_CMD_ERROR_FLAGS | SDMMC_INT_HLE)
52 #define DW_MCI_SEND_STATUS 1
53 #define DW_MCI_RECV_STATUS 2
54 #define DW_MCI_DMA_THRESHOLD 16
55
56 #define DW_MCI_FREQ_MAX 200000000 /* unit: HZ */
57 #define DW_MCI_FREQ_MIN 400000 /* unit: HZ */
58
59 #define IDMAC_INT_CLR (SDMMC_IDMAC_INT_AI | SDMMC_IDMAC_INT_NI | \
60 SDMMC_IDMAC_INT_CES | SDMMC_IDMAC_INT_DU | \
61 SDMMC_IDMAC_INT_FBE | SDMMC_IDMAC_INT_RI | \
62 SDMMC_IDMAC_INT_TI)
63
64 struct idmac_desc_64addr {
65 u32 des0; /* Control Descriptor */
66
67 u32 des1; /* Reserved */
68
69 u32 des2; /*Buffer sizes */
70 #define IDMAC_64ADDR_SET_BUFFER1_SIZE(d, s) \
71 ((d)->des2 = ((d)->des2 & cpu_to_le32(0x03ffe000)) | \
72 ((cpu_to_le32(s)) & cpu_to_le32(0x1fff)))
73
74 u32 des3; /* Reserved */
75
76 u32 des4; /* Lower 32-bits of Buffer Address Pointer 1*/
77 u32 des5; /* Upper 32-bits of Buffer Address Pointer 1*/
78
79 u32 des6; /* Lower 32-bits of Next Descriptor Address */
80 u32 des7; /* Upper 32-bits of Next Descriptor Address */
81 };
82
83 struct idmac_desc {
84 __le32 des0; /* Control Descriptor */
85 #define IDMAC_DES0_DIC BIT(1)
86 #define IDMAC_DES0_LD BIT(2)
87 #define IDMAC_DES0_FD BIT(3)
88 #define IDMAC_DES0_CH BIT(4)
89 #define IDMAC_DES0_ER BIT(5)
90 #define IDMAC_DES0_CES BIT(30)
91 #define IDMAC_DES0_OWN BIT(31)
92
93 __le32 des1; /* Buffer sizes */
94 #define IDMAC_SET_BUFFER1_SIZE(d, s) \
95 ((d)->des1 = ((d)->des1 & 0x03ffe000) | ((s) & 0x1fff))
96
97 __le32 des2; /* buffer 1 physical address */
98
99 __le32 des3; /* buffer 2 physical address */
100 };
101
102 /* Each descriptor can transfer up to 4KB of data in chained mode */
103 #define DW_MCI_DESC_DATA_LENGTH 0x1000
104
105 static bool dw_mci_reset(struct dw_mci *host);
106 static bool dw_mci_ctrl_reset(struct dw_mci *host, u32 reset);
107 static int dw_mci_card_busy(struct mmc_host *mmc);
108
109 #if defined(CONFIG_DEBUG_FS)
110 static int dw_mci_req_show(struct seq_file *s, void *v)
111 {
112 struct dw_mci_slot *slot = s->private;
113 struct mmc_request *mrq;
114 struct mmc_command *cmd;
115 struct mmc_command *stop;
116 struct mmc_data *data;
117
118 /* Make sure we get a consistent snapshot */
119 spin_lock_bh(&slot->host->lock);
120 mrq = slot->mrq;
121
122 if (mrq) {
123 cmd = mrq->cmd;
124 data = mrq->data;
125 stop = mrq->stop;
126
127 if (cmd)
128 seq_printf(s,
129 "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
130 cmd->opcode, cmd->arg, cmd->flags,
131 cmd->resp[0], cmd->resp[1], cmd->resp[2],
132 cmd->resp[2], cmd->error);
133 if (data)
134 seq_printf(s, "DATA %u / %u * %u flg %x err %d\n",
135 data->bytes_xfered, data->blocks,
136 data->blksz, data->flags, data->error);
137 if (stop)
138 seq_printf(s,
139 "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
140 stop->opcode, stop->arg, stop->flags,
141 stop->resp[0], stop->resp[1], stop->resp[2],
142 stop->resp[2], stop->error);
143 }
144
145 spin_unlock_bh(&slot->host->lock);
146
147 return 0;
148 }
149
150 static int dw_mci_req_open(struct inode *inode, struct file *file)
151 {
152 return single_open(file, dw_mci_req_show, inode->i_private);
153 }
154
155 static const struct file_operations dw_mci_req_fops = {
156 .owner = THIS_MODULE,
157 .open = dw_mci_req_open,
158 .read = seq_read,
159 .llseek = seq_lseek,
160 .release = single_release,
161 };
162
163 static int dw_mci_regs_show(struct seq_file *s, void *v)
164 {
165 seq_printf(s, "STATUS:\t0x%08x\n", SDMMC_STATUS);
166 seq_printf(s, "RINTSTS:\t0x%08x\n", SDMMC_RINTSTS);
167 seq_printf(s, "CMD:\t0x%08x\n", SDMMC_CMD);
168 seq_printf(s, "CTRL:\t0x%08x\n", SDMMC_CTRL);
169 seq_printf(s, "INTMASK:\t0x%08x\n", SDMMC_INTMASK);
170 seq_printf(s, "CLKENA:\t0x%08x\n", SDMMC_CLKENA);
171
172 return 0;
173 }
174
175 static int dw_mci_regs_open(struct inode *inode, struct file *file)
176 {
177 return single_open(file, dw_mci_regs_show, inode->i_private);
178 }
179
180 static const struct file_operations dw_mci_regs_fops = {
181 .owner = THIS_MODULE,
182 .open = dw_mci_regs_open,
183 .read = seq_read,
184 .llseek = seq_lseek,
185 .release = single_release,
186 };
187
188 static void dw_mci_init_debugfs(struct dw_mci_slot *slot)
189 {
190 struct mmc_host *mmc = slot->mmc;
191 struct dw_mci *host = slot->host;
192 struct dentry *root;
193 struct dentry *node;
194
195 root = mmc->debugfs_root;
196 if (!root)
197 return;
198
199 node = debugfs_create_file("regs", S_IRUSR, root, host,
200 &dw_mci_regs_fops);
201 if (!node)
202 goto err;
203
204 node = debugfs_create_file("req", S_IRUSR, root, slot,
205 &dw_mci_req_fops);
206 if (!node)
207 goto err;
208
209 node = debugfs_create_u32("state", S_IRUSR, root, (u32 *)&host->state);
210 if (!node)
211 goto err;
212
213 node = debugfs_create_x32("pending_events", S_IRUSR, root,
214 (u32 *)&host->pending_events);
215 if (!node)
216 goto err;
217
218 node = debugfs_create_x32("completed_events", S_IRUSR, root,
219 (u32 *)&host->completed_events);
220 if (!node)
221 goto err;
222
223 return;
224
225 err:
226 dev_err(&mmc->class_dev, "failed to initialize debugfs for slot\n");
227 }
228 #endif /* defined(CONFIG_DEBUG_FS) */
229
230 static void mci_send_cmd(struct dw_mci_slot *slot, u32 cmd, u32 arg);
231
232 static u32 dw_mci_prepare_command(struct mmc_host *mmc, struct mmc_command *cmd)
233 {
234 struct mmc_data *data;
235 struct dw_mci_slot *slot = mmc_priv(mmc);
236 struct dw_mci *host = slot->host;
237 u32 cmdr;
238
239 cmd->error = -EINPROGRESS;
240 cmdr = cmd->opcode;
241
242 if (cmd->opcode == MMC_STOP_TRANSMISSION ||
243 cmd->opcode == MMC_GO_IDLE_STATE ||
244 cmd->opcode == MMC_GO_INACTIVE_STATE ||
245 (cmd->opcode == SD_IO_RW_DIRECT &&
246 ((cmd->arg >> 9) & 0x1FFFF) == SDIO_CCCR_ABORT))
247 cmdr |= SDMMC_CMD_STOP;
248 else if (cmd->opcode != MMC_SEND_STATUS && cmd->data)
249 cmdr |= SDMMC_CMD_PRV_DAT_WAIT;
250
251 if (cmd->opcode == SD_SWITCH_VOLTAGE) {
252 u32 clk_en_a;
253
254 /* Special bit makes CMD11 not die */
255 cmdr |= SDMMC_CMD_VOLT_SWITCH;
256
257 /* Change state to continue to handle CMD11 weirdness */
258 WARN_ON(slot->host->state != STATE_SENDING_CMD);
259 slot->host->state = STATE_SENDING_CMD11;
260
261 /*
262 * We need to disable low power mode (automatic clock stop)
263 * while doing voltage switch so we don't confuse the card,
264 * since stopping the clock is a specific part of the UHS
265 * voltage change dance.
266 *
267 * Note that low power mode (SDMMC_CLKEN_LOW_PWR) will be
268 * unconditionally turned back on in dw_mci_setup_bus() if it's
269 * ever called with a non-zero clock. That shouldn't happen
270 * until the voltage change is all done.
271 */
272 clk_en_a = mci_readl(host, CLKENA);
273 clk_en_a &= ~(SDMMC_CLKEN_LOW_PWR << slot->id);
274 mci_writel(host, CLKENA, clk_en_a);
275 mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
276 SDMMC_CMD_PRV_DAT_WAIT, 0);
277 }
278
279 if (cmd->flags & MMC_RSP_PRESENT) {
280 /* We expect a response, so set this bit */
281 cmdr |= SDMMC_CMD_RESP_EXP;
282 if (cmd->flags & MMC_RSP_136)
283 cmdr |= SDMMC_CMD_RESP_LONG;
284 }
285
286 if (cmd->flags & MMC_RSP_CRC)
287 cmdr |= SDMMC_CMD_RESP_CRC;
288
289 data = cmd->data;
290 if (data) {
291 cmdr |= SDMMC_CMD_DAT_EXP;
292 if (data->flags & MMC_DATA_WRITE)
293 cmdr |= SDMMC_CMD_DAT_WR;
294 }
295
296 if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &slot->flags))
297 cmdr |= SDMMC_CMD_USE_HOLD_REG;
298
299 return cmdr;
300 }
301
302 static u32 dw_mci_prep_stop_abort(struct dw_mci *host, struct mmc_command *cmd)
303 {
304 struct mmc_command *stop;
305 u32 cmdr;
306
307 if (!cmd->data)
308 return 0;
309
310 stop = &host->stop_abort;
311 cmdr = cmd->opcode;
312 memset(stop, 0, sizeof(struct mmc_command));
313
314 if (cmdr == MMC_READ_SINGLE_BLOCK ||
315 cmdr == MMC_READ_MULTIPLE_BLOCK ||
316 cmdr == MMC_WRITE_BLOCK ||
317 cmdr == MMC_WRITE_MULTIPLE_BLOCK ||
318 cmdr == MMC_SEND_TUNING_BLOCK ||
319 cmdr == MMC_SEND_TUNING_BLOCK_HS200) {
320 stop->opcode = MMC_STOP_TRANSMISSION;
321 stop->arg = 0;
322 stop->flags = MMC_RSP_R1B | MMC_CMD_AC;
323 } else if (cmdr == SD_IO_RW_EXTENDED) {
324 stop->opcode = SD_IO_RW_DIRECT;
325 stop->arg |= (1 << 31) | (0 << 28) | (SDIO_CCCR_ABORT << 9) |
326 ((cmd->arg >> 28) & 0x7);
327 stop->flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_AC;
328 } else {
329 return 0;
330 }
331
332 cmdr = stop->opcode | SDMMC_CMD_STOP |
333 SDMMC_CMD_RESP_CRC | SDMMC_CMD_RESP_EXP;
334
335 return cmdr;
336 }
337
338 static void dw_mci_wait_while_busy(struct dw_mci *host, u32 cmd_flags)
339 {
340 unsigned long timeout = jiffies + msecs_to_jiffies(500);
341
342 /*
343 * Databook says that before issuing a new data transfer command
344 * we need to check to see if the card is busy. Data transfer commands
345 * all have SDMMC_CMD_PRV_DAT_WAIT set, so we'll key off that.
346 *
347 * ...also allow sending for SDMMC_CMD_VOLT_SWITCH where busy is
348 * expected.
349 */
350 if ((cmd_flags & SDMMC_CMD_PRV_DAT_WAIT) &&
351 !(cmd_flags & SDMMC_CMD_VOLT_SWITCH)) {
352 while (mci_readl(host, STATUS) & SDMMC_STATUS_BUSY) {
353 if (time_after(jiffies, timeout)) {
354 /* Command will fail; we'll pass error then */
355 dev_err(host->dev, "Busy; trying anyway\n");
356 break;
357 }
358 udelay(10);
359 }
360 }
361 }
362
363 static void dw_mci_start_command(struct dw_mci *host,
364 struct mmc_command *cmd, u32 cmd_flags)
365 {
366 host->cmd = cmd;
367 dev_vdbg(host->dev,
368 "start command: ARGR=0x%08x CMDR=0x%08x\n",
369 cmd->arg, cmd_flags);
370
371 mci_writel(host, CMDARG, cmd->arg);
372 wmb(); /* drain writebuffer */
373 dw_mci_wait_while_busy(host, cmd_flags);
374
375 mci_writel(host, CMD, cmd_flags | SDMMC_CMD_START);
376 }
377
378 static inline void send_stop_abort(struct dw_mci *host, struct mmc_data *data)
379 {
380 struct mmc_command *stop = data->stop ? data->stop : &host->stop_abort;
381
382 dw_mci_start_command(host, stop, host->stop_cmdr);
383 }
384
385 /* DMA interface functions */
386 static void dw_mci_stop_dma(struct dw_mci *host)
387 {
388 if (host->using_dma) {
389 host->dma_ops->stop(host);
390 host->dma_ops->cleanup(host);
391 }
392
393 /* Data transfer was stopped by the interrupt handler */
394 set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
395 }
396
397 static int dw_mci_get_dma_dir(struct mmc_data *data)
398 {
399 if (data->flags & MMC_DATA_WRITE)
400 return DMA_TO_DEVICE;
401 else
402 return DMA_FROM_DEVICE;
403 }
404
405 static void dw_mci_dma_cleanup(struct dw_mci *host)
406 {
407 struct mmc_data *data = host->data;
408
409 if (data)
410 if (!data->host_cookie)
411 dma_unmap_sg(host->dev,
412 data->sg,
413 data->sg_len,
414 dw_mci_get_dma_dir(data));
415 }
416
417 static void dw_mci_idmac_reset(struct dw_mci *host)
418 {
419 u32 bmod = mci_readl(host, BMOD);
420 /* Software reset of DMA */
421 bmod |= SDMMC_IDMAC_SWRESET;
422 mci_writel(host, BMOD, bmod);
423 }
424
425 static void dw_mci_idmac_stop_dma(struct dw_mci *host)
426 {
427 u32 temp;
428
429 /* Disable and reset the IDMAC interface */
430 temp = mci_readl(host, CTRL);
431 temp &= ~SDMMC_CTRL_USE_IDMAC;
432 temp |= SDMMC_CTRL_DMA_RESET;
433 mci_writel(host, CTRL, temp);
434
435 /* Stop the IDMAC running */
436 temp = mci_readl(host, BMOD);
437 temp &= ~(SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB);
438 temp |= SDMMC_IDMAC_SWRESET;
439 mci_writel(host, BMOD, temp);
440 }
441
442 static void dw_mci_dmac_complete_dma(void *arg)
443 {
444 struct dw_mci *host = arg;
445 struct mmc_data *data = host->data;
446
447 dev_vdbg(host->dev, "DMA complete\n");
448
449 if ((host->use_dma == TRANS_MODE_EDMAC) &&
450 data && (data->flags & MMC_DATA_READ))
451 /* Invalidate cache after read */
452 dma_sync_sg_for_cpu(mmc_dev(host->cur_slot->mmc),
453 data->sg,
454 data->sg_len,
455 DMA_FROM_DEVICE);
456
457 host->dma_ops->cleanup(host);
458
459 /*
460 * If the card was removed, data will be NULL. No point in trying to
461 * send the stop command or waiting for NBUSY in this case.
462 */
463 if (data) {
464 set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
465 tasklet_schedule(&host->tasklet);
466 }
467 }
468
469 static void dw_mci_translate_sglist(struct dw_mci *host, struct mmc_data *data,
470 unsigned int sg_len)
471 {
472 unsigned int desc_len;
473 int i;
474
475 if (host->dma_64bit_address == 1) {
476 struct idmac_desc_64addr *desc_first, *desc_last, *desc;
477
478 desc_first = desc_last = desc = host->sg_cpu;
479
480 for (i = 0; i < sg_len; i++) {
481 unsigned int length = sg_dma_len(&data->sg[i]);
482
483 u64 mem_addr = sg_dma_address(&data->sg[i]);
484
485 for ( ; length ; desc++) {
486 desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
487 length : DW_MCI_DESC_DATA_LENGTH;
488
489 length -= desc_len;
490
491 /*
492 * Set the OWN bit and disable interrupts
493 * for this descriptor
494 */
495 desc->des0 = IDMAC_DES0_OWN | IDMAC_DES0_DIC |
496 IDMAC_DES0_CH;
497
498 /* Buffer length */
499 IDMAC_64ADDR_SET_BUFFER1_SIZE(desc, desc_len);
500
501 /* Physical address to DMA to/from */
502 desc->des4 = mem_addr & 0xffffffff;
503 desc->des5 = mem_addr >> 32;
504
505 /* Update physical address for the next desc */
506 mem_addr += desc_len;
507
508 /* Save pointer to the last descriptor */
509 desc_last = desc;
510 }
511 }
512
513 /* Set first descriptor */
514 desc_first->des0 |= IDMAC_DES0_FD;
515
516 /* Set last descriptor */
517 desc_last->des0 &= ~(IDMAC_DES0_CH | IDMAC_DES0_DIC);
518 desc_last->des0 |= IDMAC_DES0_LD;
519
520 } else {
521 struct idmac_desc *desc_first, *desc_last, *desc;
522
523 desc_first = desc_last = desc = host->sg_cpu;
524
525 for (i = 0; i < sg_len; i++) {
526 unsigned int length = sg_dma_len(&data->sg[i]);
527
528 u32 mem_addr = sg_dma_address(&data->sg[i]);
529
530 for ( ; length ; desc++) {
531 desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
532 length : DW_MCI_DESC_DATA_LENGTH;
533
534 length -= desc_len;
535
536 /*
537 * Set the OWN bit and disable interrupts
538 * for this descriptor
539 */
540 desc->des0 = cpu_to_le32(IDMAC_DES0_OWN |
541 IDMAC_DES0_DIC |
542 IDMAC_DES0_CH);
543
544 /* Buffer length */
545 IDMAC_SET_BUFFER1_SIZE(desc, desc_len);
546
547 /* Physical address to DMA to/from */
548 desc->des2 = cpu_to_le32(mem_addr);
549
550 /* Update physical address for the next desc */
551 mem_addr += desc_len;
552
553 /* Save pointer to the last descriptor */
554 desc_last = desc;
555 }
556 }
557
558 /* Set first descriptor */
559 desc_first->des0 |= cpu_to_le32(IDMAC_DES0_FD);
560
561 /* Set last descriptor */
562 desc_last->des0 &= cpu_to_le32(~(IDMAC_DES0_CH |
563 IDMAC_DES0_DIC));
564 desc_last->des0 |= cpu_to_le32(IDMAC_DES0_LD);
565 }
566
567 wmb(); /* drain writebuffer */
568 }
569
570 static int dw_mci_idmac_start_dma(struct dw_mci *host, unsigned int sg_len)
571 {
572 u32 temp;
573
574 dw_mci_translate_sglist(host, host->data, sg_len);
575
576 /* Make sure to reset DMA in case we did PIO before this */
577 dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET);
578 dw_mci_idmac_reset(host);
579
580 /* Select IDMAC interface */
581 temp = mci_readl(host, CTRL);
582 temp |= SDMMC_CTRL_USE_IDMAC;
583 mci_writel(host, CTRL, temp);
584
585 /* drain writebuffer */
586 wmb();
587
588 /* Enable the IDMAC */
589 temp = mci_readl(host, BMOD);
590 temp |= SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB;
591 mci_writel(host, BMOD, temp);
592
593 /* Start it running */
594 mci_writel(host, PLDMND, 1);
595
596 return 0;
597 }
598
599 static int dw_mci_idmac_init(struct dw_mci *host)
600 {
601 int i;
602
603 if (host->dma_64bit_address == 1) {
604 struct idmac_desc_64addr *p;
605 /* Number of descriptors in the ring buffer */
606 host->ring_size = PAGE_SIZE / sizeof(struct idmac_desc_64addr);
607
608 /* Forward link the descriptor list */
609 for (i = 0, p = host->sg_cpu; i < host->ring_size - 1;
610 i++, p++) {
611 p->des6 = (host->sg_dma +
612 (sizeof(struct idmac_desc_64addr) *
613 (i + 1))) & 0xffffffff;
614
615 p->des7 = (u64)(host->sg_dma +
616 (sizeof(struct idmac_desc_64addr) *
617 (i + 1))) >> 32;
618 /* Initialize reserved and buffer size fields to "0" */
619 p->des1 = 0;
620 p->des2 = 0;
621 p->des3 = 0;
622 }
623
624 /* Set the last descriptor as the end-of-ring descriptor */
625 p->des6 = host->sg_dma & 0xffffffff;
626 p->des7 = (u64)host->sg_dma >> 32;
627 p->des0 = IDMAC_DES0_ER;
628
629 } else {
630 struct idmac_desc *p;
631 /* Number of descriptors in the ring buffer */
632 host->ring_size = PAGE_SIZE / sizeof(struct idmac_desc);
633
634 /* Forward link the descriptor list */
635 for (i = 0, p = host->sg_cpu;
636 i < host->ring_size - 1;
637 i++, p++) {
638 p->des3 = cpu_to_le32(host->sg_dma +
639 (sizeof(struct idmac_desc) * (i + 1)));
640 p->des1 = 0;
641 }
642
643 /* Set the last descriptor as the end-of-ring descriptor */
644 p->des3 = cpu_to_le32(host->sg_dma);
645 p->des0 = cpu_to_le32(IDMAC_DES0_ER);
646 }
647
648 dw_mci_idmac_reset(host);
649
650 if (host->dma_64bit_address == 1) {
651 /* Mask out interrupts - get Tx & Rx complete only */
652 mci_writel(host, IDSTS64, IDMAC_INT_CLR);
653 mci_writel(host, IDINTEN64, SDMMC_IDMAC_INT_NI |
654 SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
655
656 /* Set the descriptor base address */
657 mci_writel(host, DBADDRL, host->sg_dma & 0xffffffff);
658 mci_writel(host, DBADDRU, (u64)host->sg_dma >> 32);
659
660 } else {
661 /* Mask out interrupts - get Tx & Rx complete only */
662 mci_writel(host, IDSTS, IDMAC_INT_CLR);
663 mci_writel(host, IDINTEN, SDMMC_IDMAC_INT_NI |
664 SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
665
666 /* Set the descriptor base address */
667 mci_writel(host, DBADDR, host->sg_dma);
668 }
669
670 return 0;
671 }
672
673 static const struct dw_mci_dma_ops dw_mci_idmac_ops = {
674 .init = dw_mci_idmac_init,
675 .start = dw_mci_idmac_start_dma,
676 .stop = dw_mci_idmac_stop_dma,
677 .complete = dw_mci_dmac_complete_dma,
678 .cleanup = dw_mci_dma_cleanup,
679 };
680
681 static void dw_mci_edmac_stop_dma(struct dw_mci *host)
682 {
683 dmaengine_terminate_all(host->dms->ch);
684 }
685
686 static int dw_mci_edmac_start_dma(struct dw_mci *host,
687 unsigned int sg_len)
688 {
689 struct dma_slave_config cfg;
690 struct dma_async_tx_descriptor *desc = NULL;
691 struct scatterlist *sgl = host->data->sg;
692 const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
693 u32 sg_elems = host->data->sg_len;
694 u32 fifoth_val;
695 u32 fifo_offset = host->fifo_reg - host->regs;
696 int ret = 0;
697
698 /* Set external dma config: burst size, burst width */
699 cfg.dst_addr = host->phy_regs + fifo_offset;
700 cfg.src_addr = cfg.dst_addr;
701 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
702 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
703
704 /* Match burst msize with external dma config */
705 fifoth_val = mci_readl(host, FIFOTH);
706 cfg.dst_maxburst = mszs[(fifoth_val >> 28) & 0x7];
707 cfg.src_maxburst = cfg.dst_maxburst;
708
709 if (host->data->flags & MMC_DATA_WRITE)
710 cfg.direction = DMA_MEM_TO_DEV;
711 else
712 cfg.direction = DMA_DEV_TO_MEM;
713
714 ret = dmaengine_slave_config(host->dms->ch, &cfg);
715 if (ret) {
716 dev_err(host->dev, "Failed to config edmac.\n");
717 return -EBUSY;
718 }
719
720 desc = dmaengine_prep_slave_sg(host->dms->ch, sgl,
721 sg_len, cfg.direction,
722 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
723 if (!desc) {
724 dev_err(host->dev, "Can't prepare slave sg.\n");
725 return -EBUSY;
726 }
727
728 /* Set dw_mci_dmac_complete_dma as callback */
729 desc->callback = dw_mci_dmac_complete_dma;
730 desc->callback_param = (void *)host;
731 dmaengine_submit(desc);
732
733 /* Flush cache before write */
734 if (host->data->flags & MMC_DATA_WRITE)
735 dma_sync_sg_for_device(mmc_dev(host->cur_slot->mmc), sgl,
736 sg_elems, DMA_TO_DEVICE);
737
738 dma_async_issue_pending(host->dms->ch);
739
740 return 0;
741 }
742
743 static int dw_mci_edmac_init(struct dw_mci *host)
744 {
745 /* Request external dma channel */
746 host->dms = kzalloc(sizeof(struct dw_mci_dma_slave), GFP_KERNEL);
747 if (!host->dms)
748 return -ENOMEM;
749
750 host->dms->ch = dma_request_slave_channel(host->dev, "rx-tx");
751 if (!host->dms->ch) {
752 dev_err(host->dev, "Failed to get external DMA channel.\n");
753 kfree(host->dms);
754 host->dms = NULL;
755 return -ENXIO;
756 }
757
758 return 0;
759 }
760
761 static void dw_mci_edmac_exit(struct dw_mci *host)
762 {
763 if (host->dms) {
764 if (host->dms->ch) {
765 dma_release_channel(host->dms->ch);
766 host->dms->ch = NULL;
767 }
768 kfree(host->dms);
769 host->dms = NULL;
770 }
771 }
772
773 static const struct dw_mci_dma_ops dw_mci_edmac_ops = {
774 .init = dw_mci_edmac_init,
775 .exit = dw_mci_edmac_exit,
776 .start = dw_mci_edmac_start_dma,
777 .stop = dw_mci_edmac_stop_dma,
778 .complete = dw_mci_dmac_complete_dma,
779 .cleanup = dw_mci_dma_cleanup,
780 };
781
782 static int dw_mci_pre_dma_transfer(struct dw_mci *host,
783 struct mmc_data *data,
784 bool next)
785 {
786 struct scatterlist *sg;
787 unsigned int i, sg_len;
788
789 if (!next && data->host_cookie)
790 return data->host_cookie;
791
792 /*
793 * We don't do DMA on "complex" transfers, i.e. with
794 * non-word-aligned buffers or lengths. Also, we don't bother
795 * with all the DMA setup overhead for short transfers.
796 */
797 if (data->blocks * data->blksz < DW_MCI_DMA_THRESHOLD)
798 return -EINVAL;
799
800 if (data->blksz & 3)
801 return -EINVAL;
802
803 for_each_sg(data->sg, sg, data->sg_len, i) {
804 if (sg->offset & 3 || sg->length & 3)
805 return -EINVAL;
806 }
807
808 sg_len = dma_map_sg(host->dev,
809 data->sg,
810 data->sg_len,
811 dw_mci_get_dma_dir(data));
812 if (sg_len == 0)
813 return -EINVAL;
814
815 if (next)
816 data->host_cookie = sg_len;
817
818 return sg_len;
819 }
820
821 static void dw_mci_pre_req(struct mmc_host *mmc,
822 struct mmc_request *mrq,
823 bool is_first_req)
824 {
825 struct dw_mci_slot *slot = mmc_priv(mmc);
826 struct mmc_data *data = mrq->data;
827
828 if (!slot->host->use_dma || !data)
829 return;
830
831 if (data->host_cookie) {
832 data->host_cookie = 0;
833 return;
834 }
835
836 if (dw_mci_pre_dma_transfer(slot->host, mrq->data, 1) < 0)
837 data->host_cookie = 0;
838 }
839
840 static void dw_mci_post_req(struct mmc_host *mmc,
841 struct mmc_request *mrq,
842 int err)
843 {
844 struct dw_mci_slot *slot = mmc_priv(mmc);
845 struct mmc_data *data = mrq->data;
846
847 if (!slot->host->use_dma || !data)
848 return;
849
850 if (data->host_cookie)
851 dma_unmap_sg(slot->host->dev,
852 data->sg,
853 data->sg_len,
854 dw_mci_get_dma_dir(data));
855 data->host_cookie = 0;
856 }
857
858 static void dw_mci_adjust_fifoth(struct dw_mci *host, struct mmc_data *data)
859 {
860 unsigned int blksz = data->blksz;
861 const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
862 u32 fifo_width = 1 << host->data_shift;
863 u32 blksz_depth = blksz / fifo_width, fifoth_val;
864 u32 msize = 0, rx_wmark = 1, tx_wmark, tx_wmark_invers;
865 int idx = ARRAY_SIZE(mszs) - 1;
866
867 /* pio should ship this scenario */
868 if (!host->use_dma)
869 return;
870
871 tx_wmark = (host->fifo_depth) / 2;
872 tx_wmark_invers = host->fifo_depth - tx_wmark;
873
874 /*
875 * MSIZE is '1',
876 * if blksz is not a multiple of the FIFO width
877 */
878 if (blksz % fifo_width) {
879 msize = 0;
880 rx_wmark = 1;
881 goto done;
882 }
883
884 do {
885 if (!((blksz_depth % mszs[idx]) ||
886 (tx_wmark_invers % mszs[idx]))) {
887 msize = idx;
888 rx_wmark = mszs[idx] - 1;
889 break;
890 }
891 } while (--idx > 0);
892 /*
893 * If idx is '0', it won't be tried
894 * Thus, initial values are uesed
895 */
896 done:
897 fifoth_val = SDMMC_SET_FIFOTH(msize, rx_wmark, tx_wmark);
898 mci_writel(host, FIFOTH, fifoth_val);
899 }
900
901 static void dw_mci_ctrl_rd_thld(struct dw_mci *host, struct mmc_data *data)
902 {
903 unsigned int blksz = data->blksz;
904 u32 blksz_depth, fifo_depth;
905 u16 thld_size;
906
907 WARN_ON(!(data->flags & MMC_DATA_READ));
908
909 /*
910 * CDTHRCTL doesn't exist prior to 240A (in fact that register offset is
911 * in the FIFO region, so we really shouldn't access it).
912 */
913 if (host->verid < DW_MMC_240A)
914 return;
915
916 if (host->timing != MMC_TIMING_MMC_HS200 &&
917 host->timing != MMC_TIMING_MMC_HS400 &&
918 host->timing != MMC_TIMING_UHS_SDR104)
919 goto disable;
920
921 blksz_depth = blksz / (1 << host->data_shift);
922 fifo_depth = host->fifo_depth;
923
924 if (blksz_depth > fifo_depth)
925 goto disable;
926
927 /*
928 * If (blksz_depth) >= (fifo_depth >> 1), should be 'thld_size <= blksz'
929 * If (blksz_depth) < (fifo_depth >> 1), should be thld_size = blksz
930 * Currently just choose blksz.
931 */
932 thld_size = blksz;
933 mci_writel(host, CDTHRCTL, SDMMC_SET_RD_THLD(thld_size, 1));
934 return;
935
936 disable:
937 mci_writel(host, CDTHRCTL, SDMMC_SET_RD_THLD(0, 0));
938 }
939
940 static int dw_mci_submit_data_dma(struct dw_mci *host, struct mmc_data *data)
941 {
942 unsigned long irqflags;
943 int sg_len;
944 u32 temp;
945
946 host->using_dma = 0;
947
948 /* If we don't have a channel, we can't do DMA */
949 if (!host->use_dma)
950 return -ENODEV;
951
952 sg_len = dw_mci_pre_dma_transfer(host, data, 0);
953 if (sg_len < 0) {
954 host->dma_ops->stop(host);
955 return sg_len;
956 }
957
958 host->using_dma = 1;
959
960 if (host->use_dma == TRANS_MODE_IDMAC)
961 dev_vdbg(host->dev,
962 "sd sg_cpu: %#lx sg_dma: %#lx sg_len: %d\n",
963 (unsigned long)host->sg_cpu,
964 (unsigned long)host->sg_dma,
965 sg_len);
966
967 /*
968 * Decide the MSIZE and RX/TX Watermark.
969 * If current block size is same with previous size,
970 * no need to update fifoth.
971 */
972 if (host->prev_blksz != data->blksz)
973 dw_mci_adjust_fifoth(host, data);
974
975 /* Enable the DMA interface */
976 temp = mci_readl(host, CTRL);
977 temp |= SDMMC_CTRL_DMA_ENABLE;
978 mci_writel(host, CTRL, temp);
979
980 /* Disable RX/TX IRQs, let DMA handle it */
981 spin_lock_irqsave(&host->irq_lock, irqflags);
982 temp = mci_readl(host, INTMASK);
983 temp &= ~(SDMMC_INT_RXDR | SDMMC_INT_TXDR);
984 mci_writel(host, INTMASK, temp);
985 spin_unlock_irqrestore(&host->irq_lock, irqflags);
986
987 if (host->dma_ops->start(host, sg_len)) {
988 /* We can't do DMA */
989 dev_err(host->dev, "%s: failed to start DMA.\n", __func__);
990 return -ENODEV;
991 }
992
993 return 0;
994 }
995
996 static void dw_mci_submit_data(struct dw_mci *host, struct mmc_data *data)
997 {
998 unsigned long irqflags;
999 int flags = SG_MITER_ATOMIC;
1000 u32 temp;
1001
1002 data->error = -EINPROGRESS;
1003
1004 WARN_ON(host->data);
1005 host->sg = NULL;
1006 host->data = data;
1007
1008 if (data->flags & MMC_DATA_READ) {
1009 host->dir_status = DW_MCI_RECV_STATUS;
1010 dw_mci_ctrl_rd_thld(host, data);
1011 } else {
1012 host->dir_status = DW_MCI_SEND_STATUS;
1013 }
1014
1015 if (dw_mci_submit_data_dma(host, data)) {
1016 if (host->data->flags & MMC_DATA_READ)
1017 flags |= SG_MITER_TO_SG;
1018 else
1019 flags |= SG_MITER_FROM_SG;
1020
1021 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
1022 host->sg = data->sg;
1023 host->part_buf_start = 0;
1024 host->part_buf_count = 0;
1025
1026 mci_writel(host, RINTSTS, SDMMC_INT_TXDR | SDMMC_INT_RXDR);
1027
1028 spin_lock_irqsave(&host->irq_lock, irqflags);
1029 temp = mci_readl(host, INTMASK);
1030 temp |= SDMMC_INT_TXDR | SDMMC_INT_RXDR;
1031 mci_writel(host, INTMASK, temp);
1032 spin_unlock_irqrestore(&host->irq_lock, irqflags);
1033
1034 temp = mci_readl(host, CTRL);
1035 temp &= ~SDMMC_CTRL_DMA_ENABLE;
1036 mci_writel(host, CTRL, temp);
1037
1038 /*
1039 * Use the initial fifoth_val for PIO mode.
1040 * If next issued data may be transfered by DMA mode,
1041 * prev_blksz should be invalidated.
1042 */
1043 mci_writel(host, FIFOTH, host->fifoth_val);
1044 host->prev_blksz = 0;
1045 } else {
1046 /*
1047 * Keep the current block size.
1048 * It will be used to decide whether to update
1049 * fifoth register next time.
1050 */
1051 host->prev_blksz = data->blksz;
1052 }
1053 }
1054
1055 static void mci_send_cmd(struct dw_mci_slot *slot, u32 cmd, u32 arg)
1056 {
1057 struct dw_mci *host = slot->host;
1058 unsigned long timeout = jiffies + msecs_to_jiffies(500);
1059 unsigned int cmd_status = 0;
1060
1061 mci_writel(host, CMDARG, arg);
1062 wmb(); /* drain writebuffer */
1063 dw_mci_wait_while_busy(host, cmd);
1064 mci_writel(host, CMD, SDMMC_CMD_START | cmd);
1065
1066 while (time_before(jiffies, timeout)) {
1067 cmd_status = mci_readl(host, CMD);
1068 if (!(cmd_status & SDMMC_CMD_START))
1069 return;
1070 }
1071 dev_err(&slot->mmc->class_dev,
1072 "Timeout sending command (cmd %#x arg %#x status %#x)\n",
1073 cmd, arg, cmd_status);
1074 }
1075
1076 static void dw_mci_setup_bus(struct dw_mci_slot *slot, bool force_clkinit)
1077 {
1078 struct dw_mci *host = slot->host;
1079 unsigned int clock = slot->clock;
1080 u32 div;
1081 u32 clk_en_a;
1082 u32 sdmmc_cmd_bits = SDMMC_CMD_UPD_CLK | SDMMC_CMD_PRV_DAT_WAIT;
1083
1084 /* We must continue to set bit 28 in CMD until the change is complete */
1085 if (host->state == STATE_WAITING_CMD11_DONE)
1086 sdmmc_cmd_bits |= SDMMC_CMD_VOLT_SWITCH;
1087
1088 if (!clock) {
1089 mci_writel(host, CLKENA, 0);
1090 mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1091 } else if (clock != host->current_speed || force_clkinit) {
1092 div = host->bus_hz / clock;
1093 if (host->bus_hz % clock && host->bus_hz > clock)
1094 /*
1095 * move the + 1 after the divide to prevent
1096 * over-clocking the card.
1097 */
1098 div += 1;
1099
1100 div = (host->bus_hz != clock) ? DIV_ROUND_UP(div, 2) : 0;
1101
1102 if ((clock << div) != slot->__clk_old || force_clkinit)
1103 dev_info(&slot->mmc->class_dev,
1104 "Bus speed (slot %d) = %dHz (slot req %dHz, actual %dHZ div = %d)\n",
1105 slot->id, host->bus_hz, clock,
1106 div ? ((host->bus_hz / div) >> 1) :
1107 host->bus_hz, div);
1108
1109 /* disable clock */
1110 mci_writel(host, CLKENA, 0);
1111 mci_writel(host, CLKSRC, 0);
1112
1113 /* inform CIU */
1114 mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1115
1116 /* set clock to desired speed */
1117 mci_writel(host, CLKDIV, div);
1118
1119 /* inform CIU */
1120 mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1121
1122 /* enable clock; only low power if no SDIO */
1123 clk_en_a = SDMMC_CLKEN_ENABLE << slot->id;
1124 if (!test_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags))
1125 clk_en_a |= SDMMC_CLKEN_LOW_PWR << slot->id;
1126 mci_writel(host, CLKENA, clk_en_a);
1127
1128 /* inform CIU */
1129 mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1130
1131 /* keep the clock with reflecting clock dividor */
1132 slot->__clk_old = clock << div;
1133 }
1134
1135 host->current_speed = clock;
1136
1137 /* Set the current slot bus width */
1138 mci_writel(host, CTYPE, (slot->ctype << slot->id));
1139 }
1140
1141 static void __dw_mci_start_request(struct dw_mci *host,
1142 struct dw_mci_slot *slot,
1143 struct mmc_command *cmd)
1144 {
1145 struct mmc_request *mrq;
1146 struct mmc_data *data;
1147 u32 cmdflags;
1148
1149 mrq = slot->mrq;
1150
1151 host->cur_slot = slot;
1152 host->mrq = mrq;
1153
1154 host->pending_events = 0;
1155 host->completed_events = 0;
1156 host->cmd_status = 0;
1157 host->data_status = 0;
1158 host->dir_status = 0;
1159
1160 data = cmd->data;
1161 if (data) {
1162 mci_writel(host, TMOUT, 0xFFFFFFFF);
1163 mci_writel(host, BYTCNT, data->blksz*data->blocks);
1164 mci_writel(host, BLKSIZ, data->blksz);
1165 }
1166
1167 cmdflags = dw_mci_prepare_command(slot->mmc, cmd);
1168
1169 /* this is the first command, send the initialization clock */
1170 if (test_and_clear_bit(DW_MMC_CARD_NEED_INIT, &slot->flags))
1171 cmdflags |= SDMMC_CMD_INIT;
1172
1173 if (data) {
1174 dw_mci_submit_data(host, data);
1175 wmb(); /* drain writebuffer */
1176 }
1177
1178 dw_mci_start_command(host, cmd, cmdflags);
1179
1180 if (cmd->opcode == SD_SWITCH_VOLTAGE) {
1181 unsigned long irqflags;
1182
1183 /*
1184 * Databook says to fail after 2ms w/ no response, but evidence
1185 * shows that sometimes the cmd11 interrupt takes over 130ms.
1186 * We'll set to 500ms, plus an extra jiffy just in case jiffies
1187 * is just about to roll over.
1188 *
1189 * We do this whole thing under spinlock and only if the
1190 * command hasn't already completed (indicating the the irq
1191 * already ran so we don't want the timeout).
1192 */
1193 spin_lock_irqsave(&host->irq_lock, irqflags);
1194 if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
1195 mod_timer(&host->cmd11_timer,
1196 jiffies + msecs_to_jiffies(500) + 1);
1197 spin_unlock_irqrestore(&host->irq_lock, irqflags);
1198 }
1199
1200 if (mrq->stop)
1201 host->stop_cmdr = dw_mci_prepare_command(slot->mmc, mrq->stop);
1202 else
1203 host->stop_cmdr = dw_mci_prep_stop_abort(host, cmd);
1204 }
1205
1206 static void dw_mci_start_request(struct dw_mci *host,
1207 struct dw_mci_slot *slot)
1208 {
1209 struct mmc_request *mrq = slot->mrq;
1210 struct mmc_command *cmd;
1211
1212 cmd = mrq->sbc ? mrq->sbc : mrq->cmd;
1213 __dw_mci_start_request(host, slot, cmd);
1214 }
1215
1216 /* must be called with host->lock held */
1217 static void dw_mci_queue_request(struct dw_mci *host, struct dw_mci_slot *slot,
1218 struct mmc_request *mrq)
1219 {
1220 dev_vdbg(&slot->mmc->class_dev, "queue request: state=%d\n",
1221 host->state);
1222
1223 slot->mrq = mrq;
1224
1225 if (host->state == STATE_WAITING_CMD11_DONE) {
1226 dev_warn(&slot->mmc->class_dev,
1227 "Voltage change didn't complete\n");
1228 /*
1229 * this case isn't expected to happen, so we can
1230 * either crash here or just try to continue on
1231 * in the closest possible state
1232 */
1233 host->state = STATE_IDLE;
1234 }
1235
1236 if (host->state == STATE_IDLE) {
1237 host->state = STATE_SENDING_CMD;
1238 dw_mci_start_request(host, slot);
1239 } else {
1240 list_add_tail(&slot->queue_node, &host->queue);
1241 }
1242 }
1243
1244 static void dw_mci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1245 {
1246 struct dw_mci_slot *slot = mmc_priv(mmc);
1247 struct dw_mci *host = slot->host;
1248
1249 WARN_ON(slot->mrq);
1250
1251 /*
1252 * The check for card presence and queueing of the request must be
1253 * atomic, otherwise the card could be removed in between and the
1254 * request wouldn't fail until another card was inserted.
1255 */
1256 spin_lock_bh(&host->lock);
1257
1258 if (!test_bit(DW_MMC_CARD_PRESENT, &slot->flags)) {
1259 spin_unlock_bh(&host->lock);
1260 mrq->cmd->error = -ENOMEDIUM;
1261 mmc_request_done(mmc, mrq);
1262 return;
1263 }
1264
1265 dw_mci_queue_request(host, slot, mrq);
1266
1267 spin_unlock_bh(&host->lock);
1268 }
1269
1270 static void dw_mci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1271 {
1272 struct dw_mci_slot *slot = mmc_priv(mmc);
1273 const struct dw_mci_drv_data *drv_data = slot->host->drv_data;
1274 u32 regs;
1275 int ret;
1276
1277 switch (ios->bus_width) {
1278 case MMC_BUS_WIDTH_4:
1279 slot->ctype = SDMMC_CTYPE_4BIT;
1280 break;
1281 case MMC_BUS_WIDTH_8:
1282 slot->ctype = SDMMC_CTYPE_8BIT;
1283 break;
1284 default:
1285 /* set default 1 bit mode */
1286 slot->ctype = SDMMC_CTYPE_1BIT;
1287 }
1288
1289 regs = mci_readl(slot->host, UHS_REG);
1290
1291 /* DDR mode set */
1292 if (ios->timing == MMC_TIMING_MMC_DDR52 ||
1293 ios->timing == MMC_TIMING_UHS_DDR50 ||
1294 ios->timing == MMC_TIMING_MMC_HS400)
1295 regs |= ((0x1 << slot->id) << 16);
1296 else
1297 regs &= ~((0x1 << slot->id) << 16);
1298
1299 mci_writel(slot->host, UHS_REG, regs);
1300 slot->host->timing = ios->timing;
1301
1302 /*
1303 * Use mirror of ios->clock to prevent race with mmc
1304 * core ios update when finding the minimum.
1305 */
1306 slot->clock = ios->clock;
1307
1308 if (drv_data && drv_data->set_ios)
1309 drv_data->set_ios(slot->host, ios);
1310
1311 switch (ios->power_mode) {
1312 case MMC_POWER_UP:
1313 if (!IS_ERR(mmc->supply.vmmc)) {
1314 ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
1315 ios->vdd);
1316 if (ret) {
1317 dev_err(slot->host->dev,
1318 "failed to enable vmmc regulator\n");
1319 /*return, if failed turn on vmmc*/
1320 return;
1321 }
1322 }
1323 set_bit(DW_MMC_CARD_NEED_INIT, &slot->flags);
1324 regs = mci_readl(slot->host, PWREN);
1325 regs |= (1 << slot->id);
1326 mci_writel(slot->host, PWREN, regs);
1327 break;
1328 case MMC_POWER_ON:
1329 if (!slot->host->vqmmc_enabled) {
1330 if (!IS_ERR(mmc->supply.vqmmc)) {
1331 ret = regulator_enable(mmc->supply.vqmmc);
1332 if (ret < 0)
1333 dev_err(slot->host->dev,
1334 "failed to enable vqmmc\n");
1335 else
1336 slot->host->vqmmc_enabled = true;
1337
1338 } else {
1339 /* Keep track so we don't reset again */
1340 slot->host->vqmmc_enabled = true;
1341 }
1342
1343 /* Reset our state machine after powering on */
1344 dw_mci_ctrl_reset(slot->host,
1345 SDMMC_CTRL_ALL_RESET_FLAGS);
1346 }
1347
1348 /* Adjust clock / bus width after power is up */
1349 dw_mci_setup_bus(slot, false);
1350
1351 break;
1352 case MMC_POWER_OFF:
1353 /* Turn clock off before power goes down */
1354 dw_mci_setup_bus(slot, false);
1355
1356 if (!IS_ERR(mmc->supply.vmmc))
1357 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1358
1359 if (!IS_ERR(mmc->supply.vqmmc) && slot->host->vqmmc_enabled)
1360 regulator_disable(mmc->supply.vqmmc);
1361 slot->host->vqmmc_enabled = false;
1362
1363 regs = mci_readl(slot->host, PWREN);
1364 regs &= ~(1 << slot->id);
1365 mci_writel(slot->host, PWREN, regs);
1366 break;
1367 default:
1368 break;
1369 }
1370
1371 if (slot->host->state == STATE_WAITING_CMD11_DONE && ios->clock != 0)
1372 slot->host->state = STATE_IDLE;
1373 }
1374
1375 static int dw_mci_card_busy(struct mmc_host *mmc)
1376 {
1377 struct dw_mci_slot *slot = mmc_priv(mmc);
1378 u32 status;
1379
1380 /*
1381 * Check the busy bit which is low when DAT[3:0]
1382 * (the data lines) are 0000
1383 */
1384 status = mci_readl(slot->host, STATUS);
1385
1386 return !!(status & SDMMC_STATUS_BUSY);
1387 }
1388
1389 static int dw_mci_switch_voltage(struct mmc_host *mmc, struct mmc_ios *ios)
1390 {
1391 struct dw_mci_slot *slot = mmc_priv(mmc);
1392 struct dw_mci *host = slot->host;
1393 const struct dw_mci_drv_data *drv_data = host->drv_data;
1394 u32 uhs;
1395 u32 v18 = SDMMC_UHS_18V << slot->id;
1396 int ret;
1397
1398 if (drv_data && drv_data->switch_voltage)
1399 return drv_data->switch_voltage(mmc, ios);
1400
1401 /*
1402 * Program the voltage. Note that some instances of dw_mmc may use
1403 * the UHS_REG for this. For other instances (like exynos) the UHS_REG
1404 * does no harm but you need to set the regulator directly. Try both.
1405 */
1406 uhs = mci_readl(host, UHS_REG);
1407 if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1408 uhs &= ~v18;
1409 else
1410 uhs |= v18;
1411
1412 if (!IS_ERR(mmc->supply.vqmmc)) {
1413 ret = mmc_regulator_set_vqmmc(mmc, ios);
1414
1415 if (ret) {
1416 dev_dbg(&mmc->class_dev,
1417 "Regulator set error %d - %s V\n",
1418 ret, uhs & v18 ? "1.8" : "3.3");
1419 return ret;
1420 }
1421 }
1422 mci_writel(host, UHS_REG, uhs);
1423
1424 return 0;
1425 }
1426
1427 static int dw_mci_get_ro(struct mmc_host *mmc)
1428 {
1429 int read_only;
1430 struct dw_mci_slot *slot = mmc_priv(mmc);
1431 int gpio_ro = mmc_gpio_get_ro(mmc);
1432
1433 /* Use platform get_ro function, else try on board write protect */
1434 if (!IS_ERR_VALUE(gpio_ro))
1435 read_only = gpio_ro;
1436 else
1437 read_only =
1438 mci_readl(slot->host, WRTPRT) & (1 << slot->id) ? 1 : 0;
1439
1440 dev_dbg(&mmc->class_dev, "card is %s\n",
1441 read_only ? "read-only" : "read-write");
1442
1443 return read_only;
1444 }
1445
1446 static int dw_mci_get_cd(struct mmc_host *mmc)
1447 {
1448 int present;
1449 struct dw_mci_slot *slot = mmc_priv(mmc);
1450 struct dw_mci_board *brd = slot->host->pdata;
1451 struct dw_mci *host = slot->host;
1452 int gpio_cd = mmc_gpio_get_cd(mmc);
1453
1454 /* Use platform get_cd function, else try onboard card detect */
1455 if ((brd->quirks & DW_MCI_QUIRK_BROKEN_CARD_DETECTION) ||
1456 (mmc->caps & MMC_CAP_NONREMOVABLE))
1457 present = 1;
1458 else if (!IS_ERR_VALUE(gpio_cd))
1459 present = gpio_cd;
1460 else
1461 present = (mci_readl(slot->host, CDETECT) & (1 << slot->id))
1462 == 0 ? 1 : 0;
1463
1464 spin_lock_bh(&host->lock);
1465 if (present) {
1466 set_bit(DW_MMC_CARD_PRESENT, &slot->flags);
1467 dev_dbg(&mmc->class_dev, "card is present\n");
1468 } else {
1469 clear_bit(DW_MMC_CARD_PRESENT, &slot->flags);
1470 dev_dbg(&mmc->class_dev, "card is not present\n");
1471 }
1472 spin_unlock_bh(&host->lock);
1473
1474 return present;
1475 }
1476
1477 static void dw_mci_hw_reset(struct mmc_host *mmc)
1478 {
1479 struct dw_mci_slot *slot = mmc_priv(mmc);
1480 struct dw_mci *host = slot->host;
1481 int reset;
1482
1483 if (host->use_dma == TRANS_MODE_IDMAC)
1484 dw_mci_idmac_reset(host);
1485
1486 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET |
1487 SDMMC_CTRL_FIFO_RESET))
1488 return;
1489
1490 /*
1491 * According to eMMC spec, card reset procedure:
1492 * tRstW >= 1us: RST_n pulse width
1493 * tRSCA >= 200us: RST_n to Command time
1494 * tRSTH >= 1us: RST_n high period
1495 */
1496 reset = mci_readl(host, RST_N);
1497 reset &= ~(SDMMC_RST_HWACTIVE << slot->id);
1498 mci_writel(host, RST_N, reset);
1499 usleep_range(1, 2);
1500 reset |= SDMMC_RST_HWACTIVE << slot->id;
1501 mci_writel(host, RST_N, reset);
1502 usleep_range(200, 300);
1503 }
1504
1505 static void dw_mci_init_card(struct mmc_host *mmc, struct mmc_card *card)
1506 {
1507 struct dw_mci_slot *slot = mmc_priv(mmc);
1508 struct dw_mci *host = slot->host;
1509
1510 /*
1511 * Low power mode will stop the card clock when idle. According to the
1512 * description of the CLKENA register we should disable low power mode
1513 * for SDIO cards if we need SDIO interrupts to work.
1514 */
1515 if (mmc->caps & MMC_CAP_SDIO_IRQ) {
1516 const u32 clken_low_pwr = SDMMC_CLKEN_LOW_PWR << slot->id;
1517 u32 clk_en_a_old;
1518 u32 clk_en_a;
1519
1520 clk_en_a_old = mci_readl(host, CLKENA);
1521
1522 if (card->type == MMC_TYPE_SDIO ||
1523 card->type == MMC_TYPE_SD_COMBO) {
1524 set_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1525 clk_en_a = clk_en_a_old & ~clken_low_pwr;
1526 } else {
1527 clear_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1528 clk_en_a = clk_en_a_old | clken_low_pwr;
1529 }
1530
1531 if (clk_en_a != clk_en_a_old) {
1532 mci_writel(host, CLKENA, clk_en_a);
1533 mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
1534 SDMMC_CMD_PRV_DAT_WAIT, 0);
1535 }
1536 }
1537 }
1538
1539 static void dw_mci_enable_sdio_irq(struct mmc_host *mmc, int enb)
1540 {
1541 struct dw_mci_slot *slot = mmc_priv(mmc);
1542 struct dw_mci *host = slot->host;
1543 unsigned long irqflags;
1544 u32 int_mask;
1545
1546 spin_lock_irqsave(&host->irq_lock, irqflags);
1547
1548 /* Enable/disable Slot Specific SDIO interrupt */
1549 int_mask = mci_readl(host, INTMASK);
1550 if (enb)
1551 int_mask |= SDMMC_INT_SDIO(slot->sdio_id);
1552 else
1553 int_mask &= ~SDMMC_INT_SDIO(slot->sdio_id);
1554 mci_writel(host, INTMASK, int_mask);
1555
1556 spin_unlock_irqrestore(&host->irq_lock, irqflags);
1557 }
1558
1559 static int dw_mci_execute_tuning(struct mmc_host *mmc, u32 opcode)
1560 {
1561 struct dw_mci_slot *slot = mmc_priv(mmc);
1562 struct dw_mci *host = slot->host;
1563 const struct dw_mci_drv_data *drv_data = host->drv_data;
1564 int err = -EINVAL;
1565
1566 if (drv_data && drv_data->execute_tuning)
1567 err = drv_data->execute_tuning(slot, opcode);
1568 return err;
1569 }
1570
1571 static int dw_mci_prepare_hs400_tuning(struct mmc_host *mmc,
1572 struct mmc_ios *ios)
1573 {
1574 struct dw_mci_slot *slot = mmc_priv(mmc);
1575 struct dw_mci *host = slot->host;
1576 const struct dw_mci_drv_data *drv_data = host->drv_data;
1577
1578 if (drv_data && drv_data->prepare_hs400_tuning)
1579 return drv_data->prepare_hs400_tuning(host, ios);
1580
1581 return 0;
1582 }
1583
1584 static const struct mmc_host_ops dw_mci_ops = {
1585 .request = dw_mci_request,
1586 .pre_req = dw_mci_pre_req,
1587 .post_req = dw_mci_post_req,
1588 .set_ios = dw_mci_set_ios,
1589 .get_ro = dw_mci_get_ro,
1590 .get_cd = dw_mci_get_cd,
1591 .hw_reset = dw_mci_hw_reset,
1592 .enable_sdio_irq = dw_mci_enable_sdio_irq,
1593 .execute_tuning = dw_mci_execute_tuning,
1594 .card_busy = dw_mci_card_busy,
1595 .start_signal_voltage_switch = dw_mci_switch_voltage,
1596 .init_card = dw_mci_init_card,
1597 .prepare_hs400_tuning = dw_mci_prepare_hs400_tuning,
1598 };
1599
1600 static void dw_mci_request_end(struct dw_mci *host, struct mmc_request *mrq)
1601 __releases(&host->lock)
1602 __acquires(&host->lock)
1603 {
1604 struct dw_mci_slot *slot;
1605 struct mmc_host *prev_mmc = host->cur_slot->mmc;
1606
1607 WARN_ON(host->cmd || host->data);
1608
1609 host->cur_slot->mrq = NULL;
1610 host->mrq = NULL;
1611 if (!list_empty(&host->queue)) {
1612 slot = list_entry(host->queue.next,
1613 struct dw_mci_slot, queue_node);
1614 list_del(&slot->queue_node);
1615 dev_vdbg(host->dev, "list not empty: %s is next\n",
1616 mmc_hostname(slot->mmc));
1617 host->state = STATE_SENDING_CMD;
1618 dw_mci_start_request(host, slot);
1619 } else {
1620 dev_vdbg(host->dev, "list empty\n");
1621
1622 if (host->state == STATE_SENDING_CMD11)
1623 host->state = STATE_WAITING_CMD11_DONE;
1624 else
1625 host->state = STATE_IDLE;
1626 }
1627
1628 spin_unlock(&host->lock);
1629 mmc_request_done(prev_mmc, mrq);
1630 spin_lock(&host->lock);
1631 }
1632
1633 static int dw_mci_command_complete(struct dw_mci *host, struct mmc_command *cmd)
1634 {
1635 u32 status = host->cmd_status;
1636
1637 host->cmd_status = 0;
1638
1639 /* Read the response from the card (up to 16 bytes) */
1640 if (cmd->flags & MMC_RSP_PRESENT) {
1641 if (cmd->flags & MMC_RSP_136) {
1642 cmd->resp[3] = mci_readl(host, RESP0);
1643 cmd->resp[2] = mci_readl(host, RESP1);
1644 cmd->resp[1] = mci_readl(host, RESP2);
1645 cmd->resp[0] = mci_readl(host, RESP3);
1646 } else {
1647 cmd->resp[0] = mci_readl(host, RESP0);
1648 cmd->resp[1] = 0;
1649 cmd->resp[2] = 0;
1650 cmd->resp[3] = 0;
1651 }
1652 }
1653
1654 if (status & SDMMC_INT_RTO)
1655 cmd->error = -ETIMEDOUT;
1656 else if ((cmd->flags & MMC_RSP_CRC) && (status & SDMMC_INT_RCRC))
1657 cmd->error = -EILSEQ;
1658 else if (status & SDMMC_INT_RESP_ERR)
1659 cmd->error = -EIO;
1660 else
1661 cmd->error = 0;
1662
1663 return cmd->error;
1664 }
1665
1666 static int dw_mci_data_complete(struct dw_mci *host, struct mmc_data *data)
1667 {
1668 u32 status = host->data_status;
1669
1670 if (status & DW_MCI_DATA_ERROR_FLAGS) {
1671 if (status & SDMMC_INT_DRTO) {
1672 data->error = -ETIMEDOUT;
1673 } else if (status & SDMMC_INT_DCRC) {
1674 data->error = -EILSEQ;
1675 } else if (status & SDMMC_INT_EBE) {
1676 if (host->dir_status ==
1677 DW_MCI_SEND_STATUS) {
1678 /*
1679 * No data CRC status was returned.
1680 * The number of bytes transferred
1681 * will be exaggerated in PIO mode.
1682 */
1683 data->bytes_xfered = 0;
1684 data->error = -ETIMEDOUT;
1685 } else if (host->dir_status ==
1686 DW_MCI_RECV_STATUS) {
1687 data->error = -EIO;
1688 }
1689 } else {
1690 /* SDMMC_INT_SBE is included */
1691 data->error = -EIO;
1692 }
1693
1694 dev_dbg(host->dev, "data error, status 0x%08x\n", status);
1695
1696 /*
1697 * After an error, there may be data lingering
1698 * in the FIFO
1699 */
1700 dw_mci_reset(host);
1701 } else {
1702 data->bytes_xfered = data->blocks * data->blksz;
1703 data->error = 0;
1704 }
1705
1706 return data->error;
1707 }
1708
1709 static void dw_mci_set_drto(struct dw_mci *host)
1710 {
1711 unsigned int drto_clks;
1712 unsigned int drto_ms;
1713
1714 drto_clks = mci_readl(host, TMOUT) >> 8;
1715 drto_ms = DIV_ROUND_UP(drto_clks, host->bus_hz / 1000);
1716
1717 /* add a bit spare time */
1718 drto_ms += 10;
1719
1720 mod_timer(&host->dto_timer, jiffies + msecs_to_jiffies(drto_ms));
1721 }
1722
1723 static void dw_mci_tasklet_func(unsigned long priv)
1724 {
1725 struct dw_mci *host = (struct dw_mci *)priv;
1726 struct mmc_data *data;
1727 struct mmc_command *cmd;
1728 struct mmc_request *mrq;
1729 enum dw_mci_state state;
1730 enum dw_mci_state prev_state;
1731 unsigned int err;
1732
1733 spin_lock(&host->lock);
1734
1735 state = host->state;
1736 data = host->data;
1737 mrq = host->mrq;
1738
1739 do {
1740 prev_state = state;
1741
1742 switch (state) {
1743 case STATE_IDLE:
1744 case STATE_WAITING_CMD11_DONE:
1745 break;
1746
1747 case STATE_SENDING_CMD11:
1748 case STATE_SENDING_CMD:
1749 if (!test_and_clear_bit(EVENT_CMD_COMPLETE,
1750 &host->pending_events))
1751 break;
1752
1753 cmd = host->cmd;
1754 host->cmd = NULL;
1755 set_bit(EVENT_CMD_COMPLETE, &host->completed_events);
1756 err = dw_mci_command_complete(host, cmd);
1757 if (cmd == mrq->sbc && !err) {
1758 prev_state = state = STATE_SENDING_CMD;
1759 __dw_mci_start_request(host, host->cur_slot,
1760 mrq->cmd);
1761 goto unlock;
1762 }
1763
1764 if (cmd->data && err) {
1765 dw_mci_stop_dma(host);
1766 send_stop_abort(host, data);
1767 state = STATE_SENDING_STOP;
1768 break;
1769 }
1770
1771 if (!cmd->data || err) {
1772 dw_mci_request_end(host, mrq);
1773 goto unlock;
1774 }
1775
1776 prev_state = state = STATE_SENDING_DATA;
1777 /* fall through */
1778
1779 case STATE_SENDING_DATA:
1780 /*
1781 * We could get a data error and never a transfer
1782 * complete so we'd better check for it here.
1783 *
1784 * Note that we don't really care if we also got a
1785 * transfer complete; stopping the DMA and sending an
1786 * abort won't hurt.
1787 */
1788 if (test_and_clear_bit(EVENT_DATA_ERROR,
1789 &host->pending_events)) {
1790 dw_mci_stop_dma(host);
1791 if (data->stop ||
1792 !(host->data_status & (SDMMC_INT_DRTO |
1793 SDMMC_INT_EBE)))
1794 send_stop_abort(host, data);
1795 state = STATE_DATA_ERROR;
1796 break;
1797 }
1798
1799 if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
1800 &host->pending_events)) {
1801 /*
1802 * If all data-related interrupts don't come
1803 * within the given time in reading data state.
1804 */
1805 if ((host->quirks & DW_MCI_QUIRK_BROKEN_DTO) &&
1806 (host->dir_status == DW_MCI_RECV_STATUS))
1807 dw_mci_set_drto(host);
1808 break;
1809 }
1810
1811 set_bit(EVENT_XFER_COMPLETE, &host->completed_events);
1812
1813 /*
1814 * Handle an EVENT_DATA_ERROR that might have shown up
1815 * before the transfer completed. This might not have
1816 * been caught by the check above because the interrupt
1817 * could have gone off between the previous check and
1818 * the check for transfer complete.
1819 *
1820 * Technically this ought not be needed assuming we
1821 * get a DATA_COMPLETE eventually (we'll notice the
1822 * error and end the request), but it shouldn't hurt.
1823 *
1824 * This has the advantage of sending the stop command.
1825 */
1826 if (test_and_clear_bit(EVENT_DATA_ERROR,
1827 &host->pending_events)) {
1828 dw_mci_stop_dma(host);
1829 if (data->stop ||
1830 !(host->data_status & (SDMMC_INT_DRTO |
1831 SDMMC_INT_EBE)))
1832 send_stop_abort(host, data);
1833 state = STATE_DATA_ERROR;
1834 break;
1835 }
1836 prev_state = state = STATE_DATA_BUSY;
1837
1838 /* fall through */
1839
1840 case STATE_DATA_BUSY:
1841 if (!test_and_clear_bit(EVENT_DATA_COMPLETE,
1842 &host->pending_events)) {
1843 /*
1844 * If data error interrupt comes but data over
1845 * interrupt doesn't come within the given time.
1846 * in reading data state.
1847 */
1848 if ((host->quirks & DW_MCI_QUIRK_BROKEN_DTO) &&
1849 (host->dir_status == DW_MCI_RECV_STATUS))
1850 dw_mci_set_drto(host);
1851 break;
1852 }
1853
1854 host->data = NULL;
1855 set_bit(EVENT_DATA_COMPLETE, &host->completed_events);
1856 err = dw_mci_data_complete(host, data);
1857
1858 if (!err) {
1859 if (!data->stop || mrq->sbc) {
1860 if (mrq->sbc && data->stop)
1861 data->stop->error = 0;
1862 dw_mci_request_end(host, mrq);
1863 goto unlock;
1864 }
1865
1866 /* stop command for open-ended transfer*/
1867 if (data->stop)
1868 send_stop_abort(host, data);
1869 } else {
1870 /*
1871 * If we don't have a command complete now we'll
1872 * never get one since we just reset everything;
1873 * better end the request.
1874 *
1875 * If we do have a command complete we'll fall
1876 * through to the SENDING_STOP command and
1877 * everything will be peachy keen.
1878 */
1879 if (!test_bit(EVENT_CMD_COMPLETE,
1880 &host->pending_events)) {
1881 host->cmd = NULL;
1882 dw_mci_request_end(host, mrq);
1883 goto unlock;
1884 }
1885 }
1886
1887 /*
1888 * If err has non-zero,
1889 * stop-abort command has been already issued.
1890 */
1891 prev_state = state = STATE_SENDING_STOP;
1892
1893 /* fall through */
1894
1895 case STATE_SENDING_STOP:
1896 if (!test_and_clear_bit(EVENT_CMD_COMPLETE,
1897 &host->pending_events))
1898 break;
1899
1900 /* CMD error in data command */
1901 if (mrq->cmd->error && mrq->data)
1902 dw_mci_reset(host);
1903
1904 host->cmd = NULL;
1905 host->data = NULL;
1906
1907 if (mrq->stop)
1908 dw_mci_command_complete(host, mrq->stop);
1909 else
1910 host->cmd_status = 0;
1911
1912 dw_mci_request_end(host, mrq);
1913 goto unlock;
1914
1915 case STATE_DATA_ERROR:
1916 if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
1917 &host->pending_events))
1918 break;
1919
1920 state = STATE_DATA_BUSY;
1921 break;
1922 }
1923 } while (state != prev_state);
1924
1925 host->state = state;
1926 unlock:
1927 spin_unlock(&host->lock);
1928
1929 }
1930
1931 /* push final bytes to part_buf, only use during push */
1932 static void dw_mci_set_part_bytes(struct dw_mci *host, void *buf, int cnt)
1933 {
1934 memcpy((void *)&host->part_buf, buf, cnt);
1935 host->part_buf_count = cnt;
1936 }
1937
1938 /* append bytes to part_buf, only use during push */
1939 static int dw_mci_push_part_bytes(struct dw_mci *host, void *buf, int cnt)
1940 {
1941 cnt = min(cnt, (1 << host->data_shift) - host->part_buf_count);
1942 memcpy((void *)&host->part_buf + host->part_buf_count, buf, cnt);
1943 host->part_buf_count += cnt;
1944 return cnt;
1945 }
1946
1947 /* pull first bytes from part_buf, only use during pull */
1948 static int dw_mci_pull_part_bytes(struct dw_mci *host, void *buf, int cnt)
1949 {
1950 cnt = min_t(int, cnt, host->part_buf_count);
1951 if (cnt) {
1952 memcpy(buf, (void *)&host->part_buf + host->part_buf_start,
1953 cnt);
1954 host->part_buf_count -= cnt;
1955 host->part_buf_start += cnt;
1956 }
1957 return cnt;
1958 }
1959
1960 /* pull final bytes from the part_buf, assuming it's just been filled */
1961 static void dw_mci_pull_final_bytes(struct dw_mci *host, void *buf, int cnt)
1962 {
1963 memcpy(buf, &host->part_buf, cnt);
1964 host->part_buf_start = cnt;
1965 host->part_buf_count = (1 << host->data_shift) - cnt;
1966 }
1967
1968 static void dw_mci_push_data16(struct dw_mci *host, void *buf, int cnt)
1969 {
1970 struct mmc_data *data = host->data;
1971 int init_cnt = cnt;
1972
1973 /* try and push anything in the part_buf */
1974 if (unlikely(host->part_buf_count)) {
1975 int len = dw_mci_push_part_bytes(host, buf, cnt);
1976
1977 buf += len;
1978 cnt -= len;
1979 if (host->part_buf_count == 2) {
1980 mci_fifo_writew(host->fifo_reg, host->part_buf16);
1981 host->part_buf_count = 0;
1982 }
1983 }
1984 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1985 if (unlikely((unsigned long)buf & 0x1)) {
1986 while (cnt >= 2) {
1987 u16 aligned_buf[64];
1988 int len = min(cnt & -2, (int)sizeof(aligned_buf));
1989 int items = len >> 1;
1990 int i;
1991 /* memcpy from input buffer into aligned buffer */
1992 memcpy(aligned_buf, buf, len);
1993 buf += len;
1994 cnt -= len;
1995 /* push data from aligned buffer into fifo */
1996 for (i = 0; i < items; ++i)
1997 mci_fifo_writew(host->fifo_reg, aligned_buf[i]);
1998 }
1999 } else
2000 #endif
2001 {
2002 u16 *pdata = buf;
2003
2004 for (; cnt >= 2; cnt -= 2)
2005 mci_fifo_writew(host->fifo_reg, *pdata++);
2006 buf = pdata;
2007 }
2008 /* put anything remaining in the part_buf */
2009 if (cnt) {
2010 dw_mci_set_part_bytes(host, buf, cnt);
2011 /* Push data if we have reached the expected data length */
2012 if ((data->bytes_xfered + init_cnt) ==
2013 (data->blksz * data->blocks))
2014 mci_fifo_writew(host->fifo_reg, host->part_buf16);
2015 }
2016 }
2017
2018 static void dw_mci_pull_data16(struct dw_mci *host, void *buf, int cnt)
2019 {
2020 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2021 if (unlikely((unsigned long)buf & 0x1)) {
2022 while (cnt >= 2) {
2023 /* pull data from fifo into aligned buffer */
2024 u16 aligned_buf[64];
2025 int len = min(cnt & -2, (int)sizeof(aligned_buf));
2026 int items = len >> 1;
2027 int i;
2028
2029 for (i = 0; i < items; ++i)
2030 aligned_buf[i] = mci_fifo_readw(host->fifo_reg);
2031 /* memcpy from aligned buffer into output buffer */
2032 memcpy(buf, aligned_buf, len);
2033 buf += len;
2034 cnt -= len;
2035 }
2036 } else
2037 #endif
2038 {
2039 u16 *pdata = buf;
2040
2041 for (; cnt >= 2; cnt -= 2)
2042 *pdata++ = mci_fifo_readw(host->fifo_reg);
2043 buf = pdata;
2044 }
2045 if (cnt) {
2046 host->part_buf16 = mci_fifo_readw(host->fifo_reg);
2047 dw_mci_pull_final_bytes(host, buf, cnt);
2048 }
2049 }
2050
2051 static void dw_mci_push_data32(struct dw_mci *host, void *buf, int cnt)
2052 {
2053 struct mmc_data *data = host->data;
2054 int init_cnt = cnt;
2055
2056 /* try and push anything in the part_buf */
2057 if (unlikely(host->part_buf_count)) {
2058 int len = dw_mci_push_part_bytes(host, buf, cnt);
2059
2060 buf += len;
2061 cnt -= len;
2062 if (host->part_buf_count == 4) {
2063 mci_fifo_writel(host->fifo_reg, host->part_buf32);
2064 host->part_buf_count = 0;
2065 }
2066 }
2067 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2068 if (unlikely((unsigned long)buf & 0x3)) {
2069 while (cnt >= 4) {
2070 u32 aligned_buf[32];
2071 int len = min(cnt & -4, (int)sizeof(aligned_buf));
2072 int items = len >> 2;
2073 int i;
2074 /* memcpy from input buffer into aligned buffer */
2075 memcpy(aligned_buf, buf, len);
2076 buf += len;
2077 cnt -= len;
2078 /* push data from aligned buffer into fifo */
2079 for (i = 0; i < items; ++i)
2080 mci_fifo_writel(host->fifo_reg, aligned_buf[i]);
2081 }
2082 } else
2083 #endif
2084 {
2085 u32 *pdata = buf;
2086
2087 for (; cnt >= 4; cnt -= 4)
2088 mci_fifo_writel(host->fifo_reg, *pdata++);
2089 buf = pdata;
2090 }
2091 /* put anything remaining in the part_buf */
2092 if (cnt) {
2093 dw_mci_set_part_bytes(host, buf, cnt);
2094 /* Push data if we have reached the expected data length */
2095 if ((data->bytes_xfered + init_cnt) ==
2096 (data->blksz * data->blocks))
2097 mci_fifo_writel(host->fifo_reg, host->part_buf32);
2098 }
2099 }
2100
2101 static void dw_mci_pull_data32(struct dw_mci *host, void *buf, int cnt)
2102 {
2103 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2104 if (unlikely((unsigned long)buf & 0x3)) {
2105 while (cnt >= 4) {
2106 /* pull data from fifo into aligned buffer */
2107 u32 aligned_buf[32];
2108 int len = min(cnt & -4, (int)sizeof(aligned_buf));
2109 int items = len >> 2;
2110 int i;
2111
2112 for (i = 0; i < items; ++i)
2113 aligned_buf[i] = mci_fifo_readl(host->fifo_reg);
2114 /* memcpy from aligned buffer into output buffer */
2115 memcpy(buf, aligned_buf, len);
2116 buf += len;
2117 cnt -= len;
2118 }
2119 } else
2120 #endif
2121 {
2122 u32 *pdata = buf;
2123
2124 for (; cnt >= 4; cnt -= 4)
2125 *pdata++ = mci_fifo_readl(host->fifo_reg);
2126 buf = pdata;
2127 }
2128 if (cnt) {
2129 host->part_buf32 = mci_fifo_readl(host->fifo_reg);
2130 dw_mci_pull_final_bytes(host, buf, cnt);
2131 }
2132 }
2133
2134 static void dw_mci_push_data64(struct dw_mci *host, void *buf, int cnt)
2135 {
2136 struct mmc_data *data = host->data;
2137 int init_cnt = cnt;
2138
2139 /* try and push anything in the part_buf */
2140 if (unlikely(host->part_buf_count)) {
2141 int len = dw_mci_push_part_bytes(host, buf, cnt);
2142
2143 buf += len;
2144 cnt -= len;
2145
2146 if (host->part_buf_count == 8) {
2147 mci_fifo_writeq(host->fifo_reg, host->part_buf);
2148 host->part_buf_count = 0;
2149 }
2150 }
2151 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2152 if (unlikely((unsigned long)buf & 0x7)) {
2153 while (cnt >= 8) {
2154 u64 aligned_buf[16];
2155 int len = min(cnt & -8, (int)sizeof(aligned_buf));
2156 int items = len >> 3;
2157 int i;
2158 /* memcpy from input buffer into aligned buffer */
2159 memcpy(aligned_buf, buf, len);
2160 buf += len;
2161 cnt -= len;
2162 /* push data from aligned buffer into fifo */
2163 for (i = 0; i < items; ++i)
2164 mci_fifo_writeq(host->fifo_reg, aligned_buf[i]);
2165 }
2166 } else
2167 #endif
2168 {
2169 u64 *pdata = buf;
2170
2171 for (; cnt >= 8; cnt -= 8)
2172 mci_fifo_writeq(host->fifo_reg, *pdata++);
2173 buf = pdata;
2174 }
2175 /* put anything remaining in the part_buf */
2176 if (cnt) {
2177 dw_mci_set_part_bytes(host, buf, cnt);
2178 /* Push data if we have reached the expected data length */
2179 if ((data->bytes_xfered + init_cnt) ==
2180 (data->blksz * data->blocks))
2181 mci_fifo_writeq(host->fifo_reg, host->part_buf);
2182 }
2183 }
2184
2185 static void dw_mci_pull_data64(struct dw_mci *host, void *buf, int cnt)
2186 {
2187 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2188 if (unlikely((unsigned long)buf & 0x7)) {
2189 while (cnt >= 8) {
2190 /* pull data from fifo into aligned buffer */
2191 u64 aligned_buf[16];
2192 int len = min(cnt & -8, (int)sizeof(aligned_buf));
2193 int items = len >> 3;
2194 int i;
2195
2196 for (i = 0; i < items; ++i)
2197 aligned_buf[i] = mci_fifo_readq(host->fifo_reg);
2198
2199 /* memcpy from aligned buffer into output buffer */
2200 memcpy(buf, aligned_buf, len);
2201 buf += len;
2202 cnt -= len;
2203 }
2204 } else
2205 #endif
2206 {
2207 u64 *pdata = buf;
2208
2209 for (; cnt >= 8; cnt -= 8)
2210 *pdata++ = mci_fifo_readq(host->fifo_reg);
2211 buf = pdata;
2212 }
2213 if (cnt) {
2214 host->part_buf = mci_fifo_readq(host->fifo_reg);
2215 dw_mci_pull_final_bytes(host, buf, cnt);
2216 }
2217 }
2218
2219 static void dw_mci_pull_data(struct dw_mci *host, void *buf, int cnt)
2220 {
2221 int len;
2222
2223 /* get remaining partial bytes */
2224 len = dw_mci_pull_part_bytes(host, buf, cnt);
2225 if (unlikely(len == cnt))
2226 return;
2227 buf += len;
2228 cnt -= len;
2229
2230 /* get the rest of the data */
2231 host->pull_data(host, buf, cnt);
2232 }
2233
2234 static void dw_mci_read_data_pio(struct dw_mci *host, bool dto)
2235 {
2236 struct sg_mapping_iter *sg_miter = &host->sg_miter;
2237 void *buf;
2238 unsigned int offset;
2239 struct mmc_data *data = host->data;
2240 int shift = host->data_shift;
2241 u32 status;
2242 unsigned int len;
2243 unsigned int remain, fcnt;
2244
2245 do {
2246 if (!sg_miter_next(sg_miter))
2247 goto done;
2248
2249 host->sg = sg_miter->piter.sg;
2250 buf = sg_miter->addr;
2251 remain = sg_miter->length;
2252 offset = 0;
2253
2254 do {
2255 fcnt = (SDMMC_GET_FCNT(mci_readl(host, STATUS))
2256 << shift) + host->part_buf_count;
2257 len = min(remain, fcnt);
2258 if (!len)
2259 break;
2260 dw_mci_pull_data(host, (void *)(buf + offset), len);
2261 data->bytes_xfered += len;
2262 offset += len;
2263 remain -= len;
2264 } while (remain);
2265
2266 sg_miter->consumed = offset;
2267 status = mci_readl(host, MINTSTS);
2268 mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2269 /* if the RXDR is ready read again */
2270 } while ((status & SDMMC_INT_RXDR) ||
2271 (dto && SDMMC_GET_FCNT(mci_readl(host, STATUS))));
2272
2273 if (!remain) {
2274 if (!sg_miter_next(sg_miter))
2275 goto done;
2276 sg_miter->consumed = 0;
2277 }
2278 sg_miter_stop(sg_miter);
2279 return;
2280
2281 done:
2282 sg_miter_stop(sg_miter);
2283 host->sg = NULL;
2284 smp_wmb(); /* drain writebuffer */
2285 set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2286 }
2287
2288 static void dw_mci_write_data_pio(struct dw_mci *host)
2289 {
2290 struct sg_mapping_iter *sg_miter = &host->sg_miter;
2291 void *buf;
2292 unsigned int offset;
2293 struct mmc_data *data = host->data;
2294 int shift = host->data_shift;
2295 u32 status;
2296 unsigned int len;
2297 unsigned int fifo_depth = host->fifo_depth;
2298 unsigned int remain, fcnt;
2299
2300 do {
2301 if (!sg_miter_next(sg_miter))
2302 goto done;
2303
2304 host->sg = sg_miter->piter.sg;
2305 buf = sg_miter->addr;
2306 remain = sg_miter->length;
2307 offset = 0;
2308
2309 do {
2310 fcnt = ((fifo_depth -
2311 SDMMC_GET_FCNT(mci_readl(host, STATUS)))
2312 << shift) - host->part_buf_count;
2313 len = min(remain, fcnt);
2314 if (!len)
2315 break;
2316 host->push_data(host, (void *)(buf + offset), len);
2317 data->bytes_xfered += len;
2318 offset += len;
2319 remain -= len;
2320 } while (remain);
2321
2322 sg_miter->consumed = offset;
2323 status = mci_readl(host, MINTSTS);
2324 mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2325 } while (status & SDMMC_INT_TXDR); /* if TXDR write again */
2326
2327 if (!remain) {
2328 if (!sg_miter_next(sg_miter))
2329 goto done;
2330 sg_miter->consumed = 0;
2331 }
2332 sg_miter_stop(sg_miter);
2333 return;
2334
2335 done:
2336 sg_miter_stop(sg_miter);
2337 host->sg = NULL;
2338 smp_wmb(); /* drain writebuffer */
2339 set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2340 }
2341
2342 static void dw_mci_cmd_interrupt(struct dw_mci *host, u32 status)
2343 {
2344 if (!host->cmd_status)
2345 host->cmd_status = status;
2346
2347 smp_wmb(); /* drain writebuffer */
2348
2349 set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2350 tasklet_schedule(&host->tasklet);
2351 }
2352
2353 static void dw_mci_handle_cd(struct dw_mci *host)
2354 {
2355 int i;
2356
2357 for (i = 0; i < host->num_slots; i++) {
2358 struct dw_mci_slot *slot = host->slot[i];
2359
2360 if (!slot)
2361 continue;
2362
2363 if (slot->mmc->ops->card_event)
2364 slot->mmc->ops->card_event(slot->mmc);
2365 mmc_detect_change(slot->mmc,
2366 msecs_to_jiffies(host->pdata->detect_delay_ms));
2367 }
2368 }
2369
2370 static irqreturn_t dw_mci_interrupt(int irq, void *dev_id)
2371 {
2372 struct dw_mci *host = dev_id;
2373 u32 pending;
2374 int i;
2375
2376 pending = mci_readl(host, MINTSTS); /* read-only mask reg */
2377
2378 if (pending) {
2379 /* Check volt switch first, since it can look like an error */
2380 if ((host->state == STATE_SENDING_CMD11) &&
2381 (pending & SDMMC_INT_VOLT_SWITCH)) {
2382 unsigned long irqflags;
2383
2384 mci_writel(host, RINTSTS, SDMMC_INT_VOLT_SWITCH);
2385 pending &= ~SDMMC_INT_VOLT_SWITCH;
2386
2387 /*
2388 * Hold the lock; we know cmd11_timer can't be kicked
2389 * off after the lock is released, so safe to delete.
2390 */
2391 spin_lock_irqsave(&host->irq_lock, irqflags);
2392 dw_mci_cmd_interrupt(host, pending);
2393 spin_unlock_irqrestore(&host->irq_lock, irqflags);
2394
2395 del_timer(&host->cmd11_timer);
2396 }
2397
2398 if (pending & DW_MCI_CMD_ERROR_FLAGS) {
2399 mci_writel(host, RINTSTS, DW_MCI_CMD_ERROR_FLAGS);
2400 host->cmd_status = pending;
2401 smp_wmb(); /* drain writebuffer */
2402 set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2403 }
2404
2405 if (pending & DW_MCI_DATA_ERROR_FLAGS) {
2406 /* if there is an error report DATA_ERROR */
2407 mci_writel(host, RINTSTS, DW_MCI_DATA_ERROR_FLAGS);
2408 host->data_status = pending;
2409 smp_wmb(); /* drain writebuffer */
2410 set_bit(EVENT_DATA_ERROR, &host->pending_events);
2411 tasklet_schedule(&host->tasklet);
2412 }
2413
2414 if (pending & SDMMC_INT_DATA_OVER) {
2415 if (host->quirks & DW_MCI_QUIRK_BROKEN_DTO)
2416 del_timer(&host->dto_timer);
2417
2418 mci_writel(host, RINTSTS, SDMMC_INT_DATA_OVER);
2419 if (!host->data_status)
2420 host->data_status = pending;
2421 smp_wmb(); /* drain writebuffer */
2422 if (host->dir_status == DW_MCI_RECV_STATUS) {
2423 if (host->sg != NULL)
2424 dw_mci_read_data_pio(host, true);
2425 }
2426 set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
2427 tasklet_schedule(&host->tasklet);
2428 }
2429
2430 if (pending & SDMMC_INT_RXDR) {
2431 mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2432 if (host->dir_status == DW_MCI_RECV_STATUS && host->sg)
2433 dw_mci_read_data_pio(host, false);
2434 }
2435
2436 if (pending & SDMMC_INT_TXDR) {
2437 mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2438 if (host->dir_status == DW_MCI_SEND_STATUS && host->sg)
2439 dw_mci_write_data_pio(host);
2440 }
2441
2442 if (pending & SDMMC_INT_CMD_DONE) {
2443 mci_writel(host, RINTSTS, SDMMC_INT_CMD_DONE);
2444 dw_mci_cmd_interrupt(host, pending);
2445 }
2446
2447 if (pending & SDMMC_INT_CD) {
2448 mci_writel(host, RINTSTS, SDMMC_INT_CD);
2449 dw_mci_handle_cd(host);
2450 }
2451
2452 /* Handle SDIO Interrupts */
2453 for (i = 0; i < host->num_slots; i++) {
2454 struct dw_mci_slot *slot = host->slot[i];
2455
2456 if (!slot)
2457 continue;
2458
2459 if (pending & SDMMC_INT_SDIO(slot->sdio_id)) {
2460 mci_writel(host, RINTSTS,
2461 SDMMC_INT_SDIO(slot->sdio_id));
2462 mmc_signal_sdio_irq(slot->mmc);
2463 }
2464 }
2465
2466 }
2467
2468 if (host->use_dma != TRANS_MODE_IDMAC)
2469 return IRQ_HANDLED;
2470
2471 /* Handle IDMA interrupts */
2472 if (host->dma_64bit_address == 1) {
2473 pending = mci_readl(host, IDSTS64);
2474 if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2475 mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_TI |
2476 SDMMC_IDMAC_INT_RI);
2477 mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_NI);
2478 host->dma_ops->complete((void *)host);
2479 }
2480 } else {
2481 pending = mci_readl(host, IDSTS);
2482 if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2483 mci_writel(host, IDSTS, SDMMC_IDMAC_INT_TI |
2484 SDMMC_IDMAC_INT_RI);
2485 mci_writel(host, IDSTS, SDMMC_IDMAC_INT_NI);
2486 host->dma_ops->complete((void *)host);
2487 }
2488 }
2489
2490 return IRQ_HANDLED;
2491 }
2492
2493 #ifdef CONFIG_OF
2494 /* given a slot, find out the device node representing that slot */
2495 static struct device_node *dw_mci_of_find_slot_node(struct dw_mci_slot *slot)
2496 {
2497 struct device *dev = slot->mmc->parent;
2498 struct device_node *np;
2499 const __be32 *addr;
2500 int len;
2501
2502 if (!dev || !dev->of_node)
2503 return NULL;
2504
2505 for_each_child_of_node(dev->of_node, np) {
2506 addr = of_get_property(np, "reg", &len);
2507 if (!addr || (len < sizeof(int)))
2508 continue;
2509 if (be32_to_cpup(addr) == slot->id)
2510 return np;
2511 }
2512 return NULL;
2513 }
2514
2515 static void dw_mci_slot_of_parse(struct dw_mci_slot *slot)
2516 {
2517 struct device_node *np = dw_mci_of_find_slot_node(slot);
2518
2519 if (!np)
2520 return;
2521
2522 if (of_property_read_bool(np, "disable-wp")) {
2523 slot->mmc->caps2 |= MMC_CAP2_NO_WRITE_PROTECT;
2524 dev_warn(slot->mmc->parent,
2525 "Slot quirk 'disable-wp' is deprecated\n");
2526 }
2527 }
2528 #else /* CONFIG_OF */
2529 static void dw_mci_slot_of_parse(struct dw_mci_slot *slot)
2530 {
2531 }
2532 #endif /* CONFIG_OF */
2533
2534 static int dw_mci_init_slot(struct dw_mci *host, unsigned int id)
2535 {
2536 struct mmc_host *mmc;
2537 struct dw_mci_slot *slot;
2538 const struct dw_mci_drv_data *drv_data = host->drv_data;
2539 int ctrl_id, ret;
2540 u32 freq[2];
2541
2542 mmc = mmc_alloc_host(sizeof(struct dw_mci_slot), host->dev);
2543 if (!mmc)
2544 return -ENOMEM;
2545
2546 slot = mmc_priv(mmc);
2547 slot->id = id;
2548 slot->sdio_id = host->sdio_id0 + id;
2549 slot->mmc = mmc;
2550 slot->host = host;
2551 host->slot[id] = slot;
2552
2553 mmc->ops = &dw_mci_ops;
2554 if (of_property_read_u32_array(host->dev->of_node,
2555 "clock-freq-min-max", freq, 2)) {
2556 mmc->f_min = DW_MCI_FREQ_MIN;
2557 mmc->f_max = DW_MCI_FREQ_MAX;
2558 } else {
2559 mmc->f_min = freq[0];
2560 mmc->f_max = freq[1];
2561 }
2562
2563 /*if there are external regulators, get them*/
2564 ret = mmc_regulator_get_supply(mmc);
2565 if (ret == -EPROBE_DEFER)
2566 goto err_host_allocated;
2567
2568 if (!mmc->ocr_avail)
2569 mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34;
2570
2571 if (host->pdata->caps)
2572 mmc->caps = host->pdata->caps;
2573
2574 if (host->pdata->pm_caps)
2575 mmc->pm_caps = host->pdata->pm_caps;
2576
2577 if (host->dev->of_node) {
2578 ctrl_id = of_alias_get_id(host->dev->of_node, "mshc");
2579 if (ctrl_id < 0)
2580 ctrl_id = 0;
2581 } else {
2582 ctrl_id = to_platform_device(host->dev)->id;
2583 }
2584 if (drv_data && drv_data->caps)
2585 mmc->caps |= drv_data->caps[ctrl_id];
2586
2587 if (host->pdata->caps2)
2588 mmc->caps2 = host->pdata->caps2;
2589
2590 dw_mci_slot_of_parse(slot);
2591
2592 ret = mmc_of_parse(mmc);
2593 if (ret)
2594 goto err_host_allocated;
2595
2596 /* Useful defaults if platform data is unset. */
2597 if (host->use_dma == TRANS_MODE_IDMAC) {
2598 mmc->max_segs = host->ring_size;
2599 mmc->max_blk_size = 65536;
2600 mmc->max_seg_size = 0x1000;
2601 mmc->max_req_size = mmc->max_seg_size * host->ring_size;
2602 mmc->max_blk_count = mmc->max_req_size / 512;
2603 } else if (host->use_dma == TRANS_MODE_EDMAC) {
2604 mmc->max_segs = 64;
2605 mmc->max_blk_size = 65536;
2606 mmc->max_blk_count = 65535;
2607 mmc->max_req_size =
2608 mmc->max_blk_size * mmc->max_blk_count;
2609 mmc->max_seg_size = mmc->max_req_size;
2610 } else {
2611 /* TRANS_MODE_PIO */
2612 mmc->max_segs = 64;
2613 mmc->max_blk_size = 65536; /* BLKSIZ is 16 bits */
2614 mmc->max_blk_count = 512;
2615 mmc->max_req_size = mmc->max_blk_size *
2616 mmc->max_blk_count;
2617 mmc->max_seg_size = mmc->max_req_size;
2618 }
2619
2620 if (dw_mci_get_cd(mmc))
2621 set_bit(DW_MMC_CARD_PRESENT, &slot->flags);
2622 else
2623 clear_bit(DW_MMC_CARD_PRESENT, &slot->flags);
2624
2625 ret = mmc_add_host(mmc);
2626 if (ret)
2627 goto err_host_allocated;
2628
2629 #if defined(CONFIG_DEBUG_FS)
2630 dw_mci_init_debugfs(slot);
2631 #endif
2632
2633 return 0;
2634
2635 err_host_allocated:
2636 mmc_free_host(mmc);
2637 return ret;
2638 }
2639
2640 static void dw_mci_cleanup_slot(struct dw_mci_slot *slot, unsigned int id)
2641 {
2642 /* Debugfs stuff is cleaned up by mmc core */
2643 mmc_remove_host(slot->mmc);
2644 slot->host->slot[id] = NULL;
2645 mmc_free_host(slot->mmc);
2646 }
2647
2648 static void dw_mci_init_dma(struct dw_mci *host)
2649 {
2650 int addr_config;
2651 struct device *dev = host->dev;
2652 struct device_node *np = dev->of_node;
2653
2654 /*
2655 * Check tansfer mode from HCON[17:16]
2656 * Clear the ambiguous description of dw_mmc databook:
2657 * 2b'00: No DMA Interface -> Actually means using Internal DMA block
2658 * 2b'01: DesignWare DMA Interface -> Synopsys DW-DMA block
2659 * 2b'10: Generic DMA Interface -> non-Synopsys generic DMA block
2660 * 2b'11: Non DW DMA Interface -> pio only
2661 * Compared to DesignWare DMA Interface, Generic DMA Interface has a
2662 * simpler request/acknowledge handshake mechanism and both of them
2663 * are regarded as external dma master for dw_mmc.
2664 */
2665 host->use_dma = SDMMC_GET_TRANS_MODE(mci_readl(host, HCON));
2666 if (host->use_dma == DMA_INTERFACE_IDMA) {
2667 host->use_dma = TRANS_MODE_IDMAC;
2668 } else if (host->use_dma == DMA_INTERFACE_DWDMA ||
2669 host->use_dma == DMA_INTERFACE_GDMA) {
2670 host->use_dma = TRANS_MODE_EDMAC;
2671 } else {
2672 goto no_dma;
2673 }
2674
2675 /* Determine which DMA interface to use */
2676 if (host->use_dma == TRANS_MODE_IDMAC) {
2677 /*
2678 * Check ADDR_CONFIG bit in HCON to find
2679 * IDMAC address bus width
2680 */
2681 addr_config = SDMMC_GET_ADDR_CONFIG(mci_readl(host, HCON));
2682
2683 if (addr_config == 1) {
2684 /* host supports IDMAC in 64-bit address mode */
2685 host->dma_64bit_address = 1;
2686 dev_info(host->dev,
2687 "IDMAC supports 64-bit address mode.\n");
2688 if (!dma_set_mask(host->dev, DMA_BIT_MASK(64)))
2689 dma_set_coherent_mask(host->dev,
2690 DMA_BIT_MASK(64));
2691 } else {
2692 /* host supports IDMAC in 32-bit address mode */
2693 host->dma_64bit_address = 0;
2694 dev_info(host->dev,
2695 "IDMAC supports 32-bit address mode.\n");
2696 }
2697
2698 /* Alloc memory for sg translation */
2699 host->sg_cpu = dmam_alloc_coherent(host->dev, PAGE_SIZE,
2700 &host->sg_dma, GFP_KERNEL);
2701 if (!host->sg_cpu) {
2702 dev_err(host->dev,
2703 "%s: could not alloc DMA memory\n",
2704 __func__);
2705 goto no_dma;
2706 }
2707
2708 host->dma_ops = &dw_mci_idmac_ops;
2709 dev_info(host->dev, "Using internal DMA controller.\n");
2710 } else {
2711 /* TRANS_MODE_EDMAC: check dma bindings again */
2712 if ((of_property_count_strings(np, "dma-names") < 0) ||
2713 (!of_find_property(np, "dmas", NULL))) {
2714 goto no_dma;
2715 }
2716 host->dma_ops = &dw_mci_edmac_ops;
2717 dev_info(host->dev, "Using external DMA controller.\n");
2718 }
2719
2720 if (host->dma_ops->init && host->dma_ops->start &&
2721 host->dma_ops->stop && host->dma_ops->cleanup) {
2722 if (host->dma_ops->init(host)) {
2723 dev_err(host->dev, "%s: Unable to initialize DMA Controller.\n",
2724 __func__);
2725 goto no_dma;
2726 }
2727 } else {
2728 dev_err(host->dev, "DMA initialization not found.\n");
2729 goto no_dma;
2730 }
2731
2732 return;
2733
2734 no_dma:
2735 dev_info(host->dev, "Using PIO mode.\n");
2736 host->use_dma = TRANS_MODE_PIO;
2737 }
2738
2739 static bool dw_mci_ctrl_reset(struct dw_mci *host, u32 reset)
2740 {
2741 unsigned long timeout = jiffies + msecs_to_jiffies(500);
2742 u32 ctrl;
2743
2744 ctrl = mci_readl(host, CTRL);
2745 ctrl |= reset;
2746 mci_writel(host, CTRL, ctrl);
2747
2748 /* wait till resets clear */
2749 do {
2750 ctrl = mci_readl(host, CTRL);
2751 if (!(ctrl & reset))
2752 return true;
2753 } while (time_before(jiffies, timeout));
2754
2755 dev_err(host->dev,
2756 "Timeout resetting block (ctrl reset %#x)\n",
2757 ctrl & reset);
2758
2759 return false;
2760 }
2761
2762 static bool dw_mci_reset(struct dw_mci *host)
2763 {
2764 u32 flags = SDMMC_CTRL_RESET | SDMMC_CTRL_FIFO_RESET;
2765 bool ret = false;
2766
2767 /*
2768 * Reseting generates a block interrupt, hence setting
2769 * the scatter-gather pointer to NULL.
2770 */
2771 if (host->sg) {
2772 sg_miter_stop(&host->sg_miter);
2773 host->sg = NULL;
2774 }
2775
2776 if (host->use_dma)
2777 flags |= SDMMC_CTRL_DMA_RESET;
2778
2779 if (dw_mci_ctrl_reset(host, flags)) {
2780 /*
2781 * In all cases we clear the RAWINTS register to clear any
2782 * interrupts.
2783 */
2784 mci_writel(host, RINTSTS, 0xFFFFFFFF);
2785
2786 /* if using dma we wait for dma_req to clear */
2787 if (host->use_dma) {
2788 unsigned long timeout = jiffies + msecs_to_jiffies(500);
2789 u32 status;
2790
2791 do {
2792 status = mci_readl(host, STATUS);
2793 if (!(status & SDMMC_STATUS_DMA_REQ))
2794 break;
2795 cpu_relax();
2796 } while (time_before(jiffies, timeout));
2797
2798 if (status & SDMMC_STATUS_DMA_REQ) {
2799 dev_err(host->dev,
2800 "%s: Timeout waiting for dma_req to clear during reset\n",
2801 __func__);
2802 goto ciu_out;
2803 }
2804
2805 /* when using DMA next we reset the fifo again */
2806 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_FIFO_RESET))
2807 goto ciu_out;
2808 }
2809 } else {
2810 /* if the controller reset bit did clear, then set clock regs */
2811 if (!(mci_readl(host, CTRL) & SDMMC_CTRL_RESET)) {
2812 dev_err(host->dev,
2813 "%s: fifo/dma reset bits didn't clear but ciu was reset, doing clock update\n",
2814 __func__);
2815 goto ciu_out;
2816 }
2817 }
2818
2819 if (host->use_dma == TRANS_MODE_IDMAC)
2820 /* It is also recommended that we reset and reprogram idmac */
2821 dw_mci_idmac_reset(host);
2822
2823 ret = true;
2824
2825 ciu_out:
2826 /* After a CTRL reset we need to have CIU set clock registers */
2827 mci_send_cmd(host->cur_slot, SDMMC_CMD_UPD_CLK, 0);
2828
2829 return ret;
2830 }
2831
2832 static void dw_mci_cmd11_timer(unsigned long arg)
2833 {
2834 struct dw_mci *host = (struct dw_mci *)arg;
2835
2836 if (host->state != STATE_SENDING_CMD11) {
2837 dev_warn(host->dev, "Unexpected CMD11 timeout\n");
2838 return;
2839 }
2840
2841 host->cmd_status = SDMMC_INT_RTO;
2842 set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2843 tasklet_schedule(&host->tasklet);
2844 }
2845
2846 static void dw_mci_dto_timer(unsigned long arg)
2847 {
2848 struct dw_mci *host = (struct dw_mci *)arg;
2849
2850 switch (host->state) {
2851 case STATE_SENDING_DATA:
2852 case STATE_DATA_BUSY:
2853 /*
2854 * If DTO interrupt does NOT come in sending data state,
2855 * we should notify the driver to terminate current transfer
2856 * and report a data timeout to the core.
2857 */
2858 host->data_status = SDMMC_INT_DRTO;
2859 set_bit(EVENT_DATA_ERROR, &host->pending_events);
2860 set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
2861 tasklet_schedule(&host->tasklet);
2862 break;
2863 default:
2864 break;
2865 }
2866 }
2867
2868 #ifdef CONFIG_OF
2869 static struct dw_mci_of_quirks {
2870 char *quirk;
2871 int id;
2872 } of_quirks[] = {
2873 {
2874 .quirk = "broken-cd",
2875 .id = DW_MCI_QUIRK_BROKEN_CARD_DETECTION,
2876 },
2877 };
2878
2879 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
2880 {
2881 struct dw_mci_board *pdata;
2882 struct device *dev = host->dev;
2883 struct device_node *np = dev->of_node;
2884 const struct dw_mci_drv_data *drv_data = host->drv_data;
2885 int idx, ret;
2886 u32 clock_frequency;
2887
2888 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2889 if (!pdata)
2890 return ERR_PTR(-ENOMEM);
2891
2892 /* find out number of slots supported */
2893 if (of_property_read_u32(dev->of_node, "num-slots",
2894 &pdata->num_slots)) {
2895 dev_info(dev,
2896 "num-slots property not found, assuming 1 slot is available\n");
2897 pdata->num_slots = 1;
2898 }
2899
2900 /* get quirks */
2901 for (idx = 0; idx < ARRAY_SIZE(of_quirks); idx++)
2902 if (of_get_property(np, of_quirks[idx].quirk, NULL))
2903 pdata->quirks |= of_quirks[idx].id;
2904
2905 if (of_property_read_u32(np, "fifo-depth", &pdata->fifo_depth))
2906 dev_info(dev,
2907 "fifo-depth property not found, using value of FIFOTH register as default\n");
2908
2909 of_property_read_u32(np, "card-detect-delay", &pdata->detect_delay_ms);
2910
2911 if (!of_property_read_u32(np, "clock-frequency", &clock_frequency))
2912 pdata->bus_hz = clock_frequency;
2913
2914 if (drv_data && drv_data->parse_dt) {
2915 ret = drv_data->parse_dt(host);
2916 if (ret)
2917 return ERR_PTR(ret);
2918 }
2919
2920 if (of_find_property(np, "supports-highspeed", NULL)) {
2921 dev_info(dev, "supports-highspeed property is deprecated.\n");
2922 pdata->caps |= MMC_CAP_SD_HIGHSPEED | MMC_CAP_MMC_HIGHSPEED;
2923 }
2924
2925 return pdata;
2926 }
2927
2928 #else /* CONFIG_OF */
2929 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
2930 {
2931 return ERR_PTR(-EINVAL);
2932 }
2933 #endif /* CONFIG_OF */
2934
2935 static void dw_mci_enable_cd(struct dw_mci *host)
2936 {
2937 struct dw_mci_board *brd = host->pdata;
2938 unsigned long irqflags;
2939 u32 temp;
2940 int i;
2941
2942 /* No need for CD if broken card detection */
2943 if (brd->quirks & DW_MCI_QUIRK_BROKEN_CARD_DETECTION)
2944 return;
2945
2946 /* No need for CD if all slots have a non-error GPIO */
2947 for (i = 0; i < host->num_slots; i++) {
2948 struct dw_mci_slot *slot = host->slot[i];
2949
2950 if (IS_ERR_VALUE(mmc_gpio_get_cd(slot->mmc)))
2951 break;
2952 }
2953 if (i == host->num_slots)
2954 return;
2955
2956 spin_lock_irqsave(&host->irq_lock, irqflags);
2957 temp = mci_readl(host, INTMASK);
2958 temp |= SDMMC_INT_CD;
2959 mci_writel(host, INTMASK, temp);
2960 spin_unlock_irqrestore(&host->irq_lock, irqflags);
2961 }
2962
2963 int dw_mci_probe(struct dw_mci *host)
2964 {
2965 const struct dw_mci_drv_data *drv_data = host->drv_data;
2966 int width, i, ret = 0;
2967 u32 fifo_size;
2968 int init_slots = 0;
2969
2970 if (!host->pdata) {
2971 host->pdata = dw_mci_parse_dt(host);
2972 if (IS_ERR(host->pdata)) {
2973 dev_err(host->dev, "platform data not available\n");
2974 return -EINVAL;
2975 }
2976 }
2977
2978 if (host->pdata->num_slots < 1) {
2979 dev_err(host->dev,
2980 "Platform data must supply num_slots.\n");
2981 return -ENODEV;
2982 }
2983
2984 host->biu_clk = devm_clk_get(host->dev, "biu");
2985 if (IS_ERR(host->biu_clk)) {
2986 dev_dbg(host->dev, "biu clock not available\n");
2987 } else {
2988 ret = clk_prepare_enable(host->biu_clk);
2989 if (ret) {
2990 dev_err(host->dev, "failed to enable biu clock\n");
2991 return ret;
2992 }
2993 }
2994
2995 host->ciu_clk = devm_clk_get(host->dev, "ciu");
2996 if (IS_ERR(host->ciu_clk)) {
2997 dev_dbg(host->dev, "ciu clock not available\n");
2998 host->bus_hz = host->pdata->bus_hz;
2999 } else {
3000 ret = clk_prepare_enable(host->ciu_clk);
3001 if (ret) {
3002 dev_err(host->dev, "failed to enable ciu clock\n");
3003 goto err_clk_biu;
3004 }
3005
3006 if (host->pdata->bus_hz) {
3007 ret = clk_set_rate(host->ciu_clk, host->pdata->bus_hz);
3008 if (ret)
3009 dev_warn(host->dev,
3010 "Unable to set bus rate to %uHz\n",
3011 host->pdata->bus_hz);
3012 }
3013 host->bus_hz = clk_get_rate(host->ciu_clk);
3014 }
3015
3016 if (!host->bus_hz) {
3017 dev_err(host->dev,
3018 "Platform data must supply bus speed\n");
3019 ret = -ENODEV;
3020 goto err_clk_ciu;
3021 }
3022
3023 if (drv_data && drv_data->init) {
3024 ret = drv_data->init(host);
3025 if (ret) {
3026 dev_err(host->dev,
3027 "implementation specific init failed\n");
3028 goto err_clk_ciu;
3029 }
3030 }
3031
3032 if (drv_data && drv_data->setup_clock) {
3033 ret = drv_data->setup_clock(host);
3034 if (ret) {
3035 dev_err(host->dev,
3036 "implementation specific clock setup failed\n");
3037 goto err_clk_ciu;
3038 }
3039 }
3040
3041 setup_timer(&host->cmd11_timer,
3042 dw_mci_cmd11_timer, (unsigned long)host);
3043
3044 host->quirks = host->pdata->quirks;
3045
3046 if (host->quirks & DW_MCI_QUIRK_BROKEN_DTO)
3047 setup_timer(&host->dto_timer,
3048 dw_mci_dto_timer, (unsigned long)host);
3049
3050 spin_lock_init(&host->lock);
3051 spin_lock_init(&host->irq_lock);
3052 INIT_LIST_HEAD(&host->queue);
3053
3054 /*
3055 * Get the host data width - this assumes that HCON has been set with
3056 * the correct values.
3057 */
3058 i = SDMMC_GET_HDATA_WIDTH(mci_readl(host, HCON));
3059 if (!i) {
3060 host->push_data = dw_mci_push_data16;
3061 host->pull_data = dw_mci_pull_data16;
3062 width = 16;
3063 host->data_shift = 1;
3064 } else if (i == 2) {
3065 host->push_data = dw_mci_push_data64;
3066 host->pull_data = dw_mci_pull_data64;
3067 width = 64;
3068 host->data_shift = 3;
3069 } else {
3070 /* Check for a reserved value, and warn if it is */
3071 WARN((i != 1),
3072 "HCON reports a reserved host data width!\n"
3073 "Defaulting to 32-bit access.\n");
3074 host->push_data = dw_mci_push_data32;
3075 host->pull_data = dw_mci_pull_data32;
3076 width = 32;
3077 host->data_shift = 2;
3078 }
3079
3080 /* Reset all blocks */
3081 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS))
3082 return -ENODEV;
3083
3084 host->dma_ops = host->pdata->dma_ops;
3085 dw_mci_init_dma(host);
3086
3087 /* Clear the interrupts for the host controller */
3088 mci_writel(host, RINTSTS, 0xFFFFFFFF);
3089 mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3090
3091 /* Put in max timeout */
3092 mci_writel(host, TMOUT, 0xFFFFFFFF);
3093
3094 /*
3095 * FIFO threshold settings RxMark = fifo_size / 2 - 1,
3096 * Tx Mark = fifo_size / 2 DMA Size = 8
3097 */
3098 if (!host->pdata->fifo_depth) {
3099 /*
3100 * Power-on value of RX_WMark is FIFO_DEPTH-1, but this may
3101 * have been overwritten by the bootloader, just like we're
3102 * about to do, so if you know the value for your hardware, you
3103 * should put it in the platform data.
3104 */
3105 fifo_size = mci_readl(host, FIFOTH);
3106 fifo_size = 1 + ((fifo_size >> 16) & 0xfff);
3107 } else {
3108 fifo_size = host->pdata->fifo_depth;
3109 }
3110 host->fifo_depth = fifo_size;
3111 host->fifoth_val =
3112 SDMMC_SET_FIFOTH(0x2, fifo_size / 2 - 1, fifo_size / 2);
3113 mci_writel(host, FIFOTH, host->fifoth_val);
3114
3115 /* disable clock to CIU */
3116 mci_writel(host, CLKENA, 0);
3117 mci_writel(host, CLKSRC, 0);
3118
3119 /*
3120 * In 2.40a spec, Data offset is changed.
3121 * Need to check the version-id and set data-offset for DATA register.
3122 */
3123 host->verid = SDMMC_GET_VERID(mci_readl(host, VERID));
3124 dev_info(host->dev, "Version ID is %04x\n", host->verid);
3125
3126 if (host->verid < DW_MMC_240A)
3127 host->fifo_reg = host->regs + DATA_OFFSET;
3128 else
3129 host->fifo_reg = host->regs + DATA_240A_OFFSET;
3130
3131 tasklet_init(&host->tasklet, dw_mci_tasklet_func, (unsigned long)host);
3132 ret = devm_request_irq(host->dev, host->irq, dw_mci_interrupt,
3133 host->irq_flags, "dw-mci", host);
3134 if (ret)
3135 goto err_dmaunmap;
3136
3137 if (host->pdata->num_slots)
3138 host->num_slots = host->pdata->num_slots;
3139 else
3140 host->num_slots = SDMMC_GET_SLOT_NUM(mci_readl(host, HCON));
3141
3142 /*
3143 * Enable interrupts for command done, data over, data empty,
3144 * receive ready and error such as transmit, receive timeout, crc error
3145 */
3146 mci_writel(host, RINTSTS, 0xFFFFFFFF);
3147 mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3148 SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3149 DW_MCI_ERROR_FLAGS);
3150 /* Enable mci interrupt */
3151 mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3152
3153 dev_info(host->dev,
3154 "DW MMC controller at irq %d,%d bit host data width,%u deep fifo\n",
3155 host->irq, width, fifo_size);
3156
3157 /* We need at least one slot to succeed */
3158 for (i = 0; i < host->num_slots; i++) {
3159 ret = dw_mci_init_slot(host, i);
3160 if (ret)
3161 dev_dbg(host->dev, "slot %d init failed\n", i);
3162 else
3163 init_slots++;
3164 }
3165
3166 if (init_slots) {
3167 dev_info(host->dev, "%d slots initialized\n", init_slots);
3168 } else {
3169 dev_dbg(host->dev,
3170 "attempted to initialize %d slots, but failed on all\n",
3171 host->num_slots);
3172 goto err_dmaunmap;
3173 }
3174
3175 /* Now that slots are all setup, we can enable card detect */
3176 dw_mci_enable_cd(host);
3177
3178 return 0;
3179
3180 err_dmaunmap:
3181 if (host->use_dma && host->dma_ops->exit)
3182 host->dma_ops->exit(host);
3183
3184 err_clk_ciu:
3185 if (!IS_ERR(host->ciu_clk))
3186 clk_disable_unprepare(host->ciu_clk);
3187
3188 err_clk_biu:
3189 if (!IS_ERR(host->biu_clk))
3190 clk_disable_unprepare(host->biu_clk);
3191
3192 return ret;
3193 }
3194 EXPORT_SYMBOL(dw_mci_probe);
3195
3196 void dw_mci_remove(struct dw_mci *host)
3197 {
3198 int i;
3199
3200 for (i = 0; i < host->num_slots; i++) {
3201 dev_dbg(host->dev, "remove slot %d\n", i);
3202 if (host->slot[i])
3203 dw_mci_cleanup_slot(host->slot[i], i);
3204 }
3205
3206 mci_writel(host, RINTSTS, 0xFFFFFFFF);
3207 mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3208
3209 /* disable clock to CIU */
3210 mci_writel(host, CLKENA, 0);
3211 mci_writel(host, CLKSRC, 0);
3212
3213 if (host->use_dma && host->dma_ops->exit)
3214 host->dma_ops->exit(host);
3215
3216 if (!IS_ERR(host->ciu_clk))
3217 clk_disable_unprepare(host->ciu_clk);
3218
3219 if (!IS_ERR(host->biu_clk))
3220 clk_disable_unprepare(host->biu_clk);
3221 }
3222 EXPORT_SYMBOL(dw_mci_remove);
3223
3224
3225
3226 #ifdef CONFIG_PM_SLEEP
3227 /*
3228 * TODO: we should probably disable the clock to the card in the suspend path.
3229 */
3230 int dw_mci_suspend(struct dw_mci *host)
3231 {
3232 if (host->use_dma && host->dma_ops->exit)
3233 host->dma_ops->exit(host);
3234
3235 return 0;
3236 }
3237 EXPORT_SYMBOL(dw_mci_suspend);
3238
3239 int dw_mci_resume(struct dw_mci *host)
3240 {
3241 int i, ret;
3242
3243 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3244 ret = -ENODEV;
3245 return ret;
3246 }
3247
3248 if (host->use_dma && host->dma_ops->init)
3249 host->dma_ops->init(host);
3250
3251 /*
3252 * Restore the initial value at FIFOTH register
3253 * And Invalidate the prev_blksz with zero
3254 */
3255 mci_writel(host, FIFOTH, host->fifoth_val);
3256 host->prev_blksz = 0;
3257
3258 /* Put in max timeout */
3259 mci_writel(host, TMOUT, 0xFFFFFFFF);
3260
3261 mci_writel(host, RINTSTS, 0xFFFFFFFF);
3262 mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3263 SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3264 DW_MCI_ERROR_FLAGS);
3265 mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3266
3267 for (i = 0; i < host->num_slots; i++) {
3268 struct dw_mci_slot *slot = host->slot[i];
3269
3270 if (!slot)
3271 continue;
3272 if (slot->mmc->pm_flags & MMC_PM_KEEP_POWER) {
3273 dw_mci_set_ios(slot->mmc, &slot->mmc->ios);
3274 dw_mci_setup_bus(slot, true);
3275 }
3276 }
3277
3278 /* Now that slots are all setup, we can enable card detect */
3279 dw_mci_enable_cd(host);
3280
3281 return 0;
3282 }
3283 EXPORT_SYMBOL(dw_mci_resume);
3284 #endif /* CONFIG_PM_SLEEP */
3285
3286 static int __init dw_mci_init(void)
3287 {
3288 pr_info("Synopsys Designware Multimedia Card Interface Driver\n");
3289 return 0;
3290 }
3291
3292 static void __exit dw_mci_exit(void)
3293 {
3294 }
3295
3296 module_init(dw_mci_init);
3297 module_exit(dw_mci_exit);
3298
3299 MODULE_DESCRIPTION("DW Multimedia Card Interface driver");
3300 MODULE_AUTHOR("NXP Semiconductor VietNam");
3301 MODULE_AUTHOR("Imagination Technologies Ltd");
3302 MODULE_LICENSE("GPL v2");
This page took 0.138192 seconds and 6 git commands to generate.