43af791e2e45e1b29a94fc364978c99a315f2ffa
[deliverable/linux.git] / drivers / mmc / host / mmci.c
1 /*
2 * linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
3 *
4 * Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5 * Copyright (C) 2010 ST-Ericsson SA
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/device.h>
16 #include <linux/io.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/delay.h>
21 #include <linux/err.h>
22 #include <linux/highmem.h>
23 #include <linux/log2.h>
24 #include <linux/mmc/pm.h>
25 #include <linux/mmc/host.h>
26 #include <linux/mmc/card.h>
27 #include <linux/mmc/slot-gpio.h>
28 #include <linux/amba/bus.h>
29 #include <linux/clk.h>
30 #include <linux/scatterlist.h>
31 #include <linux/gpio.h>
32 #include <linux/of_gpio.h>
33 #include <linux/regulator/consumer.h>
34 #include <linux/dmaengine.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/amba/mmci.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/types.h>
39 #include <linux/pinctrl/consumer.h>
40
41 #include <asm/div64.h>
42 #include <asm/io.h>
43 #include <asm/sizes.h>
44
45 #include "mmci.h"
46 #include "mmci_qcom_dml.h"
47
48 #define DRIVER_NAME "mmci-pl18x"
49
50 static unsigned int fmax = 515633;
51
52 /**
53 * struct variant_data - MMCI variant-specific quirks
54 * @clkreg: default value for MCICLOCK register
55 * @clkreg_enable: enable value for MMCICLOCK register
56 * @clkreg_8bit_bus_enable: enable value for 8 bit bus
57 * @clkreg_neg_edge_enable: enable value for inverted data/cmd output
58 * @datalength_bits: number of bits in the MMCIDATALENGTH register
59 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
60 * is asserted (likewise for RX)
61 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
62 * is asserted (likewise for RX)
63 * @data_cmd_enable: enable value for data commands.
64 * @st_sdio: enable ST specific SDIO logic
65 * @st_clkdiv: true if using a ST-specific clock divider algorithm
66 * @datactrl_mask_ddrmode: ddr mode mask in datactrl register.
67 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
68 * @blksz_datactrl4: true if Block size is at b4..b16 position in datactrl
69 * register
70 * @datactrl_mask_sdio: SDIO enable mask in datactrl register
71 * @pwrreg_powerup: power up value for MMCIPOWER register
72 * @f_max: maximum clk frequency supported by the controller.
73 * @signal_direction: input/out direction of bus signals can be indicated
74 * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock
75 * @busy_detect: true if busy detection on dat0 is supported
76 * @pwrreg_nopower: bits in MMCIPOWER don't controls ext. power supply
77 * @explicit_mclk_control: enable explicit mclk control in driver.
78 * @qcom_fifo: enables qcom specific fifo pio read logic.
79 * @qcom_dml: enables qcom specific dma glue for dma transfers.
80 * @reversed_irq_handling: handle data irq before cmd irq.
81 */
82 struct variant_data {
83 unsigned int clkreg;
84 unsigned int clkreg_enable;
85 unsigned int clkreg_8bit_bus_enable;
86 unsigned int clkreg_neg_edge_enable;
87 unsigned int datalength_bits;
88 unsigned int fifosize;
89 unsigned int fifohalfsize;
90 unsigned int data_cmd_enable;
91 unsigned int datactrl_mask_ddrmode;
92 unsigned int datactrl_mask_sdio;
93 bool st_sdio;
94 bool st_clkdiv;
95 bool blksz_datactrl16;
96 bool blksz_datactrl4;
97 u32 pwrreg_powerup;
98 u32 f_max;
99 bool signal_direction;
100 bool pwrreg_clkgate;
101 bool busy_detect;
102 bool pwrreg_nopower;
103 bool explicit_mclk_control;
104 bool qcom_fifo;
105 bool qcom_dml;
106 bool reversed_irq_handling;
107 };
108
109 static struct variant_data variant_arm = {
110 .fifosize = 16 * 4,
111 .fifohalfsize = 8 * 4,
112 .datalength_bits = 16,
113 .pwrreg_powerup = MCI_PWR_UP,
114 .f_max = 100000000,
115 .reversed_irq_handling = true,
116 };
117
118 static struct variant_data variant_arm_extended_fifo = {
119 .fifosize = 128 * 4,
120 .fifohalfsize = 64 * 4,
121 .datalength_bits = 16,
122 .pwrreg_powerup = MCI_PWR_UP,
123 .f_max = 100000000,
124 };
125
126 static struct variant_data variant_arm_extended_fifo_hwfc = {
127 .fifosize = 128 * 4,
128 .fifohalfsize = 64 * 4,
129 .clkreg_enable = MCI_ARM_HWFCEN,
130 .datalength_bits = 16,
131 .pwrreg_powerup = MCI_PWR_UP,
132 .f_max = 100000000,
133 };
134
135 static struct variant_data variant_u300 = {
136 .fifosize = 16 * 4,
137 .fifohalfsize = 8 * 4,
138 .clkreg_enable = MCI_ST_U300_HWFCEN,
139 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
140 .datalength_bits = 16,
141 .datactrl_mask_sdio = MCI_ST_DPSM_SDIOEN,
142 .st_sdio = true,
143 .pwrreg_powerup = MCI_PWR_ON,
144 .f_max = 100000000,
145 .signal_direction = true,
146 .pwrreg_clkgate = true,
147 .pwrreg_nopower = true,
148 };
149
150 static struct variant_data variant_nomadik = {
151 .fifosize = 16 * 4,
152 .fifohalfsize = 8 * 4,
153 .clkreg = MCI_CLK_ENABLE,
154 .datalength_bits = 24,
155 .datactrl_mask_sdio = MCI_ST_DPSM_SDIOEN,
156 .st_sdio = true,
157 .st_clkdiv = true,
158 .pwrreg_powerup = MCI_PWR_ON,
159 .f_max = 100000000,
160 .signal_direction = true,
161 .pwrreg_clkgate = true,
162 .pwrreg_nopower = true,
163 };
164
165 static struct variant_data variant_ux500 = {
166 .fifosize = 30 * 4,
167 .fifohalfsize = 8 * 4,
168 .clkreg = MCI_CLK_ENABLE,
169 .clkreg_enable = MCI_ST_UX500_HWFCEN,
170 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
171 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
172 .datalength_bits = 24,
173 .datactrl_mask_sdio = MCI_ST_DPSM_SDIOEN,
174 .st_sdio = true,
175 .st_clkdiv = true,
176 .pwrreg_powerup = MCI_PWR_ON,
177 .f_max = 100000000,
178 .signal_direction = true,
179 .pwrreg_clkgate = true,
180 .busy_detect = true,
181 .pwrreg_nopower = true,
182 };
183
184 static struct variant_data variant_ux500v2 = {
185 .fifosize = 30 * 4,
186 .fifohalfsize = 8 * 4,
187 .clkreg = MCI_CLK_ENABLE,
188 .clkreg_enable = MCI_ST_UX500_HWFCEN,
189 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
190 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
191 .datactrl_mask_ddrmode = MCI_ST_DPSM_DDRMODE,
192 .datalength_bits = 24,
193 .datactrl_mask_sdio = MCI_ST_DPSM_SDIOEN,
194 .st_sdio = true,
195 .st_clkdiv = true,
196 .blksz_datactrl16 = true,
197 .pwrreg_powerup = MCI_PWR_ON,
198 .f_max = 100000000,
199 .signal_direction = true,
200 .pwrreg_clkgate = true,
201 .busy_detect = true,
202 .pwrreg_nopower = true,
203 };
204
205 static struct variant_data variant_qcom = {
206 .fifosize = 16 * 4,
207 .fifohalfsize = 8 * 4,
208 .clkreg = MCI_CLK_ENABLE,
209 .clkreg_enable = MCI_QCOM_CLK_FLOWENA |
210 MCI_QCOM_CLK_SELECT_IN_FBCLK,
211 .clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
212 .datactrl_mask_ddrmode = MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
213 .data_cmd_enable = MCI_QCOM_CSPM_DATCMD,
214 .blksz_datactrl4 = true,
215 .datalength_bits = 24,
216 .pwrreg_powerup = MCI_PWR_UP,
217 .f_max = 208000000,
218 .explicit_mclk_control = true,
219 .qcom_fifo = true,
220 .qcom_dml = true,
221 };
222
223 static int mmci_card_busy(struct mmc_host *mmc)
224 {
225 struct mmci_host *host = mmc_priv(mmc);
226 unsigned long flags;
227 int busy = 0;
228
229 pm_runtime_get_sync(mmc_dev(mmc));
230
231 spin_lock_irqsave(&host->lock, flags);
232 if (readl(host->base + MMCISTATUS) & MCI_ST_CARDBUSY)
233 busy = 1;
234 spin_unlock_irqrestore(&host->lock, flags);
235
236 pm_runtime_mark_last_busy(mmc_dev(mmc));
237 pm_runtime_put_autosuspend(mmc_dev(mmc));
238
239 return busy;
240 }
241
242 /*
243 * Validate mmc prerequisites
244 */
245 static int mmci_validate_data(struct mmci_host *host,
246 struct mmc_data *data)
247 {
248 if (!data)
249 return 0;
250
251 if (!is_power_of_2(data->blksz)) {
252 dev_err(mmc_dev(host->mmc),
253 "unsupported block size (%d bytes)\n", data->blksz);
254 return -EINVAL;
255 }
256
257 return 0;
258 }
259
260 static void mmci_reg_delay(struct mmci_host *host)
261 {
262 /*
263 * According to the spec, at least three feedback clock cycles
264 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
265 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
266 * Worst delay time during card init is at 100 kHz => 30 us.
267 * Worst delay time when up and running is at 25 MHz => 120 ns.
268 */
269 if (host->cclk < 25000000)
270 udelay(30);
271 else
272 ndelay(120);
273 }
274
275 /*
276 * This must be called with host->lock held
277 */
278 static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
279 {
280 if (host->clk_reg != clk) {
281 host->clk_reg = clk;
282 writel(clk, host->base + MMCICLOCK);
283 }
284 }
285
286 /*
287 * This must be called with host->lock held
288 */
289 static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
290 {
291 if (host->pwr_reg != pwr) {
292 host->pwr_reg = pwr;
293 writel(pwr, host->base + MMCIPOWER);
294 }
295 }
296
297 /*
298 * This must be called with host->lock held
299 */
300 static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
301 {
302 /* Keep ST Micro busy mode if enabled */
303 datactrl |= host->datactrl_reg & MCI_ST_DPSM_BUSYMODE;
304
305 if (host->datactrl_reg != datactrl) {
306 host->datactrl_reg = datactrl;
307 writel(datactrl, host->base + MMCIDATACTRL);
308 }
309 }
310
311 /*
312 * This must be called with host->lock held
313 */
314 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
315 {
316 struct variant_data *variant = host->variant;
317 u32 clk = variant->clkreg;
318
319 /* Make sure cclk reflects the current calculated clock */
320 host->cclk = 0;
321
322 if (desired) {
323 if (variant->explicit_mclk_control) {
324 host->cclk = host->mclk;
325 } else if (desired >= host->mclk) {
326 clk = MCI_CLK_BYPASS;
327 if (variant->st_clkdiv)
328 clk |= MCI_ST_UX500_NEG_EDGE;
329 host->cclk = host->mclk;
330 } else if (variant->st_clkdiv) {
331 /*
332 * DB8500 TRM says f = mclk / (clkdiv + 2)
333 * => clkdiv = (mclk / f) - 2
334 * Round the divider up so we don't exceed the max
335 * frequency
336 */
337 clk = DIV_ROUND_UP(host->mclk, desired) - 2;
338 if (clk >= 256)
339 clk = 255;
340 host->cclk = host->mclk / (clk + 2);
341 } else {
342 /*
343 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
344 * => clkdiv = mclk / (2 * f) - 1
345 */
346 clk = host->mclk / (2 * desired) - 1;
347 if (clk >= 256)
348 clk = 255;
349 host->cclk = host->mclk / (2 * (clk + 1));
350 }
351
352 clk |= variant->clkreg_enable;
353 clk |= MCI_CLK_ENABLE;
354 /* This hasn't proven to be worthwhile */
355 /* clk |= MCI_CLK_PWRSAVE; */
356 }
357
358 /* Set actual clock for debug */
359 host->mmc->actual_clock = host->cclk;
360
361 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
362 clk |= MCI_4BIT_BUS;
363 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
364 clk |= variant->clkreg_8bit_bus_enable;
365
366 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
367 host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
368 clk |= variant->clkreg_neg_edge_enable;
369
370 mmci_write_clkreg(host, clk);
371 }
372
373 static void
374 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
375 {
376 writel(0, host->base + MMCICOMMAND);
377
378 BUG_ON(host->data);
379
380 host->mrq = NULL;
381 host->cmd = NULL;
382
383 mmc_request_done(host->mmc, mrq);
384
385 pm_runtime_mark_last_busy(mmc_dev(host->mmc));
386 pm_runtime_put_autosuspend(mmc_dev(host->mmc));
387 }
388
389 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
390 {
391 void __iomem *base = host->base;
392
393 if (host->singleirq) {
394 unsigned int mask0 = readl(base + MMCIMASK0);
395
396 mask0 &= ~MCI_IRQ1MASK;
397 mask0 |= mask;
398
399 writel(mask0, base + MMCIMASK0);
400 }
401
402 writel(mask, base + MMCIMASK1);
403 }
404
405 static void mmci_stop_data(struct mmci_host *host)
406 {
407 mmci_write_datactrlreg(host, 0);
408 mmci_set_mask1(host, 0);
409 host->data = NULL;
410 }
411
412 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
413 {
414 unsigned int flags = SG_MITER_ATOMIC;
415
416 if (data->flags & MMC_DATA_READ)
417 flags |= SG_MITER_TO_SG;
418 else
419 flags |= SG_MITER_FROM_SG;
420
421 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
422 }
423
424 /*
425 * All the DMA operation mode stuff goes inside this ifdef.
426 * This assumes that you have a generic DMA device interface,
427 * no custom DMA interfaces are supported.
428 */
429 #ifdef CONFIG_DMA_ENGINE
430 static void mmci_dma_setup(struct mmci_host *host)
431 {
432 const char *rxname, *txname;
433 dma_cap_mask_t mask;
434 struct variant_data *variant = host->variant;
435
436 host->dma_rx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "rx");
437 host->dma_tx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "tx");
438
439 /* initialize pre request cookie */
440 host->next_data.cookie = 1;
441
442 /* Try to acquire a generic DMA engine slave channel */
443 dma_cap_zero(mask);
444 dma_cap_set(DMA_SLAVE, mask);
445
446 /*
447 * If only an RX channel is specified, the driver will
448 * attempt to use it bidirectionally, however if it is
449 * is specified but cannot be located, DMA will be disabled.
450 */
451 if (host->dma_rx_channel && !host->dma_tx_channel)
452 host->dma_tx_channel = host->dma_rx_channel;
453
454 if (host->dma_rx_channel)
455 rxname = dma_chan_name(host->dma_rx_channel);
456 else
457 rxname = "none";
458
459 if (host->dma_tx_channel)
460 txname = dma_chan_name(host->dma_tx_channel);
461 else
462 txname = "none";
463
464 dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
465 rxname, txname);
466
467 /*
468 * Limit the maximum segment size in any SG entry according to
469 * the parameters of the DMA engine device.
470 */
471 if (host->dma_tx_channel) {
472 struct device *dev = host->dma_tx_channel->device->dev;
473 unsigned int max_seg_size = dma_get_max_seg_size(dev);
474
475 if (max_seg_size < host->mmc->max_seg_size)
476 host->mmc->max_seg_size = max_seg_size;
477 }
478 if (host->dma_rx_channel) {
479 struct device *dev = host->dma_rx_channel->device->dev;
480 unsigned int max_seg_size = dma_get_max_seg_size(dev);
481
482 if (max_seg_size < host->mmc->max_seg_size)
483 host->mmc->max_seg_size = max_seg_size;
484 }
485
486 if (variant->qcom_dml && host->dma_rx_channel && host->dma_tx_channel)
487 if (dml_hw_init(host, host->mmc->parent->of_node))
488 variant->qcom_dml = false;
489 }
490
491 /*
492 * This is used in or so inline it
493 * so it can be discarded.
494 */
495 static inline void mmci_dma_release(struct mmci_host *host)
496 {
497 if (host->dma_rx_channel)
498 dma_release_channel(host->dma_rx_channel);
499 if (host->dma_tx_channel)
500 dma_release_channel(host->dma_tx_channel);
501 host->dma_rx_channel = host->dma_tx_channel = NULL;
502 }
503
504 static void mmci_dma_data_error(struct mmci_host *host)
505 {
506 dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
507 dmaengine_terminate_all(host->dma_current);
508 host->dma_current = NULL;
509 host->dma_desc_current = NULL;
510 host->data->host_cookie = 0;
511 }
512
513 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
514 {
515 struct dma_chan *chan;
516 enum dma_data_direction dir;
517
518 if (data->flags & MMC_DATA_READ) {
519 dir = DMA_FROM_DEVICE;
520 chan = host->dma_rx_channel;
521 } else {
522 dir = DMA_TO_DEVICE;
523 chan = host->dma_tx_channel;
524 }
525
526 dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
527 }
528
529 static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
530 {
531 u32 status;
532 int i;
533
534 /* Wait up to 1ms for the DMA to complete */
535 for (i = 0; ; i++) {
536 status = readl(host->base + MMCISTATUS);
537 if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
538 break;
539 udelay(10);
540 }
541
542 /*
543 * Check to see whether we still have some data left in the FIFO -
544 * this catches DMA controllers which are unable to monitor the
545 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
546 * contiguous buffers. On TX, we'll get a FIFO underrun error.
547 */
548 if (status & MCI_RXDATAAVLBLMASK) {
549 mmci_dma_data_error(host);
550 if (!data->error)
551 data->error = -EIO;
552 }
553
554 if (!data->host_cookie)
555 mmci_dma_unmap(host, data);
556
557 /*
558 * Use of DMA with scatter-gather is impossible.
559 * Give up with DMA and switch back to PIO mode.
560 */
561 if (status & MCI_RXDATAAVLBLMASK) {
562 dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
563 mmci_dma_release(host);
564 }
565
566 host->dma_current = NULL;
567 host->dma_desc_current = NULL;
568 }
569
570 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */
571 static int __mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
572 struct dma_chan **dma_chan,
573 struct dma_async_tx_descriptor **dma_desc)
574 {
575 struct variant_data *variant = host->variant;
576 struct dma_slave_config conf = {
577 .src_addr = host->phybase + MMCIFIFO,
578 .dst_addr = host->phybase + MMCIFIFO,
579 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
580 .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
581 .src_maxburst = variant->fifohalfsize >> 2, /* # of words */
582 .dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
583 .device_fc = false,
584 };
585 struct dma_chan *chan;
586 struct dma_device *device;
587 struct dma_async_tx_descriptor *desc;
588 enum dma_data_direction buffer_dirn;
589 int nr_sg;
590 unsigned long flags = DMA_CTRL_ACK;
591
592 if (data->flags & MMC_DATA_READ) {
593 conf.direction = DMA_DEV_TO_MEM;
594 buffer_dirn = DMA_FROM_DEVICE;
595 chan = host->dma_rx_channel;
596 } else {
597 conf.direction = DMA_MEM_TO_DEV;
598 buffer_dirn = DMA_TO_DEVICE;
599 chan = host->dma_tx_channel;
600 }
601
602 /* If there's no DMA channel, fall back to PIO */
603 if (!chan)
604 return -EINVAL;
605
606 /* If less than or equal to the fifo size, don't bother with DMA */
607 if (data->blksz * data->blocks <= variant->fifosize)
608 return -EINVAL;
609
610 device = chan->device;
611 nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
612 if (nr_sg == 0)
613 return -EINVAL;
614
615 if (host->variant->qcom_dml)
616 flags |= DMA_PREP_INTERRUPT;
617
618 dmaengine_slave_config(chan, &conf);
619 desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
620 conf.direction, flags);
621 if (!desc)
622 goto unmap_exit;
623
624 *dma_chan = chan;
625 *dma_desc = desc;
626
627 return 0;
628
629 unmap_exit:
630 dma_unmap_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
631 return -ENOMEM;
632 }
633
634 static inline int mmci_dma_prep_data(struct mmci_host *host,
635 struct mmc_data *data)
636 {
637 /* Check if next job is already prepared. */
638 if (host->dma_current && host->dma_desc_current)
639 return 0;
640
641 /* No job were prepared thus do it now. */
642 return __mmci_dma_prep_data(host, data, &host->dma_current,
643 &host->dma_desc_current);
644 }
645
646 static inline int mmci_dma_prep_next(struct mmci_host *host,
647 struct mmc_data *data)
648 {
649 struct mmci_host_next *nd = &host->next_data;
650 return __mmci_dma_prep_data(host, data, &nd->dma_chan, &nd->dma_desc);
651 }
652
653 static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
654 {
655 int ret;
656 struct mmc_data *data = host->data;
657
658 ret = mmci_dma_prep_data(host, host->data);
659 if (ret)
660 return ret;
661
662 /* Okay, go for it. */
663 dev_vdbg(mmc_dev(host->mmc),
664 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
665 data->sg_len, data->blksz, data->blocks, data->flags);
666 dmaengine_submit(host->dma_desc_current);
667 dma_async_issue_pending(host->dma_current);
668
669 if (host->variant->qcom_dml)
670 dml_start_xfer(host, data);
671
672 datactrl |= MCI_DPSM_DMAENABLE;
673
674 /* Trigger the DMA transfer */
675 mmci_write_datactrlreg(host, datactrl);
676
677 /*
678 * Let the MMCI say when the data is ended and it's time
679 * to fire next DMA request. When that happens, MMCI will
680 * call mmci_data_end()
681 */
682 writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
683 host->base + MMCIMASK0);
684 return 0;
685 }
686
687 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
688 {
689 struct mmci_host_next *next = &host->next_data;
690
691 WARN_ON(data->host_cookie && data->host_cookie != next->cookie);
692 WARN_ON(!data->host_cookie && (next->dma_desc || next->dma_chan));
693
694 host->dma_desc_current = next->dma_desc;
695 host->dma_current = next->dma_chan;
696 next->dma_desc = NULL;
697 next->dma_chan = NULL;
698 }
699
700 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq,
701 bool is_first_req)
702 {
703 struct mmci_host *host = mmc_priv(mmc);
704 struct mmc_data *data = mrq->data;
705 struct mmci_host_next *nd = &host->next_data;
706
707 if (!data)
708 return;
709
710 BUG_ON(data->host_cookie);
711
712 if (mmci_validate_data(host, data))
713 return;
714
715 if (!mmci_dma_prep_next(host, data))
716 data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
717 }
718
719 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
720 int err)
721 {
722 struct mmci_host *host = mmc_priv(mmc);
723 struct mmc_data *data = mrq->data;
724
725 if (!data || !data->host_cookie)
726 return;
727
728 mmci_dma_unmap(host, data);
729
730 if (err) {
731 struct mmci_host_next *next = &host->next_data;
732 struct dma_chan *chan;
733 if (data->flags & MMC_DATA_READ)
734 chan = host->dma_rx_channel;
735 else
736 chan = host->dma_tx_channel;
737 dmaengine_terminate_all(chan);
738
739 next->dma_desc = NULL;
740 next->dma_chan = NULL;
741 }
742 }
743
744 #else
745 /* Blank functions if the DMA engine is not available */
746 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
747 {
748 }
749 static inline void mmci_dma_setup(struct mmci_host *host)
750 {
751 }
752
753 static inline void mmci_dma_release(struct mmci_host *host)
754 {
755 }
756
757 static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
758 {
759 }
760
761 static inline void mmci_dma_finalize(struct mmci_host *host,
762 struct mmc_data *data)
763 {
764 }
765
766 static inline void mmci_dma_data_error(struct mmci_host *host)
767 {
768 }
769
770 static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
771 {
772 return -ENOSYS;
773 }
774
775 #define mmci_pre_request NULL
776 #define mmci_post_request NULL
777
778 #endif
779
780 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
781 {
782 struct variant_data *variant = host->variant;
783 unsigned int datactrl, timeout, irqmask;
784 unsigned long long clks;
785 void __iomem *base;
786 int blksz_bits;
787
788 dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
789 data->blksz, data->blocks, data->flags);
790
791 host->data = data;
792 host->size = data->blksz * data->blocks;
793 data->bytes_xfered = 0;
794
795 clks = (unsigned long long)data->timeout_ns * host->cclk;
796 do_div(clks, NSEC_PER_SEC);
797
798 timeout = data->timeout_clks + (unsigned int)clks;
799
800 base = host->base;
801 writel(timeout, base + MMCIDATATIMER);
802 writel(host->size, base + MMCIDATALENGTH);
803
804 blksz_bits = ffs(data->blksz) - 1;
805 BUG_ON(1 << blksz_bits != data->blksz);
806
807 if (variant->blksz_datactrl16)
808 datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
809 else if (variant->blksz_datactrl4)
810 datactrl = MCI_DPSM_ENABLE | (data->blksz << 4);
811 else
812 datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
813
814 if (data->flags & MMC_DATA_READ)
815 datactrl |= MCI_DPSM_DIRECTION;
816
817 if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
818 u32 clk;
819
820 datactrl |= variant->datactrl_mask_sdio;
821
822 /*
823 * The ST Micro variant for SDIO small write transfers
824 * needs to have clock H/W flow control disabled,
825 * otherwise the transfer will not start. The threshold
826 * depends on the rate of MCLK.
827 */
828 if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
829 (host->size < 8 ||
830 (host->size <= 8 && host->mclk > 50000000)))
831 clk = host->clk_reg & ~variant->clkreg_enable;
832 else
833 clk = host->clk_reg | variant->clkreg_enable;
834
835 mmci_write_clkreg(host, clk);
836 }
837
838 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
839 host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
840 datactrl |= variant->datactrl_mask_ddrmode;
841
842 /*
843 * Attempt to use DMA operation mode, if this
844 * should fail, fall back to PIO mode
845 */
846 if (!mmci_dma_start_data(host, datactrl))
847 return;
848
849 /* IRQ mode, map the SG list for CPU reading/writing */
850 mmci_init_sg(host, data);
851
852 if (data->flags & MMC_DATA_READ) {
853 irqmask = MCI_RXFIFOHALFFULLMASK;
854
855 /*
856 * If we have less than the fifo 'half-full' threshold to
857 * transfer, trigger a PIO interrupt as soon as any data
858 * is available.
859 */
860 if (host->size < variant->fifohalfsize)
861 irqmask |= MCI_RXDATAAVLBLMASK;
862 } else {
863 /*
864 * We don't actually need to include "FIFO empty" here
865 * since its implicit in "FIFO half empty".
866 */
867 irqmask = MCI_TXFIFOHALFEMPTYMASK;
868 }
869
870 mmci_write_datactrlreg(host, datactrl);
871 writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
872 mmci_set_mask1(host, irqmask);
873 }
874
875 static void
876 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
877 {
878 void __iomem *base = host->base;
879
880 dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
881 cmd->opcode, cmd->arg, cmd->flags);
882
883 if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
884 writel(0, base + MMCICOMMAND);
885 mmci_reg_delay(host);
886 }
887
888 c |= cmd->opcode | MCI_CPSM_ENABLE;
889 if (cmd->flags & MMC_RSP_PRESENT) {
890 if (cmd->flags & MMC_RSP_136)
891 c |= MCI_CPSM_LONGRSP;
892 c |= MCI_CPSM_RESPONSE;
893 }
894 if (/*interrupt*/0)
895 c |= MCI_CPSM_INTERRUPT;
896
897 if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
898 c |= host->variant->data_cmd_enable;
899
900 host->cmd = cmd;
901
902 writel(cmd->arg, base + MMCIARGUMENT);
903 writel(c, base + MMCICOMMAND);
904 }
905
906 static void
907 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
908 unsigned int status)
909 {
910 /* Make sure we have data to handle */
911 if (!data)
912 return;
913
914 /* First check for errors */
915 if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
916 MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
917 u32 remain, success;
918
919 /* Terminate the DMA transfer */
920 if (dma_inprogress(host)) {
921 mmci_dma_data_error(host);
922 mmci_dma_unmap(host, data);
923 }
924
925 /*
926 * Calculate how far we are into the transfer. Note that
927 * the data counter gives the number of bytes transferred
928 * on the MMC bus, not on the host side. On reads, this
929 * can be as much as a FIFO-worth of data ahead. This
930 * matters for FIFO overruns only.
931 */
932 remain = readl(host->base + MMCIDATACNT);
933 success = data->blksz * data->blocks - remain;
934
935 dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
936 status, success);
937 if (status & MCI_DATACRCFAIL) {
938 /* Last block was not successful */
939 success -= 1;
940 data->error = -EILSEQ;
941 } else if (status & MCI_DATATIMEOUT) {
942 data->error = -ETIMEDOUT;
943 } else if (status & MCI_STARTBITERR) {
944 data->error = -ECOMM;
945 } else if (status & MCI_TXUNDERRUN) {
946 data->error = -EIO;
947 } else if (status & MCI_RXOVERRUN) {
948 if (success > host->variant->fifosize)
949 success -= host->variant->fifosize;
950 else
951 success = 0;
952 data->error = -EIO;
953 }
954 data->bytes_xfered = round_down(success, data->blksz);
955 }
956
957 if (status & MCI_DATABLOCKEND)
958 dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
959
960 if (status & MCI_DATAEND || data->error) {
961 if (dma_inprogress(host))
962 mmci_dma_finalize(host, data);
963 mmci_stop_data(host);
964
965 if (!data->error)
966 /* The error clause is handled above, success! */
967 data->bytes_xfered = data->blksz * data->blocks;
968
969 if (!data->stop || host->mrq->sbc) {
970 mmci_request_end(host, data->mrq);
971 } else {
972 mmci_start_command(host, data->stop, 0);
973 }
974 }
975 }
976
977 static void
978 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
979 unsigned int status)
980 {
981 void __iomem *base = host->base;
982 bool sbc, busy_resp;
983
984 if (!cmd)
985 return;
986
987 sbc = (cmd == host->mrq->sbc);
988 busy_resp = host->variant->busy_detect && (cmd->flags & MMC_RSP_BUSY);
989
990 if (!((status|host->busy_status) & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|
991 MCI_CMDSENT|MCI_CMDRESPEND)))
992 return;
993
994 /* Check if we need to wait for busy completion. */
995 if (host->busy_status && (status & MCI_ST_CARDBUSY))
996 return;
997
998 /* Enable busy completion if needed and supported. */
999 if (!host->busy_status && busy_resp &&
1000 !(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) &&
1001 (readl(base + MMCISTATUS) & MCI_ST_CARDBUSY)) {
1002 writel(readl(base + MMCIMASK0) | MCI_ST_BUSYEND,
1003 base + MMCIMASK0);
1004 host->busy_status = status & (MCI_CMDSENT|MCI_CMDRESPEND);
1005 return;
1006 }
1007
1008 /* At busy completion, mask the IRQ and complete the request. */
1009 if (host->busy_status) {
1010 writel(readl(base + MMCIMASK0) & ~MCI_ST_BUSYEND,
1011 base + MMCIMASK0);
1012 host->busy_status = 0;
1013 }
1014
1015 host->cmd = NULL;
1016
1017 if (status & MCI_CMDTIMEOUT) {
1018 cmd->error = -ETIMEDOUT;
1019 } else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1020 cmd->error = -EILSEQ;
1021 } else {
1022 cmd->resp[0] = readl(base + MMCIRESPONSE0);
1023 cmd->resp[1] = readl(base + MMCIRESPONSE1);
1024 cmd->resp[2] = readl(base + MMCIRESPONSE2);
1025 cmd->resp[3] = readl(base + MMCIRESPONSE3);
1026 }
1027
1028 if ((!sbc && !cmd->data) || cmd->error) {
1029 if (host->data) {
1030 /* Terminate the DMA transfer */
1031 if (dma_inprogress(host)) {
1032 mmci_dma_data_error(host);
1033 mmci_dma_unmap(host, host->data);
1034 }
1035 mmci_stop_data(host);
1036 }
1037 mmci_request_end(host, host->mrq);
1038 } else if (sbc) {
1039 mmci_start_command(host, host->mrq->cmd, 0);
1040 } else if (!(cmd->data->flags & MMC_DATA_READ)) {
1041 mmci_start_data(host, cmd->data);
1042 }
1043 }
1044
1045 static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1046 {
1047 return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1048 }
1049
1050 static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1051 {
1052 /*
1053 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1054 * from the fifo range should be used
1055 */
1056 if (status & MCI_RXFIFOHALFFULL)
1057 return host->variant->fifohalfsize;
1058 else if (status & MCI_RXDATAAVLBL)
1059 return 4;
1060
1061 return 0;
1062 }
1063
1064 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1065 {
1066 void __iomem *base = host->base;
1067 char *ptr = buffer;
1068 u32 status = readl(host->base + MMCISTATUS);
1069 int host_remain = host->size;
1070
1071 do {
1072 int count = host->get_rx_fifocnt(host, status, host_remain);
1073
1074 if (count > remain)
1075 count = remain;
1076
1077 if (count <= 0)
1078 break;
1079
1080 /*
1081 * SDIO especially may want to send something that is
1082 * not divisible by 4 (as opposed to card sectors
1083 * etc). Therefore make sure to always read the last bytes
1084 * while only doing full 32-bit reads towards the FIFO.
1085 */
1086 if (unlikely(count & 0x3)) {
1087 if (count < 4) {
1088 unsigned char buf[4];
1089 ioread32_rep(base + MMCIFIFO, buf, 1);
1090 memcpy(ptr, buf, count);
1091 } else {
1092 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1093 count &= ~0x3;
1094 }
1095 } else {
1096 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1097 }
1098
1099 ptr += count;
1100 remain -= count;
1101 host_remain -= count;
1102
1103 if (remain == 0)
1104 break;
1105
1106 status = readl(base + MMCISTATUS);
1107 } while (status & MCI_RXDATAAVLBL);
1108
1109 return ptr - buffer;
1110 }
1111
1112 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1113 {
1114 struct variant_data *variant = host->variant;
1115 void __iomem *base = host->base;
1116 char *ptr = buffer;
1117
1118 do {
1119 unsigned int count, maxcnt;
1120
1121 maxcnt = status & MCI_TXFIFOEMPTY ?
1122 variant->fifosize : variant->fifohalfsize;
1123 count = min(remain, maxcnt);
1124
1125 /*
1126 * SDIO especially may want to send something that is
1127 * not divisible by 4 (as opposed to card sectors
1128 * etc), and the FIFO only accept full 32-bit writes.
1129 * So compensate by adding +3 on the count, a single
1130 * byte become a 32bit write, 7 bytes will be two
1131 * 32bit writes etc.
1132 */
1133 iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1134
1135 ptr += count;
1136 remain -= count;
1137
1138 if (remain == 0)
1139 break;
1140
1141 status = readl(base + MMCISTATUS);
1142 } while (status & MCI_TXFIFOHALFEMPTY);
1143
1144 return ptr - buffer;
1145 }
1146
1147 /*
1148 * PIO data transfer IRQ handler.
1149 */
1150 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1151 {
1152 struct mmci_host *host = dev_id;
1153 struct sg_mapping_iter *sg_miter = &host->sg_miter;
1154 struct variant_data *variant = host->variant;
1155 void __iomem *base = host->base;
1156 unsigned long flags;
1157 u32 status;
1158
1159 status = readl(base + MMCISTATUS);
1160
1161 dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1162
1163 local_irq_save(flags);
1164
1165 do {
1166 unsigned int remain, len;
1167 char *buffer;
1168
1169 /*
1170 * For write, we only need to test the half-empty flag
1171 * here - if the FIFO is completely empty, then by
1172 * definition it is more than half empty.
1173 *
1174 * For read, check for data available.
1175 */
1176 if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1177 break;
1178
1179 if (!sg_miter_next(sg_miter))
1180 break;
1181
1182 buffer = sg_miter->addr;
1183 remain = sg_miter->length;
1184
1185 len = 0;
1186 if (status & MCI_RXACTIVE)
1187 len = mmci_pio_read(host, buffer, remain);
1188 if (status & MCI_TXACTIVE)
1189 len = mmci_pio_write(host, buffer, remain, status);
1190
1191 sg_miter->consumed = len;
1192
1193 host->size -= len;
1194 remain -= len;
1195
1196 if (remain)
1197 break;
1198
1199 status = readl(base + MMCISTATUS);
1200 } while (1);
1201
1202 sg_miter_stop(sg_miter);
1203
1204 local_irq_restore(flags);
1205
1206 /*
1207 * If we have less than the fifo 'half-full' threshold to transfer,
1208 * trigger a PIO interrupt as soon as any data is available.
1209 */
1210 if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1211 mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1212
1213 /*
1214 * If we run out of data, disable the data IRQs; this
1215 * prevents a race where the FIFO becomes empty before
1216 * the chip itself has disabled the data path, and
1217 * stops us racing with our data end IRQ.
1218 */
1219 if (host->size == 0) {
1220 mmci_set_mask1(host, 0);
1221 writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1222 }
1223
1224 return IRQ_HANDLED;
1225 }
1226
1227 /*
1228 * Handle completion of command and data transfers.
1229 */
1230 static irqreturn_t mmci_irq(int irq, void *dev_id)
1231 {
1232 struct mmci_host *host = dev_id;
1233 u32 status;
1234 int ret = 0;
1235
1236 spin_lock(&host->lock);
1237
1238 do {
1239 status = readl(host->base + MMCISTATUS);
1240
1241 if (host->singleirq) {
1242 if (status & readl(host->base + MMCIMASK1))
1243 mmci_pio_irq(irq, dev_id);
1244
1245 status &= ~MCI_IRQ1MASK;
1246 }
1247
1248 /*
1249 * We intentionally clear the MCI_ST_CARDBUSY IRQ here (if it's
1250 * enabled) since the HW seems to be triggering the IRQ on both
1251 * edges while monitoring DAT0 for busy completion.
1252 */
1253 status &= readl(host->base + MMCIMASK0);
1254 writel(status, host->base + MMCICLEAR);
1255
1256 dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1257
1258 if (host->variant->reversed_irq_handling) {
1259 mmci_data_irq(host, host->data, status);
1260 mmci_cmd_irq(host, host->cmd, status);
1261 } else {
1262 mmci_cmd_irq(host, host->cmd, status);
1263 mmci_data_irq(host, host->data, status);
1264 }
1265
1266 /* Don't poll for busy completion in irq context. */
1267 if (host->busy_status)
1268 status &= ~MCI_ST_CARDBUSY;
1269
1270 ret = 1;
1271 } while (status);
1272
1273 spin_unlock(&host->lock);
1274
1275 return IRQ_RETVAL(ret);
1276 }
1277
1278 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1279 {
1280 struct mmci_host *host = mmc_priv(mmc);
1281 unsigned long flags;
1282
1283 WARN_ON(host->mrq != NULL);
1284
1285 mrq->cmd->error = mmci_validate_data(host, mrq->data);
1286 if (mrq->cmd->error) {
1287 mmc_request_done(mmc, mrq);
1288 return;
1289 }
1290
1291 pm_runtime_get_sync(mmc_dev(mmc));
1292
1293 spin_lock_irqsave(&host->lock, flags);
1294
1295 host->mrq = mrq;
1296
1297 if (mrq->data)
1298 mmci_get_next_data(host, mrq->data);
1299
1300 if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1301 mmci_start_data(host, mrq->data);
1302
1303 if (mrq->sbc)
1304 mmci_start_command(host, mrq->sbc, 0);
1305 else
1306 mmci_start_command(host, mrq->cmd, 0);
1307
1308 spin_unlock_irqrestore(&host->lock, flags);
1309 }
1310
1311 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1312 {
1313 struct mmci_host *host = mmc_priv(mmc);
1314 struct variant_data *variant = host->variant;
1315 u32 pwr = 0;
1316 unsigned long flags;
1317 int ret;
1318
1319 pm_runtime_get_sync(mmc_dev(mmc));
1320
1321 if (host->plat->ios_handler &&
1322 host->plat->ios_handler(mmc_dev(mmc), ios))
1323 dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1324
1325 switch (ios->power_mode) {
1326 case MMC_POWER_OFF:
1327 if (!IS_ERR(mmc->supply.vmmc))
1328 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1329
1330 if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1331 regulator_disable(mmc->supply.vqmmc);
1332 host->vqmmc_enabled = false;
1333 }
1334
1335 break;
1336 case MMC_POWER_UP:
1337 if (!IS_ERR(mmc->supply.vmmc))
1338 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1339
1340 /*
1341 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1342 * and instead uses MCI_PWR_ON so apply whatever value is
1343 * configured in the variant data.
1344 */
1345 pwr |= variant->pwrreg_powerup;
1346
1347 break;
1348 case MMC_POWER_ON:
1349 if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1350 ret = regulator_enable(mmc->supply.vqmmc);
1351 if (ret < 0)
1352 dev_err(mmc_dev(mmc),
1353 "failed to enable vqmmc regulator\n");
1354 else
1355 host->vqmmc_enabled = true;
1356 }
1357
1358 pwr |= MCI_PWR_ON;
1359 break;
1360 }
1361
1362 if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1363 /*
1364 * The ST Micro variant has some additional bits
1365 * indicating signal direction for the signals in
1366 * the SD/MMC bus and feedback-clock usage.
1367 */
1368 pwr |= host->pwr_reg_add;
1369
1370 if (ios->bus_width == MMC_BUS_WIDTH_4)
1371 pwr &= ~MCI_ST_DATA74DIREN;
1372 else if (ios->bus_width == MMC_BUS_WIDTH_1)
1373 pwr &= (~MCI_ST_DATA74DIREN &
1374 ~MCI_ST_DATA31DIREN &
1375 ~MCI_ST_DATA2DIREN);
1376 }
1377
1378 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
1379 if (host->hw_designer != AMBA_VENDOR_ST)
1380 pwr |= MCI_ROD;
1381 else {
1382 /*
1383 * The ST Micro variant use the ROD bit for something
1384 * else and only has OD (Open Drain).
1385 */
1386 pwr |= MCI_OD;
1387 }
1388 }
1389
1390 /*
1391 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1392 * gating the clock, the MCI_PWR_ON bit is cleared.
1393 */
1394 if (!ios->clock && variant->pwrreg_clkgate)
1395 pwr &= ~MCI_PWR_ON;
1396
1397 if (host->variant->explicit_mclk_control &&
1398 ios->clock != host->clock_cache) {
1399 ret = clk_set_rate(host->clk, ios->clock);
1400 if (ret < 0)
1401 dev_err(mmc_dev(host->mmc),
1402 "Error setting clock rate (%d)\n", ret);
1403 else
1404 host->mclk = clk_get_rate(host->clk);
1405 }
1406 host->clock_cache = ios->clock;
1407
1408 spin_lock_irqsave(&host->lock, flags);
1409
1410 mmci_set_clkreg(host, ios->clock);
1411 mmci_write_pwrreg(host, pwr);
1412 mmci_reg_delay(host);
1413
1414 spin_unlock_irqrestore(&host->lock, flags);
1415
1416 pm_runtime_mark_last_busy(mmc_dev(mmc));
1417 pm_runtime_put_autosuspend(mmc_dev(mmc));
1418 }
1419
1420 static int mmci_get_cd(struct mmc_host *mmc)
1421 {
1422 struct mmci_host *host = mmc_priv(mmc);
1423 struct mmci_platform_data *plat = host->plat;
1424 unsigned int status = mmc_gpio_get_cd(mmc);
1425
1426 if (status == -ENOSYS) {
1427 if (!plat->status)
1428 return 1; /* Assume always present */
1429
1430 status = plat->status(mmc_dev(host->mmc));
1431 }
1432 return status;
1433 }
1434
1435 static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1436 {
1437 int ret = 0;
1438
1439 if (!IS_ERR(mmc->supply.vqmmc)) {
1440
1441 pm_runtime_get_sync(mmc_dev(mmc));
1442
1443 switch (ios->signal_voltage) {
1444 case MMC_SIGNAL_VOLTAGE_330:
1445 ret = regulator_set_voltage(mmc->supply.vqmmc,
1446 2700000, 3600000);
1447 break;
1448 case MMC_SIGNAL_VOLTAGE_180:
1449 ret = regulator_set_voltage(mmc->supply.vqmmc,
1450 1700000, 1950000);
1451 break;
1452 case MMC_SIGNAL_VOLTAGE_120:
1453 ret = regulator_set_voltage(mmc->supply.vqmmc,
1454 1100000, 1300000);
1455 break;
1456 }
1457
1458 if (ret)
1459 dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1460
1461 pm_runtime_mark_last_busy(mmc_dev(mmc));
1462 pm_runtime_put_autosuspend(mmc_dev(mmc));
1463 }
1464
1465 return ret;
1466 }
1467
1468 static struct mmc_host_ops mmci_ops = {
1469 .request = mmci_request,
1470 .pre_req = mmci_pre_request,
1471 .post_req = mmci_post_request,
1472 .set_ios = mmci_set_ios,
1473 .get_ro = mmc_gpio_get_ro,
1474 .get_cd = mmci_get_cd,
1475 .start_signal_voltage_switch = mmci_sig_volt_switch,
1476 };
1477
1478 static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1479 {
1480 struct mmci_host *host = mmc_priv(mmc);
1481 int ret = mmc_of_parse(mmc);
1482
1483 if (ret)
1484 return ret;
1485
1486 if (of_get_property(np, "st,sig-dir-dat0", NULL))
1487 host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1488 if (of_get_property(np, "st,sig-dir-dat2", NULL))
1489 host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1490 if (of_get_property(np, "st,sig-dir-dat31", NULL))
1491 host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1492 if (of_get_property(np, "st,sig-dir-dat74", NULL))
1493 host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1494 if (of_get_property(np, "st,sig-dir-cmd", NULL))
1495 host->pwr_reg_add |= MCI_ST_CMDDIREN;
1496 if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1497 host->pwr_reg_add |= MCI_ST_FBCLKEN;
1498
1499 if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1500 mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1501 if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1502 mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1503
1504 return 0;
1505 }
1506
1507 static int mmci_probe(struct amba_device *dev,
1508 const struct amba_id *id)
1509 {
1510 struct mmci_platform_data *plat = dev->dev.platform_data;
1511 struct device_node *np = dev->dev.of_node;
1512 struct variant_data *variant = id->data;
1513 struct mmci_host *host;
1514 struct mmc_host *mmc;
1515 int ret;
1516
1517 /* Must have platform data or Device Tree. */
1518 if (!plat && !np) {
1519 dev_err(&dev->dev, "No plat data or DT found\n");
1520 return -EINVAL;
1521 }
1522
1523 if (!plat) {
1524 plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1525 if (!plat)
1526 return -ENOMEM;
1527 }
1528
1529 mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1530 if (!mmc)
1531 return -ENOMEM;
1532
1533 ret = mmci_of_parse(np, mmc);
1534 if (ret)
1535 goto host_free;
1536
1537 host = mmc_priv(mmc);
1538 host->mmc = mmc;
1539
1540 host->hw_designer = amba_manf(dev);
1541 host->hw_revision = amba_rev(dev);
1542 dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1543 dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1544
1545 host->clk = devm_clk_get(&dev->dev, NULL);
1546 if (IS_ERR(host->clk)) {
1547 ret = PTR_ERR(host->clk);
1548 goto host_free;
1549 }
1550
1551 ret = clk_prepare_enable(host->clk);
1552 if (ret)
1553 goto host_free;
1554
1555 if (variant->qcom_fifo)
1556 host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
1557 else
1558 host->get_rx_fifocnt = mmci_get_rx_fifocnt;
1559
1560 host->plat = plat;
1561 host->variant = variant;
1562 host->mclk = clk_get_rate(host->clk);
1563 /*
1564 * According to the spec, mclk is max 100 MHz,
1565 * so we try to adjust the clock down to this,
1566 * (if possible).
1567 */
1568 if (host->mclk > variant->f_max) {
1569 ret = clk_set_rate(host->clk, variant->f_max);
1570 if (ret < 0)
1571 goto clk_disable;
1572 host->mclk = clk_get_rate(host->clk);
1573 dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1574 host->mclk);
1575 }
1576
1577 host->phybase = dev->res.start;
1578 host->base = devm_ioremap_resource(&dev->dev, &dev->res);
1579 if (IS_ERR(host->base)) {
1580 ret = PTR_ERR(host->base);
1581 goto clk_disable;
1582 }
1583
1584 /*
1585 * The ARM and ST versions of the block have slightly different
1586 * clock divider equations which means that the minimum divider
1587 * differs too.
1588 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
1589 */
1590 if (variant->st_clkdiv)
1591 mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1592 else if (variant->explicit_mclk_control)
1593 mmc->f_min = clk_round_rate(host->clk, 100000);
1594 else
1595 mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1596 /*
1597 * If no maximum operating frequency is supplied, fall back to use
1598 * the module parameter, which has a (low) default value in case it
1599 * is not specified. Either value must not exceed the clock rate into
1600 * the block, of course.
1601 */
1602 if (mmc->f_max)
1603 mmc->f_max = variant->explicit_mclk_control ?
1604 min(variant->f_max, mmc->f_max) :
1605 min(host->mclk, mmc->f_max);
1606 else
1607 mmc->f_max = variant->explicit_mclk_control ?
1608 fmax : min(host->mclk, fmax);
1609
1610
1611 dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1612
1613 /* Get regulators and the supported OCR mask */
1614 mmc_regulator_get_supply(mmc);
1615 if (!mmc->ocr_avail)
1616 mmc->ocr_avail = plat->ocr_mask;
1617 else if (plat->ocr_mask)
1618 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1619
1620 /* DT takes precedence over platform data. */
1621 if (!np) {
1622 if (!plat->cd_invert)
1623 mmc->caps2 |= MMC_CAP2_CD_ACTIVE_HIGH;
1624 mmc->caps2 |= MMC_CAP2_RO_ACTIVE_HIGH;
1625 }
1626
1627 /* We support these capabilities. */
1628 mmc->caps |= MMC_CAP_CMD23;
1629
1630 if (variant->busy_detect) {
1631 mmci_ops.card_busy = mmci_card_busy;
1632 mmci_write_datactrlreg(host, MCI_ST_DPSM_BUSYMODE);
1633 mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
1634 mmc->max_busy_timeout = 0;
1635 }
1636
1637 mmc->ops = &mmci_ops;
1638
1639 /* We support these PM capabilities. */
1640 mmc->pm_caps |= MMC_PM_KEEP_POWER;
1641
1642 /*
1643 * We can do SGIO
1644 */
1645 mmc->max_segs = NR_SG;
1646
1647 /*
1648 * Since only a certain number of bits are valid in the data length
1649 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1650 * single request.
1651 */
1652 mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1653
1654 /*
1655 * Set the maximum segment size. Since we aren't doing DMA
1656 * (yet) we are only limited by the data length register.
1657 */
1658 mmc->max_seg_size = mmc->max_req_size;
1659
1660 /*
1661 * Block size can be up to 2048 bytes, but must be a power of two.
1662 */
1663 mmc->max_blk_size = 1 << 11;
1664
1665 /*
1666 * Limit the number of blocks transferred so that we don't overflow
1667 * the maximum request size.
1668 */
1669 mmc->max_blk_count = mmc->max_req_size >> 11;
1670
1671 spin_lock_init(&host->lock);
1672
1673 writel(0, host->base + MMCIMASK0);
1674 writel(0, host->base + MMCIMASK1);
1675 writel(0xfff, host->base + MMCICLEAR);
1676
1677 /*
1678 * If:
1679 * - not using DT but using a descriptor table, or
1680 * - using a table of descriptors ALONGSIDE DT, or
1681 * look up these descriptors named "cd" and "wp" right here, fail
1682 * silently of these do not exist and proceed to try platform data
1683 */
1684 if (!np) {
1685 ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0, NULL);
1686 if (ret < 0) {
1687 if (ret == -EPROBE_DEFER)
1688 goto clk_disable;
1689 else if (gpio_is_valid(plat->gpio_cd)) {
1690 ret = mmc_gpio_request_cd(mmc, plat->gpio_cd, 0);
1691 if (ret)
1692 goto clk_disable;
1693 }
1694 }
1695
1696 ret = mmc_gpiod_request_ro(mmc, "wp", 0, false, 0, NULL);
1697 if (ret < 0) {
1698 if (ret == -EPROBE_DEFER)
1699 goto clk_disable;
1700 else if (gpio_is_valid(plat->gpio_wp)) {
1701 ret = mmc_gpio_request_ro(mmc, plat->gpio_wp);
1702 if (ret)
1703 goto clk_disable;
1704 }
1705 }
1706 }
1707
1708 ret = devm_request_irq(&dev->dev, dev->irq[0], mmci_irq, IRQF_SHARED,
1709 DRIVER_NAME " (cmd)", host);
1710 if (ret)
1711 goto clk_disable;
1712
1713 if (!dev->irq[1])
1714 host->singleirq = true;
1715 else {
1716 ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
1717 IRQF_SHARED, DRIVER_NAME " (pio)", host);
1718 if (ret)
1719 goto clk_disable;
1720 }
1721
1722 writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1723
1724 amba_set_drvdata(dev, mmc);
1725
1726 dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1727 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1728 amba_rev(dev), (unsigned long long)dev->res.start,
1729 dev->irq[0], dev->irq[1]);
1730
1731 mmci_dma_setup(host);
1732
1733 pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1734 pm_runtime_use_autosuspend(&dev->dev);
1735 pm_runtime_put(&dev->dev);
1736
1737 mmc_add_host(mmc);
1738
1739 return 0;
1740
1741 clk_disable:
1742 clk_disable_unprepare(host->clk);
1743 host_free:
1744 mmc_free_host(mmc);
1745 return ret;
1746 }
1747
1748 static int mmci_remove(struct amba_device *dev)
1749 {
1750 struct mmc_host *mmc = amba_get_drvdata(dev);
1751
1752 if (mmc) {
1753 struct mmci_host *host = mmc_priv(mmc);
1754
1755 /*
1756 * Undo pm_runtime_put() in probe. We use the _sync
1757 * version here so that we can access the primecell.
1758 */
1759 pm_runtime_get_sync(&dev->dev);
1760
1761 mmc_remove_host(mmc);
1762
1763 writel(0, host->base + MMCIMASK0);
1764 writel(0, host->base + MMCIMASK1);
1765
1766 writel(0, host->base + MMCICOMMAND);
1767 writel(0, host->base + MMCIDATACTRL);
1768
1769 mmci_dma_release(host);
1770 clk_disable_unprepare(host->clk);
1771 mmc_free_host(mmc);
1772 }
1773
1774 return 0;
1775 }
1776
1777 #ifdef CONFIG_PM
1778 static void mmci_save(struct mmci_host *host)
1779 {
1780 unsigned long flags;
1781
1782 spin_lock_irqsave(&host->lock, flags);
1783
1784 writel(0, host->base + MMCIMASK0);
1785 if (host->variant->pwrreg_nopower) {
1786 writel(0, host->base + MMCIDATACTRL);
1787 writel(0, host->base + MMCIPOWER);
1788 writel(0, host->base + MMCICLOCK);
1789 }
1790 mmci_reg_delay(host);
1791
1792 spin_unlock_irqrestore(&host->lock, flags);
1793 }
1794
1795 static void mmci_restore(struct mmci_host *host)
1796 {
1797 unsigned long flags;
1798
1799 spin_lock_irqsave(&host->lock, flags);
1800
1801 if (host->variant->pwrreg_nopower) {
1802 writel(host->clk_reg, host->base + MMCICLOCK);
1803 writel(host->datactrl_reg, host->base + MMCIDATACTRL);
1804 writel(host->pwr_reg, host->base + MMCIPOWER);
1805 }
1806 writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1807 mmci_reg_delay(host);
1808
1809 spin_unlock_irqrestore(&host->lock, flags);
1810 }
1811
1812 static int mmci_runtime_suspend(struct device *dev)
1813 {
1814 struct amba_device *adev = to_amba_device(dev);
1815 struct mmc_host *mmc = amba_get_drvdata(adev);
1816
1817 if (mmc) {
1818 struct mmci_host *host = mmc_priv(mmc);
1819 pinctrl_pm_select_sleep_state(dev);
1820 mmci_save(host);
1821 clk_disable_unprepare(host->clk);
1822 }
1823
1824 return 0;
1825 }
1826
1827 static int mmci_runtime_resume(struct device *dev)
1828 {
1829 struct amba_device *adev = to_amba_device(dev);
1830 struct mmc_host *mmc = amba_get_drvdata(adev);
1831
1832 if (mmc) {
1833 struct mmci_host *host = mmc_priv(mmc);
1834 clk_prepare_enable(host->clk);
1835 mmci_restore(host);
1836 pinctrl_pm_select_default_state(dev);
1837 }
1838
1839 return 0;
1840 }
1841 #endif
1842
1843 static const struct dev_pm_ops mmci_dev_pm_ops = {
1844 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1845 pm_runtime_force_resume)
1846 SET_PM_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
1847 };
1848
1849 static struct amba_id mmci_ids[] = {
1850 {
1851 .id = 0x00041180,
1852 .mask = 0xff0fffff,
1853 .data = &variant_arm,
1854 },
1855 {
1856 .id = 0x01041180,
1857 .mask = 0xff0fffff,
1858 .data = &variant_arm_extended_fifo,
1859 },
1860 {
1861 .id = 0x02041180,
1862 .mask = 0xff0fffff,
1863 .data = &variant_arm_extended_fifo_hwfc,
1864 },
1865 {
1866 .id = 0x00041181,
1867 .mask = 0x000fffff,
1868 .data = &variant_arm,
1869 },
1870 /* ST Micro variants */
1871 {
1872 .id = 0x00180180,
1873 .mask = 0x00ffffff,
1874 .data = &variant_u300,
1875 },
1876 {
1877 .id = 0x10180180,
1878 .mask = 0xf0ffffff,
1879 .data = &variant_nomadik,
1880 },
1881 {
1882 .id = 0x00280180,
1883 .mask = 0x00ffffff,
1884 .data = &variant_u300,
1885 },
1886 {
1887 .id = 0x00480180,
1888 .mask = 0xf0ffffff,
1889 .data = &variant_ux500,
1890 },
1891 {
1892 .id = 0x10480180,
1893 .mask = 0xf0ffffff,
1894 .data = &variant_ux500v2,
1895 },
1896 /* Qualcomm variants */
1897 {
1898 .id = 0x00051180,
1899 .mask = 0x000fffff,
1900 .data = &variant_qcom,
1901 },
1902 { 0, 0 },
1903 };
1904
1905 MODULE_DEVICE_TABLE(amba, mmci_ids);
1906
1907 static struct amba_driver mmci_driver = {
1908 .drv = {
1909 .name = DRIVER_NAME,
1910 .pm = &mmci_dev_pm_ops,
1911 },
1912 .probe = mmci_probe,
1913 .remove = mmci_remove,
1914 .id_table = mmci_ids,
1915 };
1916
1917 module_amba_driver(mmci_driver);
1918
1919 module_param(fmax, uint, 0444);
1920
1921 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1922 MODULE_LICENSE("GPL");
This page took 0.067323 seconds and 4 git commands to generate.