mmc: mmci: Add support to data commands via variant structure.
[deliverable/linux.git] / drivers / mmc / host / mmci.c
1 /*
2 * linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
3 *
4 * Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5 * Copyright (C) 2010 ST-Ericsson SA
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/device.h>
16 #include <linux/io.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/delay.h>
21 #include <linux/err.h>
22 #include <linux/highmem.h>
23 #include <linux/log2.h>
24 #include <linux/mmc/pm.h>
25 #include <linux/mmc/host.h>
26 #include <linux/mmc/card.h>
27 #include <linux/mmc/slot-gpio.h>
28 #include <linux/amba/bus.h>
29 #include <linux/clk.h>
30 #include <linux/scatterlist.h>
31 #include <linux/gpio.h>
32 #include <linux/of_gpio.h>
33 #include <linux/regulator/consumer.h>
34 #include <linux/dmaengine.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/amba/mmci.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/types.h>
39 #include <linux/pinctrl/consumer.h>
40
41 #include <asm/div64.h>
42 #include <asm/io.h>
43 #include <asm/sizes.h>
44
45 #include "mmci.h"
46
47 #define DRIVER_NAME "mmci-pl18x"
48
49 static unsigned int fmax = 515633;
50
51 /**
52 * struct variant_data - MMCI variant-specific quirks
53 * @clkreg: default value for MCICLOCK register
54 * @clkreg_enable: enable value for MMCICLOCK register
55 * @clkreg_8bit_bus_enable: enable value for 8 bit bus
56 * @clkreg_neg_edge_enable: enable value for inverted data/cmd output
57 * @datalength_bits: number of bits in the MMCIDATALENGTH register
58 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
59 * is asserted (likewise for RX)
60 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
61 * is asserted (likewise for RX)
62 * @data_cmd_enable: enable value for data commands.
63 * @sdio: variant supports SDIO
64 * @st_clkdiv: true if using a ST-specific clock divider algorithm
65 * @datactrl_mask_ddrmode: ddr mode mask in datactrl register.
66 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
67 * @blksz_datactrl4: true if Block size is at b4..b16 position in datactrl
68 * register
69 * @pwrreg_powerup: power up value for MMCIPOWER register
70 * @signal_direction: input/out direction of bus signals can be indicated
71 * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock
72 * @busy_detect: true if busy detection on dat0 is supported
73 * @pwrreg_nopower: bits in MMCIPOWER don't controls ext. power supply
74 */
75 struct variant_data {
76 unsigned int clkreg;
77 unsigned int clkreg_enable;
78 unsigned int clkreg_8bit_bus_enable;
79 unsigned int clkreg_neg_edge_enable;
80 unsigned int datalength_bits;
81 unsigned int fifosize;
82 unsigned int fifohalfsize;
83 unsigned int data_cmd_enable;
84 unsigned int datactrl_mask_ddrmode;
85 bool sdio;
86 bool st_clkdiv;
87 bool blksz_datactrl16;
88 bool blksz_datactrl4;
89 u32 pwrreg_powerup;
90 bool signal_direction;
91 bool pwrreg_clkgate;
92 bool busy_detect;
93 bool pwrreg_nopower;
94 };
95
96 static struct variant_data variant_arm = {
97 .fifosize = 16 * 4,
98 .fifohalfsize = 8 * 4,
99 .datalength_bits = 16,
100 .pwrreg_powerup = MCI_PWR_UP,
101 };
102
103 static struct variant_data variant_arm_extended_fifo = {
104 .fifosize = 128 * 4,
105 .fifohalfsize = 64 * 4,
106 .datalength_bits = 16,
107 .pwrreg_powerup = MCI_PWR_UP,
108 };
109
110 static struct variant_data variant_arm_extended_fifo_hwfc = {
111 .fifosize = 128 * 4,
112 .fifohalfsize = 64 * 4,
113 .clkreg_enable = MCI_ARM_HWFCEN,
114 .datalength_bits = 16,
115 .pwrreg_powerup = MCI_PWR_UP,
116 };
117
118 static struct variant_data variant_u300 = {
119 .fifosize = 16 * 4,
120 .fifohalfsize = 8 * 4,
121 .clkreg_enable = MCI_ST_U300_HWFCEN,
122 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
123 .datalength_bits = 16,
124 .sdio = true,
125 .pwrreg_powerup = MCI_PWR_ON,
126 .signal_direction = true,
127 .pwrreg_clkgate = true,
128 .pwrreg_nopower = true,
129 };
130
131 static struct variant_data variant_nomadik = {
132 .fifosize = 16 * 4,
133 .fifohalfsize = 8 * 4,
134 .clkreg = MCI_CLK_ENABLE,
135 .datalength_bits = 24,
136 .sdio = true,
137 .st_clkdiv = true,
138 .pwrreg_powerup = MCI_PWR_ON,
139 .signal_direction = true,
140 .pwrreg_clkgate = true,
141 .pwrreg_nopower = true,
142 };
143
144 static struct variant_data variant_ux500 = {
145 .fifosize = 30 * 4,
146 .fifohalfsize = 8 * 4,
147 .clkreg = MCI_CLK_ENABLE,
148 .clkreg_enable = MCI_ST_UX500_HWFCEN,
149 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
150 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
151 .datalength_bits = 24,
152 .sdio = true,
153 .st_clkdiv = true,
154 .pwrreg_powerup = MCI_PWR_ON,
155 .signal_direction = true,
156 .pwrreg_clkgate = true,
157 .busy_detect = true,
158 .pwrreg_nopower = true,
159 };
160
161 static struct variant_data variant_ux500v2 = {
162 .fifosize = 30 * 4,
163 .fifohalfsize = 8 * 4,
164 .clkreg = MCI_CLK_ENABLE,
165 .clkreg_enable = MCI_ST_UX500_HWFCEN,
166 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
167 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
168 .datactrl_mask_ddrmode = MCI_ST_DPSM_DDRMODE,
169 .datalength_bits = 24,
170 .sdio = true,
171 .st_clkdiv = true,
172 .blksz_datactrl16 = true,
173 .pwrreg_powerup = MCI_PWR_ON,
174 .signal_direction = true,
175 .pwrreg_clkgate = true,
176 .busy_detect = true,
177 .pwrreg_nopower = true,
178 };
179
180 static int mmci_card_busy(struct mmc_host *mmc)
181 {
182 struct mmci_host *host = mmc_priv(mmc);
183 unsigned long flags;
184 int busy = 0;
185
186 pm_runtime_get_sync(mmc_dev(mmc));
187
188 spin_lock_irqsave(&host->lock, flags);
189 if (readl(host->base + MMCISTATUS) & MCI_ST_CARDBUSY)
190 busy = 1;
191 spin_unlock_irqrestore(&host->lock, flags);
192
193 pm_runtime_mark_last_busy(mmc_dev(mmc));
194 pm_runtime_put_autosuspend(mmc_dev(mmc));
195
196 return busy;
197 }
198
199 /*
200 * Validate mmc prerequisites
201 */
202 static int mmci_validate_data(struct mmci_host *host,
203 struct mmc_data *data)
204 {
205 if (!data)
206 return 0;
207
208 if (!is_power_of_2(data->blksz)) {
209 dev_err(mmc_dev(host->mmc),
210 "unsupported block size (%d bytes)\n", data->blksz);
211 return -EINVAL;
212 }
213
214 return 0;
215 }
216
217 static void mmci_reg_delay(struct mmci_host *host)
218 {
219 /*
220 * According to the spec, at least three feedback clock cycles
221 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
222 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
223 * Worst delay time during card init is at 100 kHz => 30 us.
224 * Worst delay time when up and running is at 25 MHz => 120 ns.
225 */
226 if (host->cclk < 25000000)
227 udelay(30);
228 else
229 ndelay(120);
230 }
231
232 /*
233 * This must be called with host->lock held
234 */
235 static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
236 {
237 if (host->clk_reg != clk) {
238 host->clk_reg = clk;
239 writel(clk, host->base + MMCICLOCK);
240 }
241 }
242
243 /*
244 * This must be called with host->lock held
245 */
246 static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
247 {
248 if (host->pwr_reg != pwr) {
249 host->pwr_reg = pwr;
250 writel(pwr, host->base + MMCIPOWER);
251 }
252 }
253
254 /*
255 * This must be called with host->lock held
256 */
257 static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
258 {
259 /* Keep ST Micro busy mode if enabled */
260 datactrl |= host->datactrl_reg & MCI_ST_DPSM_BUSYMODE;
261
262 if (host->datactrl_reg != datactrl) {
263 host->datactrl_reg = datactrl;
264 writel(datactrl, host->base + MMCIDATACTRL);
265 }
266 }
267
268 /*
269 * This must be called with host->lock held
270 */
271 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
272 {
273 struct variant_data *variant = host->variant;
274 u32 clk = variant->clkreg;
275
276 /* Make sure cclk reflects the current calculated clock */
277 host->cclk = 0;
278
279 if (desired) {
280 if (desired >= host->mclk) {
281 clk = MCI_CLK_BYPASS;
282 if (variant->st_clkdiv)
283 clk |= MCI_ST_UX500_NEG_EDGE;
284 host->cclk = host->mclk;
285 } else if (variant->st_clkdiv) {
286 /*
287 * DB8500 TRM says f = mclk / (clkdiv + 2)
288 * => clkdiv = (mclk / f) - 2
289 * Round the divider up so we don't exceed the max
290 * frequency
291 */
292 clk = DIV_ROUND_UP(host->mclk, desired) - 2;
293 if (clk >= 256)
294 clk = 255;
295 host->cclk = host->mclk / (clk + 2);
296 } else {
297 /*
298 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
299 * => clkdiv = mclk / (2 * f) - 1
300 */
301 clk = host->mclk / (2 * desired) - 1;
302 if (clk >= 256)
303 clk = 255;
304 host->cclk = host->mclk / (2 * (clk + 1));
305 }
306
307 clk |= variant->clkreg_enable;
308 clk |= MCI_CLK_ENABLE;
309 /* This hasn't proven to be worthwhile */
310 /* clk |= MCI_CLK_PWRSAVE; */
311 }
312
313 /* Set actual clock for debug */
314 host->mmc->actual_clock = host->cclk;
315
316 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
317 clk |= MCI_4BIT_BUS;
318 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
319 clk |= variant->clkreg_8bit_bus_enable;
320
321 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
322 host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
323 clk |= variant->clkreg_neg_edge_enable;
324
325 mmci_write_clkreg(host, clk);
326 }
327
328 static void
329 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
330 {
331 writel(0, host->base + MMCICOMMAND);
332
333 BUG_ON(host->data);
334
335 host->mrq = NULL;
336 host->cmd = NULL;
337
338 mmc_request_done(host->mmc, mrq);
339
340 pm_runtime_mark_last_busy(mmc_dev(host->mmc));
341 pm_runtime_put_autosuspend(mmc_dev(host->mmc));
342 }
343
344 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
345 {
346 void __iomem *base = host->base;
347
348 if (host->singleirq) {
349 unsigned int mask0 = readl(base + MMCIMASK0);
350
351 mask0 &= ~MCI_IRQ1MASK;
352 mask0 |= mask;
353
354 writel(mask0, base + MMCIMASK0);
355 }
356
357 writel(mask, base + MMCIMASK1);
358 }
359
360 static void mmci_stop_data(struct mmci_host *host)
361 {
362 mmci_write_datactrlreg(host, 0);
363 mmci_set_mask1(host, 0);
364 host->data = NULL;
365 }
366
367 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
368 {
369 unsigned int flags = SG_MITER_ATOMIC;
370
371 if (data->flags & MMC_DATA_READ)
372 flags |= SG_MITER_TO_SG;
373 else
374 flags |= SG_MITER_FROM_SG;
375
376 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
377 }
378
379 /*
380 * All the DMA operation mode stuff goes inside this ifdef.
381 * This assumes that you have a generic DMA device interface,
382 * no custom DMA interfaces are supported.
383 */
384 #ifdef CONFIG_DMA_ENGINE
385 static void mmci_dma_setup(struct mmci_host *host)
386 {
387 const char *rxname, *txname;
388 dma_cap_mask_t mask;
389
390 host->dma_rx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "rx");
391 host->dma_tx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "tx");
392
393 /* initialize pre request cookie */
394 host->next_data.cookie = 1;
395
396 /* Try to acquire a generic DMA engine slave channel */
397 dma_cap_zero(mask);
398 dma_cap_set(DMA_SLAVE, mask);
399
400 /*
401 * If only an RX channel is specified, the driver will
402 * attempt to use it bidirectionally, however if it is
403 * is specified but cannot be located, DMA will be disabled.
404 */
405 if (host->dma_rx_channel && !host->dma_tx_channel)
406 host->dma_tx_channel = host->dma_rx_channel;
407
408 if (host->dma_rx_channel)
409 rxname = dma_chan_name(host->dma_rx_channel);
410 else
411 rxname = "none";
412
413 if (host->dma_tx_channel)
414 txname = dma_chan_name(host->dma_tx_channel);
415 else
416 txname = "none";
417
418 dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
419 rxname, txname);
420
421 /*
422 * Limit the maximum segment size in any SG entry according to
423 * the parameters of the DMA engine device.
424 */
425 if (host->dma_tx_channel) {
426 struct device *dev = host->dma_tx_channel->device->dev;
427 unsigned int max_seg_size = dma_get_max_seg_size(dev);
428
429 if (max_seg_size < host->mmc->max_seg_size)
430 host->mmc->max_seg_size = max_seg_size;
431 }
432 if (host->dma_rx_channel) {
433 struct device *dev = host->dma_rx_channel->device->dev;
434 unsigned int max_seg_size = dma_get_max_seg_size(dev);
435
436 if (max_seg_size < host->mmc->max_seg_size)
437 host->mmc->max_seg_size = max_seg_size;
438 }
439 }
440
441 /*
442 * This is used in or so inline it
443 * so it can be discarded.
444 */
445 static inline void mmci_dma_release(struct mmci_host *host)
446 {
447 if (host->dma_rx_channel)
448 dma_release_channel(host->dma_rx_channel);
449 if (host->dma_tx_channel)
450 dma_release_channel(host->dma_tx_channel);
451 host->dma_rx_channel = host->dma_tx_channel = NULL;
452 }
453
454 static void mmci_dma_data_error(struct mmci_host *host)
455 {
456 dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
457 dmaengine_terminate_all(host->dma_current);
458 host->dma_current = NULL;
459 host->dma_desc_current = NULL;
460 host->data->host_cookie = 0;
461 }
462
463 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
464 {
465 struct dma_chan *chan;
466 enum dma_data_direction dir;
467
468 if (data->flags & MMC_DATA_READ) {
469 dir = DMA_FROM_DEVICE;
470 chan = host->dma_rx_channel;
471 } else {
472 dir = DMA_TO_DEVICE;
473 chan = host->dma_tx_channel;
474 }
475
476 dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
477 }
478
479 static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
480 {
481 u32 status;
482 int i;
483
484 /* Wait up to 1ms for the DMA to complete */
485 for (i = 0; ; i++) {
486 status = readl(host->base + MMCISTATUS);
487 if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
488 break;
489 udelay(10);
490 }
491
492 /*
493 * Check to see whether we still have some data left in the FIFO -
494 * this catches DMA controllers which are unable to monitor the
495 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
496 * contiguous buffers. On TX, we'll get a FIFO underrun error.
497 */
498 if (status & MCI_RXDATAAVLBLMASK) {
499 mmci_dma_data_error(host);
500 if (!data->error)
501 data->error = -EIO;
502 }
503
504 if (!data->host_cookie)
505 mmci_dma_unmap(host, data);
506
507 /*
508 * Use of DMA with scatter-gather is impossible.
509 * Give up with DMA and switch back to PIO mode.
510 */
511 if (status & MCI_RXDATAAVLBLMASK) {
512 dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
513 mmci_dma_release(host);
514 }
515
516 host->dma_current = NULL;
517 host->dma_desc_current = NULL;
518 }
519
520 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */
521 static int __mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
522 struct dma_chan **dma_chan,
523 struct dma_async_tx_descriptor **dma_desc)
524 {
525 struct variant_data *variant = host->variant;
526 struct dma_slave_config conf = {
527 .src_addr = host->phybase + MMCIFIFO,
528 .dst_addr = host->phybase + MMCIFIFO,
529 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
530 .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
531 .src_maxburst = variant->fifohalfsize >> 2, /* # of words */
532 .dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
533 .device_fc = false,
534 };
535 struct dma_chan *chan;
536 struct dma_device *device;
537 struct dma_async_tx_descriptor *desc;
538 enum dma_data_direction buffer_dirn;
539 int nr_sg;
540
541 if (data->flags & MMC_DATA_READ) {
542 conf.direction = DMA_DEV_TO_MEM;
543 buffer_dirn = DMA_FROM_DEVICE;
544 chan = host->dma_rx_channel;
545 } else {
546 conf.direction = DMA_MEM_TO_DEV;
547 buffer_dirn = DMA_TO_DEVICE;
548 chan = host->dma_tx_channel;
549 }
550
551 /* If there's no DMA channel, fall back to PIO */
552 if (!chan)
553 return -EINVAL;
554
555 /* If less than or equal to the fifo size, don't bother with DMA */
556 if (data->blksz * data->blocks <= variant->fifosize)
557 return -EINVAL;
558
559 device = chan->device;
560 nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
561 if (nr_sg == 0)
562 return -EINVAL;
563
564 dmaengine_slave_config(chan, &conf);
565 desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
566 conf.direction, DMA_CTRL_ACK);
567 if (!desc)
568 goto unmap_exit;
569
570 *dma_chan = chan;
571 *dma_desc = desc;
572
573 return 0;
574
575 unmap_exit:
576 dma_unmap_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
577 return -ENOMEM;
578 }
579
580 static inline int mmci_dma_prep_data(struct mmci_host *host,
581 struct mmc_data *data)
582 {
583 /* Check if next job is already prepared. */
584 if (host->dma_current && host->dma_desc_current)
585 return 0;
586
587 /* No job were prepared thus do it now. */
588 return __mmci_dma_prep_data(host, data, &host->dma_current,
589 &host->dma_desc_current);
590 }
591
592 static inline int mmci_dma_prep_next(struct mmci_host *host,
593 struct mmc_data *data)
594 {
595 struct mmci_host_next *nd = &host->next_data;
596 return __mmci_dma_prep_data(host, data, &nd->dma_chan, &nd->dma_desc);
597 }
598
599 static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
600 {
601 int ret;
602 struct mmc_data *data = host->data;
603
604 ret = mmci_dma_prep_data(host, host->data);
605 if (ret)
606 return ret;
607
608 /* Okay, go for it. */
609 dev_vdbg(mmc_dev(host->mmc),
610 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
611 data->sg_len, data->blksz, data->blocks, data->flags);
612 dmaengine_submit(host->dma_desc_current);
613 dma_async_issue_pending(host->dma_current);
614
615 datactrl |= MCI_DPSM_DMAENABLE;
616
617 /* Trigger the DMA transfer */
618 mmci_write_datactrlreg(host, datactrl);
619
620 /*
621 * Let the MMCI say when the data is ended and it's time
622 * to fire next DMA request. When that happens, MMCI will
623 * call mmci_data_end()
624 */
625 writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
626 host->base + MMCIMASK0);
627 return 0;
628 }
629
630 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
631 {
632 struct mmci_host_next *next = &host->next_data;
633
634 WARN_ON(data->host_cookie && data->host_cookie != next->cookie);
635 WARN_ON(!data->host_cookie && (next->dma_desc || next->dma_chan));
636
637 host->dma_desc_current = next->dma_desc;
638 host->dma_current = next->dma_chan;
639 next->dma_desc = NULL;
640 next->dma_chan = NULL;
641 }
642
643 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq,
644 bool is_first_req)
645 {
646 struct mmci_host *host = mmc_priv(mmc);
647 struct mmc_data *data = mrq->data;
648 struct mmci_host_next *nd = &host->next_data;
649
650 if (!data)
651 return;
652
653 BUG_ON(data->host_cookie);
654
655 if (mmci_validate_data(host, data))
656 return;
657
658 if (!mmci_dma_prep_next(host, data))
659 data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
660 }
661
662 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
663 int err)
664 {
665 struct mmci_host *host = mmc_priv(mmc);
666 struct mmc_data *data = mrq->data;
667
668 if (!data || !data->host_cookie)
669 return;
670
671 mmci_dma_unmap(host, data);
672
673 if (err) {
674 struct mmci_host_next *next = &host->next_data;
675 struct dma_chan *chan;
676 if (data->flags & MMC_DATA_READ)
677 chan = host->dma_rx_channel;
678 else
679 chan = host->dma_tx_channel;
680 dmaengine_terminate_all(chan);
681
682 next->dma_desc = NULL;
683 next->dma_chan = NULL;
684 }
685 }
686
687 #else
688 /* Blank functions if the DMA engine is not available */
689 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
690 {
691 }
692 static inline void mmci_dma_setup(struct mmci_host *host)
693 {
694 }
695
696 static inline void mmci_dma_release(struct mmci_host *host)
697 {
698 }
699
700 static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
701 {
702 }
703
704 static inline void mmci_dma_finalize(struct mmci_host *host,
705 struct mmc_data *data)
706 {
707 }
708
709 static inline void mmci_dma_data_error(struct mmci_host *host)
710 {
711 }
712
713 static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
714 {
715 return -ENOSYS;
716 }
717
718 #define mmci_pre_request NULL
719 #define mmci_post_request NULL
720
721 #endif
722
723 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
724 {
725 struct variant_data *variant = host->variant;
726 unsigned int datactrl, timeout, irqmask;
727 unsigned long long clks;
728 void __iomem *base;
729 int blksz_bits;
730
731 dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
732 data->blksz, data->blocks, data->flags);
733
734 host->data = data;
735 host->size = data->blksz * data->blocks;
736 data->bytes_xfered = 0;
737
738 clks = (unsigned long long)data->timeout_ns * host->cclk;
739 do_div(clks, NSEC_PER_SEC);
740
741 timeout = data->timeout_clks + (unsigned int)clks;
742
743 base = host->base;
744 writel(timeout, base + MMCIDATATIMER);
745 writel(host->size, base + MMCIDATALENGTH);
746
747 blksz_bits = ffs(data->blksz) - 1;
748 BUG_ON(1 << blksz_bits != data->blksz);
749
750 if (variant->blksz_datactrl16)
751 datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
752 else if (variant->blksz_datactrl4)
753 datactrl = MCI_DPSM_ENABLE | (data->blksz << 4);
754 else
755 datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
756
757 if (data->flags & MMC_DATA_READ)
758 datactrl |= MCI_DPSM_DIRECTION;
759
760 /* The ST Micro variants has a special bit to enable SDIO */
761 if (variant->sdio && host->mmc->card)
762 if (mmc_card_sdio(host->mmc->card)) {
763 /*
764 * The ST Micro variants has a special bit
765 * to enable SDIO.
766 */
767 u32 clk;
768
769 datactrl |= MCI_ST_DPSM_SDIOEN;
770
771 /*
772 * The ST Micro variant for SDIO small write transfers
773 * needs to have clock H/W flow control disabled,
774 * otherwise the transfer will not start. The threshold
775 * depends on the rate of MCLK.
776 */
777 if (data->flags & MMC_DATA_WRITE &&
778 (host->size < 8 ||
779 (host->size <= 8 && host->mclk > 50000000)))
780 clk = host->clk_reg & ~variant->clkreg_enable;
781 else
782 clk = host->clk_reg | variant->clkreg_enable;
783
784 mmci_write_clkreg(host, clk);
785 }
786
787 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
788 host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
789 datactrl |= variant->datactrl_mask_ddrmode;
790
791 /*
792 * Attempt to use DMA operation mode, if this
793 * should fail, fall back to PIO mode
794 */
795 if (!mmci_dma_start_data(host, datactrl))
796 return;
797
798 /* IRQ mode, map the SG list for CPU reading/writing */
799 mmci_init_sg(host, data);
800
801 if (data->flags & MMC_DATA_READ) {
802 irqmask = MCI_RXFIFOHALFFULLMASK;
803
804 /*
805 * If we have less than the fifo 'half-full' threshold to
806 * transfer, trigger a PIO interrupt as soon as any data
807 * is available.
808 */
809 if (host->size < variant->fifohalfsize)
810 irqmask |= MCI_RXDATAAVLBLMASK;
811 } else {
812 /*
813 * We don't actually need to include "FIFO empty" here
814 * since its implicit in "FIFO half empty".
815 */
816 irqmask = MCI_TXFIFOHALFEMPTYMASK;
817 }
818
819 mmci_write_datactrlreg(host, datactrl);
820 writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
821 mmci_set_mask1(host, irqmask);
822 }
823
824 static void
825 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
826 {
827 void __iomem *base = host->base;
828
829 dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
830 cmd->opcode, cmd->arg, cmd->flags);
831
832 if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
833 writel(0, base + MMCICOMMAND);
834 mmci_reg_delay(host);
835 }
836
837 c |= cmd->opcode | MCI_CPSM_ENABLE;
838 if (cmd->flags & MMC_RSP_PRESENT) {
839 if (cmd->flags & MMC_RSP_136)
840 c |= MCI_CPSM_LONGRSP;
841 c |= MCI_CPSM_RESPONSE;
842 }
843 if (/*interrupt*/0)
844 c |= MCI_CPSM_INTERRUPT;
845
846 if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
847 c |= host->variant->data_cmd_enable;
848
849 host->cmd = cmd;
850
851 writel(cmd->arg, base + MMCIARGUMENT);
852 writel(c, base + MMCICOMMAND);
853 }
854
855 static void
856 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
857 unsigned int status)
858 {
859 /* First check for errors */
860 if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
861 MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
862 u32 remain, success;
863
864 /* Terminate the DMA transfer */
865 if (dma_inprogress(host)) {
866 mmci_dma_data_error(host);
867 mmci_dma_unmap(host, data);
868 }
869
870 /*
871 * Calculate how far we are into the transfer. Note that
872 * the data counter gives the number of bytes transferred
873 * on the MMC bus, not on the host side. On reads, this
874 * can be as much as a FIFO-worth of data ahead. This
875 * matters for FIFO overruns only.
876 */
877 remain = readl(host->base + MMCIDATACNT);
878 success = data->blksz * data->blocks - remain;
879
880 dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
881 status, success);
882 if (status & MCI_DATACRCFAIL) {
883 /* Last block was not successful */
884 success -= 1;
885 data->error = -EILSEQ;
886 } else if (status & MCI_DATATIMEOUT) {
887 data->error = -ETIMEDOUT;
888 } else if (status & MCI_STARTBITERR) {
889 data->error = -ECOMM;
890 } else if (status & MCI_TXUNDERRUN) {
891 data->error = -EIO;
892 } else if (status & MCI_RXOVERRUN) {
893 if (success > host->variant->fifosize)
894 success -= host->variant->fifosize;
895 else
896 success = 0;
897 data->error = -EIO;
898 }
899 data->bytes_xfered = round_down(success, data->blksz);
900 }
901
902 if (status & MCI_DATABLOCKEND)
903 dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
904
905 if (status & MCI_DATAEND || data->error) {
906 if (dma_inprogress(host))
907 mmci_dma_finalize(host, data);
908 mmci_stop_data(host);
909
910 if (!data->error)
911 /* The error clause is handled above, success! */
912 data->bytes_xfered = data->blksz * data->blocks;
913
914 if (!data->stop || host->mrq->sbc) {
915 mmci_request_end(host, data->mrq);
916 } else {
917 mmci_start_command(host, data->stop, 0);
918 }
919 }
920 }
921
922 static void
923 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
924 unsigned int status)
925 {
926 void __iomem *base = host->base;
927 bool sbc = (cmd == host->mrq->sbc);
928 bool busy_resp = host->variant->busy_detect &&
929 (cmd->flags & MMC_RSP_BUSY);
930
931 /* Check if we need to wait for busy completion. */
932 if (host->busy_status && (status & MCI_ST_CARDBUSY))
933 return;
934
935 /* Enable busy completion if needed and supported. */
936 if (!host->busy_status && busy_resp &&
937 !(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) &&
938 (readl(base + MMCISTATUS) & MCI_ST_CARDBUSY)) {
939 writel(readl(base + MMCIMASK0) | MCI_ST_BUSYEND,
940 base + MMCIMASK0);
941 host->busy_status = status & (MCI_CMDSENT|MCI_CMDRESPEND);
942 return;
943 }
944
945 /* At busy completion, mask the IRQ and complete the request. */
946 if (host->busy_status) {
947 writel(readl(base + MMCIMASK0) & ~MCI_ST_BUSYEND,
948 base + MMCIMASK0);
949 host->busy_status = 0;
950 }
951
952 host->cmd = NULL;
953
954 if (status & MCI_CMDTIMEOUT) {
955 cmd->error = -ETIMEDOUT;
956 } else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
957 cmd->error = -EILSEQ;
958 } else {
959 cmd->resp[0] = readl(base + MMCIRESPONSE0);
960 cmd->resp[1] = readl(base + MMCIRESPONSE1);
961 cmd->resp[2] = readl(base + MMCIRESPONSE2);
962 cmd->resp[3] = readl(base + MMCIRESPONSE3);
963 }
964
965 if ((!sbc && !cmd->data) || cmd->error) {
966 if (host->data) {
967 /* Terminate the DMA transfer */
968 if (dma_inprogress(host)) {
969 mmci_dma_data_error(host);
970 mmci_dma_unmap(host, host->data);
971 }
972 mmci_stop_data(host);
973 }
974 mmci_request_end(host, host->mrq);
975 } else if (sbc) {
976 mmci_start_command(host, host->mrq->cmd, 0);
977 } else if (!(cmd->data->flags & MMC_DATA_READ)) {
978 mmci_start_data(host, cmd->data);
979 }
980 }
981
982 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
983 {
984 void __iomem *base = host->base;
985 char *ptr = buffer;
986 u32 status;
987 int host_remain = host->size;
988
989 do {
990 int count = host_remain - (readl(base + MMCIFIFOCNT) << 2);
991
992 if (count > remain)
993 count = remain;
994
995 if (count <= 0)
996 break;
997
998 /*
999 * SDIO especially may want to send something that is
1000 * not divisible by 4 (as opposed to card sectors
1001 * etc). Therefore make sure to always read the last bytes
1002 * while only doing full 32-bit reads towards the FIFO.
1003 */
1004 if (unlikely(count & 0x3)) {
1005 if (count < 4) {
1006 unsigned char buf[4];
1007 ioread32_rep(base + MMCIFIFO, buf, 1);
1008 memcpy(ptr, buf, count);
1009 } else {
1010 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1011 count &= ~0x3;
1012 }
1013 } else {
1014 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1015 }
1016
1017 ptr += count;
1018 remain -= count;
1019 host_remain -= count;
1020
1021 if (remain == 0)
1022 break;
1023
1024 status = readl(base + MMCISTATUS);
1025 } while (status & MCI_RXDATAAVLBL);
1026
1027 return ptr - buffer;
1028 }
1029
1030 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1031 {
1032 struct variant_data *variant = host->variant;
1033 void __iomem *base = host->base;
1034 char *ptr = buffer;
1035
1036 do {
1037 unsigned int count, maxcnt;
1038
1039 maxcnt = status & MCI_TXFIFOEMPTY ?
1040 variant->fifosize : variant->fifohalfsize;
1041 count = min(remain, maxcnt);
1042
1043 /*
1044 * SDIO especially may want to send something that is
1045 * not divisible by 4 (as opposed to card sectors
1046 * etc), and the FIFO only accept full 32-bit writes.
1047 * So compensate by adding +3 on the count, a single
1048 * byte become a 32bit write, 7 bytes will be two
1049 * 32bit writes etc.
1050 */
1051 iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1052
1053 ptr += count;
1054 remain -= count;
1055
1056 if (remain == 0)
1057 break;
1058
1059 status = readl(base + MMCISTATUS);
1060 } while (status & MCI_TXFIFOHALFEMPTY);
1061
1062 return ptr - buffer;
1063 }
1064
1065 /*
1066 * PIO data transfer IRQ handler.
1067 */
1068 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1069 {
1070 struct mmci_host *host = dev_id;
1071 struct sg_mapping_iter *sg_miter = &host->sg_miter;
1072 struct variant_data *variant = host->variant;
1073 void __iomem *base = host->base;
1074 unsigned long flags;
1075 u32 status;
1076
1077 status = readl(base + MMCISTATUS);
1078
1079 dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1080
1081 local_irq_save(flags);
1082
1083 do {
1084 unsigned int remain, len;
1085 char *buffer;
1086
1087 /*
1088 * For write, we only need to test the half-empty flag
1089 * here - if the FIFO is completely empty, then by
1090 * definition it is more than half empty.
1091 *
1092 * For read, check for data available.
1093 */
1094 if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1095 break;
1096
1097 if (!sg_miter_next(sg_miter))
1098 break;
1099
1100 buffer = sg_miter->addr;
1101 remain = sg_miter->length;
1102
1103 len = 0;
1104 if (status & MCI_RXACTIVE)
1105 len = mmci_pio_read(host, buffer, remain);
1106 if (status & MCI_TXACTIVE)
1107 len = mmci_pio_write(host, buffer, remain, status);
1108
1109 sg_miter->consumed = len;
1110
1111 host->size -= len;
1112 remain -= len;
1113
1114 if (remain)
1115 break;
1116
1117 status = readl(base + MMCISTATUS);
1118 } while (1);
1119
1120 sg_miter_stop(sg_miter);
1121
1122 local_irq_restore(flags);
1123
1124 /*
1125 * If we have less than the fifo 'half-full' threshold to transfer,
1126 * trigger a PIO interrupt as soon as any data is available.
1127 */
1128 if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1129 mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1130
1131 /*
1132 * If we run out of data, disable the data IRQs; this
1133 * prevents a race where the FIFO becomes empty before
1134 * the chip itself has disabled the data path, and
1135 * stops us racing with our data end IRQ.
1136 */
1137 if (host->size == 0) {
1138 mmci_set_mask1(host, 0);
1139 writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1140 }
1141
1142 return IRQ_HANDLED;
1143 }
1144
1145 /*
1146 * Handle completion of command and data transfers.
1147 */
1148 static irqreturn_t mmci_irq(int irq, void *dev_id)
1149 {
1150 struct mmci_host *host = dev_id;
1151 u32 status;
1152 int ret = 0;
1153
1154 spin_lock(&host->lock);
1155
1156 do {
1157 struct mmc_command *cmd;
1158 struct mmc_data *data;
1159
1160 status = readl(host->base + MMCISTATUS);
1161
1162 if (host->singleirq) {
1163 if (status & readl(host->base + MMCIMASK1))
1164 mmci_pio_irq(irq, dev_id);
1165
1166 status &= ~MCI_IRQ1MASK;
1167 }
1168
1169 /*
1170 * We intentionally clear the MCI_ST_CARDBUSY IRQ here (if it's
1171 * enabled) since the HW seems to be triggering the IRQ on both
1172 * edges while monitoring DAT0 for busy completion.
1173 */
1174 status &= readl(host->base + MMCIMASK0);
1175 writel(status, host->base + MMCICLEAR);
1176
1177 dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1178
1179 cmd = host->cmd;
1180 if ((status|host->busy_status) & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|
1181 MCI_CMDSENT|MCI_CMDRESPEND) && cmd)
1182 mmci_cmd_irq(host, cmd, status);
1183
1184 data = host->data;
1185 if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
1186 MCI_TXUNDERRUN|MCI_RXOVERRUN|MCI_DATAEND|
1187 MCI_DATABLOCKEND) && data)
1188 mmci_data_irq(host, data, status);
1189
1190 /* Don't poll for busy completion in irq context. */
1191 if (host->busy_status)
1192 status &= ~MCI_ST_CARDBUSY;
1193
1194 ret = 1;
1195 } while (status);
1196
1197 spin_unlock(&host->lock);
1198
1199 return IRQ_RETVAL(ret);
1200 }
1201
1202 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1203 {
1204 struct mmci_host *host = mmc_priv(mmc);
1205 unsigned long flags;
1206
1207 WARN_ON(host->mrq != NULL);
1208
1209 mrq->cmd->error = mmci_validate_data(host, mrq->data);
1210 if (mrq->cmd->error) {
1211 mmc_request_done(mmc, mrq);
1212 return;
1213 }
1214
1215 pm_runtime_get_sync(mmc_dev(mmc));
1216
1217 spin_lock_irqsave(&host->lock, flags);
1218
1219 host->mrq = mrq;
1220
1221 if (mrq->data)
1222 mmci_get_next_data(host, mrq->data);
1223
1224 if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1225 mmci_start_data(host, mrq->data);
1226
1227 if (mrq->sbc)
1228 mmci_start_command(host, mrq->sbc, 0);
1229 else
1230 mmci_start_command(host, mrq->cmd, 0);
1231
1232 spin_unlock_irqrestore(&host->lock, flags);
1233 }
1234
1235 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1236 {
1237 struct mmci_host *host = mmc_priv(mmc);
1238 struct variant_data *variant = host->variant;
1239 u32 pwr = 0;
1240 unsigned long flags;
1241 int ret;
1242
1243 pm_runtime_get_sync(mmc_dev(mmc));
1244
1245 if (host->plat->ios_handler &&
1246 host->plat->ios_handler(mmc_dev(mmc), ios))
1247 dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1248
1249 switch (ios->power_mode) {
1250 case MMC_POWER_OFF:
1251 if (!IS_ERR(mmc->supply.vmmc))
1252 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1253
1254 if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1255 regulator_disable(mmc->supply.vqmmc);
1256 host->vqmmc_enabled = false;
1257 }
1258
1259 break;
1260 case MMC_POWER_UP:
1261 if (!IS_ERR(mmc->supply.vmmc))
1262 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1263
1264 /*
1265 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1266 * and instead uses MCI_PWR_ON so apply whatever value is
1267 * configured in the variant data.
1268 */
1269 pwr |= variant->pwrreg_powerup;
1270
1271 break;
1272 case MMC_POWER_ON:
1273 if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1274 ret = regulator_enable(mmc->supply.vqmmc);
1275 if (ret < 0)
1276 dev_err(mmc_dev(mmc),
1277 "failed to enable vqmmc regulator\n");
1278 else
1279 host->vqmmc_enabled = true;
1280 }
1281
1282 pwr |= MCI_PWR_ON;
1283 break;
1284 }
1285
1286 if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1287 /*
1288 * The ST Micro variant has some additional bits
1289 * indicating signal direction for the signals in
1290 * the SD/MMC bus and feedback-clock usage.
1291 */
1292 pwr |= host->pwr_reg_add;
1293
1294 if (ios->bus_width == MMC_BUS_WIDTH_4)
1295 pwr &= ~MCI_ST_DATA74DIREN;
1296 else if (ios->bus_width == MMC_BUS_WIDTH_1)
1297 pwr &= (~MCI_ST_DATA74DIREN &
1298 ~MCI_ST_DATA31DIREN &
1299 ~MCI_ST_DATA2DIREN);
1300 }
1301
1302 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
1303 if (host->hw_designer != AMBA_VENDOR_ST)
1304 pwr |= MCI_ROD;
1305 else {
1306 /*
1307 * The ST Micro variant use the ROD bit for something
1308 * else and only has OD (Open Drain).
1309 */
1310 pwr |= MCI_OD;
1311 }
1312 }
1313
1314 /*
1315 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1316 * gating the clock, the MCI_PWR_ON bit is cleared.
1317 */
1318 if (!ios->clock && variant->pwrreg_clkgate)
1319 pwr &= ~MCI_PWR_ON;
1320
1321 spin_lock_irqsave(&host->lock, flags);
1322
1323 mmci_set_clkreg(host, ios->clock);
1324 mmci_write_pwrreg(host, pwr);
1325 mmci_reg_delay(host);
1326
1327 spin_unlock_irqrestore(&host->lock, flags);
1328
1329 pm_runtime_mark_last_busy(mmc_dev(mmc));
1330 pm_runtime_put_autosuspend(mmc_dev(mmc));
1331 }
1332
1333 static int mmci_get_cd(struct mmc_host *mmc)
1334 {
1335 struct mmci_host *host = mmc_priv(mmc);
1336 struct mmci_platform_data *plat = host->plat;
1337 unsigned int status = mmc_gpio_get_cd(mmc);
1338
1339 if (status == -ENOSYS) {
1340 if (!plat->status)
1341 return 1; /* Assume always present */
1342
1343 status = plat->status(mmc_dev(host->mmc));
1344 }
1345 return status;
1346 }
1347
1348 static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1349 {
1350 int ret = 0;
1351
1352 if (!IS_ERR(mmc->supply.vqmmc)) {
1353
1354 pm_runtime_get_sync(mmc_dev(mmc));
1355
1356 switch (ios->signal_voltage) {
1357 case MMC_SIGNAL_VOLTAGE_330:
1358 ret = regulator_set_voltage(mmc->supply.vqmmc,
1359 2700000, 3600000);
1360 break;
1361 case MMC_SIGNAL_VOLTAGE_180:
1362 ret = regulator_set_voltage(mmc->supply.vqmmc,
1363 1700000, 1950000);
1364 break;
1365 case MMC_SIGNAL_VOLTAGE_120:
1366 ret = regulator_set_voltage(mmc->supply.vqmmc,
1367 1100000, 1300000);
1368 break;
1369 }
1370
1371 if (ret)
1372 dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1373
1374 pm_runtime_mark_last_busy(mmc_dev(mmc));
1375 pm_runtime_put_autosuspend(mmc_dev(mmc));
1376 }
1377
1378 return ret;
1379 }
1380
1381 static struct mmc_host_ops mmci_ops = {
1382 .request = mmci_request,
1383 .pre_req = mmci_pre_request,
1384 .post_req = mmci_post_request,
1385 .set_ios = mmci_set_ios,
1386 .get_ro = mmc_gpio_get_ro,
1387 .get_cd = mmci_get_cd,
1388 .start_signal_voltage_switch = mmci_sig_volt_switch,
1389 };
1390
1391 static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1392 {
1393 struct mmci_host *host = mmc_priv(mmc);
1394 int ret = mmc_of_parse(mmc);
1395
1396 if (ret)
1397 return ret;
1398
1399 if (of_get_property(np, "st,sig-dir-dat0", NULL))
1400 host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1401 if (of_get_property(np, "st,sig-dir-dat2", NULL))
1402 host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1403 if (of_get_property(np, "st,sig-dir-dat31", NULL))
1404 host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1405 if (of_get_property(np, "st,sig-dir-dat74", NULL))
1406 host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1407 if (of_get_property(np, "st,sig-dir-cmd", NULL))
1408 host->pwr_reg_add |= MCI_ST_CMDDIREN;
1409 if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1410 host->pwr_reg_add |= MCI_ST_FBCLKEN;
1411
1412 if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1413 mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1414 if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1415 mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1416
1417 return 0;
1418 }
1419
1420 static int mmci_probe(struct amba_device *dev,
1421 const struct amba_id *id)
1422 {
1423 struct mmci_platform_data *plat = dev->dev.platform_data;
1424 struct device_node *np = dev->dev.of_node;
1425 struct variant_data *variant = id->data;
1426 struct mmci_host *host;
1427 struct mmc_host *mmc;
1428 int ret;
1429
1430 /* Must have platform data or Device Tree. */
1431 if (!plat && !np) {
1432 dev_err(&dev->dev, "No plat data or DT found\n");
1433 return -EINVAL;
1434 }
1435
1436 if (!plat) {
1437 plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1438 if (!plat)
1439 return -ENOMEM;
1440 }
1441
1442 mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1443 if (!mmc)
1444 return -ENOMEM;
1445
1446 ret = mmci_of_parse(np, mmc);
1447 if (ret)
1448 goto host_free;
1449
1450 host = mmc_priv(mmc);
1451 host->mmc = mmc;
1452
1453 host->hw_designer = amba_manf(dev);
1454 host->hw_revision = amba_rev(dev);
1455 dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1456 dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1457
1458 host->clk = devm_clk_get(&dev->dev, NULL);
1459 if (IS_ERR(host->clk)) {
1460 ret = PTR_ERR(host->clk);
1461 goto host_free;
1462 }
1463
1464 ret = clk_prepare_enable(host->clk);
1465 if (ret)
1466 goto host_free;
1467
1468 host->plat = plat;
1469 host->variant = variant;
1470 host->mclk = clk_get_rate(host->clk);
1471 /*
1472 * According to the spec, mclk is max 100 MHz,
1473 * so we try to adjust the clock down to this,
1474 * (if possible).
1475 */
1476 if (host->mclk > 100000000) {
1477 ret = clk_set_rate(host->clk, 100000000);
1478 if (ret < 0)
1479 goto clk_disable;
1480 host->mclk = clk_get_rate(host->clk);
1481 dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1482 host->mclk);
1483 }
1484
1485 host->phybase = dev->res.start;
1486 host->base = devm_ioremap_resource(&dev->dev, &dev->res);
1487 if (IS_ERR(host->base)) {
1488 ret = PTR_ERR(host->base);
1489 goto clk_disable;
1490 }
1491
1492 /*
1493 * The ARM and ST versions of the block have slightly different
1494 * clock divider equations which means that the minimum divider
1495 * differs too.
1496 */
1497 if (variant->st_clkdiv)
1498 mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1499 else
1500 mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1501 /*
1502 * If no maximum operating frequency is supplied, fall back to use
1503 * the module parameter, which has a (low) default value in case it
1504 * is not specified. Either value must not exceed the clock rate into
1505 * the block, of course.
1506 */
1507 if (mmc->f_max)
1508 mmc->f_max = min(host->mclk, mmc->f_max);
1509 else
1510 mmc->f_max = min(host->mclk, fmax);
1511 dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1512
1513 /* Get regulators and the supported OCR mask */
1514 mmc_regulator_get_supply(mmc);
1515 if (!mmc->ocr_avail)
1516 mmc->ocr_avail = plat->ocr_mask;
1517 else if (plat->ocr_mask)
1518 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1519
1520 /* DT takes precedence over platform data. */
1521 if (!np) {
1522 if (!plat->cd_invert)
1523 mmc->caps2 |= MMC_CAP2_CD_ACTIVE_HIGH;
1524 mmc->caps2 |= MMC_CAP2_RO_ACTIVE_HIGH;
1525 }
1526
1527 /* We support these capabilities. */
1528 mmc->caps |= MMC_CAP_CMD23;
1529
1530 if (variant->busy_detect) {
1531 mmci_ops.card_busy = mmci_card_busy;
1532 mmci_write_datactrlreg(host, MCI_ST_DPSM_BUSYMODE);
1533 mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
1534 mmc->max_busy_timeout = 0;
1535 }
1536
1537 mmc->ops = &mmci_ops;
1538
1539 /* We support these PM capabilities. */
1540 mmc->pm_caps |= MMC_PM_KEEP_POWER;
1541
1542 /*
1543 * We can do SGIO
1544 */
1545 mmc->max_segs = NR_SG;
1546
1547 /*
1548 * Since only a certain number of bits are valid in the data length
1549 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1550 * single request.
1551 */
1552 mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1553
1554 /*
1555 * Set the maximum segment size. Since we aren't doing DMA
1556 * (yet) we are only limited by the data length register.
1557 */
1558 mmc->max_seg_size = mmc->max_req_size;
1559
1560 /*
1561 * Block size can be up to 2048 bytes, but must be a power of two.
1562 */
1563 mmc->max_blk_size = 1 << 11;
1564
1565 /*
1566 * Limit the number of blocks transferred so that we don't overflow
1567 * the maximum request size.
1568 */
1569 mmc->max_blk_count = mmc->max_req_size >> 11;
1570
1571 spin_lock_init(&host->lock);
1572
1573 writel(0, host->base + MMCIMASK0);
1574 writel(0, host->base + MMCIMASK1);
1575 writel(0xfff, host->base + MMCICLEAR);
1576
1577 /* If DT, cd/wp gpios must be supplied through it. */
1578 if (!np && gpio_is_valid(plat->gpio_cd)) {
1579 ret = mmc_gpio_request_cd(mmc, plat->gpio_cd, 0);
1580 if (ret)
1581 goto clk_disable;
1582 }
1583 if (!np && gpio_is_valid(plat->gpio_wp)) {
1584 ret = mmc_gpio_request_ro(mmc, plat->gpio_wp);
1585 if (ret)
1586 goto clk_disable;
1587 }
1588
1589 ret = devm_request_irq(&dev->dev, dev->irq[0], mmci_irq, IRQF_SHARED,
1590 DRIVER_NAME " (cmd)", host);
1591 if (ret)
1592 goto clk_disable;
1593
1594 if (!dev->irq[1])
1595 host->singleirq = true;
1596 else {
1597 ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
1598 IRQF_SHARED, DRIVER_NAME " (pio)", host);
1599 if (ret)
1600 goto clk_disable;
1601 }
1602
1603 writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1604
1605 amba_set_drvdata(dev, mmc);
1606
1607 dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1608 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1609 amba_rev(dev), (unsigned long long)dev->res.start,
1610 dev->irq[0], dev->irq[1]);
1611
1612 mmci_dma_setup(host);
1613
1614 pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1615 pm_runtime_use_autosuspend(&dev->dev);
1616 pm_runtime_put(&dev->dev);
1617
1618 mmc_add_host(mmc);
1619
1620 return 0;
1621
1622 clk_disable:
1623 clk_disable_unprepare(host->clk);
1624 host_free:
1625 mmc_free_host(mmc);
1626 return ret;
1627 }
1628
1629 static int mmci_remove(struct amba_device *dev)
1630 {
1631 struct mmc_host *mmc = amba_get_drvdata(dev);
1632
1633 if (mmc) {
1634 struct mmci_host *host = mmc_priv(mmc);
1635
1636 /*
1637 * Undo pm_runtime_put() in probe. We use the _sync
1638 * version here so that we can access the primecell.
1639 */
1640 pm_runtime_get_sync(&dev->dev);
1641
1642 mmc_remove_host(mmc);
1643
1644 writel(0, host->base + MMCIMASK0);
1645 writel(0, host->base + MMCIMASK1);
1646
1647 writel(0, host->base + MMCICOMMAND);
1648 writel(0, host->base + MMCIDATACTRL);
1649
1650 mmci_dma_release(host);
1651 clk_disable_unprepare(host->clk);
1652 mmc_free_host(mmc);
1653 }
1654
1655 return 0;
1656 }
1657
1658 #ifdef CONFIG_PM
1659 static void mmci_save(struct mmci_host *host)
1660 {
1661 unsigned long flags;
1662
1663 spin_lock_irqsave(&host->lock, flags);
1664
1665 writel(0, host->base + MMCIMASK0);
1666 if (host->variant->pwrreg_nopower) {
1667 writel(0, host->base + MMCIDATACTRL);
1668 writel(0, host->base + MMCIPOWER);
1669 writel(0, host->base + MMCICLOCK);
1670 }
1671 mmci_reg_delay(host);
1672
1673 spin_unlock_irqrestore(&host->lock, flags);
1674 }
1675
1676 static void mmci_restore(struct mmci_host *host)
1677 {
1678 unsigned long flags;
1679
1680 spin_lock_irqsave(&host->lock, flags);
1681
1682 if (host->variant->pwrreg_nopower) {
1683 writel(host->clk_reg, host->base + MMCICLOCK);
1684 writel(host->datactrl_reg, host->base + MMCIDATACTRL);
1685 writel(host->pwr_reg, host->base + MMCIPOWER);
1686 }
1687 writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1688 mmci_reg_delay(host);
1689
1690 spin_unlock_irqrestore(&host->lock, flags);
1691 }
1692
1693 static int mmci_runtime_suspend(struct device *dev)
1694 {
1695 struct amba_device *adev = to_amba_device(dev);
1696 struct mmc_host *mmc = amba_get_drvdata(adev);
1697
1698 if (mmc) {
1699 struct mmci_host *host = mmc_priv(mmc);
1700 pinctrl_pm_select_sleep_state(dev);
1701 mmci_save(host);
1702 clk_disable_unprepare(host->clk);
1703 }
1704
1705 return 0;
1706 }
1707
1708 static int mmci_runtime_resume(struct device *dev)
1709 {
1710 struct amba_device *adev = to_amba_device(dev);
1711 struct mmc_host *mmc = amba_get_drvdata(adev);
1712
1713 if (mmc) {
1714 struct mmci_host *host = mmc_priv(mmc);
1715 clk_prepare_enable(host->clk);
1716 mmci_restore(host);
1717 pinctrl_pm_select_default_state(dev);
1718 }
1719
1720 return 0;
1721 }
1722 #endif
1723
1724 static const struct dev_pm_ops mmci_dev_pm_ops = {
1725 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1726 pm_runtime_force_resume)
1727 SET_PM_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
1728 };
1729
1730 static struct amba_id mmci_ids[] = {
1731 {
1732 .id = 0x00041180,
1733 .mask = 0xff0fffff,
1734 .data = &variant_arm,
1735 },
1736 {
1737 .id = 0x01041180,
1738 .mask = 0xff0fffff,
1739 .data = &variant_arm_extended_fifo,
1740 },
1741 {
1742 .id = 0x02041180,
1743 .mask = 0xff0fffff,
1744 .data = &variant_arm_extended_fifo_hwfc,
1745 },
1746 {
1747 .id = 0x00041181,
1748 .mask = 0x000fffff,
1749 .data = &variant_arm,
1750 },
1751 /* ST Micro variants */
1752 {
1753 .id = 0x00180180,
1754 .mask = 0x00ffffff,
1755 .data = &variant_u300,
1756 },
1757 {
1758 .id = 0x10180180,
1759 .mask = 0xf0ffffff,
1760 .data = &variant_nomadik,
1761 },
1762 {
1763 .id = 0x00280180,
1764 .mask = 0x00ffffff,
1765 .data = &variant_u300,
1766 },
1767 {
1768 .id = 0x00480180,
1769 .mask = 0xf0ffffff,
1770 .data = &variant_ux500,
1771 },
1772 {
1773 .id = 0x10480180,
1774 .mask = 0xf0ffffff,
1775 .data = &variant_ux500v2,
1776 },
1777 { 0, 0 },
1778 };
1779
1780 MODULE_DEVICE_TABLE(amba, mmci_ids);
1781
1782 static struct amba_driver mmci_driver = {
1783 .drv = {
1784 .name = DRIVER_NAME,
1785 .pm = &mmci_dev_pm_ops,
1786 },
1787 .probe = mmci_probe,
1788 .remove = mmci_remove,
1789 .id_table = mmci_ids,
1790 };
1791
1792 module_amba_driver(mmci_driver);
1793
1794 module_param(fmax, uint, 0444);
1795
1796 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1797 MODULE_LICENSE("GPL");
This page took 0.069368 seconds and 6 git commands to generate.