Merge remote-tracking branches 'asoc/fix/axi', 'asoc/fix/cs4265', 'asoc/fix/da732x...
[deliverable/linux.git] / drivers / mmc / host / mmci.c
1 /*
2 * linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
3 *
4 * Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5 * Copyright (C) 2010 ST-Ericsson SA
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/device.h>
16 #include <linux/io.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/delay.h>
21 #include <linux/err.h>
22 #include <linux/highmem.h>
23 #include <linux/log2.h>
24 #include <linux/mmc/pm.h>
25 #include <linux/mmc/host.h>
26 #include <linux/mmc/card.h>
27 #include <linux/mmc/slot-gpio.h>
28 #include <linux/amba/bus.h>
29 #include <linux/clk.h>
30 #include <linux/scatterlist.h>
31 #include <linux/gpio.h>
32 #include <linux/of_gpio.h>
33 #include <linux/regulator/consumer.h>
34 #include <linux/dmaengine.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/amba/mmci.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/types.h>
39 #include <linux/pinctrl/consumer.h>
40
41 #include <asm/div64.h>
42 #include <asm/io.h>
43 #include <asm/sizes.h>
44
45 #include "mmci.h"
46
47 #define DRIVER_NAME "mmci-pl18x"
48
49 static unsigned int fmax = 515633;
50
51 /**
52 * struct variant_data - MMCI variant-specific quirks
53 * @clkreg: default value for MCICLOCK register
54 * @clkreg_enable: enable value for MMCICLOCK register
55 * @clkreg_8bit_bus_enable: enable value for 8 bit bus
56 * @clkreg_neg_edge_enable: enable value for inverted data/cmd output
57 * @datalength_bits: number of bits in the MMCIDATALENGTH register
58 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
59 * is asserted (likewise for RX)
60 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
61 * is asserted (likewise for RX)
62 * @data_cmd_enable: enable value for data commands.
63 * @sdio: variant supports SDIO
64 * @st_clkdiv: true if using a ST-specific clock divider algorithm
65 * @datactrl_mask_ddrmode: ddr mode mask in datactrl register.
66 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
67 * @blksz_datactrl4: true if Block size is at b4..b16 position in datactrl
68 * register
69 * @pwrreg_powerup: power up value for MMCIPOWER register
70 * @f_max: maximum clk frequency supported by the controller.
71 * @signal_direction: input/out direction of bus signals can be indicated
72 * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock
73 * @busy_detect: true if busy detection on dat0 is supported
74 * @pwrreg_nopower: bits in MMCIPOWER don't controls ext. power supply
75 * @explicit_mclk_control: enable explicit mclk control in driver.
76 * @qcom_fifo: enables qcom specific fifo pio read logic.
77 * @reversed_irq_handling: handle data irq before cmd irq.
78 */
79 struct variant_data {
80 unsigned int clkreg;
81 unsigned int clkreg_enable;
82 unsigned int clkreg_8bit_bus_enable;
83 unsigned int clkreg_neg_edge_enable;
84 unsigned int datalength_bits;
85 unsigned int fifosize;
86 unsigned int fifohalfsize;
87 unsigned int data_cmd_enable;
88 unsigned int datactrl_mask_ddrmode;
89 bool sdio;
90 bool st_clkdiv;
91 bool blksz_datactrl16;
92 bool blksz_datactrl4;
93 u32 pwrreg_powerup;
94 u32 f_max;
95 bool signal_direction;
96 bool pwrreg_clkgate;
97 bool busy_detect;
98 bool pwrreg_nopower;
99 bool explicit_mclk_control;
100 bool qcom_fifo;
101 bool reversed_irq_handling;
102 };
103
104 static struct variant_data variant_arm = {
105 .fifosize = 16 * 4,
106 .fifohalfsize = 8 * 4,
107 .datalength_bits = 16,
108 .pwrreg_powerup = MCI_PWR_UP,
109 .f_max = 100000000,
110 .reversed_irq_handling = true,
111 };
112
113 static struct variant_data variant_arm_extended_fifo = {
114 .fifosize = 128 * 4,
115 .fifohalfsize = 64 * 4,
116 .datalength_bits = 16,
117 .pwrreg_powerup = MCI_PWR_UP,
118 .f_max = 100000000,
119 };
120
121 static struct variant_data variant_arm_extended_fifo_hwfc = {
122 .fifosize = 128 * 4,
123 .fifohalfsize = 64 * 4,
124 .clkreg_enable = MCI_ARM_HWFCEN,
125 .datalength_bits = 16,
126 .pwrreg_powerup = MCI_PWR_UP,
127 .f_max = 100000000,
128 };
129
130 static struct variant_data variant_u300 = {
131 .fifosize = 16 * 4,
132 .fifohalfsize = 8 * 4,
133 .clkreg_enable = MCI_ST_U300_HWFCEN,
134 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
135 .datalength_bits = 16,
136 .sdio = true,
137 .pwrreg_powerup = MCI_PWR_ON,
138 .f_max = 100000000,
139 .signal_direction = true,
140 .pwrreg_clkgate = true,
141 .pwrreg_nopower = true,
142 };
143
144 static struct variant_data variant_nomadik = {
145 .fifosize = 16 * 4,
146 .fifohalfsize = 8 * 4,
147 .clkreg = MCI_CLK_ENABLE,
148 .datalength_bits = 24,
149 .sdio = true,
150 .st_clkdiv = true,
151 .pwrreg_powerup = MCI_PWR_ON,
152 .f_max = 100000000,
153 .signal_direction = true,
154 .pwrreg_clkgate = true,
155 .pwrreg_nopower = true,
156 };
157
158 static struct variant_data variant_ux500 = {
159 .fifosize = 30 * 4,
160 .fifohalfsize = 8 * 4,
161 .clkreg = MCI_CLK_ENABLE,
162 .clkreg_enable = MCI_ST_UX500_HWFCEN,
163 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
164 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
165 .datalength_bits = 24,
166 .sdio = true,
167 .st_clkdiv = true,
168 .pwrreg_powerup = MCI_PWR_ON,
169 .f_max = 100000000,
170 .signal_direction = true,
171 .pwrreg_clkgate = true,
172 .busy_detect = true,
173 .pwrreg_nopower = true,
174 };
175
176 static struct variant_data variant_ux500v2 = {
177 .fifosize = 30 * 4,
178 .fifohalfsize = 8 * 4,
179 .clkreg = MCI_CLK_ENABLE,
180 .clkreg_enable = MCI_ST_UX500_HWFCEN,
181 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
182 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
183 .datactrl_mask_ddrmode = MCI_ST_DPSM_DDRMODE,
184 .datalength_bits = 24,
185 .sdio = true,
186 .st_clkdiv = true,
187 .blksz_datactrl16 = true,
188 .pwrreg_powerup = MCI_PWR_ON,
189 .f_max = 100000000,
190 .signal_direction = true,
191 .pwrreg_clkgate = true,
192 .busy_detect = true,
193 .pwrreg_nopower = true,
194 };
195
196 static struct variant_data variant_qcom = {
197 .fifosize = 16 * 4,
198 .fifohalfsize = 8 * 4,
199 .clkreg = MCI_CLK_ENABLE,
200 .clkreg_enable = MCI_QCOM_CLK_FLOWENA |
201 MCI_QCOM_CLK_SELECT_IN_FBCLK,
202 .clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
203 .datactrl_mask_ddrmode = MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
204 .data_cmd_enable = MCI_QCOM_CSPM_DATCMD,
205 .blksz_datactrl4 = true,
206 .datalength_bits = 24,
207 .pwrreg_powerup = MCI_PWR_UP,
208 .f_max = 208000000,
209 .explicit_mclk_control = true,
210 .qcom_fifo = true,
211 };
212
213 static int mmci_card_busy(struct mmc_host *mmc)
214 {
215 struct mmci_host *host = mmc_priv(mmc);
216 unsigned long flags;
217 int busy = 0;
218
219 pm_runtime_get_sync(mmc_dev(mmc));
220
221 spin_lock_irqsave(&host->lock, flags);
222 if (readl(host->base + MMCISTATUS) & MCI_ST_CARDBUSY)
223 busy = 1;
224 spin_unlock_irqrestore(&host->lock, flags);
225
226 pm_runtime_mark_last_busy(mmc_dev(mmc));
227 pm_runtime_put_autosuspend(mmc_dev(mmc));
228
229 return busy;
230 }
231
232 /*
233 * Validate mmc prerequisites
234 */
235 static int mmci_validate_data(struct mmci_host *host,
236 struct mmc_data *data)
237 {
238 if (!data)
239 return 0;
240
241 if (!is_power_of_2(data->blksz)) {
242 dev_err(mmc_dev(host->mmc),
243 "unsupported block size (%d bytes)\n", data->blksz);
244 return -EINVAL;
245 }
246
247 return 0;
248 }
249
250 static void mmci_reg_delay(struct mmci_host *host)
251 {
252 /*
253 * According to the spec, at least three feedback clock cycles
254 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
255 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
256 * Worst delay time during card init is at 100 kHz => 30 us.
257 * Worst delay time when up and running is at 25 MHz => 120 ns.
258 */
259 if (host->cclk < 25000000)
260 udelay(30);
261 else
262 ndelay(120);
263 }
264
265 /*
266 * This must be called with host->lock held
267 */
268 static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
269 {
270 if (host->clk_reg != clk) {
271 host->clk_reg = clk;
272 writel(clk, host->base + MMCICLOCK);
273 }
274 }
275
276 /*
277 * This must be called with host->lock held
278 */
279 static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
280 {
281 if (host->pwr_reg != pwr) {
282 host->pwr_reg = pwr;
283 writel(pwr, host->base + MMCIPOWER);
284 }
285 }
286
287 /*
288 * This must be called with host->lock held
289 */
290 static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
291 {
292 /* Keep ST Micro busy mode if enabled */
293 datactrl |= host->datactrl_reg & MCI_ST_DPSM_BUSYMODE;
294
295 if (host->datactrl_reg != datactrl) {
296 host->datactrl_reg = datactrl;
297 writel(datactrl, host->base + MMCIDATACTRL);
298 }
299 }
300
301 /*
302 * This must be called with host->lock held
303 */
304 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
305 {
306 struct variant_data *variant = host->variant;
307 u32 clk = variant->clkreg;
308
309 /* Make sure cclk reflects the current calculated clock */
310 host->cclk = 0;
311
312 if (desired) {
313 if (variant->explicit_mclk_control) {
314 host->cclk = host->mclk;
315 } else if (desired >= host->mclk) {
316 clk = MCI_CLK_BYPASS;
317 if (variant->st_clkdiv)
318 clk |= MCI_ST_UX500_NEG_EDGE;
319 host->cclk = host->mclk;
320 } else if (variant->st_clkdiv) {
321 /*
322 * DB8500 TRM says f = mclk / (clkdiv + 2)
323 * => clkdiv = (mclk / f) - 2
324 * Round the divider up so we don't exceed the max
325 * frequency
326 */
327 clk = DIV_ROUND_UP(host->mclk, desired) - 2;
328 if (clk >= 256)
329 clk = 255;
330 host->cclk = host->mclk / (clk + 2);
331 } else {
332 /*
333 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
334 * => clkdiv = mclk / (2 * f) - 1
335 */
336 clk = host->mclk / (2 * desired) - 1;
337 if (clk >= 256)
338 clk = 255;
339 host->cclk = host->mclk / (2 * (clk + 1));
340 }
341
342 clk |= variant->clkreg_enable;
343 clk |= MCI_CLK_ENABLE;
344 /* This hasn't proven to be worthwhile */
345 /* clk |= MCI_CLK_PWRSAVE; */
346 }
347
348 /* Set actual clock for debug */
349 host->mmc->actual_clock = host->cclk;
350
351 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
352 clk |= MCI_4BIT_BUS;
353 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
354 clk |= variant->clkreg_8bit_bus_enable;
355
356 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
357 host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
358 clk |= variant->clkreg_neg_edge_enable;
359
360 mmci_write_clkreg(host, clk);
361 }
362
363 static void
364 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
365 {
366 writel(0, host->base + MMCICOMMAND);
367
368 BUG_ON(host->data);
369
370 host->mrq = NULL;
371 host->cmd = NULL;
372
373 mmc_request_done(host->mmc, mrq);
374
375 pm_runtime_mark_last_busy(mmc_dev(host->mmc));
376 pm_runtime_put_autosuspend(mmc_dev(host->mmc));
377 }
378
379 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
380 {
381 void __iomem *base = host->base;
382
383 if (host->singleirq) {
384 unsigned int mask0 = readl(base + MMCIMASK0);
385
386 mask0 &= ~MCI_IRQ1MASK;
387 mask0 |= mask;
388
389 writel(mask0, base + MMCIMASK0);
390 }
391
392 writel(mask, base + MMCIMASK1);
393 }
394
395 static void mmci_stop_data(struct mmci_host *host)
396 {
397 mmci_write_datactrlreg(host, 0);
398 mmci_set_mask1(host, 0);
399 host->data = NULL;
400 }
401
402 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
403 {
404 unsigned int flags = SG_MITER_ATOMIC;
405
406 if (data->flags & MMC_DATA_READ)
407 flags |= SG_MITER_TO_SG;
408 else
409 flags |= SG_MITER_FROM_SG;
410
411 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
412 }
413
414 /*
415 * All the DMA operation mode stuff goes inside this ifdef.
416 * This assumes that you have a generic DMA device interface,
417 * no custom DMA interfaces are supported.
418 */
419 #ifdef CONFIG_DMA_ENGINE
420 static void mmci_dma_setup(struct mmci_host *host)
421 {
422 const char *rxname, *txname;
423 dma_cap_mask_t mask;
424
425 host->dma_rx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "rx");
426 host->dma_tx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "tx");
427
428 /* initialize pre request cookie */
429 host->next_data.cookie = 1;
430
431 /* Try to acquire a generic DMA engine slave channel */
432 dma_cap_zero(mask);
433 dma_cap_set(DMA_SLAVE, mask);
434
435 /*
436 * If only an RX channel is specified, the driver will
437 * attempt to use it bidirectionally, however if it is
438 * is specified but cannot be located, DMA will be disabled.
439 */
440 if (host->dma_rx_channel && !host->dma_tx_channel)
441 host->dma_tx_channel = host->dma_rx_channel;
442
443 if (host->dma_rx_channel)
444 rxname = dma_chan_name(host->dma_rx_channel);
445 else
446 rxname = "none";
447
448 if (host->dma_tx_channel)
449 txname = dma_chan_name(host->dma_tx_channel);
450 else
451 txname = "none";
452
453 dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
454 rxname, txname);
455
456 /*
457 * Limit the maximum segment size in any SG entry according to
458 * the parameters of the DMA engine device.
459 */
460 if (host->dma_tx_channel) {
461 struct device *dev = host->dma_tx_channel->device->dev;
462 unsigned int max_seg_size = dma_get_max_seg_size(dev);
463
464 if (max_seg_size < host->mmc->max_seg_size)
465 host->mmc->max_seg_size = max_seg_size;
466 }
467 if (host->dma_rx_channel) {
468 struct device *dev = host->dma_rx_channel->device->dev;
469 unsigned int max_seg_size = dma_get_max_seg_size(dev);
470
471 if (max_seg_size < host->mmc->max_seg_size)
472 host->mmc->max_seg_size = max_seg_size;
473 }
474 }
475
476 /*
477 * This is used in or so inline it
478 * so it can be discarded.
479 */
480 static inline void mmci_dma_release(struct mmci_host *host)
481 {
482 if (host->dma_rx_channel)
483 dma_release_channel(host->dma_rx_channel);
484 if (host->dma_tx_channel)
485 dma_release_channel(host->dma_tx_channel);
486 host->dma_rx_channel = host->dma_tx_channel = NULL;
487 }
488
489 static void mmci_dma_data_error(struct mmci_host *host)
490 {
491 dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
492 dmaengine_terminate_all(host->dma_current);
493 host->dma_current = NULL;
494 host->dma_desc_current = NULL;
495 host->data->host_cookie = 0;
496 }
497
498 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
499 {
500 struct dma_chan *chan;
501 enum dma_data_direction dir;
502
503 if (data->flags & MMC_DATA_READ) {
504 dir = DMA_FROM_DEVICE;
505 chan = host->dma_rx_channel;
506 } else {
507 dir = DMA_TO_DEVICE;
508 chan = host->dma_tx_channel;
509 }
510
511 dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
512 }
513
514 static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
515 {
516 u32 status;
517 int i;
518
519 /* Wait up to 1ms for the DMA to complete */
520 for (i = 0; ; i++) {
521 status = readl(host->base + MMCISTATUS);
522 if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
523 break;
524 udelay(10);
525 }
526
527 /*
528 * Check to see whether we still have some data left in the FIFO -
529 * this catches DMA controllers which are unable to monitor the
530 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
531 * contiguous buffers. On TX, we'll get a FIFO underrun error.
532 */
533 if (status & MCI_RXDATAAVLBLMASK) {
534 mmci_dma_data_error(host);
535 if (!data->error)
536 data->error = -EIO;
537 }
538
539 if (!data->host_cookie)
540 mmci_dma_unmap(host, data);
541
542 /*
543 * Use of DMA with scatter-gather is impossible.
544 * Give up with DMA and switch back to PIO mode.
545 */
546 if (status & MCI_RXDATAAVLBLMASK) {
547 dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
548 mmci_dma_release(host);
549 }
550
551 host->dma_current = NULL;
552 host->dma_desc_current = NULL;
553 }
554
555 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */
556 static int __mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
557 struct dma_chan **dma_chan,
558 struct dma_async_tx_descriptor **dma_desc)
559 {
560 struct variant_data *variant = host->variant;
561 struct dma_slave_config conf = {
562 .src_addr = host->phybase + MMCIFIFO,
563 .dst_addr = host->phybase + MMCIFIFO,
564 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
565 .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
566 .src_maxburst = variant->fifohalfsize >> 2, /* # of words */
567 .dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
568 .device_fc = false,
569 };
570 struct dma_chan *chan;
571 struct dma_device *device;
572 struct dma_async_tx_descriptor *desc;
573 enum dma_data_direction buffer_dirn;
574 int nr_sg;
575
576 if (data->flags & MMC_DATA_READ) {
577 conf.direction = DMA_DEV_TO_MEM;
578 buffer_dirn = DMA_FROM_DEVICE;
579 chan = host->dma_rx_channel;
580 } else {
581 conf.direction = DMA_MEM_TO_DEV;
582 buffer_dirn = DMA_TO_DEVICE;
583 chan = host->dma_tx_channel;
584 }
585
586 /* If there's no DMA channel, fall back to PIO */
587 if (!chan)
588 return -EINVAL;
589
590 /* If less than or equal to the fifo size, don't bother with DMA */
591 if (data->blksz * data->blocks <= variant->fifosize)
592 return -EINVAL;
593
594 device = chan->device;
595 nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
596 if (nr_sg == 0)
597 return -EINVAL;
598
599 dmaengine_slave_config(chan, &conf);
600 desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
601 conf.direction, DMA_CTRL_ACK);
602 if (!desc)
603 goto unmap_exit;
604
605 *dma_chan = chan;
606 *dma_desc = desc;
607
608 return 0;
609
610 unmap_exit:
611 dma_unmap_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
612 return -ENOMEM;
613 }
614
615 static inline int mmci_dma_prep_data(struct mmci_host *host,
616 struct mmc_data *data)
617 {
618 /* Check if next job is already prepared. */
619 if (host->dma_current && host->dma_desc_current)
620 return 0;
621
622 /* No job were prepared thus do it now. */
623 return __mmci_dma_prep_data(host, data, &host->dma_current,
624 &host->dma_desc_current);
625 }
626
627 static inline int mmci_dma_prep_next(struct mmci_host *host,
628 struct mmc_data *data)
629 {
630 struct mmci_host_next *nd = &host->next_data;
631 return __mmci_dma_prep_data(host, data, &nd->dma_chan, &nd->dma_desc);
632 }
633
634 static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
635 {
636 int ret;
637 struct mmc_data *data = host->data;
638
639 ret = mmci_dma_prep_data(host, host->data);
640 if (ret)
641 return ret;
642
643 /* Okay, go for it. */
644 dev_vdbg(mmc_dev(host->mmc),
645 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
646 data->sg_len, data->blksz, data->blocks, data->flags);
647 dmaengine_submit(host->dma_desc_current);
648 dma_async_issue_pending(host->dma_current);
649
650 datactrl |= MCI_DPSM_DMAENABLE;
651
652 /* Trigger the DMA transfer */
653 mmci_write_datactrlreg(host, datactrl);
654
655 /*
656 * Let the MMCI say when the data is ended and it's time
657 * to fire next DMA request. When that happens, MMCI will
658 * call mmci_data_end()
659 */
660 writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
661 host->base + MMCIMASK0);
662 return 0;
663 }
664
665 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
666 {
667 struct mmci_host_next *next = &host->next_data;
668
669 WARN_ON(data->host_cookie && data->host_cookie != next->cookie);
670 WARN_ON(!data->host_cookie && (next->dma_desc || next->dma_chan));
671
672 host->dma_desc_current = next->dma_desc;
673 host->dma_current = next->dma_chan;
674 next->dma_desc = NULL;
675 next->dma_chan = NULL;
676 }
677
678 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq,
679 bool is_first_req)
680 {
681 struct mmci_host *host = mmc_priv(mmc);
682 struct mmc_data *data = mrq->data;
683 struct mmci_host_next *nd = &host->next_data;
684
685 if (!data)
686 return;
687
688 BUG_ON(data->host_cookie);
689
690 if (mmci_validate_data(host, data))
691 return;
692
693 if (!mmci_dma_prep_next(host, data))
694 data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
695 }
696
697 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
698 int err)
699 {
700 struct mmci_host *host = mmc_priv(mmc);
701 struct mmc_data *data = mrq->data;
702
703 if (!data || !data->host_cookie)
704 return;
705
706 mmci_dma_unmap(host, data);
707
708 if (err) {
709 struct mmci_host_next *next = &host->next_data;
710 struct dma_chan *chan;
711 if (data->flags & MMC_DATA_READ)
712 chan = host->dma_rx_channel;
713 else
714 chan = host->dma_tx_channel;
715 dmaengine_terminate_all(chan);
716
717 next->dma_desc = NULL;
718 next->dma_chan = NULL;
719 }
720 }
721
722 #else
723 /* Blank functions if the DMA engine is not available */
724 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
725 {
726 }
727 static inline void mmci_dma_setup(struct mmci_host *host)
728 {
729 }
730
731 static inline void mmci_dma_release(struct mmci_host *host)
732 {
733 }
734
735 static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
736 {
737 }
738
739 static inline void mmci_dma_finalize(struct mmci_host *host,
740 struct mmc_data *data)
741 {
742 }
743
744 static inline void mmci_dma_data_error(struct mmci_host *host)
745 {
746 }
747
748 static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
749 {
750 return -ENOSYS;
751 }
752
753 #define mmci_pre_request NULL
754 #define mmci_post_request NULL
755
756 #endif
757
758 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
759 {
760 struct variant_data *variant = host->variant;
761 unsigned int datactrl, timeout, irqmask;
762 unsigned long long clks;
763 void __iomem *base;
764 int blksz_bits;
765
766 dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
767 data->blksz, data->blocks, data->flags);
768
769 host->data = data;
770 host->size = data->blksz * data->blocks;
771 data->bytes_xfered = 0;
772
773 clks = (unsigned long long)data->timeout_ns * host->cclk;
774 do_div(clks, NSEC_PER_SEC);
775
776 timeout = data->timeout_clks + (unsigned int)clks;
777
778 base = host->base;
779 writel(timeout, base + MMCIDATATIMER);
780 writel(host->size, base + MMCIDATALENGTH);
781
782 blksz_bits = ffs(data->blksz) - 1;
783 BUG_ON(1 << blksz_bits != data->blksz);
784
785 if (variant->blksz_datactrl16)
786 datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
787 else if (variant->blksz_datactrl4)
788 datactrl = MCI_DPSM_ENABLE | (data->blksz << 4);
789 else
790 datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
791
792 if (data->flags & MMC_DATA_READ)
793 datactrl |= MCI_DPSM_DIRECTION;
794
795 /* The ST Micro variants has a special bit to enable SDIO */
796 if (variant->sdio && host->mmc->card)
797 if (mmc_card_sdio(host->mmc->card)) {
798 /*
799 * The ST Micro variants has a special bit
800 * to enable SDIO.
801 */
802 u32 clk;
803
804 datactrl |= MCI_ST_DPSM_SDIOEN;
805
806 /*
807 * The ST Micro variant for SDIO small write transfers
808 * needs to have clock H/W flow control disabled,
809 * otherwise the transfer will not start. The threshold
810 * depends on the rate of MCLK.
811 */
812 if (data->flags & MMC_DATA_WRITE &&
813 (host->size < 8 ||
814 (host->size <= 8 && host->mclk > 50000000)))
815 clk = host->clk_reg & ~variant->clkreg_enable;
816 else
817 clk = host->clk_reg | variant->clkreg_enable;
818
819 mmci_write_clkreg(host, clk);
820 }
821
822 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
823 host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
824 datactrl |= variant->datactrl_mask_ddrmode;
825
826 /*
827 * Attempt to use DMA operation mode, if this
828 * should fail, fall back to PIO mode
829 */
830 if (!mmci_dma_start_data(host, datactrl))
831 return;
832
833 /* IRQ mode, map the SG list for CPU reading/writing */
834 mmci_init_sg(host, data);
835
836 if (data->flags & MMC_DATA_READ) {
837 irqmask = MCI_RXFIFOHALFFULLMASK;
838
839 /*
840 * If we have less than the fifo 'half-full' threshold to
841 * transfer, trigger a PIO interrupt as soon as any data
842 * is available.
843 */
844 if (host->size < variant->fifohalfsize)
845 irqmask |= MCI_RXDATAAVLBLMASK;
846 } else {
847 /*
848 * We don't actually need to include "FIFO empty" here
849 * since its implicit in "FIFO half empty".
850 */
851 irqmask = MCI_TXFIFOHALFEMPTYMASK;
852 }
853
854 mmci_write_datactrlreg(host, datactrl);
855 writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
856 mmci_set_mask1(host, irqmask);
857 }
858
859 static void
860 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
861 {
862 void __iomem *base = host->base;
863
864 dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
865 cmd->opcode, cmd->arg, cmd->flags);
866
867 if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
868 writel(0, base + MMCICOMMAND);
869 mmci_reg_delay(host);
870 }
871
872 c |= cmd->opcode | MCI_CPSM_ENABLE;
873 if (cmd->flags & MMC_RSP_PRESENT) {
874 if (cmd->flags & MMC_RSP_136)
875 c |= MCI_CPSM_LONGRSP;
876 c |= MCI_CPSM_RESPONSE;
877 }
878 if (/*interrupt*/0)
879 c |= MCI_CPSM_INTERRUPT;
880
881 if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
882 c |= host->variant->data_cmd_enable;
883
884 host->cmd = cmd;
885
886 writel(cmd->arg, base + MMCIARGUMENT);
887 writel(c, base + MMCICOMMAND);
888 }
889
890 static void
891 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
892 unsigned int status)
893 {
894 /* Make sure we have data to handle */
895 if (!data)
896 return;
897
898 /* First check for errors */
899 if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
900 MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
901 u32 remain, success;
902
903 /* Terminate the DMA transfer */
904 if (dma_inprogress(host)) {
905 mmci_dma_data_error(host);
906 mmci_dma_unmap(host, data);
907 }
908
909 /*
910 * Calculate how far we are into the transfer. Note that
911 * the data counter gives the number of bytes transferred
912 * on the MMC bus, not on the host side. On reads, this
913 * can be as much as a FIFO-worth of data ahead. This
914 * matters for FIFO overruns only.
915 */
916 remain = readl(host->base + MMCIDATACNT);
917 success = data->blksz * data->blocks - remain;
918
919 dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
920 status, success);
921 if (status & MCI_DATACRCFAIL) {
922 /* Last block was not successful */
923 success -= 1;
924 data->error = -EILSEQ;
925 } else if (status & MCI_DATATIMEOUT) {
926 data->error = -ETIMEDOUT;
927 } else if (status & MCI_STARTBITERR) {
928 data->error = -ECOMM;
929 } else if (status & MCI_TXUNDERRUN) {
930 data->error = -EIO;
931 } else if (status & MCI_RXOVERRUN) {
932 if (success > host->variant->fifosize)
933 success -= host->variant->fifosize;
934 else
935 success = 0;
936 data->error = -EIO;
937 }
938 data->bytes_xfered = round_down(success, data->blksz);
939 }
940
941 if (status & MCI_DATABLOCKEND)
942 dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
943
944 if (status & MCI_DATAEND || data->error) {
945 if (dma_inprogress(host))
946 mmci_dma_finalize(host, data);
947 mmci_stop_data(host);
948
949 if (!data->error)
950 /* The error clause is handled above, success! */
951 data->bytes_xfered = data->blksz * data->blocks;
952
953 if (!data->stop || host->mrq->sbc) {
954 mmci_request_end(host, data->mrq);
955 } else {
956 mmci_start_command(host, data->stop, 0);
957 }
958 }
959 }
960
961 static void
962 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
963 unsigned int status)
964 {
965 void __iomem *base = host->base;
966 bool sbc, busy_resp;
967
968 if (!cmd)
969 return;
970
971 sbc = (cmd == host->mrq->sbc);
972 busy_resp = host->variant->busy_detect && (cmd->flags & MMC_RSP_BUSY);
973
974 if (!((status|host->busy_status) & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|
975 MCI_CMDSENT|MCI_CMDRESPEND)))
976 return;
977
978 /* Check if we need to wait for busy completion. */
979 if (host->busy_status && (status & MCI_ST_CARDBUSY))
980 return;
981
982 /* Enable busy completion if needed and supported. */
983 if (!host->busy_status && busy_resp &&
984 !(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) &&
985 (readl(base + MMCISTATUS) & MCI_ST_CARDBUSY)) {
986 writel(readl(base + MMCIMASK0) | MCI_ST_BUSYEND,
987 base + MMCIMASK0);
988 host->busy_status = status & (MCI_CMDSENT|MCI_CMDRESPEND);
989 return;
990 }
991
992 /* At busy completion, mask the IRQ and complete the request. */
993 if (host->busy_status) {
994 writel(readl(base + MMCIMASK0) & ~MCI_ST_BUSYEND,
995 base + MMCIMASK0);
996 host->busy_status = 0;
997 }
998
999 host->cmd = NULL;
1000
1001 if (status & MCI_CMDTIMEOUT) {
1002 cmd->error = -ETIMEDOUT;
1003 } else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1004 cmd->error = -EILSEQ;
1005 } else {
1006 cmd->resp[0] = readl(base + MMCIRESPONSE0);
1007 cmd->resp[1] = readl(base + MMCIRESPONSE1);
1008 cmd->resp[2] = readl(base + MMCIRESPONSE2);
1009 cmd->resp[3] = readl(base + MMCIRESPONSE3);
1010 }
1011
1012 if ((!sbc && !cmd->data) || cmd->error) {
1013 if (host->data) {
1014 /* Terminate the DMA transfer */
1015 if (dma_inprogress(host)) {
1016 mmci_dma_data_error(host);
1017 mmci_dma_unmap(host, host->data);
1018 }
1019 mmci_stop_data(host);
1020 }
1021 mmci_request_end(host, host->mrq);
1022 } else if (sbc) {
1023 mmci_start_command(host, host->mrq->cmd, 0);
1024 } else if (!(cmd->data->flags & MMC_DATA_READ)) {
1025 mmci_start_data(host, cmd->data);
1026 }
1027 }
1028
1029 static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1030 {
1031 return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1032 }
1033
1034 static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1035 {
1036 /*
1037 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1038 * from the fifo range should be used
1039 */
1040 if (status & MCI_RXFIFOHALFFULL)
1041 return host->variant->fifohalfsize;
1042 else if (status & MCI_RXDATAAVLBL)
1043 return 4;
1044
1045 return 0;
1046 }
1047
1048 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1049 {
1050 void __iomem *base = host->base;
1051 char *ptr = buffer;
1052 u32 status = readl(host->base + MMCISTATUS);
1053 int host_remain = host->size;
1054
1055 do {
1056 int count = host->get_rx_fifocnt(host, status, host_remain);
1057
1058 if (count > remain)
1059 count = remain;
1060
1061 if (count <= 0)
1062 break;
1063
1064 /*
1065 * SDIO especially may want to send something that is
1066 * not divisible by 4 (as opposed to card sectors
1067 * etc). Therefore make sure to always read the last bytes
1068 * while only doing full 32-bit reads towards the FIFO.
1069 */
1070 if (unlikely(count & 0x3)) {
1071 if (count < 4) {
1072 unsigned char buf[4];
1073 ioread32_rep(base + MMCIFIFO, buf, 1);
1074 memcpy(ptr, buf, count);
1075 } else {
1076 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1077 count &= ~0x3;
1078 }
1079 } else {
1080 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1081 }
1082
1083 ptr += count;
1084 remain -= count;
1085 host_remain -= count;
1086
1087 if (remain == 0)
1088 break;
1089
1090 status = readl(base + MMCISTATUS);
1091 } while (status & MCI_RXDATAAVLBL);
1092
1093 return ptr - buffer;
1094 }
1095
1096 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1097 {
1098 struct variant_data *variant = host->variant;
1099 void __iomem *base = host->base;
1100 char *ptr = buffer;
1101
1102 do {
1103 unsigned int count, maxcnt;
1104
1105 maxcnt = status & MCI_TXFIFOEMPTY ?
1106 variant->fifosize : variant->fifohalfsize;
1107 count = min(remain, maxcnt);
1108
1109 /*
1110 * SDIO especially may want to send something that is
1111 * not divisible by 4 (as opposed to card sectors
1112 * etc), and the FIFO only accept full 32-bit writes.
1113 * So compensate by adding +3 on the count, a single
1114 * byte become a 32bit write, 7 bytes will be two
1115 * 32bit writes etc.
1116 */
1117 iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1118
1119 ptr += count;
1120 remain -= count;
1121
1122 if (remain == 0)
1123 break;
1124
1125 status = readl(base + MMCISTATUS);
1126 } while (status & MCI_TXFIFOHALFEMPTY);
1127
1128 return ptr - buffer;
1129 }
1130
1131 /*
1132 * PIO data transfer IRQ handler.
1133 */
1134 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1135 {
1136 struct mmci_host *host = dev_id;
1137 struct sg_mapping_iter *sg_miter = &host->sg_miter;
1138 struct variant_data *variant = host->variant;
1139 void __iomem *base = host->base;
1140 unsigned long flags;
1141 u32 status;
1142
1143 status = readl(base + MMCISTATUS);
1144
1145 dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1146
1147 local_irq_save(flags);
1148
1149 do {
1150 unsigned int remain, len;
1151 char *buffer;
1152
1153 /*
1154 * For write, we only need to test the half-empty flag
1155 * here - if the FIFO is completely empty, then by
1156 * definition it is more than half empty.
1157 *
1158 * For read, check for data available.
1159 */
1160 if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1161 break;
1162
1163 if (!sg_miter_next(sg_miter))
1164 break;
1165
1166 buffer = sg_miter->addr;
1167 remain = sg_miter->length;
1168
1169 len = 0;
1170 if (status & MCI_RXACTIVE)
1171 len = mmci_pio_read(host, buffer, remain);
1172 if (status & MCI_TXACTIVE)
1173 len = mmci_pio_write(host, buffer, remain, status);
1174
1175 sg_miter->consumed = len;
1176
1177 host->size -= len;
1178 remain -= len;
1179
1180 if (remain)
1181 break;
1182
1183 status = readl(base + MMCISTATUS);
1184 } while (1);
1185
1186 sg_miter_stop(sg_miter);
1187
1188 local_irq_restore(flags);
1189
1190 /*
1191 * If we have less than the fifo 'half-full' threshold to transfer,
1192 * trigger a PIO interrupt as soon as any data is available.
1193 */
1194 if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1195 mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1196
1197 /*
1198 * If we run out of data, disable the data IRQs; this
1199 * prevents a race where the FIFO becomes empty before
1200 * the chip itself has disabled the data path, and
1201 * stops us racing with our data end IRQ.
1202 */
1203 if (host->size == 0) {
1204 mmci_set_mask1(host, 0);
1205 writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1206 }
1207
1208 return IRQ_HANDLED;
1209 }
1210
1211 /*
1212 * Handle completion of command and data transfers.
1213 */
1214 static irqreturn_t mmci_irq(int irq, void *dev_id)
1215 {
1216 struct mmci_host *host = dev_id;
1217 u32 status;
1218 int ret = 0;
1219
1220 spin_lock(&host->lock);
1221
1222 do {
1223 status = readl(host->base + MMCISTATUS);
1224
1225 if (host->singleirq) {
1226 if (status & readl(host->base + MMCIMASK1))
1227 mmci_pio_irq(irq, dev_id);
1228
1229 status &= ~MCI_IRQ1MASK;
1230 }
1231
1232 /*
1233 * We intentionally clear the MCI_ST_CARDBUSY IRQ here (if it's
1234 * enabled) since the HW seems to be triggering the IRQ on both
1235 * edges while monitoring DAT0 for busy completion.
1236 */
1237 status &= readl(host->base + MMCIMASK0);
1238 writel(status, host->base + MMCICLEAR);
1239
1240 dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1241
1242 if (host->variant->reversed_irq_handling) {
1243 mmci_data_irq(host, host->data, status);
1244 mmci_cmd_irq(host, host->cmd, status);
1245 } else {
1246 mmci_cmd_irq(host, host->cmd, status);
1247 mmci_data_irq(host, host->data, status);
1248 }
1249
1250 /* Don't poll for busy completion in irq context. */
1251 if (host->busy_status)
1252 status &= ~MCI_ST_CARDBUSY;
1253
1254 ret = 1;
1255 } while (status);
1256
1257 spin_unlock(&host->lock);
1258
1259 return IRQ_RETVAL(ret);
1260 }
1261
1262 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1263 {
1264 struct mmci_host *host = mmc_priv(mmc);
1265 unsigned long flags;
1266
1267 WARN_ON(host->mrq != NULL);
1268
1269 mrq->cmd->error = mmci_validate_data(host, mrq->data);
1270 if (mrq->cmd->error) {
1271 mmc_request_done(mmc, mrq);
1272 return;
1273 }
1274
1275 pm_runtime_get_sync(mmc_dev(mmc));
1276
1277 spin_lock_irqsave(&host->lock, flags);
1278
1279 host->mrq = mrq;
1280
1281 if (mrq->data)
1282 mmci_get_next_data(host, mrq->data);
1283
1284 if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1285 mmci_start_data(host, mrq->data);
1286
1287 if (mrq->sbc)
1288 mmci_start_command(host, mrq->sbc, 0);
1289 else
1290 mmci_start_command(host, mrq->cmd, 0);
1291
1292 spin_unlock_irqrestore(&host->lock, flags);
1293 }
1294
1295 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1296 {
1297 struct mmci_host *host = mmc_priv(mmc);
1298 struct variant_data *variant = host->variant;
1299 u32 pwr = 0;
1300 unsigned long flags;
1301 int ret;
1302
1303 pm_runtime_get_sync(mmc_dev(mmc));
1304
1305 if (host->plat->ios_handler &&
1306 host->plat->ios_handler(mmc_dev(mmc), ios))
1307 dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1308
1309 switch (ios->power_mode) {
1310 case MMC_POWER_OFF:
1311 if (!IS_ERR(mmc->supply.vmmc))
1312 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1313
1314 if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1315 regulator_disable(mmc->supply.vqmmc);
1316 host->vqmmc_enabled = false;
1317 }
1318
1319 break;
1320 case MMC_POWER_UP:
1321 if (!IS_ERR(mmc->supply.vmmc))
1322 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1323
1324 /*
1325 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1326 * and instead uses MCI_PWR_ON so apply whatever value is
1327 * configured in the variant data.
1328 */
1329 pwr |= variant->pwrreg_powerup;
1330
1331 break;
1332 case MMC_POWER_ON:
1333 if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1334 ret = regulator_enable(mmc->supply.vqmmc);
1335 if (ret < 0)
1336 dev_err(mmc_dev(mmc),
1337 "failed to enable vqmmc regulator\n");
1338 else
1339 host->vqmmc_enabled = true;
1340 }
1341
1342 pwr |= MCI_PWR_ON;
1343 break;
1344 }
1345
1346 if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1347 /*
1348 * The ST Micro variant has some additional bits
1349 * indicating signal direction for the signals in
1350 * the SD/MMC bus and feedback-clock usage.
1351 */
1352 pwr |= host->pwr_reg_add;
1353
1354 if (ios->bus_width == MMC_BUS_WIDTH_4)
1355 pwr &= ~MCI_ST_DATA74DIREN;
1356 else if (ios->bus_width == MMC_BUS_WIDTH_1)
1357 pwr &= (~MCI_ST_DATA74DIREN &
1358 ~MCI_ST_DATA31DIREN &
1359 ~MCI_ST_DATA2DIREN);
1360 }
1361
1362 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
1363 if (host->hw_designer != AMBA_VENDOR_ST)
1364 pwr |= MCI_ROD;
1365 else {
1366 /*
1367 * The ST Micro variant use the ROD bit for something
1368 * else and only has OD (Open Drain).
1369 */
1370 pwr |= MCI_OD;
1371 }
1372 }
1373
1374 /*
1375 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1376 * gating the clock, the MCI_PWR_ON bit is cleared.
1377 */
1378 if (!ios->clock && variant->pwrreg_clkgate)
1379 pwr &= ~MCI_PWR_ON;
1380
1381 if (host->variant->explicit_mclk_control &&
1382 ios->clock != host->clock_cache) {
1383 ret = clk_set_rate(host->clk, ios->clock);
1384 if (ret < 0)
1385 dev_err(mmc_dev(host->mmc),
1386 "Error setting clock rate (%d)\n", ret);
1387 else
1388 host->mclk = clk_get_rate(host->clk);
1389 }
1390 host->clock_cache = ios->clock;
1391
1392 spin_lock_irqsave(&host->lock, flags);
1393
1394 mmci_set_clkreg(host, ios->clock);
1395 mmci_write_pwrreg(host, pwr);
1396 mmci_reg_delay(host);
1397
1398 spin_unlock_irqrestore(&host->lock, flags);
1399
1400 pm_runtime_mark_last_busy(mmc_dev(mmc));
1401 pm_runtime_put_autosuspend(mmc_dev(mmc));
1402 }
1403
1404 static int mmci_get_cd(struct mmc_host *mmc)
1405 {
1406 struct mmci_host *host = mmc_priv(mmc);
1407 struct mmci_platform_data *plat = host->plat;
1408 unsigned int status = mmc_gpio_get_cd(mmc);
1409
1410 if (status == -ENOSYS) {
1411 if (!plat->status)
1412 return 1; /* Assume always present */
1413
1414 status = plat->status(mmc_dev(host->mmc));
1415 }
1416 return status;
1417 }
1418
1419 static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1420 {
1421 int ret = 0;
1422
1423 if (!IS_ERR(mmc->supply.vqmmc)) {
1424
1425 pm_runtime_get_sync(mmc_dev(mmc));
1426
1427 switch (ios->signal_voltage) {
1428 case MMC_SIGNAL_VOLTAGE_330:
1429 ret = regulator_set_voltage(mmc->supply.vqmmc,
1430 2700000, 3600000);
1431 break;
1432 case MMC_SIGNAL_VOLTAGE_180:
1433 ret = regulator_set_voltage(mmc->supply.vqmmc,
1434 1700000, 1950000);
1435 break;
1436 case MMC_SIGNAL_VOLTAGE_120:
1437 ret = regulator_set_voltage(mmc->supply.vqmmc,
1438 1100000, 1300000);
1439 break;
1440 }
1441
1442 if (ret)
1443 dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1444
1445 pm_runtime_mark_last_busy(mmc_dev(mmc));
1446 pm_runtime_put_autosuspend(mmc_dev(mmc));
1447 }
1448
1449 return ret;
1450 }
1451
1452 static struct mmc_host_ops mmci_ops = {
1453 .request = mmci_request,
1454 .pre_req = mmci_pre_request,
1455 .post_req = mmci_post_request,
1456 .set_ios = mmci_set_ios,
1457 .get_ro = mmc_gpio_get_ro,
1458 .get_cd = mmci_get_cd,
1459 .start_signal_voltage_switch = mmci_sig_volt_switch,
1460 };
1461
1462 static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1463 {
1464 struct mmci_host *host = mmc_priv(mmc);
1465 int ret = mmc_of_parse(mmc);
1466
1467 if (ret)
1468 return ret;
1469
1470 if (of_get_property(np, "st,sig-dir-dat0", NULL))
1471 host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1472 if (of_get_property(np, "st,sig-dir-dat2", NULL))
1473 host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1474 if (of_get_property(np, "st,sig-dir-dat31", NULL))
1475 host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1476 if (of_get_property(np, "st,sig-dir-dat74", NULL))
1477 host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1478 if (of_get_property(np, "st,sig-dir-cmd", NULL))
1479 host->pwr_reg_add |= MCI_ST_CMDDIREN;
1480 if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1481 host->pwr_reg_add |= MCI_ST_FBCLKEN;
1482
1483 if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1484 mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1485 if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1486 mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1487
1488 return 0;
1489 }
1490
1491 static int mmci_probe(struct amba_device *dev,
1492 const struct amba_id *id)
1493 {
1494 struct mmci_platform_data *plat = dev->dev.platform_data;
1495 struct device_node *np = dev->dev.of_node;
1496 struct variant_data *variant = id->data;
1497 struct mmci_host *host;
1498 struct mmc_host *mmc;
1499 int ret;
1500
1501 /* Must have platform data or Device Tree. */
1502 if (!plat && !np) {
1503 dev_err(&dev->dev, "No plat data or DT found\n");
1504 return -EINVAL;
1505 }
1506
1507 if (!plat) {
1508 plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1509 if (!plat)
1510 return -ENOMEM;
1511 }
1512
1513 mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1514 if (!mmc)
1515 return -ENOMEM;
1516
1517 ret = mmci_of_parse(np, mmc);
1518 if (ret)
1519 goto host_free;
1520
1521 host = mmc_priv(mmc);
1522 host->mmc = mmc;
1523
1524 host->hw_designer = amba_manf(dev);
1525 host->hw_revision = amba_rev(dev);
1526 dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1527 dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1528
1529 host->clk = devm_clk_get(&dev->dev, NULL);
1530 if (IS_ERR(host->clk)) {
1531 ret = PTR_ERR(host->clk);
1532 goto host_free;
1533 }
1534
1535 ret = clk_prepare_enable(host->clk);
1536 if (ret)
1537 goto host_free;
1538
1539 if (variant->qcom_fifo)
1540 host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
1541 else
1542 host->get_rx_fifocnt = mmci_get_rx_fifocnt;
1543
1544 host->plat = plat;
1545 host->variant = variant;
1546 host->mclk = clk_get_rate(host->clk);
1547 /*
1548 * According to the spec, mclk is max 100 MHz,
1549 * so we try to adjust the clock down to this,
1550 * (if possible).
1551 */
1552 if (host->mclk > variant->f_max) {
1553 ret = clk_set_rate(host->clk, variant->f_max);
1554 if (ret < 0)
1555 goto clk_disable;
1556 host->mclk = clk_get_rate(host->clk);
1557 dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1558 host->mclk);
1559 }
1560
1561 host->phybase = dev->res.start;
1562 host->base = devm_ioremap_resource(&dev->dev, &dev->res);
1563 if (IS_ERR(host->base)) {
1564 ret = PTR_ERR(host->base);
1565 goto clk_disable;
1566 }
1567
1568 /*
1569 * The ARM and ST versions of the block have slightly different
1570 * clock divider equations which means that the minimum divider
1571 * differs too.
1572 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
1573 */
1574 if (variant->st_clkdiv)
1575 mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1576 else if (variant->explicit_mclk_control)
1577 mmc->f_min = clk_round_rate(host->clk, 100000);
1578 else
1579 mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1580 /*
1581 * If no maximum operating frequency is supplied, fall back to use
1582 * the module parameter, which has a (low) default value in case it
1583 * is not specified. Either value must not exceed the clock rate into
1584 * the block, of course.
1585 */
1586 if (mmc->f_max)
1587 mmc->f_max = variant->explicit_mclk_control ?
1588 min(variant->f_max, mmc->f_max) :
1589 min(host->mclk, mmc->f_max);
1590 else
1591 mmc->f_max = variant->explicit_mclk_control ?
1592 fmax : min(host->mclk, fmax);
1593
1594
1595 dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1596
1597 /* Get regulators and the supported OCR mask */
1598 mmc_regulator_get_supply(mmc);
1599 if (!mmc->ocr_avail)
1600 mmc->ocr_avail = plat->ocr_mask;
1601 else if (plat->ocr_mask)
1602 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1603
1604 /* DT takes precedence over platform data. */
1605 if (!np) {
1606 if (!plat->cd_invert)
1607 mmc->caps2 |= MMC_CAP2_CD_ACTIVE_HIGH;
1608 mmc->caps2 |= MMC_CAP2_RO_ACTIVE_HIGH;
1609 }
1610
1611 /* We support these capabilities. */
1612 mmc->caps |= MMC_CAP_CMD23;
1613
1614 if (variant->busy_detect) {
1615 mmci_ops.card_busy = mmci_card_busy;
1616 mmci_write_datactrlreg(host, MCI_ST_DPSM_BUSYMODE);
1617 mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
1618 mmc->max_busy_timeout = 0;
1619 }
1620
1621 mmc->ops = &mmci_ops;
1622
1623 /* We support these PM capabilities. */
1624 mmc->pm_caps |= MMC_PM_KEEP_POWER;
1625
1626 /*
1627 * We can do SGIO
1628 */
1629 mmc->max_segs = NR_SG;
1630
1631 /*
1632 * Since only a certain number of bits are valid in the data length
1633 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1634 * single request.
1635 */
1636 mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1637
1638 /*
1639 * Set the maximum segment size. Since we aren't doing DMA
1640 * (yet) we are only limited by the data length register.
1641 */
1642 mmc->max_seg_size = mmc->max_req_size;
1643
1644 /*
1645 * Block size can be up to 2048 bytes, but must be a power of two.
1646 */
1647 mmc->max_blk_size = 1 << 11;
1648
1649 /*
1650 * Limit the number of blocks transferred so that we don't overflow
1651 * the maximum request size.
1652 */
1653 mmc->max_blk_count = mmc->max_req_size >> 11;
1654
1655 spin_lock_init(&host->lock);
1656
1657 writel(0, host->base + MMCIMASK0);
1658 writel(0, host->base + MMCIMASK1);
1659 writel(0xfff, host->base + MMCICLEAR);
1660
1661 /* If DT, cd/wp gpios must be supplied through it. */
1662 if (!np && gpio_is_valid(plat->gpio_cd)) {
1663 ret = mmc_gpio_request_cd(mmc, plat->gpio_cd, 0);
1664 if (ret)
1665 goto clk_disable;
1666 }
1667 if (!np && gpio_is_valid(plat->gpio_wp)) {
1668 ret = mmc_gpio_request_ro(mmc, plat->gpio_wp);
1669 if (ret)
1670 goto clk_disable;
1671 }
1672
1673 ret = devm_request_irq(&dev->dev, dev->irq[0], mmci_irq, IRQF_SHARED,
1674 DRIVER_NAME " (cmd)", host);
1675 if (ret)
1676 goto clk_disable;
1677
1678 if (!dev->irq[1])
1679 host->singleirq = true;
1680 else {
1681 ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
1682 IRQF_SHARED, DRIVER_NAME " (pio)", host);
1683 if (ret)
1684 goto clk_disable;
1685 }
1686
1687 writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1688
1689 amba_set_drvdata(dev, mmc);
1690
1691 dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1692 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1693 amba_rev(dev), (unsigned long long)dev->res.start,
1694 dev->irq[0], dev->irq[1]);
1695
1696 mmci_dma_setup(host);
1697
1698 pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1699 pm_runtime_use_autosuspend(&dev->dev);
1700 pm_runtime_put(&dev->dev);
1701
1702 mmc_add_host(mmc);
1703
1704 return 0;
1705
1706 clk_disable:
1707 clk_disable_unprepare(host->clk);
1708 host_free:
1709 mmc_free_host(mmc);
1710 return ret;
1711 }
1712
1713 static int mmci_remove(struct amba_device *dev)
1714 {
1715 struct mmc_host *mmc = amba_get_drvdata(dev);
1716
1717 if (mmc) {
1718 struct mmci_host *host = mmc_priv(mmc);
1719
1720 /*
1721 * Undo pm_runtime_put() in probe. We use the _sync
1722 * version here so that we can access the primecell.
1723 */
1724 pm_runtime_get_sync(&dev->dev);
1725
1726 mmc_remove_host(mmc);
1727
1728 writel(0, host->base + MMCIMASK0);
1729 writel(0, host->base + MMCIMASK1);
1730
1731 writel(0, host->base + MMCICOMMAND);
1732 writel(0, host->base + MMCIDATACTRL);
1733
1734 mmci_dma_release(host);
1735 clk_disable_unprepare(host->clk);
1736 mmc_free_host(mmc);
1737 }
1738
1739 return 0;
1740 }
1741
1742 #ifdef CONFIG_PM
1743 static void mmci_save(struct mmci_host *host)
1744 {
1745 unsigned long flags;
1746
1747 spin_lock_irqsave(&host->lock, flags);
1748
1749 writel(0, host->base + MMCIMASK0);
1750 if (host->variant->pwrreg_nopower) {
1751 writel(0, host->base + MMCIDATACTRL);
1752 writel(0, host->base + MMCIPOWER);
1753 writel(0, host->base + MMCICLOCK);
1754 }
1755 mmci_reg_delay(host);
1756
1757 spin_unlock_irqrestore(&host->lock, flags);
1758 }
1759
1760 static void mmci_restore(struct mmci_host *host)
1761 {
1762 unsigned long flags;
1763
1764 spin_lock_irqsave(&host->lock, flags);
1765
1766 if (host->variant->pwrreg_nopower) {
1767 writel(host->clk_reg, host->base + MMCICLOCK);
1768 writel(host->datactrl_reg, host->base + MMCIDATACTRL);
1769 writel(host->pwr_reg, host->base + MMCIPOWER);
1770 }
1771 writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1772 mmci_reg_delay(host);
1773
1774 spin_unlock_irqrestore(&host->lock, flags);
1775 }
1776
1777 static int mmci_runtime_suspend(struct device *dev)
1778 {
1779 struct amba_device *adev = to_amba_device(dev);
1780 struct mmc_host *mmc = amba_get_drvdata(adev);
1781
1782 if (mmc) {
1783 struct mmci_host *host = mmc_priv(mmc);
1784 pinctrl_pm_select_sleep_state(dev);
1785 mmci_save(host);
1786 clk_disable_unprepare(host->clk);
1787 }
1788
1789 return 0;
1790 }
1791
1792 static int mmci_runtime_resume(struct device *dev)
1793 {
1794 struct amba_device *adev = to_amba_device(dev);
1795 struct mmc_host *mmc = amba_get_drvdata(adev);
1796
1797 if (mmc) {
1798 struct mmci_host *host = mmc_priv(mmc);
1799 clk_prepare_enable(host->clk);
1800 mmci_restore(host);
1801 pinctrl_pm_select_default_state(dev);
1802 }
1803
1804 return 0;
1805 }
1806 #endif
1807
1808 static const struct dev_pm_ops mmci_dev_pm_ops = {
1809 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1810 pm_runtime_force_resume)
1811 SET_PM_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
1812 };
1813
1814 static struct amba_id mmci_ids[] = {
1815 {
1816 .id = 0x00041180,
1817 .mask = 0xff0fffff,
1818 .data = &variant_arm,
1819 },
1820 {
1821 .id = 0x01041180,
1822 .mask = 0xff0fffff,
1823 .data = &variant_arm_extended_fifo,
1824 },
1825 {
1826 .id = 0x02041180,
1827 .mask = 0xff0fffff,
1828 .data = &variant_arm_extended_fifo_hwfc,
1829 },
1830 {
1831 .id = 0x00041181,
1832 .mask = 0x000fffff,
1833 .data = &variant_arm,
1834 },
1835 /* ST Micro variants */
1836 {
1837 .id = 0x00180180,
1838 .mask = 0x00ffffff,
1839 .data = &variant_u300,
1840 },
1841 {
1842 .id = 0x10180180,
1843 .mask = 0xf0ffffff,
1844 .data = &variant_nomadik,
1845 },
1846 {
1847 .id = 0x00280180,
1848 .mask = 0x00ffffff,
1849 .data = &variant_u300,
1850 },
1851 {
1852 .id = 0x00480180,
1853 .mask = 0xf0ffffff,
1854 .data = &variant_ux500,
1855 },
1856 {
1857 .id = 0x10480180,
1858 .mask = 0xf0ffffff,
1859 .data = &variant_ux500v2,
1860 },
1861 /* Qualcomm variants */
1862 {
1863 .id = 0x00051180,
1864 .mask = 0x000fffff,
1865 .data = &variant_qcom,
1866 },
1867 { 0, 0 },
1868 };
1869
1870 MODULE_DEVICE_TABLE(amba, mmci_ids);
1871
1872 static struct amba_driver mmci_driver = {
1873 .drv = {
1874 .name = DRIVER_NAME,
1875 .pm = &mmci_dev_pm_ops,
1876 },
1877 .probe = mmci_probe,
1878 .remove = mmci_remove,
1879 .id_table = mmci_ids,
1880 };
1881
1882 module_amba_driver(mmci_driver);
1883
1884 module_param(fmax, uint, 0444);
1885
1886 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1887 MODULE_LICENSE("GPL");
This page took 0.072244 seconds and 6 git commands to generate.