Merge branch 'pm-cpufreq'
[deliverable/linux.git] / drivers / mmc / host / mmci.c
1 /*
2 * linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
3 *
4 * Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5 * Copyright (C) 2010 ST-Ericsson SA
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/device.h>
16 #include <linux/io.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/delay.h>
21 #include <linux/err.h>
22 #include <linux/highmem.h>
23 #include <linux/log2.h>
24 #include <linux/mmc/pm.h>
25 #include <linux/mmc/host.h>
26 #include <linux/mmc/card.h>
27 #include <linux/mmc/slot-gpio.h>
28 #include <linux/amba/bus.h>
29 #include <linux/clk.h>
30 #include <linux/scatterlist.h>
31 #include <linux/gpio.h>
32 #include <linux/of_gpio.h>
33 #include <linux/regulator/consumer.h>
34 #include <linux/dmaengine.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/amba/mmci.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/types.h>
39 #include <linux/pinctrl/consumer.h>
40
41 #include <asm/div64.h>
42 #include <asm/io.h>
43 #include <asm/sizes.h>
44
45 #include "mmci.h"
46
47 #define DRIVER_NAME "mmci-pl18x"
48
49 static unsigned int fmax = 515633;
50
51 /**
52 * struct variant_data - MMCI variant-specific quirks
53 * @clkreg: default value for MCICLOCK register
54 * @clkreg_enable: enable value for MMCICLOCK register
55 * @datalength_bits: number of bits in the MMCIDATALENGTH register
56 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
57 * is asserted (likewise for RX)
58 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
59 * is asserted (likewise for RX)
60 * @sdio: variant supports SDIO
61 * @st_clkdiv: true if using a ST-specific clock divider algorithm
62 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
63 * @pwrreg_powerup: power up value for MMCIPOWER register
64 * @signal_direction: input/out direction of bus signals can be indicated
65 * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock
66 * @busy_detect: true if busy detection on dat0 is supported
67 * @pwrreg_nopower: bits in MMCIPOWER don't controls ext. power supply
68 */
69 struct variant_data {
70 unsigned int clkreg;
71 unsigned int clkreg_enable;
72 unsigned int datalength_bits;
73 unsigned int fifosize;
74 unsigned int fifohalfsize;
75 bool sdio;
76 bool st_clkdiv;
77 bool blksz_datactrl16;
78 u32 pwrreg_powerup;
79 bool signal_direction;
80 bool pwrreg_clkgate;
81 bool busy_detect;
82 bool pwrreg_nopower;
83 };
84
85 static struct variant_data variant_arm = {
86 .fifosize = 16 * 4,
87 .fifohalfsize = 8 * 4,
88 .datalength_bits = 16,
89 .pwrreg_powerup = MCI_PWR_UP,
90 };
91
92 static struct variant_data variant_arm_extended_fifo = {
93 .fifosize = 128 * 4,
94 .fifohalfsize = 64 * 4,
95 .datalength_bits = 16,
96 .pwrreg_powerup = MCI_PWR_UP,
97 };
98
99 static struct variant_data variant_arm_extended_fifo_hwfc = {
100 .fifosize = 128 * 4,
101 .fifohalfsize = 64 * 4,
102 .clkreg_enable = MCI_ARM_HWFCEN,
103 .datalength_bits = 16,
104 .pwrreg_powerup = MCI_PWR_UP,
105 };
106
107 static struct variant_data variant_u300 = {
108 .fifosize = 16 * 4,
109 .fifohalfsize = 8 * 4,
110 .clkreg_enable = MCI_ST_U300_HWFCEN,
111 .datalength_bits = 16,
112 .sdio = true,
113 .pwrreg_powerup = MCI_PWR_ON,
114 .signal_direction = true,
115 .pwrreg_clkgate = true,
116 .pwrreg_nopower = true,
117 };
118
119 static struct variant_data variant_nomadik = {
120 .fifosize = 16 * 4,
121 .fifohalfsize = 8 * 4,
122 .clkreg = MCI_CLK_ENABLE,
123 .datalength_bits = 24,
124 .sdio = true,
125 .st_clkdiv = true,
126 .pwrreg_powerup = MCI_PWR_ON,
127 .signal_direction = true,
128 .pwrreg_clkgate = true,
129 .pwrreg_nopower = true,
130 };
131
132 static struct variant_data variant_ux500 = {
133 .fifosize = 30 * 4,
134 .fifohalfsize = 8 * 4,
135 .clkreg = MCI_CLK_ENABLE,
136 .clkreg_enable = MCI_ST_UX500_HWFCEN,
137 .datalength_bits = 24,
138 .sdio = true,
139 .st_clkdiv = true,
140 .pwrreg_powerup = MCI_PWR_ON,
141 .signal_direction = true,
142 .pwrreg_clkgate = true,
143 .busy_detect = true,
144 .pwrreg_nopower = true,
145 };
146
147 static struct variant_data variant_ux500v2 = {
148 .fifosize = 30 * 4,
149 .fifohalfsize = 8 * 4,
150 .clkreg = MCI_CLK_ENABLE,
151 .clkreg_enable = MCI_ST_UX500_HWFCEN,
152 .datalength_bits = 24,
153 .sdio = true,
154 .st_clkdiv = true,
155 .blksz_datactrl16 = true,
156 .pwrreg_powerup = MCI_PWR_ON,
157 .signal_direction = true,
158 .pwrreg_clkgate = true,
159 .busy_detect = true,
160 .pwrreg_nopower = true,
161 };
162
163 static int mmci_card_busy(struct mmc_host *mmc)
164 {
165 struct mmci_host *host = mmc_priv(mmc);
166 unsigned long flags;
167 int busy = 0;
168
169 pm_runtime_get_sync(mmc_dev(mmc));
170
171 spin_lock_irqsave(&host->lock, flags);
172 if (readl(host->base + MMCISTATUS) & MCI_ST_CARDBUSY)
173 busy = 1;
174 spin_unlock_irqrestore(&host->lock, flags);
175
176 pm_runtime_mark_last_busy(mmc_dev(mmc));
177 pm_runtime_put_autosuspend(mmc_dev(mmc));
178
179 return busy;
180 }
181
182 /*
183 * Validate mmc prerequisites
184 */
185 static int mmci_validate_data(struct mmci_host *host,
186 struct mmc_data *data)
187 {
188 if (!data)
189 return 0;
190
191 if (!is_power_of_2(data->blksz)) {
192 dev_err(mmc_dev(host->mmc),
193 "unsupported block size (%d bytes)\n", data->blksz);
194 return -EINVAL;
195 }
196
197 return 0;
198 }
199
200 static void mmci_reg_delay(struct mmci_host *host)
201 {
202 /*
203 * According to the spec, at least three feedback clock cycles
204 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
205 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
206 * Worst delay time during card init is at 100 kHz => 30 us.
207 * Worst delay time when up and running is at 25 MHz => 120 ns.
208 */
209 if (host->cclk < 25000000)
210 udelay(30);
211 else
212 ndelay(120);
213 }
214
215 /*
216 * This must be called with host->lock held
217 */
218 static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
219 {
220 if (host->clk_reg != clk) {
221 host->clk_reg = clk;
222 writel(clk, host->base + MMCICLOCK);
223 }
224 }
225
226 /*
227 * This must be called with host->lock held
228 */
229 static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
230 {
231 if (host->pwr_reg != pwr) {
232 host->pwr_reg = pwr;
233 writel(pwr, host->base + MMCIPOWER);
234 }
235 }
236
237 /*
238 * This must be called with host->lock held
239 */
240 static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
241 {
242 /* Keep ST Micro busy mode if enabled */
243 datactrl |= host->datactrl_reg & MCI_ST_DPSM_BUSYMODE;
244
245 if (host->datactrl_reg != datactrl) {
246 host->datactrl_reg = datactrl;
247 writel(datactrl, host->base + MMCIDATACTRL);
248 }
249 }
250
251 /*
252 * This must be called with host->lock held
253 */
254 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
255 {
256 struct variant_data *variant = host->variant;
257 u32 clk = variant->clkreg;
258
259 /* Make sure cclk reflects the current calculated clock */
260 host->cclk = 0;
261
262 if (desired) {
263 if (desired >= host->mclk) {
264 clk = MCI_CLK_BYPASS;
265 if (variant->st_clkdiv)
266 clk |= MCI_ST_UX500_NEG_EDGE;
267 host->cclk = host->mclk;
268 } else if (variant->st_clkdiv) {
269 /*
270 * DB8500 TRM says f = mclk / (clkdiv + 2)
271 * => clkdiv = (mclk / f) - 2
272 * Round the divider up so we don't exceed the max
273 * frequency
274 */
275 clk = DIV_ROUND_UP(host->mclk, desired) - 2;
276 if (clk >= 256)
277 clk = 255;
278 host->cclk = host->mclk / (clk + 2);
279 } else {
280 /*
281 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
282 * => clkdiv = mclk / (2 * f) - 1
283 */
284 clk = host->mclk / (2 * desired) - 1;
285 if (clk >= 256)
286 clk = 255;
287 host->cclk = host->mclk / (2 * (clk + 1));
288 }
289
290 clk |= variant->clkreg_enable;
291 clk |= MCI_CLK_ENABLE;
292 /* This hasn't proven to be worthwhile */
293 /* clk |= MCI_CLK_PWRSAVE; */
294 }
295
296 /* Set actual clock for debug */
297 host->mmc->actual_clock = host->cclk;
298
299 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
300 clk |= MCI_4BIT_BUS;
301 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
302 clk |= MCI_ST_8BIT_BUS;
303
304 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50)
305 clk |= MCI_ST_UX500_NEG_EDGE;
306
307 mmci_write_clkreg(host, clk);
308 }
309
310 static void
311 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
312 {
313 writel(0, host->base + MMCICOMMAND);
314
315 BUG_ON(host->data);
316
317 host->mrq = NULL;
318 host->cmd = NULL;
319
320 mmc_request_done(host->mmc, mrq);
321
322 pm_runtime_mark_last_busy(mmc_dev(host->mmc));
323 pm_runtime_put_autosuspend(mmc_dev(host->mmc));
324 }
325
326 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
327 {
328 void __iomem *base = host->base;
329
330 if (host->singleirq) {
331 unsigned int mask0 = readl(base + MMCIMASK0);
332
333 mask0 &= ~MCI_IRQ1MASK;
334 mask0 |= mask;
335
336 writel(mask0, base + MMCIMASK0);
337 }
338
339 writel(mask, base + MMCIMASK1);
340 }
341
342 static void mmci_stop_data(struct mmci_host *host)
343 {
344 mmci_write_datactrlreg(host, 0);
345 mmci_set_mask1(host, 0);
346 host->data = NULL;
347 }
348
349 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
350 {
351 unsigned int flags = SG_MITER_ATOMIC;
352
353 if (data->flags & MMC_DATA_READ)
354 flags |= SG_MITER_TO_SG;
355 else
356 flags |= SG_MITER_FROM_SG;
357
358 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
359 }
360
361 /*
362 * All the DMA operation mode stuff goes inside this ifdef.
363 * This assumes that you have a generic DMA device interface,
364 * no custom DMA interfaces are supported.
365 */
366 #ifdef CONFIG_DMA_ENGINE
367 static void mmci_dma_setup(struct mmci_host *host)
368 {
369 const char *rxname, *txname;
370 dma_cap_mask_t mask;
371
372 host->dma_rx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "rx");
373 host->dma_tx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "tx");
374
375 /* initialize pre request cookie */
376 host->next_data.cookie = 1;
377
378 /* Try to acquire a generic DMA engine slave channel */
379 dma_cap_zero(mask);
380 dma_cap_set(DMA_SLAVE, mask);
381
382 /*
383 * If only an RX channel is specified, the driver will
384 * attempt to use it bidirectionally, however if it is
385 * is specified but cannot be located, DMA will be disabled.
386 */
387 if (host->dma_rx_channel && !host->dma_tx_channel)
388 host->dma_tx_channel = host->dma_rx_channel;
389
390 if (host->dma_rx_channel)
391 rxname = dma_chan_name(host->dma_rx_channel);
392 else
393 rxname = "none";
394
395 if (host->dma_tx_channel)
396 txname = dma_chan_name(host->dma_tx_channel);
397 else
398 txname = "none";
399
400 dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
401 rxname, txname);
402
403 /*
404 * Limit the maximum segment size in any SG entry according to
405 * the parameters of the DMA engine device.
406 */
407 if (host->dma_tx_channel) {
408 struct device *dev = host->dma_tx_channel->device->dev;
409 unsigned int max_seg_size = dma_get_max_seg_size(dev);
410
411 if (max_seg_size < host->mmc->max_seg_size)
412 host->mmc->max_seg_size = max_seg_size;
413 }
414 if (host->dma_rx_channel) {
415 struct device *dev = host->dma_rx_channel->device->dev;
416 unsigned int max_seg_size = dma_get_max_seg_size(dev);
417
418 if (max_seg_size < host->mmc->max_seg_size)
419 host->mmc->max_seg_size = max_seg_size;
420 }
421 }
422
423 /*
424 * This is used in or so inline it
425 * so it can be discarded.
426 */
427 static inline void mmci_dma_release(struct mmci_host *host)
428 {
429 if (host->dma_rx_channel)
430 dma_release_channel(host->dma_rx_channel);
431 if (host->dma_tx_channel)
432 dma_release_channel(host->dma_tx_channel);
433 host->dma_rx_channel = host->dma_tx_channel = NULL;
434 }
435
436 static void mmci_dma_data_error(struct mmci_host *host)
437 {
438 dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
439 dmaengine_terminate_all(host->dma_current);
440 host->dma_current = NULL;
441 host->dma_desc_current = NULL;
442 host->data->host_cookie = 0;
443 }
444
445 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
446 {
447 struct dma_chan *chan;
448 enum dma_data_direction dir;
449
450 if (data->flags & MMC_DATA_READ) {
451 dir = DMA_FROM_DEVICE;
452 chan = host->dma_rx_channel;
453 } else {
454 dir = DMA_TO_DEVICE;
455 chan = host->dma_tx_channel;
456 }
457
458 dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
459 }
460
461 static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
462 {
463 u32 status;
464 int i;
465
466 /* Wait up to 1ms for the DMA to complete */
467 for (i = 0; ; i++) {
468 status = readl(host->base + MMCISTATUS);
469 if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
470 break;
471 udelay(10);
472 }
473
474 /*
475 * Check to see whether we still have some data left in the FIFO -
476 * this catches DMA controllers which are unable to monitor the
477 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
478 * contiguous buffers. On TX, we'll get a FIFO underrun error.
479 */
480 if (status & MCI_RXDATAAVLBLMASK) {
481 mmci_dma_data_error(host);
482 if (!data->error)
483 data->error = -EIO;
484 }
485
486 if (!data->host_cookie)
487 mmci_dma_unmap(host, data);
488
489 /*
490 * Use of DMA with scatter-gather is impossible.
491 * Give up with DMA and switch back to PIO mode.
492 */
493 if (status & MCI_RXDATAAVLBLMASK) {
494 dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
495 mmci_dma_release(host);
496 }
497
498 host->dma_current = NULL;
499 host->dma_desc_current = NULL;
500 }
501
502 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */
503 static int __mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
504 struct dma_chan **dma_chan,
505 struct dma_async_tx_descriptor **dma_desc)
506 {
507 struct variant_data *variant = host->variant;
508 struct dma_slave_config conf = {
509 .src_addr = host->phybase + MMCIFIFO,
510 .dst_addr = host->phybase + MMCIFIFO,
511 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
512 .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
513 .src_maxburst = variant->fifohalfsize >> 2, /* # of words */
514 .dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
515 .device_fc = false,
516 };
517 struct dma_chan *chan;
518 struct dma_device *device;
519 struct dma_async_tx_descriptor *desc;
520 enum dma_data_direction buffer_dirn;
521 int nr_sg;
522
523 if (data->flags & MMC_DATA_READ) {
524 conf.direction = DMA_DEV_TO_MEM;
525 buffer_dirn = DMA_FROM_DEVICE;
526 chan = host->dma_rx_channel;
527 } else {
528 conf.direction = DMA_MEM_TO_DEV;
529 buffer_dirn = DMA_TO_DEVICE;
530 chan = host->dma_tx_channel;
531 }
532
533 /* If there's no DMA channel, fall back to PIO */
534 if (!chan)
535 return -EINVAL;
536
537 /* If less than or equal to the fifo size, don't bother with DMA */
538 if (data->blksz * data->blocks <= variant->fifosize)
539 return -EINVAL;
540
541 device = chan->device;
542 nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
543 if (nr_sg == 0)
544 return -EINVAL;
545
546 dmaengine_slave_config(chan, &conf);
547 desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
548 conf.direction, DMA_CTRL_ACK);
549 if (!desc)
550 goto unmap_exit;
551
552 *dma_chan = chan;
553 *dma_desc = desc;
554
555 return 0;
556
557 unmap_exit:
558 dma_unmap_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
559 return -ENOMEM;
560 }
561
562 static inline int mmci_dma_prep_data(struct mmci_host *host,
563 struct mmc_data *data)
564 {
565 /* Check if next job is already prepared. */
566 if (host->dma_current && host->dma_desc_current)
567 return 0;
568
569 /* No job were prepared thus do it now. */
570 return __mmci_dma_prep_data(host, data, &host->dma_current,
571 &host->dma_desc_current);
572 }
573
574 static inline int mmci_dma_prep_next(struct mmci_host *host,
575 struct mmc_data *data)
576 {
577 struct mmci_host_next *nd = &host->next_data;
578 return __mmci_dma_prep_data(host, data, &nd->dma_chan, &nd->dma_desc);
579 }
580
581 static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
582 {
583 int ret;
584 struct mmc_data *data = host->data;
585
586 ret = mmci_dma_prep_data(host, host->data);
587 if (ret)
588 return ret;
589
590 /* Okay, go for it. */
591 dev_vdbg(mmc_dev(host->mmc),
592 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
593 data->sg_len, data->blksz, data->blocks, data->flags);
594 dmaengine_submit(host->dma_desc_current);
595 dma_async_issue_pending(host->dma_current);
596
597 datactrl |= MCI_DPSM_DMAENABLE;
598
599 /* Trigger the DMA transfer */
600 mmci_write_datactrlreg(host, datactrl);
601
602 /*
603 * Let the MMCI say when the data is ended and it's time
604 * to fire next DMA request. When that happens, MMCI will
605 * call mmci_data_end()
606 */
607 writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
608 host->base + MMCIMASK0);
609 return 0;
610 }
611
612 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
613 {
614 struct mmci_host_next *next = &host->next_data;
615
616 WARN_ON(data->host_cookie && data->host_cookie != next->cookie);
617 WARN_ON(!data->host_cookie && (next->dma_desc || next->dma_chan));
618
619 host->dma_desc_current = next->dma_desc;
620 host->dma_current = next->dma_chan;
621 next->dma_desc = NULL;
622 next->dma_chan = NULL;
623 }
624
625 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq,
626 bool is_first_req)
627 {
628 struct mmci_host *host = mmc_priv(mmc);
629 struct mmc_data *data = mrq->data;
630 struct mmci_host_next *nd = &host->next_data;
631
632 if (!data)
633 return;
634
635 BUG_ON(data->host_cookie);
636
637 if (mmci_validate_data(host, data))
638 return;
639
640 if (!mmci_dma_prep_next(host, data))
641 data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
642 }
643
644 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
645 int err)
646 {
647 struct mmci_host *host = mmc_priv(mmc);
648 struct mmc_data *data = mrq->data;
649
650 if (!data || !data->host_cookie)
651 return;
652
653 mmci_dma_unmap(host, data);
654
655 if (err) {
656 struct mmci_host_next *next = &host->next_data;
657 struct dma_chan *chan;
658 if (data->flags & MMC_DATA_READ)
659 chan = host->dma_rx_channel;
660 else
661 chan = host->dma_tx_channel;
662 dmaengine_terminate_all(chan);
663
664 next->dma_desc = NULL;
665 next->dma_chan = NULL;
666 }
667 }
668
669 #else
670 /* Blank functions if the DMA engine is not available */
671 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
672 {
673 }
674 static inline void mmci_dma_setup(struct mmci_host *host)
675 {
676 }
677
678 static inline void mmci_dma_release(struct mmci_host *host)
679 {
680 }
681
682 static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
683 {
684 }
685
686 static inline void mmci_dma_finalize(struct mmci_host *host,
687 struct mmc_data *data)
688 {
689 }
690
691 static inline void mmci_dma_data_error(struct mmci_host *host)
692 {
693 }
694
695 static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
696 {
697 return -ENOSYS;
698 }
699
700 #define mmci_pre_request NULL
701 #define mmci_post_request NULL
702
703 #endif
704
705 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
706 {
707 struct variant_data *variant = host->variant;
708 unsigned int datactrl, timeout, irqmask;
709 unsigned long long clks;
710 void __iomem *base;
711 int blksz_bits;
712
713 dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
714 data->blksz, data->blocks, data->flags);
715
716 host->data = data;
717 host->size = data->blksz * data->blocks;
718 data->bytes_xfered = 0;
719
720 clks = (unsigned long long)data->timeout_ns * host->cclk;
721 do_div(clks, 1000000000UL);
722
723 timeout = data->timeout_clks + (unsigned int)clks;
724
725 base = host->base;
726 writel(timeout, base + MMCIDATATIMER);
727 writel(host->size, base + MMCIDATALENGTH);
728
729 blksz_bits = ffs(data->blksz) - 1;
730 BUG_ON(1 << blksz_bits != data->blksz);
731
732 if (variant->blksz_datactrl16)
733 datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
734 else
735 datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
736
737 if (data->flags & MMC_DATA_READ)
738 datactrl |= MCI_DPSM_DIRECTION;
739
740 /* The ST Micro variants has a special bit to enable SDIO */
741 if (variant->sdio && host->mmc->card)
742 if (mmc_card_sdio(host->mmc->card)) {
743 /*
744 * The ST Micro variants has a special bit
745 * to enable SDIO.
746 */
747 u32 clk;
748
749 datactrl |= MCI_ST_DPSM_SDIOEN;
750
751 /*
752 * The ST Micro variant for SDIO small write transfers
753 * needs to have clock H/W flow control disabled,
754 * otherwise the transfer will not start. The threshold
755 * depends on the rate of MCLK.
756 */
757 if (data->flags & MMC_DATA_WRITE &&
758 (host->size < 8 ||
759 (host->size <= 8 && host->mclk > 50000000)))
760 clk = host->clk_reg & ~variant->clkreg_enable;
761 else
762 clk = host->clk_reg | variant->clkreg_enable;
763
764 mmci_write_clkreg(host, clk);
765 }
766
767 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50)
768 datactrl |= MCI_ST_DPSM_DDRMODE;
769
770 /*
771 * Attempt to use DMA operation mode, if this
772 * should fail, fall back to PIO mode
773 */
774 if (!mmci_dma_start_data(host, datactrl))
775 return;
776
777 /* IRQ mode, map the SG list for CPU reading/writing */
778 mmci_init_sg(host, data);
779
780 if (data->flags & MMC_DATA_READ) {
781 irqmask = MCI_RXFIFOHALFFULLMASK;
782
783 /*
784 * If we have less than the fifo 'half-full' threshold to
785 * transfer, trigger a PIO interrupt as soon as any data
786 * is available.
787 */
788 if (host->size < variant->fifohalfsize)
789 irqmask |= MCI_RXDATAAVLBLMASK;
790 } else {
791 /*
792 * We don't actually need to include "FIFO empty" here
793 * since its implicit in "FIFO half empty".
794 */
795 irqmask = MCI_TXFIFOHALFEMPTYMASK;
796 }
797
798 mmci_write_datactrlreg(host, datactrl);
799 writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
800 mmci_set_mask1(host, irqmask);
801 }
802
803 static void
804 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
805 {
806 void __iomem *base = host->base;
807
808 dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
809 cmd->opcode, cmd->arg, cmd->flags);
810
811 if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
812 writel(0, base + MMCICOMMAND);
813 udelay(1);
814 }
815
816 c |= cmd->opcode | MCI_CPSM_ENABLE;
817 if (cmd->flags & MMC_RSP_PRESENT) {
818 if (cmd->flags & MMC_RSP_136)
819 c |= MCI_CPSM_LONGRSP;
820 c |= MCI_CPSM_RESPONSE;
821 }
822 if (/*interrupt*/0)
823 c |= MCI_CPSM_INTERRUPT;
824
825 host->cmd = cmd;
826
827 writel(cmd->arg, base + MMCIARGUMENT);
828 writel(c, base + MMCICOMMAND);
829 }
830
831 static void
832 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
833 unsigned int status)
834 {
835 /* First check for errors */
836 if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
837 MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
838 u32 remain, success;
839
840 /* Terminate the DMA transfer */
841 if (dma_inprogress(host)) {
842 mmci_dma_data_error(host);
843 mmci_dma_unmap(host, data);
844 }
845
846 /*
847 * Calculate how far we are into the transfer. Note that
848 * the data counter gives the number of bytes transferred
849 * on the MMC bus, not on the host side. On reads, this
850 * can be as much as a FIFO-worth of data ahead. This
851 * matters for FIFO overruns only.
852 */
853 remain = readl(host->base + MMCIDATACNT);
854 success = data->blksz * data->blocks - remain;
855
856 dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
857 status, success);
858 if (status & MCI_DATACRCFAIL) {
859 /* Last block was not successful */
860 success -= 1;
861 data->error = -EILSEQ;
862 } else if (status & MCI_DATATIMEOUT) {
863 data->error = -ETIMEDOUT;
864 } else if (status & MCI_STARTBITERR) {
865 data->error = -ECOMM;
866 } else if (status & MCI_TXUNDERRUN) {
867 data->error = -EIO;
868 } else if (status & MCI_RXOVERRUN) {
869 if (success > host->variant->fifosize)
870 success -= host->variant->fifosize;
871 else
872 success = 0;
873 data->error = -EIO;
874 }
875 data->bytes_xfered = round_down(success, data->blksz);
876 }
877
878 if (status & MCI_DATABLOCKEND)
879 dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
880
881 if (status & MCI_DATAEND || data->error) {
882 if (dma_inprogress(host))
883 mmci_dma_finalize(host, data);
884 mmci_stop_data(host);
885
886 if (!data->error)
887 /* The error clause is handled above, success! */
888 data->bytes_xfered = data->blksz * data->blocks;
889
890 if (!data->stop || host->mrq->sbc) {
891 mmci_request_end(host, data->mrq);
892 } else {
893 mmci_start_command(host, data->stop, 0);
894 }
895 }
896 }
897
898 static void
899 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
900 unsigned int status)
901 {
902 void __iomem *base = host->base;
903 bool sbc = (cmd == host->mrq->sbc);
904 bool busy_resp = host->variant->busy_detect &&
905 (cmd->flags & MMC_RSP_BUSY);
906
907 /* Check if we need to wait for busy completion. */
908 if (host->busy_status && (status & MCI_ST_CARDBUSY))
909 return;
910
911 /* Enable busy completion if needed and supported. */
912 if (!host->busy_status && busy_resp &&
913 !(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) &&
914 (readl(base + MMCISTATUS) & MCI_ST_CARDBUSY)) {
915 writel(readl(base + MMCIMASK0) | MCI_ST_BUSYEND,
916 base + MMCIMASK0);
917 host->busy_status = status & (MCI_CMDSENT|MCI_CMDRESPEND);
918 return;
919 }
920
921 /* At busy completion, mask the IRQ and complete the request. */
922 if (host->busy_status) {
923 writel(readl(base + MMCIMASK0) & ~MCI_ST_BUSYEND,
924 base + MMCIMASK0);
925 host->busy_status = 0;
926 }
927
928 host->cmd = NULL;
929
930 if (status & MCI_CMDTIMEOUT) {
931 cmd->error = -ETIMEDOUT;
932 } else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
933 cmd->error = -EILSEQ;
934 } else {
935 cmd->resp[0] = readl(base + MMCIRESPONSE0);
936 cmd->resp[1] = readl(base + MMCIRESPONSE1);
937 cmd->resp[2] = readl(base + MMCIRESPONSE2);
938 cmd->resp[3] = readl(base + MMCIRESPONSE3);
939 }
940
941 if ((!sbc && !cmd->data) || cmd->error) {
942 if (host->data) {
943 /* Terminate the DMA transfer */
944 if (dma_inprogress(host)) {
945 mmci_dma_data_error(host);
946 mmci_dma_unmap(host, host->data);
947 }
948 mmci_stop_data(host);
949 }
950 mmci_request_end(host, host->mrq);
951 } else if (sbc) {
952 mmci_start_command(host, host->mrq->cmd, 0);
953 } else if (!(cmd->data->flags & MMC_DATA_READ)) {
954 mmci_start_data(host, cmd->data);
955 }
956 }
957
958 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
959 {
960 void __iomem *base = host->base;
961 char *ptr = buffer;
962 u32 status;
963 int host_remain = host->size;
964
965 do {
966 int count = host_remain - (readl(base + MMCIFIFOCNT) << 2);
967
968 if (count > remain)
969 count = remain;
970
971 if (count <= 0)
972 break;
973
974 /*
975 * SDIO especially may want to send something that is
976 * not divisible by 4 (as opposed to card sectors
977 * etc). Therefore make sure to always read the last bytes
978 * while only doing full 32-bit reads towards the FIFO.
979 */
980 if (unlikely(count & 0x3)) {
981 if (count < 4) {
982 unsigned char buf[4];
983 ioread32_rep(base + MMCIFIFO, buf, 1);
984 memcpy(ptr, buf, count);
985 } else {
986 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
987 count &= ~0x3;
988 }
989 } else {
990 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
991 }
992
993 ptr += count;
994 remain -= count;
995 host_remain -= count;
996
997 if (remain == 0)
998 break;
999
1000 status = readl(base + MMCISTATUS);
1001 } while (status & MCI_RXDATAAVLBL);
1002
1003 return ptr - buffer;
1004 }
1005
1006 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1007 {
1008 struct variant_data *variant = host->variant;
1009 void __iomem *base = host->base;
1010 char *ptr = buffer;
1011
1012 do {
1013 unsigned int count, maxcnt;
1014
1015 maxcnt = status & MCI_TXFIFOEMPTY ?
1016 variant->fifosize : variant->fifohalfsize;
1017 count = min(remain, maxcnt);
1018
1019 /*
1020 * SDIO especially may want to send something that is
1021 * not divisible by 4 (as opposed to card sectors
1022 * etc), and the FIFO only accept full 32-bit writes.
1023 * So compensate by adding +3 on the count, a single
1024 * byte become a 32bit write, 7 bytes will be two
1025 * 32bit writes etc.
1026 */
1027 iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1028
1029 ptr += count;
1030 remain -= count;
1031
1032 if (remain == 0)
1033 break;
1034
1035 status = readl(base + MMCISTATUS);
1036 } while (status & MCI_TXFIFOHALFEMPTY);
1037
1038 return ptr - buffer;
1039 }
1040
1041 /*
1042 * PIO data transfer IRQ handler.
1043 */
1044 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1045 {
1046 struct mmci_host *host = dev_id;
1047 struct sg_mapping_iter *sg_miter = &host->sg_miter;
1048 struct variant_data *variant = host->variant;
1049 void __iomem *base = host->base;
1050 unsigned long flags;
1051 u32 status;
1052
1053 status = readl(base + MMCISTATUS);
1054
1055 dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1056
1057 local_irq_save(flags);
1058
1059 do {
1060 unsigned int remain, len;
1061 char *buffer;
1062
1063 /*
1064 * For write, we only need to test the half-empty flag
1065 * here - if the FIFO is completely empty, then by
1066 * definition it is more than half empty.
1067 *
1068 * For read, check for data available.
1069 */
1070 if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1071 break;
1072
1073 if (!sg_miter_next(sg_miter))
1074 break;
1075
1076 buffer = sg_miter->addr;
1077 remain = sg_miter->length;
1078
1079 len = 0;
1080 if (status & MCI_RXACTIVE)
1081 len = mmci_pio_read(host, buffer, remain);
1082 if (status & MCI_TXACTIVE)
1083 len = mmci_pio_write(host, buffer, remain, status);
1084
1085 sg_miter->consumed = len;
1086
1087 host->size -= len;
1088 remain -= len;
1089
1090 if (remain)
1091 break;
1092
1093 status = readl(base + MMCISTATUS);
1094 } while (1);
1095
1096 sg_miter_stop(sg_miter);
1097
1098 local_irq_restore(flags);
1099
1100 /*
1101 * If we have less than the fifo 'half-full' threshold to transfer,
1102 * trigger a PIO interrupt as soon as any data is available.
1103 */
1104 if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1105 mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1106
1107 /*
1108 * If we run out of data, disable the data IRQs; this
1109 * prevents a race where the FIFO becomes empty before
1110 * the chip itself has disabled the data path, and
1111 * stops us racing with our data end IRQ.
1112 */
1113 if (host->size == 0) {
1114 mmci_set_mask1(host, 0);
1115 writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1116 }
1117
1118 return IRQ_HANDLED;
1119 }
1120
1121 /*
1122 * Handle completion of command and data transfers.
1123 */
1124 static irqreturn_t mmci_irq(int irq, void *dev_id)
1125 {
1126 struct mmci_host *host = dev_id;
1127 u32 status;
1128 int ret = 0;
1129
1130 spin_lock(&host->lock);
1131
1132 do {
1133 struct mmc_command *cmd;
1134 struct mmc_data *data;
1135
1136 status = readl(host->base + MMCISTATUS);
1137
1138 if (host->singleirq) {
1139 if (status & readl(host->base + MMCIMASK1))
1140 mmci_pio_irq(irq, dev_id);
1141
1142 status &= ~MCI_IRQ1MASK;
1143 }
1144
1145 /*
1146 * We intentionally clear the MCI_ST_CARDBUSY IRQ here (if it's
1147 * enabled) since the HW seems to be triggering the IRQ on both
1148 * edges while monitoring DAT0 for busy completion.
1149 */
1150 status &= readl(host->base + MMCIMASK0);
1151 writel(status, host->base + MMCICLEAR);
1152
1153 dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1154
1155 cmd = host->cmd;
1156 if ((status|host->busy_status) & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|
1157 MCI_CMDSENT|MCI_CMDRESPEND) && cmd)
1158 mmci_cmd_irq(host, cmd, status);
1159
1160 data = host->data;
1161 if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
1162 MCI_TXUNDERRUN|MCI_RXOVERRUN|MCI_DATAEND|
1163 MCI_DATABLOCKEND) && data)
1164 mmci_data_irq(host, data, status);
1165
1166 /* Don't poll for busy completion in irq context. */
1167 if (host->busy_status)
1168 status &= ~MCI_ST_CARDBUSY;
1169
1170 ret = 1;
1171 } while (status);
1172
1173 spin_unlock(&host->lock);
1174
1175 return IRQ_RETVAL(ret);
1176 }
1177
1178 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1179 {
1180 struct mmci_host *host = mmc_priv(mmc);
1181 unsigned long flags;
1182
1183 WARN_ON(host->mrq != NULL);
1184
1185 mrq->cmd->error = mmci_validate_data(host, mrq->data);
1186 if (mrq->cmd->error) {
1187 mmc_request_done(mmc, mrq);
1188 return;
1189 }
1190
1191 pm_runtime_get_sync(mmc_dev(mmc));
1192
1193 spin_lock_irqsave(&host->lock, flags);
1194
1195 host->mrq = mrq;
1196
1197 if (mrq->data)
1198 mmci_get_next_data(host, mrq->data);
1199
1200 if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1201 mmci_start_data(host, mrq->data);
1202
1203 if (mrq->sbc)
1204 mmci_start_command(host, mrq->sbc, 0);
1205 else
1206 mmci_start_command(host, mrq->cmd, 0);
1207
1208 spin_unlock_irqrestore(&host->lock, flags);
1209 }
1210
1211 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1212 {
1213 struct mmci_host *host = mmc_priv(mmc);
1214 struct variant_data *variant = host->variant;
1215 u32 pwr = 0;
1216 unsigned long flags;
1217 int ret;
1218
1219 pm_runtime_get_sync(mmc_dev(mmc));
1220
1221 if (host->plat->ios_handler &&
1222 host->plat->ios_handler(mmc_dev(mmc), ios))
1223 dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1224
1225 switch (ios->power_mode) {
1226 case MMC_POWER_OFF:
1227 if (!IS_ERR(mmc->supply.vmmc))
1228 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1229
1230 if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1231 regulator_disable(mmc->supply.vqmmc);
1232 host->vqmmc_enabled = false;
1233 }
1234
1235 break;
1236 case MMC_POWER_UP:
1237 if (!IS_ERR(mmc->supply.vmmc))
1238 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1239
1240 /*
1241 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1242 * and instead uses MCI_PWR_ON so apply whatever value is
1243 * configured in the variant data.
1244 */
1245 pwr |= variant->pwrreg_powerup;
1246
1247 break;
1248 case MMC_POWER_ON:
1249 if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1250 ret = regulator_enable(mmc->supply.vqmmc);
1251 if (ret < 0)
1252 dev_err(mmc_dev(mmc),
1253 "failed to enable vqmmc regulator\n");
1254 else
1255 host->vqmmc_enabled = true;
1256 }
1257
1258 pwr |= MCI_PWR_ON;
1259 break;
1260 }
1261
1262 if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1263 /*
1264 * The ST Micro variant has some additional bits
1265 * indicating signal direction for the signals in
1266 * the SD/MMC bus and feedback-clock usage.
1267 */
1268 pwr |= host->pwr_reg_add;
1269
1270 if (ios->bus_width == MMC_BUS_WIDTH_4)
1271 pwr &= ~MCI_ST_DATA74DIREN;
1272 else if (ios->bus_width == MMC_BUS_WIDTH_1)
1273 pwr &= (~MCI_ST_DATA74DIREN &
1274 ~MCI_ST_DATA31DIREN &
1275 ~MCI_ST_DATA2DIREN);
1276 }
1277
1278 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
1279 if (host->hw_designer != AMBA_VENDOR_ST)
1280 pwr |= MCI_ROD;
1281 else {
1282 /*
1283 * The ST Micro variant use the ROD bit for something
1284 * else and only has OD (Open Drain).
1285 */
1286 pwr |= MCI_OD;
1287 }
1288 }
1289
1290 /*
1291 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1292 * gating the clock, the MCI_PWR_ON bit is cleared.
1293 */
1294 if (!ios->clock && variant->pwrreg_clkgate)
1295 pwr &= ~MCI_PWR_ON;
1296
1297 spin_lock_irqsave(&host->lock, flags);
1298
1299 mmci_set_clkreg(host, ios->clock);
1300 mmci_write_pwrreg(host, pwr);
1301 mmci_reg_delay(host);
1302
1303 spin_unlock_irqrestore(&host->lock, flags);
1304
1305 pm_runtime_mark_last_busy(mmc_dev(mmc));
1306 pm_runtime_put_autosuspend(mmc_dev(mmc));
1307 }
1308
1309 static int mmci_get_cd(struct mmc_host *mmc)
1310 {
1311 struct mmci_host *host = mmc_priv(mmc);
1312 struct mmci_platform_data *plat = host->plat;
1313 unsigned int status = mmc_gpio_get_cd(mmc);
1314
1315 if (status == -ENOSYS) {
1316 if (!plat->status)
1317 return 1; /* Assume always present */
1318
1319 status = plat->status(mmc_dev(host->mmc));
1320 }
1321 return status;
1322 }
1323
1324 static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1325 {
1326 int ret = 0;
1327
1328 if (!IS_ERR(mmc->supply.vqmmc)) {
1329
1330 pm_runtime_get_sync(mmc_dev(mmc));
1331
1332 switch (ios->signal_voltage) {
1333 case MMC_SIGNAL_VOLTAGE_330:
1334 ret = regulator_set_voltage(mmc->supply.vqmmc,
1335 2700000, 3600000);
1336 break;
1337 case MMC_SIGNAL_VOLTAGE_180:
1338 ret = regulator_set_voltage(mmc->supply.vqmmc,
1339 1700000, 1950000);
1340 break;
1341 case MMC_SIGNAL_VOLTAGE_120:
1342 ret = regulator_set_voltage(mmc->supply.vqmmc,
1343 1100000, 1300000);
1344 break;
1345 }
1346
1347 if (ret)
1348 dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1349
1350 pm_runtime_mark_last_busy(mmc_dev(mmc));
1351 pm_runtime_put_autosuspend(mmc_dev(mmc));
1352 }
1353
1354 return ret;
1355 }
1356
1357 static struct mmc_host_ops mmci_ops = {
1358 .request = mmci_request,
1359 .pre_req = mmci_pre_request,
1360 .post_req = mmci_post_request,
1361 .set_ios = mmci_set_ios,
1362 .get_ro = mmc_gpio_get_ro,
1363 .get_cd = mmci_get_cd,
1364 .start_signal_voltage_switch = mmci_sig_volt_switch,
1365 };
1366
1367 static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1368 {
1369 struct mmci_host *host = mmc_priv(mmc);
1370 int ret = mmc_of_parse(mmc);
1371
1372 if (ret)
1373 return ret;
1374
1375 if (of_get_property(np, "st,sig-dir-dat0", NULL))
1376 host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1377 if (of_get_property(np, "st,sig-dir-dat2", NULL))
1378 host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1379 if (of_get_property(np, "st,sig-dir-dat31", NULL))
1380 host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1381 if (of_get_property(np, "st,sig-dir-dat74", NULL))
1382 host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1383 if (of_get_property(np, "st,sig-dir-cmd", NULL))
1384 host->pwr_reg_add |= MCI_ST_CMDDIREN;
1385 if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1386 host->pwr_reg_add |= MCI_ST_FBCLKEN;
1387
1388 if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1389 mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1390 if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1391 mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1392
1393 return 0;
1394 }
1395
1396 static int mmci_probe(struct amba_device *dev,
1397 const struct amba_id *id)
1398 {
1399 struct mmci_platform_data *plat = dev->dev.platform_data;
1400 struct device_node *np = dev->dev.of_node;
1401 struct variant_data *variant = id->data;
1402 struct mmci_host *host;
1403 struct mmc_host *mmc;
1404 int ret;
1405
1406 /* Must have platform data or Device Tree. */
1407 if (!plat && !np) {
1408 dev_err(&dev->dev, "No plat data or DT found\n");
1409 return -EINVAL;
1410 }
1411
1412 if (!plat) {
1413 plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1414 if (!plat)
1415 return -ENOMEM;
1416 }
1417
1418 mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1419 if (!mmc)
1420 return -ENOMEM;
1421
1422 ret = mmci_of_parse(np, mmc);
1423 if (ret)
1424 goto host_free;
1425
1426 host = mmc_priv(mmc);
1427 host->mmc = mmc;
1428
1429 host->hw_designer = amba_manf(dev);
1430 host->hw_revision = amba_rev(dev);
1431 dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1432 dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1433
1434 host->clk = devm_clk_get(&dev->dev, NULL);
1435 if (IS_ERR(host->clk)) {
1436 ret = PTR_ERR(host->clk);
1437 goto host_free;
1438 }
1439
1440 ret = clk_prepare_enable(host->clk);
1441 if (ret)
1442 goto host_free;
1443
1444 host->plat = plat;
1445 host->variant = variant;
1446 host->mclk = clk_get_rate(host->clk);
1447 /*
1448 * According to the spec, mclk is max 100 MHz,
1449 * so we try to adjust the clock down to this,
1450 * (if possible).
1451 */
1452 if (host->mclk > 100000000) {
1453 ret = clk_set_rate(host->clk, 100000000);
1454 if (ret < 0)
1455 goto clk_disable;
1456 host->mclk = clk_get_rate(host->clk);
1457 dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1458 host->mclk);
1459 }
1460
1461 host->phybase = dev->res.start;
1462 host->base = devm_ioremap_resource(&dev->dev, &dev->res);
1463 if (IS_ERR(host->base)) {
1464 ret = PTR_ERR(host->base);
1465 goto clk_disable;
1466 }
1467
1468 /*
1469 * The ARM and ST versions of the block have slightly different
1470 * clock divider equations which means that the minimum divider
1471 * differs too.
1472 */
1473 if (variant->st_clkdiv)
1474 mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1475 else
1476 mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1477 /*
1478 * If no maximum operating frequency is supplied, fall back to use
1479 * the module parameter, which has a (low) default value in case it
1480 * is not specified. Either value must not exceed the clock rate into
1481 * the block, of course.
1482 */
1483 if (mmc->f_max)
1484 mmc->f_max = min(host->mclk, mmc->f_max);
1485 else
1486 mmc->f_max = min(host->mclk, fmax);
1487 dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1488
1489 /* Get regulators and the supported OCR mask */
1490 mmc_regulator_get_supply(mmc);
1491 if (!mmc->ocr_avail)
1492 mmc->ocr_avail = plat->ocr_mask;
1493 else if (plat->ocr_mask)
1494 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1495
1496 /* DT takes precedence over platform data. */
1497 if (!np) {
1498 if (!plat->cd_invert)
1499 mmc->caps2 |= MMC_CAP2_CD_ACTIVE_HIGH;
1500 mmc->caps2 |= MMC_CAP2_RO_ACTIVE_HIGH;
1501 }
1502
1503 /* We support these capabilities. */
1504 mmc->caps |= MMC_CAP_CMD23;
1505
1506 if (variant->busy_detect) {
1507 mmci_ops.card_busy = mmci_card_busy;
1508 mmci_write_datactrlreg(host, MCI_ST_DPSM_BUSYMODE);
1509 mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
1510 mmc->max_busy_timeout = 0;
1511 }
1512
1513 mmc->ops = &mmci_ops;
1514
1515 /* We support these PM capabilities. */
1516 mmc->pm_caps |= MMC_PM_KEEP_POWER;
1517
1518 /*
1519 * We can do SGIO
1520 */
1521 mmc->max_segs = NR_SG;
1522
1523 /*
1524 * Since only a certain number of bits are valid in the data length
1525 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1526 * single request.
1527 */
1528 mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1529
1530 /*
1531 * Set the maximum segment size. Since we aren't doing DMA
1532 * (yet) we are only limited by the data length register.
1533 */
1534 mmc->max_seg_size = mmc->max_req_size;
1535
1536 /*
1537 * Block size can be up to 2048 bytes, but must be a power of two.
1538 */
1539 mmc->max_blk_size = 1 << 11;
1540
1541 /*
1542 * Limit the number of blocks transferred so that we don't overflow
1543 * the maximum request size.
1544 */
1545 mmc->max_blk_count = mmc->max_req_size >> 11;
1546
1547 spin_lock_init(&host->lock);
1548
1549 writel(0, host->base + MMCIMASK0);
1550 writel(0, host->base + MMCIMASK1);
1551 writel(0xfff, host->base + MMCICLEAR);
1552
1553 /* If DT, cd/wp gpios must be supplied through it. */
1554 if (!np && gpio_is_valid(plat->gpio_cd)) {
1555 ret = mmc_gpio_request_cd(mmc, plat->gpio_cd, 0);
1556 if (ret)
1557 goto clk_disable;
1558 }
1559 if (!np && gpio_is_valid(plat->gpio_wp)) {
1560 ret = mmc_gpio_request_ro(mmc, plat->gpio_wp);
1561 if (ret)
1562 goto clk_disable;
1563 }
1564
1565 ret = devm_request_irq(&dev->dev, dev->irq[0], mmci_irq, IRQF_SHARED,
1566 DRIVER_NAME " (cmd)", host);
1567 if (ret)
1568 goto clk_disable;
1569
1570 if (!dev->irq[1])
1571 host->singleirq = true;
1572 else {
1573 ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
1574 IRQF_SHARED, DRIVER_NAME " (pio)", host);
1575 if (ret)
1576 goto clk_disable;
1577 }
1578
1579 writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1580
1581 amba_set_drvdata(dev, mmc);
1582
1583 dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1584 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1585 amba_rev(dev), (unsigned long long)dev->res.start,
1586 dev->irq[0], dev->irq[1]);
1587
1588 mmci_dma_setup(host);
1589
1590 pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1591 pm_runtime_use_autosuspend(&dev->dev);
1592 pm_runtime_put(&dev->dev);
1593
1594 mmc_add_host(mmc);
1595
1596 return 0;
1597
1598 clk_disable:
1599 clk_disable_unprepare(host->clk);
1600 host_free:
1601 mmc_free_host(mmc);
1602 return ret;
1603 }
1604
1605 static int mmci_remove(struct amba_device *dev)
1606 {
1607 struct mmc_host *mmc = amba_get_drvdata(dev);
1608
1609 if (mmc) {
1610 struct mmci_host *host = mmc_priv(mmc);
1611
1612 /*
1613 * Undo pm_runtime_put() in probe. We use the _sync
1614 * version here so that we can access the primecell.
1615 */
1616 pm_runtime_get_sync(&dev->dev);
1617
1618 mmc_remove_host(mmc);
1619
1620 writel(0, host->base + MMCIMASK0);
1621 writel(0, host->base + MMCIMASK1);
1622
1623 writel(0, host->base + MMCICOMMAND);
1624 writel(0, host->base + MMCIDATACTRL);
1625
1626 mmci_dma_release(host);
1627 clk_disable_unprepare(host->clk);
1628 mmc_free_host(mmc);
1629 }
1630
1631 return 0;
1632 }
1633
1634 #ifdef CONFIG_PM
1635 static void mmci_save(struct mmci_host *host)
1636 {
1637 unsigned long flags;
1638
1639 spin_lock_irqsave(&host->lock, flags);
1640
1641 writel(0, host->base + MMCIMASK0);
1642 if (host->variant->pwrreg_nopower) {
1643 writel(0, host->base + MMCIDATACTRL);
1644 writel(0, host->base + MMCIPOWER);
1645 writel(0, host->base + MMCICLOCK);
1646 }
1647 mmci_reg_delay(host);
1648
1649 spin_unlock_irqrestore(&host->lock, flags);
1650 }
1651
1652 static void mmci_restore(struct mmci_host *host)
1653 {
1654 unsigned long flags;
1655
1656 spin_lock_irqsave(&host->lock, flags);
1657
1658 if (host->variant->pwrreg_nopower) {
1659 writel(host->clk_reg, host->base + MMCICLOCK);
1660 writel(host->datactrl_reg, host->base + MMCIDATACTRL);
1661 writel(host->pwr_reg, host->base + MMCIPOWER);
1662 }
1663 writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1664 mmci_reg_delay(host);
1665
1666 spin_unlock_irqrestore(&host->lock, flags);
1667 }
1668
1669 static int mmci_runtime_suspend(struct device *dev)
1670 {
1671 struct amba_device *adev = to_amba_device(dev);
1672 struct mmc_host *mmc = amba_get_drvdata(adev);
1673
1674 if (mmc) {
1675 struct mmci_host *host = mmc_priv(mmc);
1676 pinctrl_pm_select_sleep_state(dev);
1677 mmci_save(host);
1678 clk_disable_unprepare(host->clk);
1679 }
1680
1681 return 0;
1682 }
1683
1684 static int mmci_runtime_resume(struct device *dev)
1685 {
1686 struct amba_device *adev = to_amba_device(dev);
1687 struct mmc_host *mmc = amba_get_drvdata(adev);
1688
1689 if (mmc) {
1690 struct mmci_host *host = mmc_priv(mmc);
1691 clk_prepare_enable(host->clk);
1692 mmci_restore(host);
1693 pinctrl_pm_select_default_state(dev);
1694 }
1695
1696 return 0;
1697 }
1698 #endif
1699
1700 static const struct dev_pm_ops mmci_dev_pm_ops = {
1701 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1702 pm_runtime_force_resume)
1703 SET_PM_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
1704 };
1705
1706 static struct amba_id mmci_ids[] = {
1707 {
1708 .id = 0x00041180,
1709 .mask = 0xff0fffff,
1710 .data = &variant_arm,
1711 },
1712 {
1713 .id = 0x01041180,
1714 .mask = 0xff0fffff,
1715 .data = &variant_arm_extended_fifo,
1716 },
1717 {
1718 .id = 0x02041180,
1719 .mask = 0xff0fffff,
1720 .data = &variant_arm_extended_fifo_hwfc,
1721 },
1722 {
1723 .id = 0x00041181,
1724 .mask = 0x000fffff,
1725 .data = &variant_arm,
1726 },
1727 /* ST Micro variants */
1728 {
1729 .id = 0x00180180,
1730 .mask = 0x00ffffff,
1731 .data = &variant_u300,
1732 },
1733 {
1734 .id = 0x10180180,
1735 .mask = 0xf0ffffff,
1736 .data = &variant_nomadik,
1737 },
1738 {
1739 .id = 0x00280180,
1740 .mask = 0x00ffffff,
1741 .data = &variant_u300,
1742 },
1743 {
1744 .id = 0x00480180,
1745 .mask = 0xf0ffffff,
1746 .data = &variant_ux500,
1747 },
1748 {
1749 .id = 0x10480180,
1750 .mask = 0xf0ffffff,
1751 .data = &variant_ux500v2,
1752 },
1753 { 0, 0 },
1754 };
1755
1756 MODULE_DEVICE_TABLE(amba, mmci_ids);
1757
1758 static struct amba_driver mmci_driver = {
1759 .drv = {
1760 .name = DRIVER_NAME,
1761 .pm = &mmci_dev_pm_ops,
1762 },
1763 .probe = mmci_probe,
1764 .remove = mmci_remove,
1765 .id_table = mmci_ids,
1766 };
1767
1768 module_amba_driver(mmci_driver);
1769
1770 module_param(fmax, uint, 0444);
1771
1772 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1773 MODULE_LICENSE("GPL");
This page took 0.118623 seconds and 6 git commands to generate.