Merge branch 'next' of git://git.infradead.org/users/vkoul/slave-dma
[deliverable/linux.git] / drivers / mmc / host / sh_mmcif.c
1 /*
2 * MMCIF eMMC driver.
3 *
4 * Copyright (C) 2010 Renesas Solutions Corp.
5 * Yusuke Goda <yusuke.goda.sx@renesas.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License.
10 *
11 *
12 * TODO
13 * 1. DMA
14 * 2. Power management
15 * 3. Handle MMC errors better
16 *
17 */
18
19 /*
20 * The MMCIF driver is now processing MMC requests asynchronously, according
21 * to the Linux MMC API requirement.
22 *
23 * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
24 * data, and optional stop. To achieve asynchronous processing each of these
25 * stages is split into two halves: a top and a bottom half. The top half
26 * initialises the hardware, installs a timeout handler to handle completion
27 * timeouts, and returns. In case of the command stage this immediately returns
28 * control to the caller, leaving all further processing to run asynchronously.
29 * All further request processing is performed by the bottom halves.
30 *
31 * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
32 * thread, a DMA completion callback, if DMA is used, a timeout work, and
33 * request- and stage-specific handler methods.
34 *
35 * Each bottom half run begins with either a hardware interrupt, a DMA callback
36 * invocation, or a timeout work run. In case of an error or a successful
37 * processing completion, the MMC core is informed and the request processing is
38 * finished. In case processing has to continue, i.e., if data has to be read
39 * from or written to the card, or if a stop command has to be sent, the next
40 * top half is called, which performs the necessary hardware handling and
41 * reschedules the timeout work. This returns the driver state machine into the
42 * bottom half waiting state.
43 */
44
45 #include <linux/bitops.h>
46 #include <linux/clk.h>
47 #include <linux/completion.h>
48 #include <linux/delay.h>
49 #include <linux/dma-mapping.h>
50 #include <linux/dmaengine.h>
51 #include <linux/mmc/card.h>
52 #include <linux/mmc/core.h>
53 #include <linux/mmc/host.h>
54 #include <linux/mmc/mmc.h>
55 #include <linux/mmc/sdio.h>
56 #include <linux/mmc/sh_mmcif.h>
57 #include <linux/mmc/slot-gpio.h>
58 #include <linux/mod_devicetable.h>
59 #include <linux/pagemap.h>
60 #include <linux/platform_device.h>
61 #include <linux/pm_qos.h>
62 #include <linux/pm_runtime.h>
63 #include <linux/spinlock.h>
64 #include <linux/module.h>
65
66 #define DRIVER_NAME "sh_mmcif"
67 #define DRIVER_VERSION "2010-04-28"
68
69 /* CE_CMD_SET */
70 #define CMD_MASK 0x3f000000
71 #define CMD_SET_RTYP_NO ((0 << 23) | (0 << 22))
72 #define CMD_SET_RTYP_6B ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
73 #define CMD_SET_RTYP_17B ((1 << 23) | (0 << 22)) /* R2 */
74 #define CMD_SET_RBSY (1 << 21) /* R1b */
75 #define CMD_SET_CCSEN (1 << 20)
76 #define CMD_SET_WDAT (1 << 19) /* 1: on data, 0: no data */
77 #define CMD_SET_DWEN (1 << 18) /* 1: write, 0: read */
78 #define CMD_SET_CMLTE (1 << 17) /* 1: multi block trans, 0: single */
79 #define CMD_SET_CMD12EN (1 << 16) /* 1: CMD12 auto issue */
80 #define CMD_SET_RIDXC_INDEX ((0 << 15) | (0 << 14)) /* index check */
81 #define CMD_SET_RIDXC_BITS ((0 << 15) | (1 << 14)) /* check bits check */
82 #define CMD_SET_RIDXC_NO ((1 << 15) | (0 << 14)) /* no check */
83 #define CMD_SET_CRC7C ((0 << 13) | (0 << 12)) /* CRC7 check*/
84 #define CMD_SET_CRC7C_BITS ((0 << 13) | (1 << 12)) /* check bits check*/
85 #define CMD_SET_CRC7C_INTERNAL ((1 << 13) | (0 << 12)) /* internal CRC7 check*/
86 #define CMD_SET_CRC16C (1 << 10) /* 0: CRC16 check*/
87 #define CMD_SET_CRCSTE (1 << 8) /* 1: not receive CRC status */
88 #define CMD_SET_TBIT (1 << 7) /* 1: tran mission bit "Low" */
89 #define CMD_SET_OPDM (1 << 6) /* 1: open/drain */
90 #define CMD_SET_CCSH (1 << 5)
91 #define CMD_SET_DATW_1 ((0 << 1) | (0 << 0)) /* 1bit */
92 #define CMD_SET_DATW_4 ((0 << 1) | (1 << 0)) /* 4bit */
93 #define CMD_SET_DATW_8 ((1 << 1) | (0 << 0)) /* 8bit */
94
95 /* CE_CMD_CTRL */
96 #define CMD_CTRL_BREAK (1 << 0)
97
98 /* CE_BLOCK_SET */
99 #define BLOCK_SIZE_MASK 0x0000ffff
100
101 /* CE_INT */
102 #define INT_CCSDE (1 << 29)
103 #define INT_CMD12DRE (1 << 26)
104 #define INT_CMD12RBE (1 << 25)
105 #define INT_CMD12CRE (1 << 24)
106 #define INT_DTRANE (1 << 23)
107 #define INT_BUFRE (1 << 22)
108 #define INT_BUFWEN (1 << 21)
109 #define INT_BUFREN (1 << 20)
110 #define INT_CCSRCV (1 << 19)
111 #define INT_RBSYE (1 << 17)
112 #define INT_CRSPE (1 << 16)
113 #define INT_CMDVIO (1 << 15)
114 #define INT_BUFVIO (1 << 14)
115 #define INT_WDATERR (1 << 11)
116 #define INT_RDATERR (1 << 10)
117 #define INT_RIDXERR (1 << 9)
118 #define INT_RSPERR (1 << 8)
119 #define INT_CCSTO (1 << 5)
120 #define INT_CRCSTO (1 << 4)
121 #define INT_WDATTO (1 << 3)
122 #define INT_RDATTO (1 << 2)
123 #define INT_RBSYTO (1 << 1)
124 #define INT_RSPTO (1 << 0)
125 #define INT_ERR_STS (INT_CMDVIO | INT_BUFVIO | INT_WDATERR | \
126 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
127 INT_CCSTO | INT_CRCSTO | INT_WDATTO | \
128 INT_RDATTO | INT_RBSYTO | INT_RSPTO)
129
130 /* CE_INT_MASK */
131 #define MASK_ALL 0x00000000
132 #define MASK_MCCSDE (1 << 29)
133 #define MASK_MCMD12DRE (1 << 26)
134 #define MASK_MCMD12RBE (1 << 25)
135 #define MASK_MCMD12CRE (1 << 24)
136 #define MASK_MDTRANE (1 << 23)
137 #define MASK_MBUFRE (1 << 22)
138 #define MASK_MBUFWEN (1 << 21)
139 #define MASK_MBUFREN (1 << 20)
140 #define MASK_MCCSRCV (1 << 19)
141 #define MASK_MRBSYE (1 << 17)
142 #define MASK_MCRSPE (1 << 16)
143 #define MASK_MCMDVIO (1 << 15)
144 #define MASK_MBUFVIO (1 << 14)
145 #define MASK_MWDATERR (1 << 11)
146 #define MASK_MRDATERR (1 << 10)
147 #define MASK_MRIDXERR (1 << 9)
148 #define MASK_MRSPERR (1 << 8)
149 #define MASK_MCCSTO (1 << 5)
150 #define MASK_MCRCSTO (1 << 4)
151 #define MASK_MWDATTO (1 << 3)
152 #define MASK_MRDATTO (1 << 2)
153 #define MASK_MRBSYTO (1 << 1)
154 #define MASK_MRSPTO (1 << 0)
155
156 #define MASK_START_CMD (MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
157 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
158 MASK_MCCSTO | MASK_MCRCSTO | MASK_MWDATTO | \
159 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
160
161 /* CE_HOST_STS1 */
162 #define STS1_CMDSEQ (1 << 31)
163
164 /* CE_HOST_STS2 */
165 #define STS2_CRCSTE (1 << 31)
166 #define STS2_CRC16E (1 << 30)
167 #define STS2_AC12CRCE (1 << 29)
168 #define STS2_RSPCRC7E (1 << 28)
169 #define STS2_CRCSTEBE (1 << 27)
170 #define STS2_RDATEBE (1 << 26)
171 #define STS2_AC12REBE (1 << 25)
172 #define STS2_RSPEBE (1 << 24)
173 #define STS2_AC12IDXE (1 << 23)
174 #define STS2_RSPIDXE (1 << 22)
175 #define STS2_CCSTO (1 << 15)
176 #define STS2_RDATTO (1 << 14)
177 #define STS2_DATBSYTO (1 << 13)
178 #define STS2_CRCSTTO (1 << 12)
179 #define STS2_AC12BSYTO (1 << 11)
180 #define STS2_RSPBSYTO (1 << 10)
181 #define STS2_AC12RSPTO (1 << 9)
182 #define STS2_RSPTO (1 << 8)
183 #define STS2_CRC_ERR (STS2_CRCSTE | STS2_CRC16E | \
184 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
185 #define STS2_TIMEOUT_ERR (STS2_CCSTO | STS2_RDATTO | \
186 STS2_DATBSYTO | STS2_CRCSTTO | \
187 STS2_AC12BSYTO | STS2_RSPBSYTO | \
188 STS2_AC12RSPTO | STS2_RSPTO)
189
190 #define CLKDEV_EMMC_DATA 52000000 /* 52MHz */
191 #define CLKDEV_MMC_DATA 20000000 /* 20MHz */
192 #define CLKDEV_INIT 400000 /* 400 KHz */
193
194 enum mmcif_state {
195 STATE_IDLE,
196 STATE_REQUEST,
197 STATE_IOS,
198 };
199
200 enum mmcif_wait_for {
201 MMCIF_WAIT_FOR_REQUEST,
202 MMCIF_WAIT_FOR_CMD,
203 MMCIF_WAIT_FOR_MREAD,
204 MMCIF_WAIT_FOR_MWRITE,
205 MMCIF_WAIT_FOR_READ,
206 MMCIF_WAIT_FOR_WRITE,
207 MMCIF_WAIT_FOR_READ_END,
208 MMCIF_WAIT_FOR_WRITE_END,
209 MMCIF_WAIT_FOR_STOP,
210 };
211
212 struct sh_mmcif_host {
213 struct mmc_host *mmc;
214 struct mmc_request *mrq;
215 struct platform_device *pd;
216 struct clk *hclk;
217 unsigned int clk;
218 int bus_width;
219 bool sd_error;
220 bool dying;
221 long timeout;
222 void __iomem *addr;
223 u32 *pio_ptr;
224 spinlock_t lock; /* protect sh_mmcif_host::state */
225 enum mmcif_state state;
226 enum mmcif_wait_for wait_for;
227 struct delayed_work timeout_work;
228 size_t blocksize;
229 int sg_idx;
230 int sg_blkidx;
231 bool power;
232 bool card_present;
233
234 /* DMA support */
235 struct dma_chan *chan_rx;
236 struct dma_chan *chan_tx;
237 struct completion dma_complete;
238 bool dma_active;
239 };
240
241 static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
242 unsigned int reg, u32 val)
243 {
244 writel(val | readl(host->addr + reg), host->addr + reg);
245 }
246
247 static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
248 unsigned int reg, u32 val)
249 {
250 writel(~val & readl(host->addr + reg), host->addr + reg);
251 }
252
253 static void mmcif_dma_complete(void *arg)
254 {
255 struct sh_mmcif_host *host = arg;
256 struct mmc_data *data = host->mrq->data;
257
258 dev_dbg(&host->pd->dev, "Command completed\n");
259
260 if (WARN(!data, "%s: NULL data in DMA completion!\n",
261 dev_name(&host->pd->dev)))
262 return;
263
264 if (data->flags & MMC_DATA_READ)
265 dma_unmap_sg(host->chan_rx->device->dev,
266 data->sg, data->sg_len,
267 DMA_FROM_DEVICE);
268 else
269 dma_unmap_sg(host->chan_tx->device->dev,
270 data->sg, data->sg_len,
271 DMA_TO_DEVICE);
272
273 complete(&host->dma_complete);
274 }
275
276 static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
277 {
278 struct mmc_data *data = host->mrq->data;
279 struct scatterlist *sg = data->sg;
280 struct dma_async_tx_descriptor *desc = NULL;
281 struct dma_chan *chan = host->chan_rx;
282 dma_cookie_t cookie = -EINVAL;
283 int ret;
284
285 ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
286 DMA_FROM_DEVICE);
287 if (ret > 0) {
288 host->dma_active = true;
289 desc = dmaengine_prep_slave_sg(chan, sg, ret,
290 DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
291 }
292
293 if (desc) {
294 desc->callback = mmcif_dma_complete;
295 desc->callback_param = host;
296 cookie = dmaengine_submit(desc);
297 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
298 dma_async_issue_pending(chan);
299 }
300 dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
301 __func__, data->sg_len, ret, cookie);
302
303 if (!desc) {
304 /* DMA failed, fall back to PIO */
305 if (ret >= 0)
306 ret = -EIO;
307 host->chan_rx = NULL;
308 host->dma_active = false;
309 dma_release_channel(chan);
310 /* Free the Tx channel too */
311 chan = host->chan_tx;
312 if (chan) {
313 host->chan_tx = NULL;
314 dma_release_channel(chan);
315 }
316 dev_warn(&host->pd->dev,
317 "DMA failed: %d, falling back to PIO\n", ret);
318 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
319 }
320
321 dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
322 desc, cookie, data->sg_len);
323 }
324
325 static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
326 {
327 struct mmc_data *data = host->mrq->data;
328 struct scatterlist *sg = data->sg;
329 struct dma_async_tx_descriptor *desc = NULL;
330 struct dma_chan *chan = host->chan_tx;
331 dma_cookie_t cookie = -EINVAL;
332 int ret;
333
334 ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
335 DMA_TO_DEVICE);
336 if (ret > 0) {
337 host->dma_active = true;
338 desc = dmaengine_prep_slave_sg(chan, sg, ret,
339 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
340 }
341
342 if (desc) {
343 desc->callback = mmcif_dma_complete;
344 desc->callback_param = host;
345 cookie = dmaengine_submit(desc);
346 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
347 dma_async_issue_pending(chan);
348 }
349 dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
350 __func__, data->sg_len, ret, cookie);
351
352 if (!desc) {
353 /* DMA failed, fall back to PIO */
354 if (ret >= 0)
355 ret = -EIO;
356 host->chan_tx = NULL;
357 host->dma_active = false;
358 dma_release_channel(chan);
359 /* Free the Rx channel too */
360 chan = host->chan_rx;
361 if (chan) {
362 host->chan_rx = NULL;
363 dma_release_channel(chan);
364 }
365 dev_warn(&host->pd->dev,
366 "DMA failed: %d, falling back to PIO\n", ret);
367 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
368 }
369
370 dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d\n", __func__,
371 desc, cookie);
372 }
373
374 static void sh_mmcif_request_dma(struct sh_mmcif_host *host,
375 struct sh_mmcif_plat_data *pdata)
376 {
377 struct resource *res = platform_get_resource(host->pd, IORESOURCE_MEM, 0);
378 struct dma_slave_config cfg;
379 dma_cap_mask_t mask;
380 int ret;
381
382 host->dma_active = false;
383
384 if (!pdata)
385 return;
386
387 if (pdata->slave_id_tx <= 0 || pdata->slave_id_rx <= 0)
388 return;
389
390 /* We can only either use DMA for both Tx and Rx or not use it at all */
391 dma_cap_zero(mask);
392 dma_cap_set(DMA_SLAVE, mask);
393
394 host->chan_tx = dma_request_channel(mask, shdma_chan_filter,
395 (void *)pdata->slave_id_tx);
396 dev_dbg(&host->pd->dev, "%s: TX: got channel %p\n", __func__,
397 host->chan_tx);
398
399 if (!host->chan_tx)
400 return;
401
402 cfg.slave_id = pdata->slave_id_tx;
403 cfg.direction = DMA_MEM_TO_DEV;
404 cfg.dst_addr = res->start + MMCIF_CE_DATA;
405 cfg.src_addr = 0;
406 ret = dmaengine_slave_config(host->chan_tx, &cfg);
407 if (ret < 0)
408 goto ecfgtx;
409
410 host->chan_rx = dma_request_channel(mask, shdma_chan_filter,
411 (void *)pdata->slave_id_rx);
412 dev_dbg(&host->pd->dev, "%s: RX: got channel %p\n", __func__,
413 host->chan_rx);
414
415 if (!host->chan_rx)
416 goto erqrx;
417
418 cfg.slave_id = pdata->slave_id_rx;
419 cfg.direction = DMA_DEV_TO_MEM;
420 cfg.dst_addr = 0;
421 cfg.src_addr = res->start + MMCIF_CE_DATA;
422 ret = dmaengine_slave_config(host->chan_rx, &cfg);
423 if (ret < 0)
424 goto ecfgrx;
425
426 init_completion(&host->dma_complete);
427
428 return;
429
430 ecfgrx:
431 dma_release_channel(host->chan_rx);
432 host->chan_rx = NULL;
433 erqrx:
434 ecfgtx:
435 dma_release_channel(host->chan_tx);
436 host->chan_tx = NULL;
437 }
438
439 static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
440 {
441 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
442 /* Descriptors are freed automatically */
443 if (host->chan_tx) {
444 struct dma_chan *chan = host->chan_tx;
445 host->chan_tx = NULL;
446 dma_release_channel(chan);
447 }
448 if (host->chan_rx) {
449 struct dma_chan *chan = host->chan_rx;
450 host->chan_rx = NULL;
451 dma_release_channel(chan);
452 }
453
454 host->dma_active = false;
455 }
456
457 static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
458 {
459 struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
460 bool sup_pclk = p ? p->sup_pclk : false;
461
462 sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
463 sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
464
465 if (!clk)
466 return;
467 if (sup_pclk && clk == host->clk)
468 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_SUP_PCLK);
469 else
470 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR &
471 ((fls(DIV_ROUND_UP(host->clk,
472 clk) - 1) - 1) << 16));
473
474 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
475 }
476
477 static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
478 {
479 u32 tmp;
480
481 tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
482
483 sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
484 sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
485 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
486 SRSPTO_256 | SRBSYTO_29 | SRWDTO_29 | SCCSTO_29);
487 /* byte swap on */
488 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
489 }
490
491 static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
492 {
493 u32 state1, state2;
494 int ret, timeout;
495
496 host->sd_error = false;
497
498 state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
499 state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
500 dev_dbg(&host->pd->dev, "ERR HOST_STS1 = %08x\n", state1);
501 dev_dbg(&host->pd->dev, "ERR HOST_STS2 = %08x\n", state2);
502
503 if (state1 & STS1_CMDSEQ) {
504 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
505 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
506 for (timeout = 10000000; timeout; timeout--) {
507 if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
508 & STS1_CMDSEQ))
509 break;
510 mdelay(1);
511 }
512 if (!timeout) {
513 dev_err(&host->pd->dev,
514 "Forced end of command sequence timeout err\n");
515 return -EIO;
516 }
517 sh_mmcif_sync_reset(host);
518 dev_dbg(&host->pd->dev, "Forced end of command sequence\n");
519 return -EIO;
520 }
521
522 if (state2 & STS2_CRC_ERR) {
523 dev_dbg(&host->pd->dev, ": CRC error\n");
524 ret = -EIO;
525 } else if (state2 & STS2_TIMEOUT_ERR) {
526 dev_dbg(&host->pd->dev, ": Timeout\n");
527 ret = -ETIMEDOUT;
528 } else {
529 dev_dbg(&host->pd->dev, ": End/Index error\n");
530 ret = -EIO;
531 }
532 return ret;
533 }
534
535 static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
536 {
537 struct mmc_data *data = host->mrq->data;
538
539 host->sg_blkidx += host->blocksize;
540
541 /* data->sg->length must be a multiple of host->blocksize? */
542 BUG_ON(host->sg_blkidx > data->sg->length);
543
544 if (host->sg_blkidx == data->sg->length) {
545 host->sg_blkidx = 0;
546 if (++host->sg_idx < data->sg_len)
547 host->pio_ptr = sg_virt(++data->sg);
548 } else {
549 host->pio_ptr = p;
550 }
551
552 if (host->sg_idx == data->sg_len)
553 return false;
554
555 return true;
556 }
557
558 static void sh_mmcif_single_read(struct sh_mmcif_host *host,
559 struct mmc_request *mrq)
560 {
561 host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
562 BLOCK_SIZE_MASK) + 3;
563
564 host->wait_for = MMCIF_WAIT_FOR_READ;
565 schedule_delayed_work(&host->timeout_work, host->timeout);
566
567 /* buf read enable */
568 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
569 }
570
571 static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
572 {
573 struct mmc_data *data = host->mrq->data;
574 u32 *p = sg_virt(data->sg);
575 int i;
576
577 if (host->sd_error) {
578 data->error = sh_mmcif_error_manage(host);
579 return false;
580 }
581
582 for (i = 0; i < host->blocksize / 4; i++)
583 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
584
585 /* buffer read end */
586 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
587 host->wait_for = MMCIF_WAIT_FOR_READ_END;
588
589 return true;
590 }
591
592 static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
593 struct mmc_request *mrq)
594 {
595 struct mmc_data *data = mrq->data;
596
597 if (!data->sg_len || !data->sg->length)
598 return;
599
600 host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
601 BLOCK_SIZE_MASK;
602
603 host->wait_for = MMCIF_WAIT_FOR_MREAD;
604 host->sg_idx = 0;
605 host->sg_blkidx = 0;
606 host->pio_ptr = sg_virt(data->sg);
607 schedule_delayed_work(&host->timeout_work, host->timeout);
608 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
609 }
610
611 static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
612 {
613 struct mmc_data *data = host->mrq->data;
614 u32 *p = host->pio_ptr;
615 int i;
616
617 if (host->sd_error) {
618 data->error = sh_mmcif_error_manage(host);
619 return false;
620 }
621
622 BUG_ON(!data->sg->length);
623
624 for (i = 0; i < host->blocksize / 4; i++)
625 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
626
627 if (!sh_mmcif_next_block(host, p))
628 return false;
629
630 schedule_delayed_work(&host->timeout_work, host->timeout);
631 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
632
633 return true;
634 }
635
636 static void sh_mmcif_single_write(struct sh_mmcif_host *host,
637 struct mmc_request *mrq)
638 {
639 host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
640 BLOCK_SIZE_MASK) + 3;
641
642 host->wait_for = MMCIF_WAIT_FOR_WRITE;
643 schedule_delayed_work(&host->timeout_work, host->timeout);
644
645 /* buf write enable */
646 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
647 }
648
649 static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
650 {
651 struct mmc_data *data = host->mrq->data;
652 u32 *p = sg_virt(data->sg);
653 int i;
654
655 if (host->sd_error) {
656 data->error = sh_mmcif_error_manage(host);
657 return false;
658 }
659
660 for (i = 0; i < host->blocksize / 4; i++)
661 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
662
663 /* buffer write end */
664 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
665 host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
666
667 return true;
668 }
669
670 static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
671 struct mmc_request *mrq)
672 {
673 struct mmc_data *data = mrq->data;
674
675 if (!data->sg_len || !data->sg->length)
676 return;
677
678 host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
679 BLOCK_SIZE_MASK;
680
681 host->wait_for = MMCIF_WAIT_FOR_MWRITE;
682 host->sg_idx = 0;
683 host->sg_blkidx = 0;
684 host->pio_ptr = sg_virt(data->sg);
685 schedule_delayed_work(&host->timeout_work, host->timeout);
686 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
687 }
688
689 static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
690 {
691 struct mmc_data *data = host->mrq->data;
692 u32 *p = host->pio_ptr;
693 int i;
694
695 if (host->sd_error) {
696 data->error = sh_mmcif_error_manage(host);
697 return false;
698 }
699
700 BUG_ON(!data->sg->length);
701
702 for (i = 0; i < host->blocksize / 4; i++)
703 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
704
705 if (!sh_mmcif_next_block(host, p))
706 return false;
707
708 schedule_delayed_work(&host->timeout_work, host->timeout);
709 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
710
711 return true;
712 }
713
714 static void sh_mmcif_get_response(struct sh_mmcif_host *host,
715 struct mmc_command *cmd)
716 {
717 if (cmd->flags & MMC_RSP_136) {
718 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
719 cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
720 cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
721 cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
722 } else
723 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
724 }
725
726 static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
727 struct mmc_command *cmd)
728 {
729 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
730 }
731
732 static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
733 struct mmc_request *mrq)
734 {
735 struct mmc_data *data = mrq->data;
736 struct mmc_command *cmd = mrq->cmd;
737 u32 opc = cmd->opcode;
738 u32 tmp = 0;
739
740 /* Response Type check */
741 switch (mmc_resp_type(cmd)) {
742 case MMC_RSP_NONE:
743 tmp |= CMD_SET_RTYP_NO;
744 break;
745 case MMC_RSP_R1:
746 case MMC_RSP_R1B:
747 case MMC_RSP_R3:
748 tmp |= CMD_SET_RTYP_6B;
749 break;
750 case MMC_RSP_R2:
751 tmp |= CMD_SET_RTYP_17B;
752 break;
753 default:
754 dev_err(&host->pd->dev, "Unsupported response type.\n");
755 break;
756 }
757 switch (opc) {
758 /* RBSY */
759 case MMC_SWITCH:
760 case MMC_STOP_TRANSMISSION:
761 case MMC_SET_WRITE_PROT:
762 case MMC_CLR_WRITE_PROT:
763 case MMC_ERASE:
764 tmp |= CMD_SET_RBSY;
765 break;
766 }
767 /* WDAT / DATW */
768 if (data) {
769 tmp |= CMD_SET_WDAT;
770 switch (host->bus_width) {
771 case MMC_BUS_WIDTH_1:
772 tmp |= CMD_SET_DATW_1;
773 break;
774 case MMC_BUS_WIDTH_4:
775 tmp |= CMD_SET_DATW_4;
776 break;
777 case MMC_BUS_WIDTH_8:
778 tmp |= CMD_SET_DATW_8;
779 break;
780 default:
781 dev_err(&host->pd->dev, "Unsupported bus width.\n");
782 break;
783 }
784 }
785 /* DWEN */
786 if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
787 tmp |= CMD_SET_DWEN;
788 /* CMLTE/CMD12EN */
789 if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
790 tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
791 sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
792 data->blocks << 16);
793 }
794 /* RIDXC[1:0] check bits */
795 if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
796 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
797 tmp |= CMD_SET_RIDXC_BITS;
798 /* RCRC7C[1:0] check bits */
799 if (opc == MMC_SEND_OP_COND)
800 tmp |= CMD_SET_CRC7C_BITS;
801 /* RCRC7C[1:0] internal CRC7 */
802 if (opc == MMC_ALL_SEND_CID ||
803 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
804 tmp |= CMD_SET_CRC7C_INTERNAL;
805
806 return (opc << 24) | tmp;
807 }
808
809 static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
810 struct mmc_request *mrq, u32 opc)
811 {
812 switch (opc) {
813 case MMC_READ_MULTIPLE_BLOCK:
814 sh_mmcif_multi_read(host, mrq);
815 return 0;
816 case MMC_WRITE_MULTIPLE_BLOCK:
817 sh_mmcif_multi_write(host, mrq);
818 return 0;
819 case MMC_WRITE_BLOCK:
820 sh_mmcif_single_write(host, mrq);
821 return 0;
822 case MMC_READ_SINGLE_BLOCK:
823 case MMC_SEND_EXT_CSD:
824 sh_mmcif_single_read(host, mrq);
825 return 0;
826 default:
827 dev_err(&host->pd->dev, "UNSUPPORTED CMD = d'%08d\n", opc);
828 return -EINVAL;
829 }
830 }
831
832 static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
833 struct mmc_request *mrq)
834 {
835 struct mmc_command *cmd = mrq->cmd;
836 u32 opc = cmd->opcode;
837 u32 mask;
838
839 switch (opc) {
840 /* response busy check */
841 case MMC_SWITCH:
842 case MMC_STOP_TRANSMISSION:
843 case MMC_SET_WRITE_PROT:
844 case MMC_CLR_WRITE_PROT:
845 case MMC_ERASE:
846 mask = MASK_START_CMD | MASK_MRBSYE;
847 break;
848 default:
849 mask = MASK_START_CMD | MASK_MCRSPE;
850 break;
851 }
852
853 if (mrq->data) {
854 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
855 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
856 mrq->data->blksz);
857 }
858 opc = sh_mmcif_set_cmd(host, mrq);
859
860 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
861 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
862 /* set arg */
863 sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
864 /* set cmd */
865 sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
866
867 host->wait_for = MMCIF_WAIT_FOR_CMD;
868 schedule_delayed_work(&host->timeout_work, host->timeout);
869 }
870
871 static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
872 struct mmc_request *mrq)
873 {
874 switch (mrq->cmd->opcode) {
875 case MMC_READ_MULTIPLE_BLOCK:
876 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
877 break;
878 case MMC_WRITE_MULTIPLE_BLOCK:
879 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
880 break;
881 default:
882 dev_err(&host->pd->dev, "unsupported stop cmd\n");
883 mrq->stop->error = sh_mmcif_error_manage(host);
884 return;
885 }
886
887 host->wait_for = MMCIF_WAIT_FOR_STOP;
888 schedule_delayed_work(&host->timeout_work, host->timeout);
889 }
890
891 static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
892 {
893 struct sh_mmcif_host *host = mmc_priv(mmc);
894 unsigned long flags;
895
896 spin_lock_irqsave(&host->lock, flags);
897 if (host->state != STATE_IDLE) {
898 spin_unlock_irqrestore(&host->lock, flags);
899 mrq->cmd->error = -EAGAIN;
900 mmc_request_done(mmc, mrq);
901 return;
902 }
903
904 host->state = STATE_REQUEST;
905 spin_unlock_irqrestore(&host->lock, flags);
906
907 switch (mrq->cmd->opcode) {
908 /* MMCIF does not support SD/SDIO command */
909 case MMC_SLEEP_AWAKE: /* = SD_IO_SEND_OP_COND (5) */
910 case MMC_SEND_EXT_CSD: /* = SD_SEND_IF_COND (8) */
911 if ((mrq->cmd->flags & MMC_CMD_MASK) != MMC_CMD_BCR)
912 break;
913 case MMC_APP_CMD:
914 host->state = STATE_IDLE;
915 mrq->cmd->error = -ETIMEDOUT;
916 mmc_request_done(mmc, mrq);
917 return;
918 default:
919 break;
920 }
921
922 host->mrq = mrq;
923
924 sh_mmcif_start_cmd(host, mrq);
925 }
926
927 static int sh_mmcif_clk_update(struct sh_mmcif_host *host)
928 {
929 int ret = clk_enable(host->hclk);
930
931 if (!ret) {
932 host->clk = clk_get_rate(host->hclk);
933 host->mmc->f_max = host->clk / 2;
934 host->mmc->f_min = host->clk / 512;
935 }
936
937 return ret;
938 }
939
940 static void sh_mmcif_set_power(struct sh_mmcif_host *host, struct mmc_ios *ios)
941 {
942 struct sh_mmcif_plat_data *pd = host->pd->dev.platform_data;
943 struct mmc_host *mmc = host->mmc;
944
945 if (pd && pd->set_pwr)
946 pd->set_pwr(host->pd, ios->power_mode != MMC_POWER_OFF);
947 if (!IS_ERR(mmc->supply.vmmc))
948 /* Errors ignored... */
949 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
950 ios->power_mode ? ios->vdd : 0);
951 }
952
953 static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
954 {
955 struct sh_mmcif_host *host = mmc_priv(mmc);
956 unsigned long flags;
957
958 spin_lock_irqsave(&host->lock, flags);
959 if (host->state != STATE_IDLE) {
960 spin_unlock_irqrestore(&host->lock, flags);
961 return;
962 }
963
964 host->state = STATE_IOS;
965 spin_unlock_irqrestore(&host->lock, flags);
966
967 if (ios->power_mode == MMC_POWER_UP) {
968 if (!host->card_present) {
969 /* See if we also get DMA */
970 sh_mmcif_request_dma(host, host->pd->dev.platform_data);
971 host->card_present = true;
972 }
973 sh_mmcif_set_power(host, ios);
974 } else if (ios->power_mode == MMC_POWER_OFF || !ios->clock) {
975 /* clock stop */
976 sh_mmcif_clock_control(host, 0);
977 if (ios->power_mode == MMC_POWER_OFF) {
978 if (host->card_present) {
979 sh_mmcif_release_dma(host);
980 host->card_present = false;
981 }
982 }
983 if (host->power) {
984 pm_runtime_put(&host->pd->dev);
985 clk_disable(host->hclk);
986 host->power = false;
987 if (ios->power_mode == MMC_POWER_OFF)
988 sh_mmcif_set_power(host, ios);
989 }
990 host->state = STATE_IDLE;
991 return;
992 }
993
994 if (ios->clock) {
995 if (!host->power) {
996 sh_mmcif_clk_update(host);
997 pm_runtime_get_sync(&host->pd->dev);
998 host->power = true;
999 sh_mmcif_sync_reset(host);
1000 }
1001 sh_mmcif_clock_control(host, ios->clock);
1002 }
1003
1004 host->bus_width = ios->bus_width;
1005 host->state = STATE_IDLE;
1006 }
1007
1008 static int sh_mmcif_get_cd(struct mmc_host *mmc)
1009 {
1010 struct sh_mmcif_host *host = mmc_priv(mmc);
1011 struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
1012 int ret = mmc_gpio_get_cd(mmc);
1013
1014 if (ret >= 0)
1015 return ret;
1016
1017 if (!p || !p->get_cd)
1018 return -ENOSYS;
1019 else
1020 return p->get_cd(host->pd);
1021 }
1022
1023 static struct mmc_host_ops sh_mmcif_ops = {
1024 .request = sh_mmcif_request,
1025 .set_ios = sh_mmcif_set_ios,
1026 .get_cd = sh_mmcif_get_cd,
1027 };
1028
1029 static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
1030 {
1031 struct mmc_command *cmd = host->mrq->cmd;
1032 struct mmc_data *data = host->mrq->data;
1033 long time;
1034
1035 if (host->sd_error) {
1036 switch (cmd->opcode) {
1037 case MMC_ALL_SEND_CID:
1038 case MMC_SELECT_CARD:
1039 case MMC_APP_CMD:
1040 cmd->error = -ETIMEDOUT;
1041 host->sd_error = false;
1042 break;
1043 default:
1044 cmd->error = sh_mmcif_error_manage(host);
1045 dev_dbg(&host->pd->dev, "Cmd(d'%d) error %d\n",
1046 cmd->opcode, cmd->error);
1047 break;
1048 }
1049 return false;
1050 }
1051 if (!(cmd->flags & MMC_RSP_PRESENT)) {
1052 cmd->error = 0;
1053 return false;
1054 }
1055
1056 sh_mmcif_get_response(host, cmd);
1057
1058 if (!data)
1059 return false;
1060
1061 if (data->flags & MMC_DATA_READ) {
1062 if (host->chan_rx)
1063 sh_mmcif_start_dma_rx(host);
1064 } else {
1065 if (host->chan_tx)
1066 sh_mmcif_start_dma_tx(host);
1067 }
1068
1069 if (!host->dma_active) {
1070 data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1071 if (!data->error)
1072 return true;
1073 return false;
1074 }
1075
1076 /* Running in the IRQ thread, can sleep */
1077 time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1078 host->timeout);
1079 if (host->sd_error) {
1080 dev_err(host->mmc->parent,
1081 "Error IRQ while waiting for DMA completion!\n");
1082 /* Woken up by an error IRQ: abort DMA */
1083 if (data->flags & MMC_DATA_READ)
1084 dmaengine_terminate_all(host->chan_rx);
1085 else
1086 dmaengine_terminate_all(host->chan_tx);
1087 data->error = sh_mmcif_error_manage(host);
1088 } else if (!time) {
1089 data->error = -ETIMEDOUT;
1090 } else if (time < 0) {
1091 data->error = time;
1092 }
1093 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1094 BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1095 host->dma_active = false;
1096
1097 if (data->error)
1098 data->bytes_xfered = 0;
1099
1100 return false;
1101 }
1102
1103 static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1104 {
1105 struct sh_mmcif_host *host = dev_id;
1106 struct mmc_request *mrq = host->mrq;
1107 struct mmc_data *data = mrq->data;
1108
1109 cancel_delayed_work_sync(&host->timeout_work);
1110
1111 /*
1112 * All handlers return true, if processing continues, and false, if the
1113 * request has to be completed - successfully or not
1114 */
1115 switch (host->wait_for) {
1116 case MMCIF_WAIT_FOR_REQUEST:
1117 /* We're too late, the timeout has already kicked in */
1118 return IRQ_HANDLED;
1119 case MMCIF_WAIT_FOR_CMD:
1120 if (sh_mmcif_end_cmd(host))
1121 /* Wait for data */
1122 return IRQ_HANDLED;
1123 break;
1124 case MMCIF_WAIT_FOR_MREAD:
1125 if (sh_mmcif_mread_block(host))
1126 /* Wait for more data */
1127 return IRQ_HANDLED;
1128 break;
1129 case MMCIF_WAIT_FOR_READ:
1130 if (sh_mmcif_read_block(host))
1131 /* Wait for data end */
1132 return IRQ_HANDLED;
1133 break;
1134 case MMCIF_WAIT_FOR_MWRITE:
1135 if (sh_mmcif_mwrite_block(host))
1136 /* Wait data to write */
1137 return IRQ_HANDLED;
1138 break;
1139 case MMCIF_WAIT_FOR_WRITE:
1140 if (sh_mmcif_write_block(host))
1141 /* Wait for data end */
1142 return IRQ_HANDLED;
1143 break;
1144 case MMCIF_WAIT_FOR_STOP:
1145 if (host->sd_error) {
1146 mrq->stop->error = sh_mmcif_error_manage(host);
1147 break;
1148 }
1149 sh_mmcif_get_cmd12response(host, mrq->stop);
1150 mrq->stop->error = 0;
1151 break;
1152 case MMCIF_WAIT_FOR_READ_END:
1153 case MMCIF_WAIT_FOR_WRITE_END:
1154 if (host->sd_error)
1155 data->error = sh_mmcif_error_manage(host);
1156 break;
1157 default:
1158 BUG();
1159 }
1160
1161 if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1162 if (!mrq->cmd->error && data && !data->error)
1163 data->bytes_xfered =
1164 data->blocks * data->blksz;
1165
1166 if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1167 sh_mmcif_stop_cmd(host, mrq);
1168 if (!mrq->stop->error)
1169 return IRQ_HANDLED;
1170 }
1171 }
1172
1173 host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1174 host->state = STATE_IDLE;
1175 host->mrq = NULL;
1176 mmc_request_done(host->mmc, mrq);
1177
1178 return IRQ_HANDLED;
1179 }
1180
1181 static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1182 {
1183 struct sh_mmcif_host *host = dev_id;
1184 u32 state;
1185 int err = 0;
1186
1187 state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1188
1189 if (state & INT_ERR_STS) {
1190 /* error interrupts - process first */
1191 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~state);
1192 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state);
1193 err = 1;
1194 } else if (state & INT_RBSYE) {
1195 sh_mmcif_writel(host->addr, MMCIF_CE_INT,
1196 ~(INT_RBSYE | INT_CRSPE));
1197 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MRBSYE);
1198 } else if (state & INT_CRSPE) {
1199 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_CRSPE);
1200 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCRSPE);
1201 } else if (state & INT_BUFREN) {
1202 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFREN);
1203 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
1204 } else if (state & INT_BUFWEN) {
1205 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFWEN);
1206 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
1207 } else if (state & INT_CMD12DRE) {
1208 sh_mmcif_writel(host->addr, MMCIF_CE_INT,
1209 ~(INT_CMD12DRE | INT_CMD12RBE |
1210 INT_CMD12CRE | INT_BUFRE));
1211 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
1212 } else if (state & INT_BUFRE) {
1213 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFRE);
1214 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
1215 } else if (state & INT_DTRANE) {
1216 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_DTRANE);
1217 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
1218 } else if (state & INT_CMD12RBE) {
1219 sh_mmcif_writel(host->addr, MMCIF_CE_INT,
1220 ~(INT_CMD12RBE | INT_CMD12CRE));
1221 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
1222 } else {
1223 dev_dbg(&host->pd->dev, "Unsupported interrupt: 0x%x\n", state);
1224 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~state);
1225 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state);
1226 err = 1;
1227 }
1228 if (err) {
1229 host->sd_error = true;
1230 dev_dbg(&host->pd->dev, "int err state = %08x\n", state);
1231 }
1232 if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1233 if (!host->dma_active)
1234 return IRQ_WAKE_THREAD;
1235 else if (host->sd_error)
1236 mmcif_dma_complete(host);
1237 } else {
1238 dev_dbg(&host->pd->dev, "Unexpected IRQ 0x%x\n", state);
1239 }
1240
1241 return IRQ_HANDLED;
1242 }
1243
1244 static void mmcif_timeout_work(struct work_struct *work)
1245 {
1246 struct delayed_work *d = container_of(work, struct delayed_work, work);
1247 struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1248 struct mmc_request *mrq = host->mrq;
1249
1250 if (host->dying)
1251 /* Don't run after mmc_remove_host() */
1252 return;
1253
1254 /*
1255 * Handle races with cancel_delayed_work(), unless
1256 * cancel_delayed_work_sync() is used
1257 */
1258 switch (host->wait_for) {
1259 case MMCIF_WAIT_FOR_CMD:
1260 mrq->cmd->error = sh_mmcif_error_manage(host);
1261 break;
1262 case MMCIF_WAIT_FOR_STOP:
1263 mrq->stop->error = sh_mmcif_error_manage(host);
1264 break;
1265 case MMCIF_WAIT_FOR_MREAD:
1266 case MMCIF_WAIT_FOR_MWRITE:
1267 case MMCIF_WAIT_FOR_READ:
1268 case MMCIF_WAIT_FOR_WRITE:
1269 case MMCIF_WAIT_FOR_READ_END:
1270 case MMCIF_WAIT_FOR_WRITE_END:
1271 mrq->data->error = sh_mmcif_error_manage(host);
1272 break;
1273 default:
1274 BUG();
1275 }
1276
1277 host->state = STATE_IDLE;
1278 host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1279 host->mrq = NULL;
1280 mmc_request_done(host->mmc, mrq);
1281 }
1282
1283 static void sh_mmcif_init_ocr(struct sh_mmcif_host *host)
1284 {
1285 struct sh_mmcif_plat_data *pd = host->pd->dev.platform_data;
1286 struct mmc_host *mmc = host->mmc;
1287
1288 mmc_regulator_get_supply(mmc);
1289
1290 if (!pd)
1291 return;
1292
1293 if (!mmc->ocr_avail)
1294 mmc->ocr_avail = pd->ocr;
1295 else if (pd->ocr)
1296 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1297 }
1298
1299 static int __devinit sh_mmcif_probe(struct platform_device *pdev)
1300 {
1301 int ret = 0, irq[2];
1302 struct mmc_host *mmc;
1303 struct sh_mmcif_host *host;
1304 struct sh_mmcif_plat_data *pd = pdev->dev.platform_data;
1305 struct resource *res;
1306 void __iomem *reg;
1307 char clk_name[8];
1308
1309 irq[0] = platform_get_irq(pdev, 0);
1310 irq[1] = platform_get_irq(pdev, 1);
1311 if (irq[0] < 0 || irq[1] < 0) {
1312 dev_err(&pdev->dev, "Get irq error\n");
1313 return -ENXIO;
1314 }
1315 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1316 if (!res) {
1317 dev_err(&pdev->dev, "platform_get_resource error.\n");
1318 return -ENXIO;
1319 }
1320 reg = ioremap(res->start, resource_size(res));
1321 if (!reg) {
1322 dev_err(&pdev->dev, "ioremap error.\n");
1323 return -ENOMEM;
1324 }
1325
1326 mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), &pdev->dev);
1327 if (!mmc) {
1328 ret = -ENOMEM;
1329 goto ealloch;
1330 }
1331 host = mmc_priv(mmc);
1332 host->mmc = mmc;
1333 host->addr = reg;
1334 host->timeout = 1000;
1335
1336 host->pd = pdev;
1337
1338 spin_lock_init(&host->lock);
1339
1340 mmc->ops = &sh_mmcif_ops;
1341 sh_mmcif_init_ocr(host);
1342
1343 mmc->caps = MMC_CAP_MMC_HIGHSPEED;
1344 if (pd && pd->caps)
1345 mmc->caps |= pd->caps;
1346 mmc->max_segs = 32;
1347 mmc->max_blk_size = 512;
1348 mmc->max_req_size = PAGE_CACHE_SIZE * mmc->max_segs;
1349 mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1350 mmc->max_seg_size = mmc->max_req_size;
1351
1352 platform_set_drvdata(pdev, host);
1353
1354 pm_runtime_enable(&pdev->dev);
1355 host->power = false;
1356
1357 snprintf(clk_name, sizeof(clk_name), "mmc%d", pdev->id);
1358 host->hclk = clk_get(&pdev->dev, clk_name);
1359 if (IS_ERR(host->hclk)) {
1360 ret = PTR_ERR(host->hclk);
1361 dev_err(&pdev->dev, "cannot get clock \"%s\": %d\n", clk_name, ret);
1362 goto eclkget;
1363 }
1364 ret = sh_mmcif_clk_update(host);
1365 if (ret < 0)
1366 goto eclkupdate;
1367
1368 ret = pm_runtime_resume(&pdev->dev);
1369 if (ret < 0)
1370 goto eresume;
1371
1372 INIT_DELAYED_WORK(&host->timeout_work, mmcif_timeout_work);
1373
1374 sh_mmcif_sync_reset(host);
1375 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1376
1377 ret = request_threaded_irq(irq[0], sh_mmcif_intr, sh_mmcif_irqt, 0, "sh_mmc:error", host);
1378 if (ret) {
1379 dev_err(&pdev->dev, "request_irq error (sh_mmc:error)\n");
1380 goto ereqirq0;
1381 }
1382 ret = request_threaded_irq(irq[1], sh_mmcif_intr, sh_mmcif_irqt, 0, "sh_mmc:int", host);
1383 if (ret) {
1384 dev_err(&pdev->dev, "request_irq error (sh_mmc:int)\n");
1385 goto ereqirq1;
1386 }
1387
1388 if (pd && pd->use_cd_gpio) {
1389 ret = mmc_gpio_request_cd(mmc, pd->cd_gpio);
1390 if (ret < 0)
1391 goto erqcd;
1392 }
1393
1394 clk_disable(host->hclk);
1395 ret = mmc_add_host(mmc);
1396 if (ret < 0)
1397 goto emmcaddh;
1398
1399 dev_pm_qos_expose_latency_limit(&pdev->dev, 100);
1400
1401 dev_info(&pdev->dev, "driver version %s\n", DRIVER_VERSION);
1402 dev_dbg(&pdev->dev, "chip ver H'%04x\n",
1403 sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0x0000ffff);
1404 return ret;
1405
1406 emmcaddh:
1407 if (pd && pd->use_cd_gpio)
1408 mmc_gpio_free_cd(mmc);
1409 erqcd:
1410 free_irq(irq[1], host);
1411 ereqirq1:
1412 free_irq(irq[0], host);
1413 ereqirq0:
1414 pm_runtime_suspend(&pdev->dev);
1415 eresume:
1416 clk_disable(host->hclk);
1417 eclkupdate:
1418 clk_put(host->hclk);
1419 eclkget:
1420 pm_runtime_disable(&pdev->dev);
1421 mmc_free_host(mmc);
1422 ealloch:
1423 iounmap(reg);
1424 return ret;
1425 }
1426
1427 static int __devexit sh_mmcif_remove(struct platform_device *pdev)
1428 {
1429 struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1430 struct sh_mmcif_plat_data *pd = pdev->dev.platform_data;
1431 int irq[2];
1432
1433 host->dying = true;
1434 clk_enable(host->hclk);
1435 pm_runtime_get_sync(&pdev->dev);
1436
1437 dev_pm_qos_hide_latency_limit(&pdev->dev);
1438
1439 if (pd && pd->use_cd_gpio)
1440 mmc_gpio_free_cd(host->mmc);
1441
1442 mmc_remove_host(host->mmc);
1443 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1444
1445 /*
1446 * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1447 * mmc_remove_host() call above. But swapping order doesn't help either
1448 * (a query on the linux-mmc mailing list didn't bring any replies).
1449 */
1450 cancel_delayed_work_sync(&host->timeout_work);
1451
1452 if (host->addr)
1453 iounmap(host->addr);
1454
1455 irq[0] = platform_get_irq(pdev, 0);
1456 irq[1] = platform_get_irq(pdev, 1);
1457
1458 free_irq(irq[0], host);
1459 free_irq(irq[1], host);
1460
1461 platform_set_drvdata(pdev, NULL);
1462
1463 mmc_free_host(host->mmc);
1464 pm_runtime_put_sync(&pdev->dev);
1465 clk_disable(host->hclk);
1466 pm_runtime_disable(&pdev->dev);
1467
1468 return 0;
1469 }
1470
1471 #ifdef CONFIG_PM
1472 static int sh_mmcif_suspend(struct device *dev)
1473 {
1474 struct sh_mmcif_host *host = dev_get_drvdata(dev);
1475 int ret = mmc_suspend_host(host->mmc);
1476
1477 if (!ret)
1478 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1479
1480 return ret;
1481 }
1482
1483 static int sh_mmcif_resume(struct device *dev)
1484 {
1485 struct sh_mmcif_host *host = dev_get_drvdata(dev);
1486
1487 return mmc_resume_host(host->mmc);
1488 }
1489 #else
1490 #define sh_mmcif_suspend NULL
1491 #define sh_mmcif_resume NULL
1492 #endif /* CONFIG_PM */
1493
1494 static const struct of_device_id mmcif_of_match[] = {
1495 { .compatible = "renesas,sh-mmcif" },
1496 { }
1497 };
1498 MODULE_DEVICE_TABLE(of, mmcif_of_match);
1499
1500 static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1501 .suspend = sh_mmcif_suspend,
1502 .resume = sh_mmcif_resume,
1503 };
1504
1505 static struct platform_driver sh_mmcif_driver = {
1506 .probe = sh_mmcif_probe,
1507 .remove = sh_mmcif_remove,
1508 .driver = {
1509 .name = DRIVER_NAME,
1510 .pm = &sh_mmcif_dev_pm_ops,
1511 .owner = THIS_MODULE,
1512 .of_match_table = mmcif_of_match,
1513 },
1514 };
1515
1516 module_platform_driver(sh_mmcif_driver);
1517
1518 MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1519 MODULE_LICENSE("GPL");
1520 MODULE_ALIAS("platform:" DRIVER_NAME);
1521 MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");
This page took 0.064315 seconds and 5 git commands to generate.