Merge branch 'for-linus-4.5' of git://git.kernel.org/pub/scm/linux/kernel/git/mason...
[deliverable/linux.git] / drivers / mmc / host / dw_mmc.c
1 /*
2 * Synopsys DesignWare Multimedia Card Interface driver
3 * (Based on NXP driver for lpc 31xx)
4 *
5 * Copyright (C) 2009 NXP Semiconductors
6 * Copyright (C) 2009, 2010 Imagination Technologies Ltd.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 */
13
14 #include <linux/blkdev.h>
15 #include <linux/clk.h>
16 #include <linux/debugfs.h>
17 #include <linux/device.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/err.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/ioport.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/seq_file.h>
26 #include <linux/slab.h>
27 #include <linux/stat.h>
28 #include <linux/delay.h>
29 #include <linux/irq.h>
30 #include <linux/mmc/card.h>
31 #include <linux/mmc/host.h>
32 #include <linux/mmc/mmc.h>
33 #include <linux/mmc/sd.h>
34 #include <linux/mmc/sdio.h>
35 #include <linux/mmc/dw_mmc.h>
36 #include <linux/bitops.h>
37 #include <linux/regulator/consumer.h>
38 #include <linux/of.h>
39 #include <linux/of_gpio.h>
40 #include <linux/mmc/slot-gpio.h>
41
42 #include "dw_mmc.h"
43
44 /* Common flag combinations */
45 #define DW_MCI_DATA_ERROR_FLAGS (SDMMC_INT_DRTO | SDMMC_INT_DCRC | \
46 SDMMC_INT_HTO | SDMMC_INT_SBE | \
47 SDMMC_INT_EBE)
48 #define DW_MCI_CMD_ERROR_FLAGS (SDMMC_INT_RTO | SDMMC_INT_RCRC | \
49 SDMMC_INT_RESP_ERR)
50 #define DW_MCI_ERROR_FLAGS (DW_MCI_DATA_ERROR_FLAGS | \
51 DW_MCI_CMD_ERROR_FLAGS | SDMMC_INT_HLE)
52 #define DW_MCI_SEND_STATUS 1
53 #define DW_MCI_RECV_STATUS 2
54 #define DW_MCI_DMA_THRESHOLD 16
55
56 #define DW_MCI_FREQ_MAX 200000000 /* unit: HZ */
57 #define DW_MCI_FREQ_MIN 400000 /* unit: HZ */
58
59 #define IDMAC_INT_CLR (SDMMC_IDMAC_INT_AI | SDMMC_IDMAC_INT_NI | \
60 SDMMC_IDMAC_INT_CES | SDMMC_IDMAC_INT_DU | \
61 SDMMC_IDMAC_INT_FBE | SDMMC_IDMAC_INT_RI | \
62 SDMMC_IDMAC_INT_TI)
63
64 struct idmac_desc_64addr {
65 u32 des0; /* Control Descriptor */
66
67 u32 des1; /* Reserved */
68
69 u32 des2; /*Buffer sizes */
70 #define IDMAC_64ADDR_SET_BUFFER1_SIZE(d, s) \
71 ((d)->des2 = ((d)->des2 & cpu_to_le32(0x03ffe000)) | \
72 ((cpu_to_le32(s)) & cpu_to_le32(0x1fff)))
73
74 u32 des3; /* Reserved */
75
76 u32 des4; /* Lower 32-bits of Buffer Address Pointer 1*/
77 u32 des5; /* Upper 32-bits of Buffer Address Pointer 1*/
78
79 u32 des6; /* Lower 32-bits of Next Descriptor Address */
80 u32 des7; /* Upper 32-bits of Next Descriptor Address */
81 };
82
83 struct idmac_desc {
84 __le32 des0; /* Control Descriptor */
85 #define IDMAC_DES0_DIC BIT(1)
86 #define IDMAC_DES0_LD BIT(2)
87 #define IDMAC_DES0_FD BIT(3)
88 #define IDMAC_DES0_CH BIT(4)
89 #define IDMAC_DES0_ER BIT(5)
90 #define IDMAC_DES0_CES BIT(30)
91 #define IDMAC_DES0_OWN BIT(31)
92
93 __le32 des1; /* Buffer sizes */
94 #define IDMAC_SET_BUFFER1_SIZE(d, s) \
95 ((d)->des1 = ((d)->des1 & 0x03ffe000) | ((s) & 0x1fff))
96
97 __le32 des2; /* buffer 1 physical address */
98
99 __le32 des3; /* buffer 2 physical address */
100 };
101
102 /* Each descriptor can transfer up to 4KB of data in chained mode */
103 #define DW_MCI_DESC_DATA_LENGTH 0x1000
104
105 static bool dw_mci_reset(struct dw_mci *host);
106 static bool dw_mci_ctrl_reset(struct dw_mci *host, u32 reset);
107 static int dw_mci_card_busy(struct mmc_host *mmc);
108
109 #if defined(CONFIG_DEBUG_FS)
110 static int dw_mci_req_show(struct seq_file *s, void *v)
111 {
112 struct dw_mci_slot *slot = s->private;
113 struct mmc_request *mrq;
114 struct mmc_command *cmd;
115 struct mmc_command *stop;
116 struct mmc_data *data;
117
118 /* Make sure we get a consistent snapshot */
119 spin_lock_bh(&slot->host->lock);
120 mrq = slot->mrq;
121
122 if (mrq) {
123 cmd = mrq->cmd;
124 data = mrq->data;
125 stop = mrq->stop;
126
127 if (cmd)
128 seq_printf(s,
129 "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
130 cmd->opcode, cmd->arg, cmd->flags,
131 cmd->resp[0], cmd->resp[1], cmd->resp[2],
132 cmd->resp[2], cmd->error);
133 if (data)
134 seq_printf(s, "DATA %u / %u * %u flg %x err %d\n",
135 data->bytes_xfered, data->blocks,
136 data->blksz, data->flags, data->error);
137 if (stop)
138 seq_printf(s,
139 "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
140 stop->opcode, stop->arg, stop->flags,
141 stop->resp[0], stop->resp[1], stop->resp[2],
142 stop->resp[2], stop->error);
143 }
144
145 spin_unlock_bh(&slot->host->lock);
146
147 return 0;
148 }
149
150 static int dw_mci_req_open(struct inode *inode, struct file *file)
151 {
152 return single_open(file, dw_mci_req_show, inode->i_private);
153 }
154
155 static const struct file_operations dw_mci_req_fops = {
156 .owner = THIS_MODULE,
157 .open = dw_mci_req_open,
158 .read = seq_read,
159 .llseek = seq_lseek,
160 .release = single_release,
161 };
162
163 static int dw_mci_regs_show(struct seq_file *s, void *v)
164 {
165 seq_printf(s, "STATUS:\t0x%08x\n", SDMMC_STATUS);
166 seq_printf(s, "RINTSTS:\t0x%08x\n", SDMMC_RINTSTS);
167 seq_printf(s, "CMD:\t0x%08x\n", SDMMC_CMD);
168 seq_printf(s, "CTRL:\t0x%08x\n", SDMMC_CTRL);
169 seq_printf(s, "INTMASK:\t0x%08x\n", SDMMC_INTMASK);
170 seq_printf(s, "CLKENA:\t0x%08x\n", SDMMC_CLKENA);
171
172 return 0;
173 }
174
175 static int dw_mci_regs_open(struct inode *inode, struct file *file)
176 {
177 return single_open(file, dw_mci_regs_show, inode->i_private);
178 }
179
180 static const struct file_operations dw_mci_regs_fops = {
181 .owner = THIS_MODULE,
182 .open = dw_mci_regs_open,
183 .read = seq_read,
184 .llseek = seq_lseek,
185 .release = single_release,
186 };
187
188 static void dw_mci_init_debugfs(struct dw_mci_slot *slot)
189 {
190 struct mmc_host *mmc = slot->mmc;
191 struct dw_mci *host = slot->host;
192 struct dentry *root;
193 struct dentry *node;
194
195 root = mmc->debugfs_root;
196 if (!root)
197 return;
198
199 node = debugfs_create_file("regs", S_IRUSR, root, host,
200 &dw_mci_regs_fops);
201 if (!node)
202 goto err;
203
204 node = debugfs_create_file("req", S_IRUSR, root, slot,
205 &dw_mci_req_fops);
206 if (!node)
207 goto err;
208
209 node = debugfs_create_u32("state", S_IRUSR, root, (u32 *)&host->state);
210 if (!node)
211 goto err;
212
213 node = debugfs_create_x32("pending_events", S_IRUSR, root,
214 (u32 *)&host->pending_events);
215 if (!node)
216 goto err;
217
218 node = debugfs_create_x32("completed_events", S_IRUSR, root,
219 (u32 *)&host->completed_events);
220 if (!node)
221 goto err;
222
223 return;
224
225 err:
226 dev_err(&mmc->class_dev, "failed to initialize debugfs for slot\n");
227 }
228 #endif /* defined(CONFIG_DEBUG_FS) */
229
230 static void mci_send_cmd(struct dw_mci_slot *slot, u32 cmd, u32 arg);
231
232 static u32 dw_mci_prepare_command(struct mmc_host *mmc, struct mmc_command *cmd)
233 {
234 struct mmc_data *data;
235 struct dw_mci_slot *slot = mmc_priv(mmc);
236 struct dw_mci *host = slot->host;
237 const struct dw_mci_drv_data *drv_data = slot->host->drv_data;
238 u32 cmdr;
239
240 cmd->error = -EINPROGRESS;
241 cmdr = cmd->opcode;
242
243 if (cmd->opcode == MMC_STOP_TRANSMISSION ||
244 cmd->opcode == MMC_GO_IDLE_STATE ||
245 cmd->opcode == MMC_GO_INACTIVE_STATE ||
246 (cmd->opcode == SD_IO_RW_DIRECT &&
247 ((cmd->arg >> 9) & 0x1FFFF) == SDIO_CCCR_ABORT))
248 cmdr |= SDMMC_CMD_STOP;
249 else if (cmd->opcode != MMC_SEND_STATUS && cmd->data)
250 cmdr |= SDMMC_CMD_PRV_DAT_WAIT;
251
252 if (cmd->opcode == SD_SWITCH_VOLTAGE) {
253 u32 clk_en_a;
254
255 /* Special bit makes CMD11 not die */
256 cmdr |= SDMMC_CMD_VOLT_SWITCH;
257
258 /* Change state to continue to handle CMD11 weirdness */
259 WARN_ON(slot->host->state != STATE_SENDING_CMD);
260 slot->host->state = STATE_SENDING_CMD11;
261
262 /*
263 * We need to disable low power mode (automatic clock stop)
264 * while doing voltage switch so we don't confuse the card,
265 * since stopping the clock is a specific part of the UHS
266 * voltage change dance.
267 *
268 * Note that low power mode (SDMMC_CLKEN_LOW_PWR) will be
269 * unconditionally turned back on in dw_mci_setup_bus() if it's
270 * ever called with a non-zero clock. That shouldn't happen
271 * until the voltage change is all done.
272 */
273 clk_en_a = mci_readl(host, CLKENA);
274 clk_en_a &= ~(SDMMC_CLKEN_LOW_PWR << slot->id);
275 mci_writel(host, CLKENA, clk_en_a);
276 mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
277 SDMMC_CMD_PRV_DAT_WAIT, 0);
278 }
279
280 if (cmd->flags & MMC_RSP_PRESENT) {
281 /* We expect a response, so set this bit */
282 cmdr |= SDMMC_CMD_RESP_EXP;
283 if (cmd->flags & MMC_RSP_136)
284 cmdr |= SDMMC_CMD_RESP_LONG;
285 }
286
287 if (cmd->flags & MMC_RSP_CRC)
288 cmdr |= SDMMC_CMD_RESP_CRC;
289
290 data = cmd->data;
291 if (data) {
292 cmdr |= SDMMC_CMD_DAT_EXP;
293 if (data->flags & MMC_DATA_STREAM)
294 cmdr |= SDMMC_CMD_STRM_MODE;
295 if (data->flags & MMC_DATA_WRITE)
296 cmdr |= SDMMC_CMD_DAT_WR;
297 }
298
299 if (drv_data && drv_data->prepare_command)
300 drv_data->prepare_command(slot->host, &cmdr);
301
302 return cmdr;
303 }
304
305 static u32 dw_mci_prep_stop_abort(struct dw_mci *host, struct mmc_command *cmd)
306 {
307 struct mmc_command *stop;
308 u32 cmdr;
309
310 if (!cmd->data)
311 return 0;
312
313 stop = &host->stop_abort;
314 cmdr = cmd->opcode;
315 memset(stop, 0, sizeof(struct mmc_command));
316
317 if (cmdr == MMC_READ_SINGLE_BLOCK ||
318 cmdr == MMC_READ_MULTIPLE_BLOCK ||
319 cmdr == MMC_WRITE_BLOCK ||
320 cmdr == MMC_WRITE_MULTIPLE_BLOCK ||
321 cmdr == MMC_SEND_TUNING_BLOCK ||
322 cmdr == MMC_SEND_TUNING_BLOCK_HS200) {
323 stop->opcode = MMC_STOP_TRANSMISSION;
324 stop->arg = 0;
325 stop->flags = MMC_RSP_R1B | MMC_CMD_AC;
326 } else if (cmdr == SD_IO_RW_EXTENDED) {
327 stop->opcode = SD_IO_RW_DIRECT;
328 stop->arg |= (1 << 31) | (0 << 28) | (SDIO_CCCR_ABORT << 9) |
329 ((cmd->arg >> 28) & 0x7);
330 stop->flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_AC;
331 } else {
332 return 0;
333 }
334
335 cmdr = stop->opcode | SDMMC_CMD_STOP |
336 SDMMC_CMD_RESP_CRC | SDMMC_CMD_RESP_EXP;
337
338 return cmdr;
339 }
340
341 static void dw_mci_wait_while_busy(struct dw_mci *host, u32 cmd_flags)
342 {
343 unsigned long timeout = jiffies + msecs_to_jiffies(500);
344
345 /*
346 * Databook says that before issuing a new data transfer command
347 * we need to check to see if the card is busy. Data transfer commands
348 * all have SDMMC_CMD_PRV_DAT_WAIT set, so we'll key off that.
349 *
350 * ...also allow sending for SDMMC_CMD_VOLT_SWITCH where busy is
351 * expected.
352 */
353 if ((cmd_flags & SDMMC_CMD_PRV_DAT_WAIT) &&
354 !(cmd_flags & SDMMC_CMD_VOLT_SWITCH)) {
355 while (mci_readl(host, STATUS) & SDMMC_STATUS_BUSY) {
356 if (time_after(jiffies, timeout)) {
357 /* Command will fail; we'll pass error then */
358 dev_err(host->dev, "Busy; trying anyway\n");
359 break;
360 }
361 udelay(10);
362 }
363 }
364 }
365
366 static void dw_mci_start_command(struct dw_mci *host,
367 struct mmc_command *cmd, u32 cmd_flags)
368 {
369 host->cmd = cmd;
370 dev_vdbg(host->dev,
371 "start command: ARGR=0x%08x CMDR=0x%08x\n",
372 cmd->arg, cmd_flags);
373
374 mci_writel(host, CMDARG, cmd->arg);
375 wmb(); /* drain writebuffer */
376 dw_mci_wait_while_busy(host, cmd_flags);
377
378 mci_writel(host, CMD, cmd_flags | SDMMC_CMD_START);
379 }
380
381 static inline void send_stop_abort(struct dw_mci *host, struct mmc_data *data)
382 {
383 struct mmc_command *stop = data->stop ? data->stop : &host->stop_abort;
384
385 dw_mci_start_command(host, stop, host->stop_cmdr);
386 }
387
388 /* DMA interface functions */
389 static void dw_mci_stop_dma(struct dw_mci *host)
390 {
391 if (host->using_dma) {
392 host->dma_ops->stop(host);
393 host->dma_ops->cleanup(host);
394 }
395
396 /* Data transfer was stopped by the interrupt handler */
397 set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
398 }
399
400 static int dw_mci_get_dma_dir(struct mmc_data *data)
401 {
402 if (data->flags & MMC_DATA_WRITE)
403 return DMA_TO_DEVICE;
404 else
405 return DMA_FROM_DEVICE;
406 }
407
408 static void dw_mci_dma_cleanup(struct dw_mci *host)
409 {
410 struct mmc_data *data = host->data;
411
412 if (data)
413 if (!data->host_cookie)
414 dma_unmap_sg(host->dev,
415 data->sg,
416 data->sg_len,
417 dw_mci_get_dma_dir(data));
418 }
419
420 static void dw_mci_idmac_reset(struct dw_mci *host)
421 {
422 u32 bmod = mci_readl(host, BMOD);
423 /* Software reset of DMA */
424 bmod |= SDMMC_IDMAC_SWRESET;
425 mci_writel(host, BMOD, bmod);
426 }
427
428 static void dw_mci_idmac_stop_dma(struct dw_mci *host)
429 {
430 u32 temp;
431
432 /* Disable and reset the IDMAC interface */
433 temp = mci_readl(host, CTRL);
434 temp &= ~SDMMC_CTRL_USE_IDMAC;
435 temp |= SDMMC_CTRL_DMA_RESET;
436 mci_writel(host, CTRL, temp);
437
438 /* Stop the IDMAC running */
439 temp = mci_readl(host, BMOD);
440 temp &= ~(SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB);
441 temp |= SDMMC_IDMAC_SWRESET;
442 mci_writel(host, BMOD, temp);
443 }
444
445 static void dw_mci_dmac_complete_dma(void *arg)
446 {
447 struct dw_mci *host = arg;
448 struct mmc_data *data = host->data;
449
450 dev_vdbg(host->dev, "DMA complete\n");
451
452 if ((host->use_dma == TRANS_MODE_EDMAC) &&
453 data && (data->flags & MMC_DATA_READ))
454 /* Invalidate cache after read */
455 dma_sync_sg_for_cpu(mmc_dev(host->cur_slot->mmc),
456 data->sg,
457 data->sg_len,
458 DMA_FROM_DEVICE);
459
460 host->dma_ops->cleanup(host);
461
462 /*
463 * If the card was removed, data will be NULL. No point in trying to
464 * send the stop command or waiting for NBUSY in this case.
465 */
466 if (data) {
467 set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
468 tasklet_schedule(&host->tasklet);
469 }
470 }
471
472 static void dw_mci_translate_sglist(struct dw_mci *host, struct mmc_data *data,
473 unsigned int sg_len)
474 {
475 unsigned int desc_len;
476 int i;
477
478 if (host->dma_64bit_address == 1) {
479 struct idmac_desc_64addr *desc_first, *desc_last, *desc;
480
481 desc_first = desc_last = desc = host->sg_cpu;
482
483 for (i = 0; i < sg_len; i++) {
484 unsigned int length = sg_dma_len(&data->sg[i]);
485
486 u64 mem_addr = sg_dma_address(&data->sg[i]);
487
488 for ( ; length ; desc++) {
489 desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
490 length : DW_MCI_DESC_DATA_LENGTH;
491
492 length -= desc_len;
493
494 /*
495 * Set the OWN bit and disable interrupts
496 * for this descriptor
497 */
498 desc->des0 = IDMAC_DES0_OWN | IDMAC_DES0_DIC |
499 IDMAC_DES0_CH;
500
501 /* Buffer length */
502 IDMAC_64ADDR_SET_BUFFER1_SIZE(desc, desc_len);
503
504 /* Physical address to DMA to/from */
505 desc->des4 = mem_addr & 0xffffffff;
506 desc->des5 = mem_addr >> 32;
507
508 /* Update physical address for the next desc */
509 mem_addr += desc_len;
510
511 /* Save pointer to the last descriptor */
512 desc_last = desc;
513 }
514 }
515
516 /* Set first descriptor */
517 desc_first->des0 |= IDMAC_DES0_FD;
518
519 /* Set last descriptor */
520 desc_last->des0 &= ~(IDMAC_DES0_CH | IDMAC_DES0_DIC);
521 desc_last->des0 |= IDMAC_DES0_LD;
522
523 } else {
524 struct idmac_desc *desc_first, *desc_last, *desc;
525
526 desc_first = desc_last = desc = host->sg_cpu;
527
528 for (i = 0; i < sg_len; i++) {
529 unsigned int length = sg_dma_len(&data->sg[i]);
530
531 u32 mem_addr = sg_dma_address(&data->sg[i]);
532
533 for ( ; length ; desc++) {
534 desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
535 length : DW_MCI_DESC_DATA_LENGTH;
536
537 length -= desc_len;
538
539 /*
540 * Set the OWN bit and disable interrupts
541 * for this descriptor
542 */
543 desc->des0 = cpu_to_le32(IDMAC_DES0_OWN |
544 IDMAC_DES0_DIC |
545 IDMAC_DES0_CH);
546
547 /* Buffer length */
548 IDMAC_SET_BUFFER1_SIZE(desc, desc_len);
549
550 /* Physical address to DMA to/from */
551 desc->des2 = cpu_to_le32(mem_addr);
552
553 /* Update physical address for the next desc */
554 mem_addr += desc_len;
555
556 /* Save pointer to the last descriptor */
557 desc_last = desc;
558 }
559 }
560
561 /* Set first descriptor */
562 desc_first->des0 |= cpu_to_le32(IDMAC_DES0_FD);
563
564 /* Set last descriptor */
565 desc_last->des0 &= cpu_to_le32(~(IDMAC_DES0_CH |
566 IDMAC_DES0_DIC));
567 desc_last->des0 |= cpu_to_le32(IDMAC_DES0_LD);
568 }
569
570 wmb(); /* drain writebuffer */
571 }
572
573 static int dw_mci_idmac_start_dma(struct dw_mci *host, unsigned int sg_len)
574 {
575 u32 temp;
576
577 dw_mci_translate_sglist(host, host->data, sg_len);
578
579 /* Make sure to reset DMA in case we did PIO before this */
580 dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET);
581 dw_mci_idmac_reset(host);
582
583 /* Select IDMAC interface */
584 temp = mci_readl(host, CTRL);
585 temp |= SDMMC_CTRL_USE_IDMAC;
586 mci_writel(host, CTRL, temp);
587
588 /* drain writebuffer */
589 wmb();
590
591 /* Enable the IDMAC */
592 temp = mci_readl(host, BMOD);
593 temp |= SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB;
594 mci_writel(host, BMOD, temp);
595
596 /* Start it running */
597 mci_writel(host, PLDMND, 1);
598
599 return 0;
600 }
601
602 static int dw_mci_idmac_init(struct dw_mci *host)
603 {
604 int i;
605
606 if (host->dma_64bit_address == 1) {
607 struct idmac_desc_64addr *p;
608 /* Number of descriptors in the ring buffer */
609 host->ring_size = PAGE_SIZE / sizeof(struct idmac_desc_64addr);
610
611 /* Forward link the descriptor list */
612 for (i = 0, p = host->sg_cpu; i < host->ring_size - 1;
613 i++, p++) {
614 p->des6 = (host->sg_dma +
615 (sizeof(struct idmac_desc_64addr) *
616 (i + 1))) & 0xffffffff;
617
618 p->des7 = (u64)(host->sg_dma +
619 (sizeof(struct idmac_desc_64addr) *
620 (i + 1))) >> 32;
621 /* Initialize reserved and buffer size fields to "0" */
622 p->des1 = 0;
623 p->des2 = 0;
624 p->des3 = 0;
625 }
626
627 /* Set the last descriptor as the end-of-ring descriptor */
628 p->des6 = host->sg_dma & 0xffffffff;
629 p->des7 = (u64)host->sg_dma >> 32;
630 p->des0 = IDMAC_DES0_ER;
631
632 } else {
633 struct idmac_desc *p;
634 /* Number of descriptors in the ring buffer */
635 host->ring_size = PAGE_SIZE / sizeof(struct idmac_desc);
636
637 /* Forward link the descriptor list */
638 for (i = 0, p = host->sg_cpu;
639 i < host->ring_size - 1;
640 i++, p++) {
641 p->des3 = cpu_to_le32(host->sg_dma +
642 (sizeof(struct idmac_desc) * (i + 1)));
643 p->des1 = 0;
644 }
645
646 /* Set the last descriptor as the end-of-ring descriptor */
647 p->des3 = cpu_to_le32(host->sg_dma);
648 p->des0 = cpu_to_le32(IDMAC_DES0_ER);
649 }
650
651 dw_mci_idmac_reset(host);
652
653 if (host->dma_64bit_address == 1) {
654 /* Mask out interrupts - get Tx & Rx complete only */
655 mci_writel(host, IDSTS64, IDMAC_INT_CLR);
656 mci_writel(host, IDINTEN64, SDMMC_IDMAC_INT_NI |
657 SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
658
659 /* Set the descriptor base address */
660 mci_writel(host, DBADDRL, host->sg_dma & 0xffffffff);
661 mci_writel(host, DBADDRU, (u64)host->sg_dma >> 32);
662
663 } else {
664 /* Mask out interrupts - get Tx & Rx complete only */
665 mci_writel(host, IDSTS, IDMAC_INT_CLR);
666 mci_writel(host, IDINTEN, SDMMC_IDMAC_INT_NI |
667 SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
668
669 /* Set the descriptor base address */
670 mci_writel(host, DBADDR, host->sg_dma);
671 }
672
673 return 0;
674 }
675
676 static const struct dw_mci_dma_ops dw_mci_idmac_ops = {
677 .init = dw_mci_idmac_init,
678 .start = dw_mci_idmac_start_dma,
679 .stop = dw_mci_idmac_stop_dma,
680 .complete = dw_mci_dmac_complete_dma,
681 .cleanup = dw_mci_dma_cleanup,
682 };
683
684 static void dw_mci_edmac_stop_dma(struct dw_mci *host)
685 {
686 dmaengine_terminate_all(host->dms->ch);
687 }
688
689 static int dw_mci_edmac_start_dma(struct dw_mci *host,
690 unsigned int sg_len)
691 {
692 struct dma_slave_config cfg;
693 struct dma_async_tx_descriptor *desc = NULL;
694 struct scatterlist *sgl = host->data->sg;
695 const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
696 u32 sg_elems = host->data->sg_len;
697 u32 fifoth_val;
698 u32 fifo_offset = host->fifo_reg - host->regs;
699 int ret = 0;
700
701 /* Set external dma config: burst size, burst width */
702 cfg.dst_addr = host->phy_regs + fifo_offset;
703 cfg.src_addr = cfg.dst_addr;
704 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
705 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
706
707 /* Match burst msize with external dma config */
708 fifoth_val = mci_readl(host, FIFOTH);
709 cfg.dst_maxburst = mszs[(fifoth_val >> 28) & 0x7];
710 cfg.src_maxburst = cfg.dst_maxburst;
711
712 if (host->data->flags & MMC_DATA_WRITE)
713 cfg.direction = DMA_MEM_TO_DEV;
714 else
715 cfg.direction = DMA_DEV_TO_MEM;
716
717 ret = dmaengine_slave_config(host->dms->ch, &cfg);
718 if (ret) {
719 dev_err(host->dev, "Failed to config edmac.\n");
720 return -EBUSY;
721 }
722
723 desc = dmaengine_prep_slave_sg(host->dms->ch, sgl,
724 sg_len, cfg.direction,
725 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
726 if (!desc) {
727 dev_err(host->dev, "Can't prepare slave sg.\n");
728 return -EBUSY;
729 }
730
731 /* Set dw_mci_dmac_complete_dma as callback */
732 desc->callback = dw_mci_dmac_complete_dma;
733 desc->callback_param = (void *)host;
734 dmaengine_submit(desc);
735
736 /* Flush cache before write */
737 if (host->data->flags & MMC_DATA_WRITE)
738 dma_sync_sg_for_device(mmc_dev(host->cur_slot->mmc), sgl,
739 sg_elems, DMA_TO_DEVICE);
740
741 dma_async_issue_pending(host->dms->ch);
742
743 return 0;
744 }
745
746 static int dw_mci_edmac_init(struct dw_mci *host)
747 {
748 /* Request external dma channel */
749 host->dms = kzalloc(sizeof(struct dw_mci_dma_slave), GFP_KERNEL);
750 if (!host->dms)
751 return -ENOMEM;
752
753 host->dms->ch = dma_request_slave_channel(host->dev, "rx-tx");
754 if (!host->dms->ch) {
755 dev_err(host->dev, "Failed to get external DMA channel.\n");
756 kfree(host->dms);
757 host->dms = NULL;
758 return -ENXIO;
759 }
760
761 return 0;
762 }
763
764 static void dw_mci_edmac_exit(struct dw_mci *host)
765 {
766 if (host->dms) {
767 if (host->dms->ch) {
768 dma_release_channel(host->dms->ch);
769 host->dms->ch = NULL;
770 }
771 kfree(host->dms);
772 host->dms = NULL;
773 }
774 }
775
776 static const struct dw_mci_dma_ops dw_mci_edmac_ops = {
777 .init = dw_mci_edmac_init,
778 .exit = dw_mci_edmac_exit,
779 .start = dw_mci_edmac_start_dma,
780 .stop = dw_mci_edmac_stop_dma,
781 .complete = dw_mci_dmac_complete_dma,
782 .cleanup = dw_mci_dma_cleanup,
783 };
784
785 static int dw_mci_pre_dma_transfer(struct dw_mci *host,
786 struct mmc_data *data,
787 bool next)
788 {
789 struct scatterlist *sg;
790 unsigned int i, sg_len;
791
792 if (!next && data->host_cookie)
793 return data->host_cookie;
794
795 /*
796 * We don't do DMA on "complex" transfers, i.e. with
797 * non-word-aligned buffers or lengths. Also, we don't bother
798 * with all the DMA setup overhead for short transfers.
799 */
800 if (data->blocks * data->blksz < DW_MCI_DMA_THRESHOLD)
801 return -EINVAL;
802
803 if (data->blksz & 3)
804 return -EINVAL;
805
806 for_each_sg(data->sg, sg, data->sg_len, i) {
807 if (sg->offset & 3 || sg->length & 3)
808 return -EINVAL;
809 }
810
811 sg_len = dma_map_sg(host->dev,
812 data->sg,
813 data->sg_len,
814 dw_mci_get_dma_dir(data));
815 if (sg_len == 0)
816 return -EINVAL;
817
818 if (next)
819 data->host_cookie = sg_len;
820
821 return sg_len;
822 }
823
824 static void dw_mci_pre_req(struct mmc_host *mmc,
825 struct mmc_request *mrq,
826 bool is_first_req)
827 {
828 struct dw_mci_slot *slot = mmc_priv(mmc);
829 struct mmc_data *data = mrq->data;
830
831 if (!slot->host->use_dma || !data)
832 return;
833
834 if (data->host_cookie) {
835 data->host_cookie = 0;
836 return;
837 }
838
839 if (dw_mci_pre_dma_transfer(slot->host, mrq->data, 1) < 0)
840 data->host_cookie = 0;
841 }
842
843 static void dw_mci_post_req(struct mmc_host *mmc,
844 struct mmc_request *mrq,
845 int err)
846 {
847 struct dw_mci_slot *slot = mmc_priv(mmc);
848 struct mmc_data *data = mrq->data;
849
850 if (!slot->host->use_dma || !data)
851 return;
852
853 if (data->host_cookie)
854 dma_unmap_sg(slot->host->dev,
855 data->sg,
856 data->sg_len,
857 dw_mci_get_dma_dir(data));
858 data->host_cookie = 0;
859 }
860
861 static void dw_mci_adjust_fifoth(struct dw_mci *host, struct mmc_data *data)
862 {
863 unsigned int blksz = data->blksz;
864 const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
865 u32 fifo_width = 1 << host->data_shift;
866 u32 blksz_depth = blksz / fifo_width, fifoth_val;
867 u32 msize = 0, rx_wmark = 1, tx_wmark, tx_wmark_invers;
868 int idx = ARRAY_SIZE(mszs) - 1;
869
870 /* pio should ship this scenario */
871 if (!host->use_dma)
872 return;
873
874 tx_wmark = (host->fifo_depth) / 2;
875 tx_wmark_invers = host->fifo_depth - tx_wmark;
876
877 /*
878 * MSIZE is '1',
879 * if blksz is not a multiple of the FIFO width
880 */
881 if (blksz % fifo_width) {
882 msize = 0;
883 rx_wmark = 1;
884 goto done;
885 }
886
887 do {
888 if (!((blksz_depth % mszs[idx]) ||
889 (tx_wmark_invers % mszs[idx]))) {
890 msize = idx;
891 rx_wmark = mszs[idx] - 1;
892 break;
893 }
894 } while (--idx > 0);
895 /*
896 * If idx is '0', it won't be tried
897 * Thus, initial values are uesed
898 */
899 done:
900 fifoth_val = SDMMC_SET_FIFOTH(msize, rx_wmark, tx_wmark);
901 mci_writel(host, FIFOTH, fifoth_val);
902 }
903
904 static void dw_mci_ctrl_rd_thld(struct dw_mci *host, struct mmc_data *data)
905 {
906 unsigned int blksz = data->blksz;
907 u32 blksz_depth, fifo_depth;
908 u16 thld_size;
909
910 WARN_ON(!(data->flags & MMC_DATA_READ));
911
912 /*
913 * CDTHRCTL doesn't exist prior to 240A (in fact that register offset is
914 * in the FIFO region, so we really shouldn't access it).
915 */
916 if (host->verid < DW_MMC_240A)
917 return;
918
919 if (host->timing != MMC_TIMING_MMC_HS200 &&
920 host->timing != MMC_TIMING_MMC_HS400 &&
921 host->timing != MMC_TIMING_UHS_SDR104)
922 goto disable;
923
924 blksz_depth = blksz / (1 << host->data_shift);
925 fifo_depth = host->fifo_depth;
926
927 if (blksz_depth > fifo_depth)
928 goto disable;
929
930 /*
931 * If (blksz_depth) >= (fifo_depth >> 1), should be 'thld_size <= blksz'
932 * If (blksz_depth) < (fifo_depth >> 1), should be thld_size = blksz
933 * Currently just choose blksz.
934 */
935 thld_size = blksz;
936 mci_writel(host, CDTHRCTL, SDMMC_SET_RD_THLD(thld_size, 1));
937 return;
938
939 disable:
940 mci_writel(host, CDTHRCTL, SDMMC_SET_RD_THLD(0, 0));
941 }
942
943 static int dw_mci_submit_data_dma(struct dw_mci *host, struct mmc_data *data)
944 {
945 unsigned long irqflags;
946 int sg_len;
947 u32 temp;
948
949 host->using_dma = 0;
950
951 /* If we don't have a channel, we can't do DMA */
952 if (!host->use_dma)
953 return -ENODEV;
954
955 sg_len = dw_mci_pre_dma_transfer(host, data, 0);
956 if (sg_len < 0) {
957 host->dma_ops->stop(host);
958 return sg_len;
959 }
960
961 host->using_dma = 1;
962
963 if (host->use_dma == TRANS_MODE_IDMAC)
964 dev_vdbg(host->dev,
965 "sd sg_cpu: %#lx sg_dma: %#lx sg_len: %d\n",
966 (unsigned long)host->sg_cpu,
967 (unsigned long)host->sg_dma,
968 sg_len);
969
970 /*
971 * Decide the MSIZE and RX/TX Watermark.
972 * If current block size is same with previous size,
973 * no need to update fifoth.
974 */
975 if (host->prev_blksz != data->blksz)
976 dw_mci_adjust_fifoth(host, data);
977
978 /* Enable the DMA interface */
979 temp = mci_readl(host, CTRL);
980 temp |= SDMMC_CTRL_DMA_ENABLE;
981 mci_writel(host, CTRL, temp);
982
983 /* Disable RX/TX IRQs, let DMA handle it */
984 spin_lock_irqsave(&host->irq_lock, irqflags);
985 temp = mci_readl(host, INTMASK);
986 temp &= ~(SDMMC_INT_RXDR | SDMMC_INT_TXDR);
987 mci_writel(host, INTMASK, temp);
988 spin_unlock_irqrestore(&host->irq_lock, irqflags);
989
990 if (host->dma_ops->start(host, sg_len)) {
991 /* We can't do DMA */
992 dev_err(host->dev, "%s: failed to start DMA.\n", __func__);
993 return -ENODEV;
994 }
995
996 return 0;
997 }
998
999 static void dw_mci_submit_data(struct dw_mci *host, struct mmc_data *data)
1000 {
1001 unsigned long irqflags;
1002 int flags = SG_MITER_ATOMIC;
1003 u32 temp;
1004
1005 data->error = -EINPROGRESS;
1006
1007 WARN_ON(host->data);
1008 host->sg = NULL;
1009 host->data = data;
1010
1011 if (data->flags & MMC_DATA_READ) {
1012 host->dir_status = DW_MCI_RECV_STATUS;
1013 dw_mci_ctrl_rd_thld(host, data);
1014 } else {
1015 host->dir_status = DW_MCI_SEND_STATUS;
1016 }
1017
1018 if (dw_mci_submit_data_dma(host, data)) {
1019 if (host->data->flags & MMC_DATA_READ)
1020 flags |= SG_MITER_TO_SG;
1021 else
1022 flags |= SG_MITER_FROM_SG;
1023
1024 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
1025 host->sg = data->sg;
1026 host->part_buf_start = 0;
1027 host->part_buf_count = 0;
1028
1029 mci_writel(host, RINTSTS, SDMMC_INT_TXDR | SDMMC_INT_RXDR);
1030
1031 spin_lock_irqsave(&host->irq_lock, irqflags);
1032 temp = mci_readl(host, INTMASK);
1033 temp |= SDMMC_INT_TXDR | SDMMC_INT_RXDR;
1034 mci_writel(host, INTMASK, temp);
1035 spin_unlock_irqrestore(&host->irq_lock, irqflags);
1036
1037 temp = mci_readl(host, CTRL);
1038 temp &= ~SDMMC_CTRL_DMA_ENABLE;
1039 mci_writel(host, CTRL, temp);
1040
1041 /*
1042 * Use the initial fifoth_val for PIO mode.
1043 * If next issued data may be transfered by DMA mode,
1044 * prev_blksz should be invalidated.
1045 */
1046 mci_writel(host, FIFOTH, host->fifoth_val);
1047 host->prev_blksz = 0;
1048 } else {
1049 /*
1050 * Keep the current block size.
1051 * It will be used to decide whether to update
1052 * fifoth register next time.
1053 */
1054 host->prev_blksz = data->blksz;
1055 }
1056 }
1057
1058 static void mci_send_cmd(struct dw_mci_slot *slot, u32 cmd, u32 arg)
1059 {
1060 struct dw_mci *host = slot->host;
1061 unsigned long timeout = jiffies + msecs_to_jiffies(500);
1062 unsigned int cmd_status = 0;
1063
1064 mci_writel(host, CMDARG, arg);
1065 wmb(); /* drain writebuffer */
1066 dw_mci_wait_while_busy(host, cmd);
1067 mci_writel(host, CMD, SDMMC_CMD_START | cmd);
1068
1069 while (time_before(jiffies, timeout)) {
1070 cmd_status = mci_readl(host, CMD);
1071 if (!(cmd_status & SDMMC_CMD_START))
1072 return;
1073 }
1074 dev_err(&slot->mmc->class_dev,
1075 "Timeout sending command (cmd %#x arg %#x status %#x)\n",
1076 cmd, arg, cmd_status);
1077 }
1078
1079 static void dw_mci_setup_bus(struct dw_mci_slot *slot, bool force_clkinit)
1080 {
1081 struct dw_mci *host = slot->host;
1082 unsigned int clock = slot->clock;
1083 u32 div;
1084 u32 clk_en_a;
1085 u32 sdmmc_cmd_bits = SDMMC_CMD_UPD_CLK | SDMMC_CMD_PRV_DAT_WAIT;
1086
1087 /* We must continue to set bit 28 in CMD until the change is complete */
1088 if (host->state == STATE_WAITING_CMD11_DONE)
1089 sdmmc_cmd_bits |= SDMMC_CMD_VOLT_SWITCH;
1090
1091 if (!clock) {
1092 mci_writel(host, CLKENA, 0);
1093 mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1094 } else if (clock != host->current_speed || force_clkinit) {
1095 div = host->bus_hz / clock;
1096 if (host->bus_hz % clock && host->bus_hz > clock)
1097 /*
1098 * move the + 1 after the divide to prevent
1099 * over-clocking the card.
1100 */
1101 div += 1;
1102
1103 div = (host->bus_hz != clock) ? DIV_ROUND_UP(div, 2) : 0;
1104
1105 if ((clock << div) != slot->__clk_old || force_clkinit)
1106 dev_info(&slot->mmc->class_dev,
1107 "Bus speed (slot %d) = %dHz (slot req %dHz, actual %dHZ div = %d)\n",
1108 slot->id, host->bus_hz, clock,
1109 div ? ((host->bus_hz / div) >> 1) :
1110 host->bus_hz, div);
1111
1112 /* disable clock */
1113 mci_writel(host, CLKENA, 0);
1114 mci_writel(host, CLKSRC, 0);
1115
1116 /* inform CIU */
1117 mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1118
1119 /* set clock to desired speed */
1120 mci_writel(host, CLKDIV, div);
1121
1122 /* inform CIU */
1123 mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1124
1125 /* enable clock; only low power if no SDIO */
1126 clk_en_a = SDMMC_CLKEN_ENABLE << slot->id;
1127 if (!test_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags))
1128 clk_en_a |= SDMMC_CLKEN_LOW_PWR << slot->id;
1129 mci_writel(host, CLKENA, clk_en_a);
1130
1131 /* inform CIU */
1132 mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1133
1134 /* keep the clock with reflecting clock dividor */
1135 slot->__clk_old = clock << div;
1136 }
1137
1138 host->current_speed = clock;
1139
1140 /* Set the current slot bus width */
1141 mci_writel(host, CTYPE, (slot->ctype << slot->id));
1142 }
1143
1144 static void __dw_mci_start_request(struct dw_mci *host,
1145 struct dw_mci_slot *slot,
1146 struct mmc_command *cmd)
1147 {
1148 struct mmc_request *mrq;
1149 struct mmc_data *data;
1150 u32 cmdflags;
1151
1152 mrq = slot->mrq;
1153
1154 host->cur_slot = slot;
1155 host->mrq = mrq;
1156
1157 host->pending_events = 0;
1158 host->completed_events = 0;
1159 host->cmd_status = 0;
1160 host->data_status = 0;
1161 host->dir_status = 0;
1162
1163 data = cmd->data;
1164 if (data) {
1165 mci_writel(host, TMOUT, 0xFFFFFFFF);
1166 mci_writel(host, BYTCNT, data->blksz*data->blocks);
1167 mci_writel(host, BLKSIZ, data->blksz);
1168 }
1169
1170 cmdflags = dw_mci_prepare_command(slot->mmc, cmd);
1171
1172 /* this is the first command, send the initialization clock */
1173 if (test_and_clear_bit(DW_MMC_CARD_NEED_INIT, &slot->flags))
1174 cmdflags |= SDMMC_CMD_INIT;
1175
1176 if (data) {
1177 dw_mci_submit_data(host, data);
1178 wmb(); /* drain writebuffer */
1179 }
1180
1181 dw_mci_start_command(host, cmd, cmdflags);
1182
1183 if (cmd->opcode == SD_SWITCH_VOLTAGE) {
1184 unsigned long irqflags;
1185
1186 /*
1187 * Databook says to fail after 2ms w/ no response, but evidence
1188 * shows that sometimes the cmd11 interrupt takes over 130ms.
1189 * We'll set to 500ms, plus an extra jiffy just in case jiffies
1190 * is just about to roll over.
1191 *
1192 * We do this whole thing under spinlock and only if the
1193 * command hasn't already completed (indicating the the irq
1194 * already ran so we don't want the timeout).
1195 */
1196 spin_lock_irqsave(&host->irq_lock, irqflags);
1197 if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
1198 mod_timer(&host->cmd11_timer,
1199 jiffies + msecs_to_jiffies(500) + 1);
1200 spin_unlock_irqrestore(&host->irq_lock, irqflags);
1201 }
1202
1203 if (mrq->stop)
1204 host->stop_cmdr = dw_mci_prepare_command(slot->mmc, mrq->stop);
1205 else
1206 host->stop_cmdr = dw_mci_prep_stop_abort(host, cmd);
1207 }
1208
1209 static void dw_mci_start_request(struct dw_mci *host,
1210 struct dw_mci_slot *slot)
1211 {
1212 struct mmc_request *mrq = slot->mrq;
1213 struct mmc_command *cmd;
1214
1215 cmd = mrq->sbc ? mrq->sbc : mrq->cmd;
1216 __dw_mci_start_request(host, slot, cmd);
1217 }
1218
1219 /* must be called with host->lock held */
1220 static void dw_mci_queue_request(struct dw_mci *host, struct dw_mci_slot *slot,
1221 struct mmc_request *mrq)
1222 {
1223 dev_vdbg(&slot->mmc->class_dev, "queue request: state=%d\n",
1224 host->state);
1225
1226 slot->mrq = mrq;
1227
1228 if (host->state == STATE_WAITING_CMD11_DONE) {
1229 dev_warn(&slot->mmc->class_dev,
1230 "Voltage change didn't complete\n");
1231 /*
1232 * this case isn't expected to happen, so we can
1233 * either crash here or just try to continue on
1234 * in the closest possible state
1235 */
1236 host->state = STATE_IDLE;
1237 }
1238
1239 if (host->state == STATE_IDLE) {
1240 host->state = STATE_SENDING_CMD;
1241 dw_mci_start_request(host, slot);
1242 } else {
1243 list_add_tail(&slot->queue_node, &host->queue);
1244 }
1245 }
1246
1247 static void dw_mci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1248 {
1249 struct dw_mci_slot *slot = mmc_priv(mmc);
1250 struct dw_mci *host = slot->host;
1251
1252 WARN_ON(slot->mrq);
1253
1254 /*
1255 * The check for card presence and queueing of the request must be
1256 * atomic, otherwise the card could be removed in between and the
1257 * request wouldn't fail until another card was inserted.
1258 */
1259 spin_lock_bh(&host->lock);
1260
1261 if (!test_bit(DW_MMC_CARD_PRESENT, &slot->flags)) {
1262 spin_unlock_bh(&host->lock);
1263 mrq->cmd->error = -ENOMEDIUM;
1264 mmc_request_done(mmc, mrq);
1265 return;
1266 }
1267
1268 dw_mci_queue_request(host, slot, mrq);
1269
1270 spin_unlock_bh(&host->lock);
1271 }
1272
1273 static void dw_mci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1274 {
1275 struct dw_mci_slot *slot = mmc_priv(mmc);
1276 const struct dw_mci_drv_data *drv_data = slot->host->drv_data;
1277 u32 regs;
1278 int ret;
1279
1280 switch (ios->bus_width) {
1281 case MMC_BUS_WIDTH_4:
1282 slot->ctype = SDMMC_CTYPE_4BIT;
1283 break;
1284 case MMC_BUS_WIDTH_8:
1285 slot->ctype = SDMMC_CTYPE_8BIT;
1286 break;
1287 default:
1288 /* set default 1 bit mode */
1289 slot->ctype = SDMMC_CTYPE_1BIT;
1290 }
1291
1292 regs = mci_readl(slot->host, UHS_REG);
1293
1294 /* DDR mode set */
1295 if (ios->timing == MMC_TIMING_MMC_DDR52 ||
1296 ios->timing == MMC_TIMING_UHS_DDR50 ||
1297 ios->timing == MMC_TIMING_MMC_HS400)
1298 regs |= ((0x1 << slot->id) << 16);
1299 else
1300 regs &= ~((0x1 << slot->id) << 16);
1301
1302 mci_writel(slot->host, UHS_REG, regs);
1303 slot->host->timing = ios->timing;
1304
1305 /*
1306 * Use mirror of ios->clock to prevent race with mmc
1307 * core ios update when finding the minimum.
1308 */
1309 slot->clock = ios->clock;
1310
1311 if (drv_data && drv_data->set_ios)
1312 drv_data->set_ios(slot->host, ios);
1313
1314 switch (ios->power_mode) {
1315 case MMC_POWER_UP:
1316 if (!IS_ERR(mmc->supply.vmmc)) {
1317 ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
1318 ios->vdd);
1319 if (ret) {
1320 dev_err(slot->host->dev,
1321 "failed to enable vmmc regulator\n");
1322 /*return, if failed turn on vmmc*/
1323 return;
1324 }
1325 }
1326 set_bit(DW_MMC_CARD_NEED_INIT, &slot->flags);
1327 regs = mci_readl(slot->host, PWREN);
1328 regs |= (1 << slot->id);
1329 mci_writel(slot->host, PWREN, regs);
1330 break;
1331 case MMC_POWER_ON:
1332 if (!slot->host->vqmmc_enabled) {
1333 if (!IS_ERR(mmc->supply.vqmmc)) {
1334 ret = regulator_enable(mmc->supply.vqmmc);
1335 if (ret < 0)
1336 dev_err(slot->host->dev,
1337 "failed to enable vqmmc\n");
1338 else
1339 slot->host->vqmmc_enabled = true;
1340
1341 } else {
1342 /* Keep track so we don't reset again */
1343 slot->host->vqmmc_enabled = true;
1344 }
1345
1346 /* Reset our state machine after powering on */
1347 dw_mci_ctrl_reset(slot->host,
1348 SDMMC_CTRL_ALL_RESET_FLAGS);
1349 }
1350
1351 /* Adjust clock / bus width after power is up */
1352 dw_mci_setup_bus(slot, false);
1353
1354 break;
1355 case MMC_POWER_OFF:
1356 /* Turn clock off before power goes down */
1357 dw_mci_setup_bus(slot, false);
1358
1359 if (!IS_ERR(mmc->supply.vmmc))
1360 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1361
1362 if (!IS_ERR(mmc->supply.vqmmc) && slot->host->vqmmc_enabled)
1363 regulator_disable(mmc->supply.vqmmc);
1364 slot->host->vqmmc_enabled = false;
1365
1366 regs = mci_readl(slot->host, PWREN);
1367 regs &= ~(1 << slot->id);
1368 mci_writel(slot->host, PWREN, regs);
1369 break;
1370 default:
1371 break;
1372 }
1373
1374 if (slot->host->state == STATE_WAITING_CMD11_DONE && ios->clock != 0)
1375 slot->host->state = STATE_IDLE;
1376 }
1377
1378 static int dw_mci_card_busy(struct mmc_host *mmc)
1379 {
1380 struct dw_mci_slot *slot = mmc_priv(mmc);
1381 u32 status;
1382
1383 /*
1384 * Check the busy bit which is low when DAT[3:0]
1385 * (the data lines) are 0000
1386 */
1387 status = mci_readl(slot->host, STATUS);
1388
1389 return !!(status & SDMMC_STATUS_BUSY);
1390 }
1391
1392 static int dw_mci_switch_voltage(struct mmc_host *mmc, struct mmc_ios *ios)
1393 {
1394 struct dw_mci_slot *slot = mmc_priv(mmc);
1395 struct dw_mci *host = slot->host;
1396 const struct dw_mci_drv_data *drv_data = host->drv_data;
1397 u32 uhs;
1398 u32 v18 = SDMMC_UHS_18V << slot->id;
1399 int ret;
1400
1401 if (drv_data && drv_data->switch_voltage)
1402 return drv_data->switch_voltage(mmc, ios);
1403
1404 /*
1405 * Program the voltage. Note that some instances of dw_mmc may use
1406 * the UHS_REG for this. For other instances (like exynos) the UHS_REG
1407 * does no harm but you need to set the regulator directly. Try both.
1408 */
1409 uhs = mci_readl(host, UHS_REG);
1410 if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1411 uhs &= ~v18;
1412 else
1413 uhs |= v18;
1414
1415 if (!IS_ERR(mmc->supply.vqmmc)) {
1416 ret = mmc_regulator_set_vqmmc(mmc, ios);
1417
1418 if (ret) {
1419 dev_dbg(&mmc->class_dev,
1420 "Regulator set error %d - %s V\n",
1421 ret, uhs & v18 ? "1.8" : "3.3");
1422 return ret;
1423 }
1424 }
1425 mci_writel(host, UHS_REG, uhs);
1426
1427 return 0;
1428 }
1429
1430 static int dw_mci_get_ro(struct mmc_host *mmc)
1431 {
1432 int read_only;
1433 struct dw_mci_slot *slot = mmc_priv(mmc);
1434 int gpio_ro = mmc_gpio_get_ro(mmc);
1435
1436 /* Use platform get_ro function, else try on board write protect */
1437 if (!IS_ERR_VALUE(gpio_ro))
1438 read_only = gpio_ro;
1439 else
1440 read_only =
1441 mci_readl(slot->host, WRTPRT) & (1 << slot->id) ? 1 : 0;
1442
1443 dev_dbg(&mmc->class_dev, "card is %s\n",
1444 read_only ? "read-only" : "read-write");
1445
1446 return read_only;
1447 }
1448
1449 static int dw_mci_get_cd(struct mmc_host *mmc)
1450 {
1451 int present;
1452 struct dw_mci_slot *slot = mmc_priv(mmc);
1453 struct dw_mci_board *brd = slot->host->pdata;
1454 struct dw_mci *host = slot->host;
1455 int gpio_cd = mmc_gpio_get_cd(mmc);
1456
1457 /* Use platform get_cd function, else try onboard card detect */
1458 if ((brd->quirks & DW_MCI_QUIRK_BROKEN_CARD_DETECTION) ||
1459 (mmc->caps & MMC_CAP_NONREMOVABLE))
1460 present = 1;
1461 else if (!IS_ERR_VALUE(gpio_cd))
1462 present = gpio_cd;
1463 else
1464 present = (mci_readl(slot->host, CDETECT) & (1 << slot->id))
1465 == 0 ? 1 : 0;
1466
1467 spin_lock_bh(&host->lock);
1468 if (present) {
1469 set_bit(DW_MMC_CARD_PRESENT, &slot->flags);
1470 dev_dbg(&mmc->class_dev, "card is present\n");
1471 } else {
1472 clear_bit(DW_MMC_CARD_PRESENT, &slot->flags);
1473 dev_dbg(&mmc->class_dev, "card is not present\n");
1474 }
1475 spin_unlock_bh(&host->lock);
1476
1477 return present;
1478 }
1479
1480 static void dw_mci_init_card(struct mmc_host *mmc, struct mmc_card *card)
1481 {
1482 struct dw_mci_slot *slot = mmc_priv(mmc);
1483 struct dw_mci *host = slot->host;
1484
1485 /*
1486 * Low power mode will stop the card clock when idle. According to the
1487 * description of the CLKENA register we should disable low power mode
1488 * for SDIO cards if we need SDIO interrupts to work.
1489 */
1490 if (mmc->caps & MMC_CAP_SDIO_IRQ) {
1491 const u32 clken_low_pwr = SDMMC_CLKEN_LOW_PWR << slot->id;
1492 u32 clk_en_a_old;
1493 u32 clk_en_a;
1494
1495 clk_en_a_old = mci_readl(host, CLKENA);
1496
1497 if (card->type == MMC_TYPE_SDIO ||
1498 card->type == MMC_TYPE_SD_COMBO) {
1499 set_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1500 clk_en_a = clk_en_a_old & ~clken_low_pwr;
1501 } else {
1502 clear_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1503 clk_en_a = clk_en_a_old | clken_low_pwr;
1504 }
1505
1506 if (clk_en_a != clk_en_a_old) {
1507 mci_writel(host, CLKENA, clk_en_a);
1508 mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
1509 SDMMC_CMD_PRV_DAT_WAIT, 0);
1510 }
1511 }
1512 }
1513
1514 static void dw_mci_enable_sdio_irq(struct mmc_host *mmc, int enb)
1515 {
1516 struct dw_mci_slot *slot = mmc_priv(mmc);
1517 struct dw_mci *host = slot->host;
1518 unsigned long irqflags;
1519 u32 int_mask;
1520
1521 spin_lock_irqsave(&host->irq_lock, irqflags);
1522
1523 /* Enable/disable Slot Specific SDIO interrupt */
1524 int_mask = mci_readl(host, INTMASK);
1525 if (enb)
1526 int_mask |= SDMMC_INT_SDIO(slot->sdio_id);
1527 else
1528 int_mask &= ~SDMMC_INT_SDIO(slot->sdio_id);
1529 mci_writel(host, INTMASK, int_mask);
1530
1531 spin_unlock_irqrestore(&host->irq_lock, irqflags);
1532 }
1533
1534 static int dw_mci_execute_tuning(struct mmc_host *mmc, u32 opcode)
1535 {
1536 struct dw_mci_slot *slot = mmc_priv(mmc);
1537 struct dw_mci *host = slot->host;
1538 const struct dw_mci_drv_data *drv_data = host->drv_data;
1539 int err = -EINVAL;
1540
1541 if (drv_data && drv_data->execute_tuning)
1542 err = drv_data->execute_tuning(slot, opcode);
1543 return err;
1544 }
1545
1546 static int dw_mci_prepare_hs400_tuning(struct mmc_host *mmc,
1547 struct mmc_ios *ios)
1548 {
1549 struct dw_mci_slot *slot = mmc_priv(mmc);
1550 struct dw_mci *host = slot->host;
1551 const struct dw_mci_drv_data *drv_data = host->drv_data;
1552
1553 if (drv_data && drv_data->prepare_hs400_tuning)
1554 return drv_data->prepare_hs400_tuning(host, ios);
1555
1556 return 0;
1557 }
1558
1559 static const struct mmc_host_ops dw_mci_ops = {
1560 .request = dw_mci_request,
1561 .pre_req = dw_mci_pre_req,
1562 .post_req = dw_mci_post_req,
1563 .set_ios = dw_mci_set_ios,
1564 .get_ro = dw_mci_get_ro,
1565 .get_cd = dw_mci_get_cd,
1566 .enable_sdio_irq = dw_mci_enable_sdio_irq,
1567 .execute_tuning = dw_mci_execute_tuning,
1568 .card_busy = dw_mci_card_busy,
1569 .start_signal_voltage_switch = dw_mci_switch_voltage,
1570 .init_card = dw_mci_init_card,
1571 .prepare_hs400_tuning = dw_mci_prepare_hs400_tuning,
1572 };
1573
1574 static void dw_mci_request_end(struct dw_mci *host, struct mmc_request *mrq)
1575 __releases(&host->lock)
1576 __acquires(&host->lock)
1577 {
1578 struct dw_mci_slot *slot;
1579 struct mmc_host *prev_mmc = host->cur_slot->mmc;
1580
1581 WARN_ON(host->cmd || host->data);
1582
1583 host->cur_slot->mrq = NULL;
1584 host->mrq = NULL;
1585 if (!list_empty(&host->queue)) {
1586 slot = list_entry(host->queue.next,
1587 struct dw_mci_slot, queue_node);
1588 list_del(&slot->queue_node);
1589 dev_vdbg(host->dev, "list not empty: %s is next\n",
1590 mmc_hostname(slot->mmc));
1591 host->state = STATE_SENDING_CMD;
1592 dw_mci_start_request(host, slot);
1593 } else {
1594 dev_vdbg(host->dev, "list empty\n");
1595
1596 if (host->state == STATE_SENDING_CMD11)
1597 host->state = STATE_WAITING_CMD11_DONE;
1598 else
1599 host->state = STATE_IDLE;
1600 }
1601
1602 spin_unlock(&host->lock);
1603 mmc_request_done(prev_mmc, mrq);
1604 spin_lock(&host->lock);
1605 }
1606
1607 static int dw_mci_command_complete(struct dw_mci *host, struct mmc_command *cmd)
1608 {
1609 u32 status = host->cmd_status;
1610
1611 host->cmd_status = 0;
1612
1613 /* Read the response from the card (up to 16 bytes) */
1614 if (cmd->flags & MMC_RSP_PRESENT) {
1615 if (cmd->flags & MMC_RSP_136) {
1616 cmd->resp[3] = mci_readl(host, RESP0);
1617 cmd->resp[2] = mci_readl(host, RESP1);
1618 cmd->resp[1] = mci_readl(host, RESP2);
1619 cmd->resp[0] = mci_readl(host, RESP3);
1620 } else {
1621 cmd->resp[0] = mci_readl(host, RESP0);
1622 cmd->resp[1] = 0;
1623 cmd->resp[2] = 0;
1624 cmd->resp[3] = 0;
1625 }
1626 }
1627
1628 if (status & SDMMC_INT_RTO)
1629 cmd->error = -ETIMEDOUT;
1630 else if ((cmd->flags & MMC_RSP_CRC) && (status & SDMMC_INT_RCRC))
1631 cmd->error = -EILSEQ;
1632 else if (status & SDMMC_INT_RESP_ERR)
1633 cmd->error = -EIO;
1634 else
1635 cmd->error = 0;
1636
1637 return cmd->error;
1638 }
1639
1640 static int dw_mci_data_complete(struct dw_mci *host, struct mmc_data *data)
1641 {
1642 u32 status = host->data_status;
1643
1644 if (status & DW_MCI_DATA_ERROR_FLAGS) {
1645 if (status & SDMMC_INT_DRTO) {
1646 data->error = -ETIMEDOUT;
1647 } else if (status & SDMMC_INT_DCRC) {
1648 data->error = -EILSEQ;
1649 } else if (status & SDMMC_INT_EBE) {
1650 if (host->dir_status ==
1651 DW_MCI_SEND_STATUS) {
1652 /*
1653 * No data CRC status was returned.
1654 * The number of bytes transferred
1655 * will be exaggerated in PIO mode.
1656 */
1657 data->bytes_xfered = 0;
1658 data->error = -ETIMEDOUT;
1659 } else if (host->dir_status ==
1660 DW_MCI_RECV_STATUS) {
1661 data->error = -EIO;
1662 }
1663 } else {
1664 /* SDMMC_INT_SBE is included */
1665 data->error = -EIO;
1666 }
1667
1668 dev_dbg(host->dev, "data error, status 0x%08x\n", status);
1669
1670 /*
1671 * After an error, there may be data lingering
1672 * in the FIFO
1673 */
1674 dw_mci_reset(host);
1675 } else {
1676 data->bytes_xfered = data->blocks * data->blksz;
1677 data->error = 0;
1678 }
1679
1680 return data->error;
1681 }
1682
1683 static void dw_mci_set_drto(struct dw_mci *host)
1684 {
1685 unsigned int drto_clks;
1686 unsigned int drto_ms;
1687
1688 drto_clks = mci_readl(host, TMOUT) >> 8;
1689 drto_ms = DIV_ROUND_UP(drto_clks, host->bus_hz / 1000);
1690
1691 /* add a bit spare time */
1692 drto_ms += 10;
1693
1694 mod_timer(&host->dto_timer, jiffies + msecs_to_jiffies(drto_ms));
1695 }
1696
1697 static void dw_mci_tasklet_func(unsigned long priv)
1698 {
1699 struct dw_mci *host = (struct dw_mci *)priv;
1700 struct mmc_data *data;
1701 struct mmc_command *cmd;
1702 struct mmc_request *mrq;
1703 enum dw_mci_state state;
1704 enum dw_mci_state prev_state;
1705 unsigned int err;
1706
1707 spin_lock(&host->lock);
1708
1709 state = host->state;
1710 data = host->data;
1711 mrq = host->mrq;
1712
1713 do {
1714 prev_state = state;
1715
1716 switch (state) {
1717 case STATE_IDLE:
1718 case STATE_WAITING_CMD11_DONE:
1719 break;
1720
1721 case STATE_SENDING_CMD11:
1722 case STATE_SENDING_CMD:
1723 if (!test_and_clear_bit(EVENT_CMD_COMPLETE,
1724 &host->pending_events))
1725 break;
1726
1727 cmd = host->cmd;
1728 host->cmd = NULL;
1729 set_bit(EVENT_CMD_COMPLETE, &host->completed_events);
1730 err = dw_mci_command_complete(host, cmd);
1731 if (cmd == mrq->sbc && !err) {
1732 prev_state = state = STATE_SENDING_CMD;
1733 __dw_mci_start_request(host, host->cur_slot,
1734 mrq->cmd);
1735 goto unlock;
1736 }
1737
1738 if (cmd->data && err) {
1739 dw_mci_stop_dma(host);
1740 send_stop_abort(host, data);
1741 state = STATE_SENDING_STOP;
1742 break;
1743 }
1744
1745 if (!cmd->data || err) {
1746 dw_mci_request_end(host, mrq);
1747 goto unlock;
1748 }
1749
1750 prev_state = state = STATE_SENDING_DATA;
1751 /* fall through */
1752
1753 case STATE_SENDING_DATA:
1754 /*
1755 * We could get a data error and never a transfer
1756 * complete so we'd better check for it here.
1757 *
1758 * Note that we don't really care if we also got a
1759 * transfer complete; stopping the DMA and sending an
1760 * abort won't hurt.
1761 */
1762 if (test_and_clear_bit(EVENT_DATA_ERROR,
1763 &host->pending_events)) {
1764 dw_mci_stop_dma(host);
1765 if (data->stop ||
1766 !(host->data_status & (SDMMC_INT_DRTO |
1767 SDMMC_INT_EBE)))
1768 send_stop_abort(host, data);
1769 state = STATE_DATA_ERROR;
1770 break;
1771 }
1772
1773 if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
1774 &host->pending_events)) {
1775 /*
1776 * If all data-related interrupts don't come
1777 * within the given time in reading data state.
1778 */
1779 if ((host->quirks & DW_MCI_QUIRK_BROKEN_DTO) &&
1780 (host->dir_status == DW_MCI_RECV_STATUS))
1781 dw_mci_set_drto(host);
1782 break;
1783 }
1784
1785 set_bit(EVENT_XFER_COMPLETE, &host->completed_events);
1786
1787 /*
1788 * Handle an EVENT_DATA_ERROR that might have shown up
1789 * before the transfer completed. This might not have
1790 * been caught by the check above because the interrupt
1791 * could have gone off between the previous check and
1792 * the check for transfer complete.
1793 *
1794 * Technically this ought not be needed assuming we
1795 * get a DATA_COMPLETE eventually (we'll notice the
1796 * error and end the request), but it shouldn't hurt.
1797 *
1798 * This has the advantage of sending the stop command.
1799 */
1800 if (test_and_clear_bit(EVENT_DATA_ERROR,
1801 &host->pending_events)) {
1802 dw_mci_stop_dma(host);
1803 if (data->stop ||
1804 !(host->data_status & (SDMMC_INT_DRTO |
1805 SDMMC_INT_EBE)))
1806 send_stop_abort(host, data);
1807 state = STATE_DATA_ERROR;
1808 break;
1809 }
1810 prev_state = state = STATE_DATA_BUSY;
1811
1812 /* fall through */
1813
1814 case STATE_DATA_BUSY:
1815 if (!test_and_clear_bit(EVENT_DATA_COMPLETE,
1816 &host->pending_events)) {
1817 /*
1818 * If data error interrupt comes but data over
1819 * interrupt doesn't come within the given time.
1820 * in reading data state.
1821 */
1822 if ((host->quirks & DW_MCI_QUIRK_BROKEN_DTO) &&
1823 (host->dir_status == DW_MCI_RECV_STATUS))
1824 dw_mci_set_drto(host);
1825 break;
1826 }
1827
1828 host->data = NULL;
1829 set_bit(EVENT_DATA_COMPLETE, &host->completed_events);
1830 err = dw_mci_data_complete(host, data);
1831
1832 if (!err) {
1833 if (!data->stop || mrq->sbc) {
1834 if (mrq->sbc && data->stop)
1835 data->stop->error = 0;
1836 dw_mci_request_end(host, mrq);
1837 goto unlock;
1838 }
1839
1840 /* stop command for open-ended transfer*/
1841 if (data->stop)
1842 send_stop_abort(host, data);
1843 } else {
1844 /*
1845 * If we don't have a command complete now we'll
1846 * never get one since we just reset everything;
1847 * better end the request.
1848 *
1849 * If we do have a command complete we'll fall
1850 * through to the SENDING_STOP command and
1851 * everything will be peachy keen.
1852 */
1853 if (!test_bit(EVENT_CMD_COMPLETE,
1854 &host->pending_events)) {
1855 host->cmd = NULL;
1856 dw_mci_request_end(host, mrq);
1857 goto unlock;
1858 }
1859 }
1860
1861 /*
1862 * If err has non-zero,
1863 * stop-abort command has been already issued.
1864 */
1865 prev_state = state = STATE_SENDING_STOP;
1866
1867 /* fall through */
1868
1869 case STATE_SENDING_STOP:
1870 if (!test_and_clear_bit(EVENT_CMD_COMPLETE,
1871 &host->pending_events))
1872 break;
1873
1874 /* CMD error in data command */
1875 if (mrq->cmd->error && mrq->data)
1876 dw_mci_reset(host);
1877
1878 host->cmd = NULL;
1879 host->data = NULL;
1880
1881 if (mrq->stop)
1882 dw_mci_command_complete(host, mrq->stop);
1883 else
1884 host->cmd_status = 0;
1885
1886 dw_mci_request_end(host, mrq);
1887 goto unlock;
1888
1889 case STATE_DATA_ERROR:
1890 if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
1891 &host->pending_events))
1892 break;
1893
1894 state = STATE_DATA_BUSY;
1895 break;
1896 }
1897 } while (state != prev_state);
1898
1899 host->state = state;
1900 unlock:
1901 spin_unlock(&host->lock);
1902
1903 }
1904
1905 /* push final bytes to part_buf, only use during push */
1906 static void dw_mci_set_part_bytes(struct dw_mci *host, void *buf, int cnt)
1907 {
1908 memcpy((void *)&host->part_buf, buf, cnt);
1909 host->part_buf_count = cnt;
1910 }
1911
1912 /* append bytes to part_buf, only use during push */
1913 static int dw_mci_push_part_bytes(struct dw_mci *host, void *buf, int cnt)
1914 {
1915 cnt = min(cnt, (1 << host->data_shift) - host->part_buf_count);
1916 memcpy((void *)&host->part_buf + host->part_buf_count, buf, cnt);
1917 host->part_buf_count += cnt;
1918 return cnt;
1919 }
1920
1921 /* pull first bytes from part_buf, only use during pull */
1922 static int dw_mci_pull_part_bytes(struct dw_mci *host, void *buf, int cnt)
1923 {
1924 cnt = min_t(int, cnt, host->part_buf_count);
1925 if (cnt) {
1926 memcpy(buf, (void *)&host->part_buf + host->part_buf_start,
1927 cnt);
1928 host->part_buf_count -= cnt;
1929 host->part_buf_start += cnt;
1930 }
1931 return cnt;
1932 }
1933
1934 /* pull final bytes from the part_buf, assuming it's just been filled */
1935 static void dw_mci_pull_final_bytes(struct dw_mci *host, void *buf, int cnt)
1936 {
1937 memcpy(buf, &host->part_buf, cnt);
1938 host->part_buf_start = cnt;
1939 host->part_buf_count = (1 << host->data_shift) - cnt;
1940 }
1941
1942 static void dw_mci_push_data16(struct dw_mci *host, void *buf, int cnt)
1943 {
1944 struct mmc_data *data = host->data;
1945 int init_cnt = cnt;
1946
1947 /* try and push anything in the part_buf */
1948 if (unlikely(host->part_buf_count)) {
1949 int len = dw_mci_push_part_bytes(host, buf, cnt);
1950
1951 buf += len;
1952 cnt -= len;
1953 if (host->part_buf_count == 2) {
1954 mci_fifo_writew(host->fifo_reg, host->part_buf16);
1955 host->part_buf_count = 0;
1956 }
1957 }
1958 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1959 if (unlikely((unsigned long)buf & 0x1)) {
1960 while (cnt >= 2) {
1961 u16 aligned_buf[64];
1962 int len = min(cnt & -2, (int)sizeof(aligned_buf));
1963 int items = len >> 1;
1964 int i;
1965 /* memcpy from input buffer into aligned buffer */
1966 memcpy(aligned_buf, buf, len);
1967 buf += len;
1968 cnt -= len;
1969 /* push data from aligned buffer into fifo */
1970 for (i = 0; i < items; ++i)
1971 mci_fifo_writew(host->fifo_reg, aligned_buf[i]);
1972 }
1973 } else
1974 #endif
1975 {
1976 u16 *pdata = buf;
1977
1978 for (; cnt >= 2; cnt -= 2)
1979 mci_fifo_writew(host->fifo_reg, *pdata++);
1980 buf = pdata;
1981 }
1982 /* put anything remaining in the part_buf */
1983 if (cnt) {
1984 dw_mci_set_part_bytes(host, buf, cnt);
1985 /* Push data if we have reached the expected data length */
1986 if ((data->bytes_xfered + init_cnt) ==
1987 (data->blksz * data->blocks))
1988 mci_fifo_writew(host->fifo_reg, host->part_buf16);
1989 }
1990 }
1991
1992 static void dw_mci_pull_data16(struct dw_mci *host, void *buf, int cnt)
1993 {
1994 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1995 if (unlikely((unsigned long)buf & 0x1)) {
1996 while (cnt >= 2) {
1997 /* pull data from fifo into aligned buffer */
1998 u16 aligned_buf[64];
1999 int len = min(cnt & -2, (int)sizeof(aligned_buf));
2000 int items = len >> 1;
2001 int i;
2002
2003 for (i = 0; i < items; ++i)
2004 aligned_buf[i] = mci_fifo_readw(host->fifo_reg);
2005 /* memcpy from aligned buffer into output buffer */
2006 memcpy(buf, aligned_buf, len);
2007 buf += len;
2008 cnt -= len;
2009 }
2010 } else
2011 #endif
2012 {
2013 u16 *pdata = buf;
2014
2015 for (; cnt >= 2; cnt -= 2)
2016 *pdata++ = mci_fifo_readw(host->fifo_reg);
2017 buf = pdata;
2018 }
2019 if (cnt) {
2020 host->part_buf16 = mci_fifo_readw(host->fifo_reg);
2021 dw_mci_pull_final_bytes(host, buf, cnt);
2022 }
2023 }
2024
2025 static void dw_mci_push_data32(struct dw_mci *host, void *buf, int cnt)
2026 {
2027 struct mmc_data *data = host->data;
2028 int init_cnt = cnt;
2029
2030 /* try and push anything in the part_buf */
2031 if (unlikely(host->part_buf_count)) {
2032 int len = dw_mci_push_part_bytes(host, buf, cnt);
2033
2034 buf += len;
2035 cnt -= len;
2036 if (host->part_buf_count == 4) {
2037 mci_fifo_writel(host->fifo_reg, host->part_buf32);
2038 host->part_buf_count = 0;
2039 }
2040 }
2041 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2042 if (unlikely((unsigned long)buf & 0x3)) {
2043 while (cnt >= 4) {
2044 u32 aligned_buf[32];
2045 int len = min(cnt & -4, (int)sizeof(aligned_buf));
2046 int items = len >> 2;
2047 int i;
2048 /* memcpy from input buffer into aligned buffer */
2049 memcpy(aligned_buf, buf, len);
2050 buf += len;
2051 cnt -= len;
2052 /* push data from aligned buffer into fifo */
2053 for (i = 0; i < items; ++i)
2054 mci_fifo_writel(host->fifo_reg, aligned_buf[i]);
2055 }
2056 } else
2057 #endif
2058 {
2059 u32 *pdata = buf;
2060
2061 for (; cnt >= 4; cnt -= 4)
2062 mci_fifo_writel(host->fifo_reg, *pdata++);
2063 buf = pdata;
2064 }
2065 /* put anything remaining in the part_buf */
2066 if (cnt) {
2067 dw_mci_set_part_bytes(host, buf, cnt);
2068 /* Push data if we have reached the expected data length */
2069 if ((data->bytes_xfered + init_cnt) ==
2070 (data->blksz * data->blocks))
2071 mci_fifo_writel(host->fifo_reg, host->part_buf32);
2072 }
2073 }
2074
2075 static void dw_mci_pull_data32(struct dw_mci *host, void *buf, int cnt)
2076 {
2077 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2078 if (unlikely((unsigned long)buf & 0x3)) {
2079 while (cnt >= 4) {
2080 /* pull data from fifo into aligned buffer */
2081 u32 aligned_buf[32];
2082 int len = min(cnt & -4, (int)sizeof(aligned_buf));
2083 int items = len >> 2;
2084 int i;
2085
2086 for (i = 0; i < items; ++i)
2087 aligned_buf[i] = mci_fifo_readl(host->fifo_reg);
2088 /* memcpy from aligned buffer into output buffer */
2089 memcpy(buf, aligned_buf, len);
2090 buf += len;
2091 cnt -= len;
2092 }
2093 } else
2094 #endif
2095 {
2096 u32 *pdata = buf;
2097
2098 for (; cnt >= 4; cnt -= 4)
2099 *pdata++ = mci_fifo_readl(host->fifo_reg);
2100 buf = pdata;
2101 }
2102 if (cnt) {
2103 host->part_buf32 = mci_fifo_readl(host->fifo_reg);
2104 dw_mci_pull_final_bytes(host, buf, cnt);
2105 }
2106 }
2107
2108 static void dw_mci_push_data64(struct dw_mci *host, void *buf, int cnt)
2109 {
2110 struct mmc_data *data = host->data;
2111 int init_cnt = cnt;
2112
2113 /* try and push anything in the part_buf */
2114 if (unlikely(host->part_buf_count)) {
2115 int len = dw_mci_push_part_bytes(host, buf, cnt);
2116
2117 buf += len;
2118 cnt -= len;
2119
2120 if (host->part_buf_count == 8) {
2121 mci_fifo_writeq(host->fifo_reg, host->part_buf);
2122 host->part_buf_count = 0;
2123 }
2124 }
2125 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2126 if (unlikely((unsigned long)buf & 0x7)) {
2127 while (cnt >= 8) {
2128 u64 aligned_buf[16];
2129 int len = min(cnt & -8, (int)sizeof(aligned_buf));
2130 int items = len >> 3;
2131 int i;
2132 /* memcpy from input buffer into aligned buffer */
2133 memcpy(aligned_buf, buf, len);
2134 buf += len;
2135 cnt -= len;
2136 /* push data from aligned buffer into fifo */
2137 for (i = 0; i < items; ++i)
2138 mci_fifo_writeq(host->fifo_reg, aligned_buf[i]);
2139 }
2140 } else
2141 #endif
2142 {
2143 u64 *pdata = buf;
2144
2145 for (; cnt >= 8; cnt -= 8)
2146 mci_fifo_writeq(host->fifo_reg, *pdata++);
2147 buf = pdata;
2148 }
2149 /* put anything remaining in the part_buf */
2150 if (cnt) {
2151 dw_mci_set_part_bytes(host, buf, cnt);
2152 /* Push data if we have reached the expected data length */
2153 if ((data->bytes_xfered + init_cnt) ==
2154 (data->blksz * data->blocks))
2155 mci_fifo_writeq(host->fifo_reg, host->part_buf);
2156 }
2157 }
2158
2159 static void dw_mci_pull_data64(struct dw_mci *host, void *buf, int cnt)
2160 {
2161 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2162 if (unlikely((unsigned long)buf & 0x7)) {
2163 while (cnt >= 8) {
2164 /* pull data from fifo into aligned buffer */
2165 u64 aligned_buf[16];
2166 int len = min(cnt & -8, (int)sizeof(aligned_buf));
2167 int items = len >> 3;
2168 int i;
2169
2170 for (i = 0; i < items; ++i)
2171 aligned_buf[i] = mci_fifo_readq(host->fifo_reg);
2172
2173 /* memcpy from aligned buffer into output buffer */
2174 memcpy(buf, aligned_buf, len);
2175 buf += len;
2176 cnt -= len;
2177 }
2178 } else
2179 #endif
2180 {
2181 u64 *pdata = buf;
2182
2183 for (; cnt >= 8; cnt -= 8)
2184 *pdata++ = mci_fifo_readq(host->fifo_reg);
2185 buf = pdata;
2186 }
2187 if (cnt) {
2188 host->part_buf = mci_fifo_readq(host->fifo_reg);
2189 dw_mci_pull_final_bytes(host, buf, cnt);
2190 }
2191 }
2192
2193 static void dw_mci_pull_data(struct dw_mci *host, void *buf, int cnt)
2194 {
2195 int len;
2196
2197 /* get remaining partial bytes */
2198 len = dw_mci_pull_part_bytes(host, buf, cnt);
2199 if (unlikely(len == cnt))
2200 return;
2201 buf += len;
2202 cnt -= len;
2203
2204 /* get the rest of the data */
2205 host->pull_data(host, buf, cnt);
2206 }
2207
2208 static void dw_mci_read_data_pio(struct dw_mci *host, bool dto)
2209 {
2210 struct sg_mapping_iter *sg_miter = &host->sg_miter;
2211 void *buf;
2212 unsigned int offset;
2213 struct mmc_data *data = host->data;
2214 int shift = host->data_shift;
2215 u32 status;
2216 unsigned int len;
2217 unsigned int remain, fcnt;
2218
2219 do {
2220 if (!sg_miter_next(sg_miter))
2221 goto done;
2222
2223 host->sg = sg_miter->piter.sg;
2224 buf = sg_miter->addr;
2225 remain = sg_miter->length;
2226 offset = 0;
2227
2228 do {
2229 fcnt = (SDMMC_GET_FCNT(mci_readl(host, STATUS))
2230 << shift) + host->part_buf_count;
2231 len = min(remain, fcnt);
2232 if (!len)
2233 break;
2234 dw_mci_pull_data(host, (void *)(buf + offset), len);
2235 data->bytes_xfered += len;
2236 offset += len;
2237 remain -= len;
2238 } while (remain);
2239
2240 sg_miter->consumed = offset;
2241 status = mci_readl(host, MINTSTS);
2242 mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2243 /* if the RXDR is ready read again */
2244 } while ((status & SDMMC_INT_RXDR) ||
2245 (dto && SDMMC_GET_FCNT(mci_readl(host, STATUS))));
2246
2247 if (!remain) {
2248 if (!sg_miter_next(sg_miter))
2249 goto done;
2250 sg_miter->consumed = 0;
2251 }
2252 sg_miter_stop(sg_miter);
2253 return;
2254
2255 done:
2256 sg_miter_stop(sg_miter);
2257 host->sg = NULL;
2258 smp_wmb(); /* drain writebuffer */
2259 set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2260 }
2261
2262 static void dw_mci_write_data_pio(struct dw_mci *host)
2263 {
2264 struct sg_mapping_iter *sg_miter = &host->sg_miter;
2265 void *buf;
2266 unsigned int offset;
2267 struct mmc_data *data = host->data;
2268 int shift = host->data_shift;
2269 u32 status;
2270 unsigned int len;
2271 unsigned int fifo_depth = host->fifo_depth;
2272 unsigned int remain, fcnt;
2273
2274 do {
2275 if (!sg_miter_next(sg_miter))
2276 goto done;
2277
2278 host->sg = sg_miter->piter.sg;
2279 buf = sg_miter->addr;
2280 remain = sg_miter->length;
2281 offset = 0;
2282
2283 do {
2284 fcnt = ((fifo_depth -
2285 SDMMC_GET_FCNT(mci_readl(host, STATUS)))
2286 << shift) - host->part_buf_count;
2287 len = min(remain, fcnt);
2288 if (!len)
2289 break;
2290 host->push_data(host, (void *)(buf + offset), len);
2291 data->bytes_xfered += len;
2292 offset += len;
2293 remain -= len;
2294 } while (remain);
2295
2296 sg_miter->consumed = offset;
2297 status = mci_readl(host, MINTSTS);
2298 mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2299 } while (status & SDMMC_INT_TXDR); /* if TXDR write again */
2300
2301 if (!remain) {
2302 if (!sg_miter_next(sg_miter))
2303 goto done;
2304 sg_miter->consumed = 0;
2305 }
2306 sg_miter_stop(sg_miter);
2307 return;
2308
2309 done:
2310 sg_miter_stop(sg_miter);
2311 host->sg = NULL;
2312 smp_wmb(); /* drain writebuffer */
2313 set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2314 }
2315
2316 static void dw_mci_cmd_interrupt(struct dw_mci *host, u32 status)
2317 {
2318 if (!host->cmd_status)
2319 host->cmd_status = status;
2320
2321 smp_wmb(); /* drain writebuffer */
2322
2323 set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2324 tasklet_schedule(&host->tasklet);
2325 }
2326
2327 static void dw_mci_handle_cd(struct dw_mci *host)
2328 {
2329 int i;
2330
2331 for (i = 0; i < host->num_slots; i++) {
2332 struct dw_mci_slot *slot = host->slot[i];
2333
2334 if (!slot)
2335 continue;
2336
2337 if (slot->mmc->ops->card_event)
2338 slot->mmc->ops->card_event(slot->mmc);
2339 mmc_detect_change(slot->mmc,
2340 msecs_to_jiffies(host->pdata->detect_delay_ms));
2341 }
2342 }
2343
2344 static irqreturn_t dw_mci_interrupt(int irq, void *dev_id)
2345 {
2346 struct dw_mci *host = dev_id;
2347 u32 pending;
2348 int i;
2349
2350 pending = mci_readl(host, MINTSTS); /* read-only mask reg */
2351
2352 if (pending) {
2353 /* Check volt switch first, since it can look like an error */
2354 if ((host->state == STATE_SENDING_CMD11) &&
2355 (pending & SDMMC_INT_VOLT_SWITCH)) {
2356 unsigned long irqflags;
2357
2358 mci_writel(host, RINTSTS, SDMMC_INT_VOLT_SWITCH);
2359 pending &= ~SDMMC_INT_VOLT_SWITCH;
2360
2361 /*
2362 * Hold the lock; we know cmd11_timer can't be kicked
2363 * off after the lock is released, so safe to delete.
2364 */
2365 spin_lock_irqsave(&host->irq_lock, irqflags);
2366 dw_mci_cmd_interrupt(host, pending);
2367 spin_unlock_irqrestore(&host->irq_lock, irqflags);
2368
2369 del_timer(&host->cmd11_timer);
2370 }
2371
2372 if (pending & DW_MCI_CMD_ERROR_FLAGS) {
2373 mci_writel(host, RINTSTS, DW_MCI_CMD_ERROR_FLAGS);
2374 host->cmd_status = pending;
2375 smp_wmb(); /* drain writebuffer */
2376 set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2377 }
2378
2379 if (pending & DW_MCI_DATA_ERROR_FLAGS) {
2380 /* if there is an error report DATA_ERROR */
2381 mci_writel(host, RINTSTS, DW_MCI_DATA_ERROR_FLAGS);
2382 host->data_status = pending;
2383 smp_wmb(); /* drain writebuffer */
2384 set_bit(EVENT_DATA_ERROR, &host->pending_events);
2385 tasklet_schedule(&host->tasklet);
2386 }
2387
2388 if (pending & SDMMC_INT_DATA_OVER) {
2389 if (host->quirks & DW_MCI_QUIRK_BROKEN_DTO)
2390 del_timer(&host->dto_timer);
2391
2392 mci_writel(host, RINTSTS, SDMMC_INT_DATA_OVER);
2393 if (!host->data_status)
2394 host->data_status = pending;
2395 smp_wmb(); /* drain writebuffer */
2396 if (host->dir_status == DW_MCI_RECV_STATUS) {
2397 if (host->sg != NULL)
2398 dw_mci_read_data_pio(host, true);
2399 }
2400 set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
2401 tasklet_schedule(&host->tasklet);
2402 }
2403
2404 if (pending & SDMMC_INT_RXDR) {
2405 mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2406 if (host->dir_status == DW_MCI_RECV_STATUS && host->sg)
2407 dw_mci_read_data_pio(host, false);
2408 }
2409
2410 if (pending & SDMMC_INT_TXDR) {
2411 mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2412 if (host->dir_status == DW_MCI_SEND_STATUS && host->sg)
2413 dw_mci_write_data_pio(host);
2414 }
2415
2416 if (pending & SDMMC_INT_CMD_DONE) {
2417 mci_writel(host, RINTSTS, SDMMC_INT_CMD_DONE);
2418 dw_mci_cmd_interrupt(host, pending);
2419 }
2420
2421 if (pending & SDMMC_INT_CD) {
2422 mci_writel(host, RINTSTS, SDMMC_INT_CD);
2423 dw_mci_handle_cd(host);
2424 }
2425
2426 /* Handle SDIO Interrupts */
2427 for (i = 0; i < host->num_slots; i++) {
2428 struct dw_mci_slot *slot = host->slot[i];
2429
2430 if (!slot)
2431 continue;
2432
2433 if (pending & SDMMC_INT_SDIO(slot->sdio_id)) {
2434 mci_writel(host, RINTSTS,
2435 SDMMC_INT_SDIO(slot->sdio_id));
2436 mmc_signal_sdio_irq(slot->mmc);
2437 }
2438 }
2439
2440 }
2441
2442 if (host->use_dma != TRANS_MODE_IDMAC)
2443 return IRQ_HANDLED;
2444
2445 /* Handle IDMA interrupts */
2446 if (host->dma_64bit_address == 1) {
2447 pending = mci_readl(host, IDSTS64);
2448 if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2449 mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_TI |
2450 SDMMC_IDMAC_INT_RI);
2451 mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_NI);
2452 host->dma_ops->complete((void *)host);
2453 }
2454 } else {
2455 pending = mci_readl(host, IDSTS);
2456 if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2457 mci_writel(host, IDSTS, SDMMC_IDMAC_INT_TI |
2458 SDMMC_IDMAC_INT_RI);
2459 mci_writel(host, IDSTS, SDMMC_IDMAC_INT_NI);
2460 host->dma_ops->complete((void *)host);
2461 }
2462 }
2463
2464 return IRQ_HANDLED;
2465 }
2466
2467 #ifdef CONFIG_OF
2468 /* given a slot, find out the device node representing that slot */
2469 static struct device_node *dw_mci_of_find_slot_node(struct dw_mci_slot *slot)
2470 {
2471 struct device *dev = slot->mmc->parent;
2472 struct device_node *np;
2473 const __be32 *addr;
2474 int len;
2475
2476 if (!dev || !dev->of_node)
2477 return NULL;
2478
2479 for_each_child_of_node(dev->of_node, np) {
2480 addr = of_get_property(np, "reg", &len);
2481 if (!addr || (len < sizeof(int)))
2482 continue;
2483 if (be32_to_cpup(addr) == slot->id)
2484 return np;
2485 }
2486 return NULL;
2487 }
2488
2489 static void dw_mci_slot_of_parse(struct dw_mci_slot *slot)
2490 {
2491 struct device_node *np = dw_mci_of_find_slot_node(slot);
2492
2493 if (!np)
2494 return;
2495
2496 if (of_property_read_bool(np, "disable-wp")) {
2497 slot->mmc->caps2 |= MMC_CAP2_NO_WRITE_PROTECT;
2498 dev_warn(slot->mmc->parent,
2499 "Slot quirk 'disable-wp' is deprecated\n");
2500 }
2501 }
2502 #else /* CONFIG_OF */
2503 static void dw_mci_slot_of_parse(struct dw_mci_slot *slot)
2504 {
2505 }
2506 #endif /* CONFIG_OF */
2507
2508 static int dw_mci_init_slot(struct dw_mci *host, unsigned int id)
2509 {
2510 struct mmc_host *mmc;
2511 struct dw_mci_slot *slot;
2512 const struct dw_mci_drv_data *drv_data = host->drv_data;
2513 int ctrl_id, ret;
2514 u32 freq[2];
2515
2516 mmc = mmc_alloc_host(sizeof(struct dw_mci_slot), host->dev);
2517 if (!mmc)
2518 return -ENOMEM;
2519
2520 slot = mmc_priv(mmc);
2521 slot->id = id;
2522 slot->sdio_id = host->sdio_id0 + id;
2523 slot->mmc = mmc;
2524 slot->host = host;
2525 host->slot[id] = slot;
2526
2527 mmc->ops = &dw_mci_ops;
2528 if (of_property_read_u32_array(host->dev->of_node,
2529 "clock-freq-min-max", freq, 2)) {
2530 mmc->f_min = DW_MCI_FREQ_MIN;
2531 mmc->f_max = DW_MCI_FREQ_MAX;
2532 } else {
2533 mmc->f_min = freq[0];
2534 mmc->f_max = freq[1];
2535 }
2536
2537 /*if there are external regulators, get them*/
2538 ret = mmc_regulator_get_supply(mmc);
2539 if (ret == -EPROBE_DEFER)
2540 goto err_host_allocated;
2541
2542 if (!mmc->ocr_avail)
2543 mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34;
2544
2545 if (host->pdata->caps)
2546 mmc->caps = host->pdata->caps;
2547
2548 if (host->pdata->pm_caps)
2549 mmc->pm_caps = host->pdata->pm_caps;
2550
2551 if (host->dev->of_node) {
2552 ctrl_id = of_alias_get_id(host->dev->of_node, "mshc");
2553 if (ctrl_id < 0)
2554 ctrl_id = 0;
2555 } else {
2556 ctrl_id = to_platform_device(host->dev)->id;
2557 }
2558 if (drv_data && drv_data->caps)
2559 mmc->caps |= drv_data->caps[ctrl_id];
2560
2561 if (host->pdata->caps2)
2562 mmc->caps2 = host->pdata->caps2;
2563
2564 dw_mci_slot_of_parse(slot);
2565
2566 ret = mmc_of_parse(mmc);
2567 if (ret)
2568 goto err_host_allocated;
2569
2570 /* Useful defaults if platform data is unset. */
2571 if (host->use_dma == TRANS_MODE_IDMAC) {
2572 mmc->max_segs = host->ring_size;
2573 mmc->max_blk_size = 65536;
2574 mmc->max_seg_size = 0x1000;
2575 mmc->max_req_size = mmc->max_seg_size * host->ring_size;
2576 mmc->max_blk_count = mmc->max_req_size / 512;
2577 } else if (host->use_dma == TRANS_MODE_EDMAC) {
2578 mmc->max_segs = 64;
2579 mmc->max_blk_size = 65536;
2580 mmc->max_blk_count = 65535;
2581 mmc->max_req_size =
2582 mmc->max_blk_size * mmc->max_blk_count;
2583 mmc->max_seg_size = mmc->max_req_size;
2584 } else {
2585 /* TRANS_MODE_PIO */
2586 mmc->max_segs = 64;
2587 mmc->max_blk_size = 65536; /* BLKSIZ is 16 bits */
2588 mmc->max_blk_count = 512;
2589 mmc->max_req_size = mmc->max_blk_size *
2590 mmc->max_blk_count;
2591 mmc->max_seg_size = mmc->max_req_size;
2592 }
2593
2594 if (dw_mci_get_cd(mmc))
2595 set_bit(DW_MMC_CARD_PRESENT, &slot->flags);
2596 else
2597 clear_bit(DW_MMC_CARD_PRESENT, &slot->flags);
2598
2599 ret = mmc_add_host(mmc);
2600 if (ret)
2601 goto err_host_allocated;
2602
2603 #if defined(CONFIG_DEBUG_FS)
2604 dw_mci_init_debugfs(slot);
2605 #endif
2606
2607 return 0;
2608
2609 err_host_allocated:
2610 mmc_free_host(mmc);
2611 return ret;
2612 }
2613
2614 static void dw_mci_cleanup_slot(struct dw_mci_slot *slot, unsigned int id)
2615 {
2616 /* Debugfs stuff is cleaned up by mmc core */
2617 mmc_remove_host(slot->mmc);
2618 slot->host->slot[id] = NULL;
2619 mmc_free_host(slot->mmc);
2620 }
2621
2622 static void dw_mci_init_dma(struct dw_mci *host)
2623 {
2624 int addr_config;
2625 struct device *dev = host->dev;
2626 struct device_node *np = dev->of_node;
2627
2628 /*
2629 * Check tansfer mode from HCON[17:16]
2630 * Clear the ambiguous description of dw_mmc databook:
2631 * 2b'00: No DMA Interface -> Actually means using Internal DMA block
2632 * 2b'01: DesignWare DMA Interface -> Synopsys DW-DMA block
2633 * 2b'10: Generic DMA Interface -> non-Synopsys generic DMA block
2634 * 2b'11: Non DW DMA Interface -> pio only
2635 * Compared to DesignWare DMA Interface, Generic DMA Interface has a
2636 * simpler request/acknowledge handshake mechanism and both of them
2637 * are regarded as external dma master for dw_mmc.
2638 */
2639 host->use_dma = SDMMC_GET_TRANS_MODE(mci_readl(host, HCON));
2640 if (host->use_dma == DMA_INTERFACE_IDMA) {
2641 host->use_dma = TRANS_MODE_IDMAC;
2642 } else if (host->use_dma == DMA_INTERFACE_DWDMA ||
2643 host->use_dma == DMA_INTERFACE_GDMA) {
2644 host->use_dma = TRANS_MODE_EDMAC;
2645 } else {
2646 goto no_dma;
2647 }
2648
2649 /* Determine which DMA interface to use */
2650 if (host->use_dma == TRANS_MODE_IDMAC) {
2651 /*
2652 * Check ADDR_CONFIG bit in HCON to find
2653 * IDMAC address bus width
2654 */
2655 addr_config = SDMMC_GET_ADDR_CONFIG(mci_readl(host, HCON));
2656
2657 if (addr_config == 1) {
2658 /* host supports IDMAC in 64-bit address mode */
2659 host->dma_64bit_address = 1;
2660 dev_info(host->dev,
2661 "IDMAC supports 64-bit address mode.\n");
2662 if (!dma_set_mask(host->dev, DMA_BIT_MASK(64)))
2663 dma_set_coherent_mask(host->dev,
2664 DMA_BIT_MASK(64));
2665 } else {
2666 /* host supports IDMAC in 32-bit address mode */
2667 host->dma_64bit_address = 0;
2668 dev_info(host->dev,
2669 "IDMAC supports 32-bit address mode.\n");
2670 }
2671
2672 /* Alloc memory for sg translation */
2673 host->sg_cpu = dmam_alloc_coherent(host->dev, PAGE_SIZE,
2674 &host->sg_dma, GFP_KERNEL);
2675 if (!host->sg_cpu) {
2676 dev_err(host->dev,
2677 "%s: could not alloc DMA memory\n",
2678 __func__);
2679 goto no_dma;
2680 }
2681
2682 host->dma_ops = &dw_mci_idmac_ops;
2683 dev_info(host->dev, "Using internal DMA controller.\n");
2684 } else {
2685 /* TRANS_MODE_EDMAC: check dma bindings again */
2686 if ((of_property_count_strings(np, "dma-names") < 0) ||
2687 (!of_find_property(np, "dmas", NULL))) {
2688 goto no_dma;
2689 }
2690 host->dma_ops = &dw_mci_edmac_ops;
2691 dev_info(host->dev, "Using external DMA controller.\n");
2692 }
2693
2694 if (host->dma_ops->init && host->dma_ops->start &&
2695 host->dma_ops->stop && host->dma_ops->cleanup) {
2696 if (host->dma_ops->init(host)) {
2697 dev_err(host->dev, "%s: Unable to initialize DMA Controller.\n",
2698 __func__);
2699 goto no_dma;
2700 }
2701 } else {
2702 dev_err(host->dev, "DMA initialization not found.\n");
2703 goto no_dma;
2704 }
2705
2706 return;
2707
2708 no_dma:
2709 dev_info(host->dev, "Using PIO mode.\n");
2710 host->use_dma = TRANS_MODE_PIO;
2711 }
2712
2713 static bool dw_mci_ctrl_reset(struct dw_mci *host, u32 reset)
2714 {
2715 unsigned long timeout = jiffies + msecs_to_jiffies(500);
2716 u32 ctrl;
2717
2718 ctrl = mci_readl(host, CTRL);
2719 ctrl |= reset;
2720 mci_writel(host, CTRL, ctrl);
2721
2722 /* wait till resets clear */
2723 do {
2724 ctrl = mci_readl(host, CTRL);
2725 if (!(ctrl & reset))
2726 return true;
2727 } while (time_before(jiffies, timeout));
2728
2729 dev_err(host->dev,
2730 "Timeout resetting block (ctrl reset %#x)\n",
2731 ctrl & reset);
2732
2733 return false;
2734 }
2735
2736 static bool dw_mci_reset(struct dw_mci *host)
2737 {
2738 u32 flags = SDMMC_CTRL_RESET | SDMMC_CTRL_FIFO_RESET;
2739 bool ret = false;
2740
2741 /*
2742 * Reseting generates a block interrupt, hence setting
2743 * the scatter-gather pointer to NULL.
2744 */
2745 if (host->sg) {
2746 sg_miter_stop(&host->sg_miter);
2747 host->sg = NULL;
2748 }
2749
2750 if (host->use_dma)
2751 flags |= SDMMC_CTRL_DMA_RESET;
2752
2753 if (dw_mci_ctrl_reset(host, flags)) {
2754 /*
2755 * In all cases we clear the RAWINTS register to clear any
2756 * interrupts.
2757 */
2758 mci_writel(host, RINTSTS, 0xFFFFFFFF);
2759
2760 /* if using dma we wait for dma_req to clear */
2761 if (host->use_dma) {
2762 unsigned long timeout = jiffies + msecs_to_jiffies(500);
2763 u32 status;
2764
2765 do {
2766 status = mci_readl(host, STATUS);
2767 if (!(status & SDMMC_STATUS_DMA_REQ))
2768 break;
2769 cpu_relax();
2770 } while (time_before(jiffies, timeout));
2771
2772 if (status & SDMMC_STATUS_DMA_REQ) {
2773 dev_err(host->dev,
2774 "%s: Timeout waiting for dma_req to clear during reset\n",
2775 __func__);
2776 goto ciu_out;
2777 }
2778
2779 /* when using DMA next we reset the fifo again */
2780 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_FIFO_RESET))
2781 goto ciu_out;
2782 }
2783 } else {
2784 /* if the controller reset bit did clear, then set clock regs */
2785 if (!(mci_readl(host, CTRL) & SDMMC_CTRL_RESET)) {
2786 dev_err(host->dev,
2787 "%s: fifo/dma reset bits didn't clear but ciu was reset, doing clock update\n",
2788 __func__);
2789 goto ciu_out;
2790 }
2791 }
2792
2793 if (host->use_dma == TRANS_MODE_IDMAC)
2794 /* It is also recommended that we reset and reprogram idmac */
2795 dw_mci_idmac_reset(host);
2796
2797 ret = true;
2798
2799 ciu_out:
2800 /* After a CTRL reset we need to have CIU set clock registers */
2801 mci_send_cmd(host->cur_slot, SDMMC_CMD_UPD_CLK, 0);
2802
2803 return ret;
2804 }
2805
2806 static void dw_mci_cmd11_timer(unsigned long arg)
2807 {
2808 struct dw_mci *host = (struct dw_mci *)arg;
2809
2810 if (host->state != STATE_SENDING_CMD11) {
2811 dev_warn(host->dev, "Unexpected CMD11 timeout\n");
2812 return;
2813 }
2814
2815 host->cmd_status = SDMMC_INT_RTO;
2816 set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2817 tasklet_schedule(&host->tasklet);
2818 }
2819
2820 static void dw_mci_dto_timer(unsigned long arg)
2821 {
2822 struct dw_mci *host = (struct dw_mci *)arg;
2823
2824 switch (host->state) {
2825 case STATE_SENDING_DATA:
2826 case STATE_DATA_BUSY:
2827 /*
2828 * If DTO interrupt does NOT come in sending data state,
2829 * we should notify the driver to terminate current transfer
2830 * and report a data timeout to the core.
2831 */
2832 host->data_status = SDMMC_INT_DRTO;
2833 set_bit(EVENT_DATA_ERROR, &host->pending_events);
2834 set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
2835 tasklet_schedule(&host->tasklet);
2836 break;
2837 default:
2838 break;
2839 }
2840 }
2841
2842 #ifdef CONFIG_OF
2843 static struct dw_mci_of_quirks {
2844 char *quirk;
2845 int id;
2846 } of_quirks[] = {
2847 {
2848 .quirk = "broken-cd",
2849 .id = DW_MCI_QUIRK_BROKEN_CARD_DETECTION,
2850 },
2851 };
2852
2853 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
2854 {
2855 struct dw_mci_board *pdata;
2856 struct device *dev = host->dev;
2857 struct device_node *np = dev->of_node;
2858 const struct dw_mci_drv_data *drv_data = host->drv_data;
2859 int idx, ret;
2860 u32 clock_frequency;
2861
2862 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2863 if (!pdata)
2864 return ERR_PTR(-ENOMEM);
2865
2866 /* find out number of slots supported */
2867 if (of_property_read_u32(dev->of_node, "num-slots",
2868 &pdata->num_slots)) {
2869 dev_info(dev,
2870 "num-slots property not found, assuming 1 slot is available\n");
2871 pdata->num_slots = 1;
2872 }
2873
2874 /* get quirks */
2875 for (idx = 0; idx < ARRAY_SIZE(of_quirks); idx++)
2876 if (of_get_property(np, of_quirks[idx].quirk, NULL))
2877 pdata->quirks |= of_quirks[idx].id;
2878
2879 if (of_property_read_u32(np, "fifo-depth", &pdata->fifo_depth))
2880 dev_info(dev,
2881 "fifo-depth property not found, using value of FIFOTH register as default\n");
2882
2883 of_property_read_u32(np, "card-detect-delay", &pdata->detect_delay_ms);
2884
2885 if (!of_property_read_u32(np, "clock-frequency", &clock_frequency))
2886 pdata->bus_hz = clock_frequency;
2887
2888 if (drv_data && drv_data->parse_dt) {
2889 ret = drv_data->parse_dt(host);
2890 if (ret)
2891 return ERR_PTR(ret);
2892 }
2893
2894 if (of_find_property(np, "supports-highspeed", NULL)) {
2895 dev_info(dev, "supports-highspeed property is deprecated.\n");
2896 pdata->caps |= MMC_CAP_SD_HIGHSPEED | MMC_CAP_MMC_HIGHSPEED;
2897 }
2898
2899 return pdata;
2900 }
2901
2902 #else /* CONFIG_OF */
2903 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
2904 {
2905 return ERR_PTR(-EINVAL);
2906 }
2907 #endif /* CONFIG_OF */
2908
2909 static void dw_mci_enable_cd(struct dw_mci *host)
2910 {
2911 struct dw_mci_board *brd = host->pdata;
2912 unsigned long irqflags;
2913 u32 temp;
2914 int i;
2915
2916 /* No need for CD if broken card detection */
2917 if (brd->quirks & DW_MCI_QUIRK_BROKEN_CARD_DETECTION)
2918 return;
2919
2920 /* No need for CD if all slots have a non-error GPIO */
2921 for (i = 0; i < host->num_slots; i++) {
2922 struct dw_mci_slot *slot = host->slot[i];
2923
2924 if (IS_ERR_VALUE(mmc_gpio_get_cd(slot->mmc)))
2925 break;
2926 }
2927 if (i == host->num_slots)
2928 return;
2929
2930 spin_lock_irqsave(&host->irq_lock, irqflags);
2931 temp = mci_readl(host, INTMASK);
2932 temp |= SDMMC_INT_CD;
2933 mci_writel(host, INTMASK, temp);
2934 spin_unlock_irqrestore(&host->irq_lock, irqflags);
2935 }
2936
2937 int dw_mci_probe(struct dw_mci *host)
2938 {
2939 const struct dw_mci_drv_data *drv_data = host->drv_data;
2940 int width, i, ret = 0;
2941 u32 fifo_size;
2942 int init_slots = 0;
2943
2944 if (!host->pdata) {
2945 host->pdata = dw_mci_parse_dt(host);
2946 if (IS_ERR(host->pdata)) {
2947 dev_err(host->dev, "platform data not available\n");
2948 return -EINVAL;
2949 }
2950 }
2951
2952 if (host->pdata->num_slots < 1) {
2953 dev_err(host->dev,
2954 "Platform data must supply num_slots.\n");
2955 return -ENODEV;
2956 }
2957
2958 host->biu_clk = devm_clk_get(host->dev, "biu");
2959 if (IS_ERR(host->biu_clk)) {
2960 dev_dbg(host->dev, "biu clock not available\n");
2961 } else {
2962 ret = clk_prepare_enable(host->biu_clk);
2963 if (ret) {
2964 dev_err(host->dev, "failed to enable biu clock\n");
2965 return ret;
2966 }
2967 }
2968
2969 host->ciu_clk = devm_clk_get(host->dev, "ciu");
2970 if (IS_ERR(host->ciu_clk)) {
2971 dev_dbg(host->dev, "ciu clock not available\n");
2972 host->bus_hz = host->pdata->bus_hz;
2973 } else {
2974 ret = clk_prepare_enable(host->ciu_clk);
2975 if (ret) {
2976 dev_err(host->dev, "failed to enable ciu clock\n");
2977 goto err_clk_biu;
2978 }
2979
2980 if (host->pdata->bus_hz) {
2981 ret = clk_set_rate(host->ciu_clk, host->pdata->bus_hz);
2982 if (ret)
2983 dev_warn(host->dev,
2984 "Unable to set bus rate to %uHz\n",
2985 host->pdata->bus_hz);
2986 }
2987 host->bus_hz = clk_get_rate(host->ciu_clk);
2988 }
2989
2990 if (!host->bus_hz) {
2991 dev_err(host->dev,
2992 "Platform data must supply bus speed\n");
2993 ret = -ENODEV;
2994 goto err_clk_ciu;
2995 }
2996
2997 if (drv_data && drv_data->init) {
2998 ret = drv_data->init(host);
2999 if (ret) {
3000 dev_err(host->dev,
3001 "implementation specific init failed\n");
3002 goto err_clk_ciu;
3003 }
3004 }
3005
3006 if (drv_data && drv_data->setup_clock) {
3007 ret = drv_data->setup_clock(host);
3008 if (ret) {
3009 dev_err(host->dev,
3010 "implementation specific clock setup failed\n");
3011 goto err_clk_ciu;
3012 }
3013 }
3014
3015 setup_timer(&host->cmd11_timer,
3016 dw_mci_cmd11_timer, (unsigned long)host);
3017
3018 host->quirks = host->pdata->quirks;
3019
3020 if (host->quirks & DW_MCI_QUIRK_BROKEN_DTO)
3021 setup_timer(&host->dto_timer,
3022 dw_mci_dto_timer, (unsigned long)host);
3023
3024 spin_lock_init(&host->lock);
3025 spin_lock_init(&host->irq_lock);
3026 INIT_LIST_HEAD(&host->queue);
3027
3028 /*
3029 * Get the host data width - this assumes that HCON has been set with
3030 * the correct values.
3031 */
3032 i = SDMMC_GET_HDATA_WIDTH(mci_readl(host, HCON));
3033 if (!i) {
3034 host->push_data = dw_mci_push_data16;
3035 host->pull_data = dw_mci_pull_data16;
3036 width = 16;
3037 host->data_shift = 1;
3038 } else if (i == 2) {
3039 host->push_data = dw_mci_push_data64;
3040 host->pull_data = dw_mci_pull_data64;
3041 width = 64;
3042 host->data_shift = 3;
3043 } else {
3044 /* Check for a reserved value, and warn if it is */
3045 WARN((i != 1),
3046 "HCON reports a reserved host data width!\n"
3047 "Defaulting to 32-bit access.\n");
3048 host->push_data = dw_mci_push_data32;
3049 host->pull_data = dw_mci_pull_data32;
3050 width = 32;
3051 host->data_shift = 2;
3052 }
3053
3054 /* Reset all blocks */
3055 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS))
3056 return -ENODEV;
3057
3058 host->dma_ops = host->pdata->dma_ops;
3059 dw_mci_init_dma(host);
3060
3061 /* Clear the interrupts for the host controller */
3062 mci_writel(host, RINTSTS, 0xFFFFFFFF);
3063 mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3064
3065 /* Put in max timeout */
3066 mci_writel(host, TMOUT, 0xFFFFFFFF);
3067
3068 /*
3069 * FIFO threshold settings RxMark = fifo_size / 2 - 1,
3070 * Tx Mark = fifo_size / 2 DMA Size = 8
3071 */
3072 if (!host->pdata->fifo_depth) {
3073 /*
3074 * Power-on value of RX_WMark is FIFO_DEPTH-1, but this may
3075 * have been overwritten by the bootloader, just like we're
3076 * about to do, so if you know the value for your hardware, you
3077 * should put it in the platform data.
3078 */
3079 fifo_size = mci_readl(host, FIFOTH);
3080 fifo_size = 1 + ((fifo_size >> 16) & 0xfff);
3081 } else {
3082 fifo_size = host->pdata->fifo_depth;
3083 }
3084 host->fifo_depth = fifo_size;
3085 host->fifoth_val =
3086 SDMMC_SET_FIFOTH(0x2, fifo_size / 2 - 1, fifo_size / 2);
3087 mci_writel(host, FIFOTH, host->fifoth_val);
3088
3089 /* disable clock to CIU */
3090 mci_writel(host, CLKENA, 0);
3091 mci_writel(host, CLKSRC, 0);
3092
3093 /*
3094 * In 2.40a spec, Data offset is changed.
3095 * Need to check the version-id and set data-offset for DATA register.
3096 */
3097 host->verid = SDMMC_GET_VERID(mci_readl(host, VERID));
3098 dev_info(host->dev, "Version ID is %04x\n", host->verid);
3099
3100 if (host->verid < DW_MMC_240A)
3101 host->fifo_reg = host->regs + DATA_OFFSET;
3102 else
3103 host->fifo_reg = host->regs + DATA_240A_OFFSET;
3104
3105 tasklet_init(&host->tasklet, dw_mci_tasklet_func, (unsigned long)host);
3106 ret = devm_request_irq(host->dev, host->irq, dw_mci_interrupt,
3107 host->irq_flags, "dw-mci", host);
3108 if (ret)
3109 goto err_dmaunmap;
3110
3111 if (host->pdata->num_slots)
3112 host->num_slots = host->pdata->num_slots;
3113 else
3114 host->num_slots = SDMMC_GET_SLOT_NUM(mci_readl(host, HCON));
3115
3116 /*
3117 * Enable interrupts for command done, data over, data empty,
3118 * receive ready and error such as transmit, receive timeout, crc error
3119 */
3120 mci_writel(host, RINTSTS, 0xFFFFFFFF);
3121 mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3122 SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3123 DW_MCI_ERROR_FLAGS);
3124 /* Enable mci interrupt */
3125 mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3126
3127 dev_info(host->dev,
3128 "DW MMC controller at irq %d,%d bit host data width,%u deep fifo\n",
3129 host->irq, width, fifo_size);
3130
3131 /* We need at least one slot to succeed */
3132 for (i = 0; i < host->num_slots; i++) {
3133 ret = dw_mci_init_slot(host, i);
3134 if (ret)
3135 dev_dbg(host->dev, "slot %d init failed\n", i);
3136 else
3137 init_slots++;
3138 }
3139
3140 if (init_slots) {
3141 dev_info(host->dev, "%d slots initialized\n", init_slots);
3142 } else {
3143 dev_dbg(host->dev,
3144 "attempted to initialize %d slots, but failed on all\n",
3145 host->num_slots);
3146 goto err_dmaunmap;
3147 }
3148
3149 /* Now that slots are all setup, we can enable card detect */
3150 dw_mci_enable_cd(host);
3151
3152 return 0;
3153
3154 err_dmaunmap:
3155 if (host->use_dma && host->dma_ops->exit)
3156 host->dma_ops->exit(host);
3157
3158 err_clk_ciu:
3159 if (!IS_ERR(host->ciu_clk))
3160 clk_disable_unprepare(host->ciu_clk);
3161
3162 err_clk_biu:
3163 if (!IS_ERR(host->biu_clk))
3164 clk_disable_unprepare(host->biu_clk);
3165
3166 return ret;
3167 }
3168 EXPORT_SYMBOL(dw_mci_probe);
3169
3170 void dw_mci_remove(struct dw_mci *host)
3171 {
3172 int i;
3173
3174 for (i = 0; i < host->num_slots; i++) {
3175 dev_dbg(host->dev, "remove slot %d\n", i);
3176 if (host->slot[i])
3177 dw_mci_cleanup_slot(host->slot[i], i);
3178 }
3179
3180 mci_writel(host, RINTSTS, 0xFFFFFFFF);
3181 mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3182
3183 /* disable clock to CIU */
3184 mci_writel(host, CLKENA, 0);
3185 mci_writel(host, CLKSRC, 0);
3186
3187 if (host->use_dma && host->dma_ops->exit)
3188 host->dma_ops->exit(host);
3189
3190 if (!IS_ERR(host->ciu_clk))
3191 clk_disable_unprepare(host->ciu_clk);
3192
3193 if (!IS_ERR(host->biu_clk))
3194 clk_disable_unprepare(host->biu_clk);
3195 }
3196 EXPORT_SYMBOL(dw_mci_remove);
3197
3198
3199
3200 #ifdef CONFIG_PM_SLEEP
3201 /*
3202 * TODO: we should probably disable the clock to the card in the suspend path.
3203 */
3204 int dw_mci_suspend(struct dw_mci *host)
3205 {
3206 if (host->use_dma && host->dma_ops->exit)
3207 host->dma_ops->exit(host);
3208
3209 return 0;
3210 }
3211 EXPORT_SYMBOL(dw_mci_suspend);
3212
3213 int dw_mci_resume(struct dw_mci *host)
3214 {
3215 int i, ret;
3216
3217 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3218 ret = -ENODEV;
3219 return ret;
3220 }
3221
3222 if (host->use_dma && host->dma_ops->init)
3223 host->dma_ops->init(host);
3224
3225 /*
3226 * Restore the initial value at FIFOTH register
3227 * And Invalidate the prev_blksz with zero
3228 */
3229 mci_writel(host, FIFOTH, host->fifoth_val);
3230 host->prev_blksz = 0;
3231
3232 /* Put in max timeout */
3233 mci_writel(host, TMOUT, 0xFFFFFFFF);
3234
3235 mci_writel(host, RINTSTS, 0xFFFFFFFF);
3236 mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3237 SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3238 DW_MCI_ERROR_FLAGS);
3239 mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3240
3241 for (i = 0; i < host->num_slots; i++) {
3242 struct dw_mci_slot *slot = host->slot[i];
3243
3244 if (!slot)
3245 continue;
3246 if (slot->mmc->pm_flags & MMC_PM_KEEP_POWER) {
3247 dw_mci_set_ios(slot->mmc, &slot->mmc->ios);
3248 dw_mci_setup_bus(slot, true);
3249 }
3250 }
3251
3252 /* Now that slots are all setup, we can enable card detect */
3253 dw_mci_enable_cd(host);
3254
3255 return 0;
3256 }
3257 EXPORT_SYMBOL(dw_mci_resume);
3258 #endif /* CONFIG_PM_SLEEP */
3259
3260 static int __init dw_mci_init(void)
3261 {
3262 pr_info("Synopsys Designware Multimedia Card Interface Driver\n");
3263 return 0;
3264 }
3265
3266 static void __exit dw_mci_exit(void)
3267 {
3268 }
3269
3270 module_init(dw_mci_init);
3271 module_exit(dw_mci_exit);
3272
3273 MODULE_DESCRIPTION("DW Multimedia Card Interface driver");
3274 MODULE_AUTHOR("NXP Semiconductor VietNam");
3275 MODULE_AUTHOR("Imagination Technologies Ltd");
3276 MODULE_LICENSE("GPL v2");
This page took 0.116339 seconds and 6 git commands to generate.