Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
[deliverable/linux.git] / drivers / mmc / host / sh_mmcif.c
1 /*
2 * MMCIF eMMC driver.
3 *
4 * Copyright (C) 2010 Renesas Solutions Corp.
5 * Yusuke Goda <yusuke.goda.sx@renesas.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License.
10 *
11 *
12 * TODO
13 * 1. DMA
14 * 2. Power management
15 * 3. Handle MMC errors better
16 *
17 */
18
19 /*
20 * The MMCIF driver is now processing MMC requests asynchronously, according
21 * to the Linux MMC API requirement.
22 *
23 * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
24 * data, and optional stop. To achieve asynchronous processing each of these
25 * stages is split into two halves: a top and a bottom half. The top half
26 * initialises the hardware, installs a timeout handler to handle completion
27 * timeouts, and returns. In case of the command stage this immediately returns
28 * control to the caller, leaving all further processing to run asynchronously.
29 * All further request processing is performed by the bottom halves.
30 *
31 * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
32 * thread, a DMA completion callback, if DMA is used, a timeout work, and
33 * request- and stage-specific handler methods.
34 *
35 * Each bottom half run begins with either a hardware interrupt, a DMA callback
36 * invocation, or a timeout work run. In case of an error or a successful
37 * processing completion, the MMC core is informed and the request processing is
38 * finished. In case processing has to continue, i.e., if data has to be read
39 * from or written to the card, or if a stop command has to be sent, the next
40 * top half is called, which performs the necessary hardware handling and
41 * reschedules the timeout work. This returns the driver state machine into the
42 * bottom half waiting state.
43 */
44
45 #include <linux/bitops.h>
46 #include <linux/clk.h>
47 #include <linux/completion.h>
48 #include <linux/delay.h>
49 #include <linux/dma-mapping.h>
50 #include <linux/dmaengine.h>
51 #include <linux/mmc/card.h>
52 #include <linux/mmc/core.h>
53 #include <linux/mmc/host.h>
54 #include <linux/mmc/mmc.h>
55 #include <linux/mmc/sdio.h>
56 #include <linux/mmc/sh_mmcif.h>
57 #include <linux/mmc/slot-gpio.h>
58 #include <linux/mod_devicetable.h>
59 #include <linux/pagemap.h>
60 #include <linux/platform_device.h>
61 #include <linux/pm_qos.h>
62 #include <linux/pm_runtime.h>
63 #include <linux/spinlock.h>
64 #include <linux/module.h>
65
66 #define DRIVER_NAME "sh_mmcif"
67 #define DRIVER_VERSION "2010-04-28"
68
69 /* CE_CMD_SET */
70 #define CMD_MASK 0x3f000000
71 #define CMD_SET_RTYP_NO ((0 << 23) | (0 << 22))
72 #define CMD_SET_RTYP_6B ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
73 #define CMD_SET_RTYP_17B ((1 << 23) | (0 << 22)) /* R2 */
74 #define CMD_SET_RBSY (1 << 21) /* R1b */
75 #define CMD_SET_CCSEN (1 << 20)
76 #define CMD_SET_WDAT (1 << 19) /* 1: on data, 0: no data */
77 #define CMD_SET_DWEN (1 << 18) /* 1: write, 0: read */
78 #define CMD_SET_CMLTE (1 << 17) /* 1: multi block trans, 0: single */
79 #define CMD_SET_CMD12EN (1 << 16) /* 1: CMD12 auto issue */
80 #define CMD_SET_RIDXC_INDEX ((0 << 15) | (0 << 14)) /* index check */
81 #define CMD_SET_RIDXC_BITS ((0 << 15) | (1 << 14)) /* check bits check */
82 #define CMD_SET_RIDXC_NO ((1 << 15) | (0 << 14)) /* no check */
83 #define CMD_SET_CRC7C ((0 << 13) | (0 << 12)) /* CRC7 check*/
84 #define CMD_SET_CRC7C_BITS ((0 << 13) | (1 << 12)) /* check bits check*/
85 #define CMD_SET_CRC7C_INTERNAL ((1 << 13) | (0 << 12)) /* internal CRC7 check*/
86 #define CMD_SET_CRC16C (1 << 10) /* 0: CRC16 check*/
87 #define CMD_SET_CRCSTE (1 << 8) /* 1: not receive CRC status */
88 #define CMD_SET_TBIT (1 << 7) /* 1: tran mission bit "Low" */
89 #define CMD_SET_OPDM (1 << 6) /* 1: open/drain */
90 #define CMD_SET_CCSH (1 << 5)
91 #define CMD_SET_DATW_1 ((0 << 1) | (0 << 0)) /* 1bit */
92 #define CMD_SET_DATW_4 ((0 << 1) | (1 << 0)) /* 4bit */
93 #define CMD_SET_DATW_8 ((1 << 1) | (0 << 0)) /* 8bit */
94
95 /* CE_CMD_CTRL */
96 #define CMD_CTRL_BREAK (1 << 0)
97
98 /* CE_BLOCK_SET */
99 #define BLOCK_SIZE_MASK 0x0000ffff
100
101 /* CE_INT */
102 #define INT_CCSDE (1 << 29)
103 #define INT_CMD12DRE (1 << 26)
104 #define INT_CMD12RBE (1 << 25)
105 #define INT_CMD12CRE (1 << 24)
106 #define INT_DTRANE (1 << 23)
107 #define INT_BUFRE (1 << 22)
108 #define INT_BUFWEN (1 << 21)
109 #define INT_BUFREN (1 << 20)
110 #define INT_CCSRCV (1 << 19)
111 #define INT_RBSYE (1 << 17)
112 #define INT_CRSPE (1 << 16)
113 #define INT_CMDVIO (1 << 15)
114 #define INT_BUFVIO (1 << 14)
115 #define INT_WDATERR (1 << 11)
116 #define INT_RDATERR (1 << 10)
117 #define INT_RIDXERR (1 << 9)
118 #define INT_RSPERR (1 << 8)
119 #define INT_CCSTO (1 << 5)
120 #define INT_CRCSTO (1 << 4)
121 #define INT_WDATTO (1 << 3)
122 #define INT_RDATTO (1 << 2)
123 #define INT_RBSYTO (1 << 1)
124 #define INT_RSPTO (1 << 0)
125 #define INT_ERR_STS (INT_CMDVIO | INT_BUFVIO | INT_WDATERR | \
126 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
127 INT_CCSTO | INT_CRCSTO | INT_WDATTO | \
128 INT_RDATTO | INT_RBSYTO | INT_RSPTO)
129
130 /* CE_INT_MASK */
131 #define MASK_ALL 0x00000000
132 #define MASK_MCCSDE (1 << 29)
133 #define MASK_MCMD12DRE (1 << 26)
134 #define MASK_MCMD12RBE (1 << 25)
135 #define MASK_MCMD12CRE (1 << 24)
136 #define MASK_MDTRANE (1 << 23)
137 #define MASK_MBUFRE (1 << 22)
138 #define MASK_MBUFWEN (1 << 21)
139 #define MASK_MBUFREN (1 << 20)
140 #define MASK_MCCSRCV (1 << 19)
141 #define MASK_MRBSYE (1 << 17)
142 #define MASK_MCRSPE (1 << 16)
143 #define MASK_MCMDVIO (1 << 15)
144 #define MASK_MBUFVIO (1 << 14)
145 #define MASK_MWDATERR (1 << 11)
146 #define MASK_MRDATERR (1 << 10)
147 #define MASK_MRIDXERR (1 << 9)
148 #define MASK_MRSPERR (1 << 8)
149 #define MASK_MCCSTO (1 << 5)
150 #define MASK_MCRCSTO (1 << 4)
151 #define MASK_MWDATTO (1 << 3)
152 #define MASK_MRDATTO (1 << 2)
153 #define MASK_MRBSYTO (1 << 1)
154 #define MASK_MRSPTO (1 << 0)
155
156 #define MASK_START_CMD (MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
157 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
158 MASK_MCCSTO | MASK_MCRCSTO | MASK_MWDATTO | \
159 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
160
161 /* CE_HOST_STS1 */
162 #define STS1_CMDSEQ (1 << 31)
163
164 /* CE_HOST_STS2 */
165 #define STS2_CRCSTE (1 << 31)
166 #define STS2_CRC16E (1 << 30)
167 #define STS2_AC12CRCE (1 << 29)
168 #define STS2_RSPCRC7E (1 << 28)
169 #define STS2_CRCSTEBE (1 << 27)
170 #define STS2_RDATEBE (1 << 26)
171 #define STS2_AC12REBE (1 << 25)
172 #define STS2_RSPEBE (1 << 24)
173 #define STS2_AC12IDXE (1 << 23)
174 #define STS2_RSPIDXE (1 << 22)
175 #define STS2_CCSTO (1 << 15)
176 #define STS2_RDATTO (1 << 14)
177 #define STS2_DATBSYTO (1 << 13)
178 #define STS2_CRCSTTO (1 << 12)
179 #define STS2_AC12BSYTO (1 << 11)
180 #define STS2_RSPBSYTO (1 << 10)
181 #define STS2_AC12RSPTO (1 << 9)
182 #define STS2_RSPTO (1 << 8)
183 #define STS2_CRC_ERR (STS2_CRCSTE | STS2_CRC16E | \
184 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
185 #define STS2_TIMEOUT_ERR (STS2_CCSTO | STS2_RDATTO | \
186 STS2_DATBSYTO | STS2_CRCSTTO | \
187 STS2_AC12BSYTO | STS2_RSPBSYTO | \
188 STS2_AC12RSPTO | STS2_RSPTO)
189
190 #define CLKDEV_EMMC_DATA 52000000 /* 52MHz */
191 #define CLKDEV_MMC_DATA 20000000 /* 20MHz */
192 #define CLKDEV_INIT 400000 /* 400 KHz */
193
194 enum mmcif_state {
195 STATE_IDLE,
196 STATE_REQUEST,
197 STATE_IOS,
198 };
199
200 enum mmcif_wait_for {
201 MMCIF_WAIT_FOR_REQUEST,
202 MMCIF_WAIT_FOR_CMD,
203 MMCIF_WAIT_FOR_MREAD,
204 MMCIF_WAIT_FOR_MWRITE,
205 MMCIF_WAIT_FOR_READ,
206 MMCIF_WAIT_FOR_WRITE,
207 MMCIF_WAIT_FOR_READ_END,
208 MMCIF_WAIT_FOR_WRITE_END,
209 MMCIF_WAIT_FOR_STOP,
210 };
211
212 struct sh_mmcif_host {
213 struct mmc_host *mmc;
214 struct mmc_request *mrq;
215 struct platform_device *pd;
216 struct sh_dmae_slave dma_slave_tx;
217 struct sh_dmae_slave dma_slave_rx;
218 struct clk *hclk;
219 unsigned int clk;
220 int bus_width;
221 bool sd_error;
222 bool dying;
223 long timeout;
224 void __iomem *addr;
225 u32 *pio_ptr;
226 spinlock_t lock; /* protect sh_mmcif_host::state */
227 enum mmcif_state state;
228 enum mmcif_wait_for wait_for;
229 struct delayed_work timeout_work;
230 size_t blocksize;
231 int sg_idx;
232 int sg_blkidx;
233 bool power;
234 bool card_present;
235
236 /* DMA support */
237 struct dma_chan *chan_rx;
238 struct dma_chan *chan_tx;
239 struct completion dma_complete;
240 bool dma_active;
241 };
242
243 static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
244 unsigned int reg, u32 val)
245 {
246 writel(val | readl(host->addr + reg), host->addr + reg);
247 }
248
249 static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
250 unsigned int reg, u32 val)
251 {
252 writel(~val & readl(host->addr + reg), host->addr + reg);
253 }
254
255 static void mmcif_dma_complete(void *arg)
256 {
257 struct sh_mmcif_host *host = arg;
258 struct mmc_data *data = host->mrq->data;
259
260 dev_dbg(&host->pd->dev, "Command completed\n");
261
262 if (WARN(!data, "%s: NULL data in DMA completion!\n",
263 dev_name(&host->pd->dev)))
264 return;
265
266 if (data->flags & MMC_DATA_READ)
267 dma_unmap_sg(host->chan_rx->device->dev,
268 data->sg, data->sg_len,
269 DMA_FROM_DEVICE);
270 else
271 dma_unmap_sg(host->chan_tx->device->dev,
272 data->sg, data->sg_len,
273 DMA_TO_DEVICE);
274
275 complete(&host->dma_complete);
276 }
277
278 static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
279 {
280 struct mmc_data *data = host->mrq->data;
281 struct scatterlist *sg = data->sg;
282 struct dma_async_tx_descriptor *desc = NULL;
283 struct dma_chan *chan = host->chan_rx;
284 dma_cookie_t cookie = -EINVAL;
285 int ret;
286
287 ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
288 DMA_FROM_DEVICE);
289 if (ret > 0) {
290 host->dma_active = true;
291 desc = dmaengine_prep_slave_sg(chan, sg, ret,
292 DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
293 }
294
295 if (desc) {
296 desc->callback = mmcif_dma_complete;
297 desc->callback_param = host;
298 cookie = dmaengine_submit(desc);
299 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
300 dma_async_issue_pending(chan);
301 }
302 dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
303 __func__, data->sg_len, ret, cookie);
304
305 if (!desc) {
306 /* DMA failed, fall back to PIO */
307 if (ret >= 0)
308 ret = -EIO;
309 host->chan_rx = NULL;
310 host->dma_active = false;
311 dma_release_channel(chan);
312 /* Free the Tx channel too */
313 chan = host->chan_tx;
314 if (chan) {
315 host->chan_tx = NULL;
316 dma_release_channel(chan);
317 }
318 dev_warn(&host->pd->dev,
319 "DMA failed: %d, falling back to PIO\n", ret);
320 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
321 }
322
323 dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
324 desc, cookie, data->sg_len);
325 }
326
327 static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
328 {
329 struct mmc_data *data = host->mrq->data;
330 struct scatterlist *sg = data->sg;
331 struct dma_async_tx_descriptor *desc = NULL;
332 struct dma_chan *chan = host->chan_tx;
333 dma_cookie_t cookie = -EINVAL;
334 int ret;
335
336 ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
337 DMA_TO_DEVICE);
338 if (ret > 0) {
339 host->dma_active = true;
340 desc = dmaengine_prep_slave_sg(chan, sg, ret,
341 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
342 }
343
344 if (desc) {
345 desc->callback = mmcif_dma_complete;
346 desc->callback_param = host;
347 cookie = dmaengine_submit(desc);
348 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
349 dma_async_issue_pending(chan);
350 }
351 dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
352 __func__, data->sg_len, ret, cookie);
353
354 if (!desc) {
355 /* DMA failed, fall back to PIO */
356 if (ret >= 0)
357 ret = -EIO;
358 host->chan_tx = NULL;
359 host->dma_active = false;
360 dma_release_channel(chan);
361 /* Free the Rx channel too */
362 chan = host->chan_rx;
363 if (chan) {
364 host->chan_rx = NULL;
365 dma_release_channel(chan);
366 }
367 dev_warn(&host->pd->dev,
368 "DMA failed: %d, falling back to PIO\n", ret);
369 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
370 }
371
372 dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d\n", __func__,
373 desc, cookie);
374 }
375
376 static bool sh_mmcif_filter(struct dma_chan *chan, void *arg)
377 {
378 dev_dbg(chan->device->dev, "%s: slave data %p\n", __func__, arg);
379 chan->private = arg;
380 return true;
381 }
382
383 static void sh_mmcif_request_dma(struct sh_mmcif_host *host,
384 struct sh_mmcif_plat_data *pdata)
385 {
386 struct sh_dmae_slave *tx, *rx;
387 host->dma_active = false;
388
389 if (!pdata)
390 return;
391
392 /* We can only either use DMA for both Tx and Rx or not use it at all */
393 if (pdata->dma) {
394 dev_warn(&host->pd->dev,
395 "Update your platform to use embedded DMA slave IDs\n");
396 tx = &pdata->dma->chan_priv_tx;
397 rx = &pdata->dma->chan_priv_rx;
398 } else {
399 tx = &host->dma_slave_tx;
400 tx->slave_id = pdata->slave_id_tx;
401 rx = &host->dma_slave_rx;
402 rx->slave_id = pdata->slave_id_rx;
403 }
404 if (tx->slave_id > 0 && rx->slave_id > 0) {
405 dma_cap_mask_t mask;
406
407 dma_cap_zero(mask);
408 dma_cap_set(DMA_SLAVE, mask);
409
410 host->chan_tx = dma_request_channel(mask, sh_mmcif_filter, tx);
411 dev_dbg(&host->pd->dev, "%s: TX: got channel %p\n", __func__,
412 host->chan_tx);
413
414 if (!host->chan_tx)
415 return;
416
417 host->chan_rx = dma_request_channel(mask, sh_mmcif_filter, rx);
418 dev_dbg(&host->pd->dev, "%s: RX: got channel %p\n", __func__,
419 host->chan_rx);
420
421 if (!host->chan_rx) {
422 dma_release_channel(host->chan_tx);
423 host->chan_tx = NULL;
424 return;
425 }
426
427 init_completion(&host->dma_complete);
428 }
429 }
430
431 static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
432 {
433 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
434 /* Descriptors are freed automatically */
435 if (host->chan_tx) {
436 struct dma_chan *chan = host->chan_tx;
437 host->chan_tx = NULL;
438 dma_release_channel(chan);
439 }
440 if (host->chan_rx) {
441 struct dma_chan *chan = host->chan_rx;
442 host->chan_rx = NULL;
443 dma_release_channel(chan);
444 }
445
446 host->dma_active = false;
447 }
448
449 static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
450 {
451 struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
452 bool sup_pclk = p ? p->sup_pclk : false;
453
454 sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
455 sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
456
457 if (!clk)
458 return;
459 if (sup_pclk && clk == host->clk)
460 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_SUP_PCLK);
461 else
462 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR &
463 ((fls(DIV_ROUND_UP(host->clk,
464 clk) - 1) - 1) << 16));
465
466 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
467 }
468
469 static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
470 {
471 u32 tmp;
472
473 tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
474
475 sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
476 sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
477 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
478 SRSPTO_256 | SRBSYTO_29 | SRWDTO_29 | SCCSTO_29);
479 /* byte swap on */
480 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
481 }
482
483 static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
484 {
485 u32 state1, state2;
486 int ret, timeout;
487
488 host->sd_error = false;
489
490 state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
491 state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
492 dev_dbg(&host->pd->dev, "ERR HOST_STS1 = %08x\n", state1);
493 dev_dbg(&host->pd->dev, "ERR HOST_STS2 = %08x\n", state2);
494
495 if (state1 & STS1_CMDSEQ) {
496 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
497 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
498 for (timeout = 10000000; timeout; timeout--) {
499 if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
500 & STS1_CMDSEQ))
501 break;
502 mdelay(1);
503 }
504 if (!timeout) {
505 dev_err(&host->pd->dev,
506 "Forced end of command sequence timeout err\n");
507 return -EIO;
508 }
509 sh_mmcif_sync_reset(host);
510 dev_dbg(&host->pd->dev, "Forced end of command sequence\n");
511 return -EIO;
512 }
513
514 if (state2 & STS2_CRC_ERR) {
515 dev_dbg(&host->pd->dev, ": CRC error\n");
516 ret = -EIO;
517 } else if (state2 & STS2_TIMEOUT_ERR) {
518 dev_dbg(&host->pd->dev, ": Timeout\n");
519 ret = -ETIMEDOUT;
520 } else {
521 dev_dbg(&host->pd->dev, ": End/Index error\n");
522 ret = -EIO;
523 }
524 return ret;
525 }
526
527 static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
528 {
529 struct mmc_data *data = host->mrq->data;
530
531 host->sg_blkidx += host->blocksize;
532
533 /* data->sg->length must be a multiple of host->blocksize? */
534 BUG_ON(host->sg_blkidx > data->sg->length);
535
536 if (host->sg_blkidx == data->sg->length) {
537 host->sg_blkidx = 0;
538 if (++host->sg_idx < data->sg_len)
539 host->pio_ptr = sg_virt(++data->sg);
540 } else {
541 host->pio_ptr = p;
542 }
543
544 if (host->sg_idx == data->sg_len)
545 return false;
546
547 return true;
548 }
549
550 static void sh_mmcif_single_read(struct sh_mmcif_host *host,
551 struct mmc_request *mrq)
552 {
553 host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
554 BLOCK_SIZE_MASK) + 3;
555
556 host->wait_for = MMCIF_WAIT_FOR_READ;
557 schedule_delayed_work(&host->timeout_work, host->timeout);
558
559 /* buf read enable */
560 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
561 }
562
563 static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
564 {
565 struct mmc_data *data = host->mrq->data;
566 u32 *p = sg_virt(data->sg);
567 int i;
568
569 if (host->sd_error) {
570 data->error = sh_mmcif_error_manage(host);
571 return false;
572 }
573
574 for (i = 0; i < host->blocksize / 4; i++)
575 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
576
577 /* buffer read end */
578 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
579 host->wait_for = MMCIF_WAIT_FOR_READ_END;
580
581 return true;
582 }
583
584 static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
585 struct mmc_request *mrq)
586 {
587 struct mmc_data *data = mrq->data;
588
589 if (!data->sg_len || !data->sg->length)
590 return;
591
592 host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
593 BLOCK_SIZE_MASK;
594
595 host->wait_for = MMCIF_WAIT_FOR_MREAD;
596 host->sg_idx = 0;
597 host->sg_blkidx = 0;
598 host->pio_ptr = sg_virt(data->sg);
599 schedule_delayed_work(&host->timeout_work, host->timeout);
600 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
601 }
602
603 static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
604 {
605 struct mmc_data *data = host->mrq->data;
606 u32 *p = host->pio_ptr;
607 int i;
608
609 if (host->sd_error) {
610 data->error = sh_mmcif_error_manage(host);
611 return false;
612 }
613
614 BUG_ON(!data->sg->length);
615
616 for (i = 0; i < host->blocksize / 4; i++)
617 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
618
619 if (!sh_mmcif_next_block(host, p))
620 return false;
621
622 schedule_delayed_work(&host->timeout_work, host->timeout);
623 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
624
625 return true;
626 }
627
628 static void sh_mmcif_single_write(struct sh_mmcif_host *host,
629 struct mmc_request *mrq)
630 {
631 host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
632 BLOCK_SIZE_MASK) + 3;
633
634 host->wait_for = MMCIF_WAIT_FOR_WRITE;
635 schedule_delayed_work(&host->timeout_work, host->timeout);
636
637 /* buf write enable */
638 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
639 }
640
641 static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
642 {
643 struct mmc_data *data = host->mrq->data;
644 u32 *p = sg_virt(data->sg);
645 int i;
646
647 if (host->sd_error) {
648 data->error = sh_mmcif_error_manage(host);
649 return false;
650 }
651
652 for (i = 0; i < host->blocksize / 4; i++)
653 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
654
655 /* buffer write end */
656 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
657 host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
658
659 return true;
660 }
661
662 static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
663 struct mmc_request *mrq)
664 {
665 struct mmc_data *data = mrq->data;
666
667 if (!data->sg_len || !data->sg->length)
668 return;
669
670 host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
671 BLOCK_SIZE_MASK;
672
673 host->wait_for = MMCIF_WAIT_FOR_MWRITE;
674 host->sg_idx = 0;
675 host->sg_blkidx = 0;
676 host->pio_ptr = sg_virt(data->sg);
677 schedule_delayed_work(&host->timeout_work, host->timeout);
678 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
679 }
680
681 static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
682 {
683 struct mmc_data *data = host->mrq->data;
684 u32 *p = host->pio_ptr;
685 int i;
686
687 if (host->sd_error) {
688 data->error = sh_mmcif_error_manage(host);
689 return false;
690 }
691
692 BUG_ON(!data->sg->length);
693
694 for (i = 0; i < host->blocksize / 4; i++)
695 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
696
697 if (!sh_mmcif_next_block(host, p))
698 return false;
699
700 schedule_delayed_work(&host->timeout_work, host->timeout);
701 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
702
703 return true;
704 }
705
706 static void sh_mmcif_get_response(struct sh_mmcif_host *host,
707 struct mmc_command *cmd)
708 {
709 if (cmd->flags & MMC_RSP_136) {
710 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
711 cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
712 cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
713 cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
714 } else
715 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
716 }
717
718 static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
719 struct mmc_command *cmd)
720 {
721 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
722 }
723
724 static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
725 struct mmc_request *mrq)
726 {
727 struct mmc_data *data = mrq->data;
728 struct mmc_command *cmd = mrq->cmd;
729 u32 opc = cmd->opcode;
730 u32 tmp = 0;
731
732 /* Response Type check */
733 switch (mmc_resp_type(cmd)) {
734 case MMC_RSP_NONE:
735 tmp |= CMD_SET_RTYP_NO;
736 break;
737 case MMC_RSP_R1:
738 case MMC_RSP_R1B:
739 case MMC_RSP_R3:
740 tmp |= CMD_SET_RTYP_6B;
741 break;
742 case MMC_RSP_R2:
743 tmp |= CMD_SET_RTYP_17B;
744 break;
745 default:
746 dev_err(&host->pd->dev, "Unsupported response type.\n");
747 break;
748 }
749 switch (opc) {
750 /* RBSY */
751 case MMC_SWITCH:
752 case MMC_STOP_TRANSMISSION:
753 case MMC_SET_WRITE_PROT:
754 case MMC_CLR_WRITE_PROT:
755 case MMC_ERASE:
756 tmp |= CMD_SET_RBSY;
757 break;
758 }
759 /* WDAT / DATW */
760 if (data) {
761 tmp |= CMD_SET_WDAT;
762 switch (host->bus_width) {
763 case MMC_BUS_WIDTH_1:
764 tmp |= CMD_SET_DATW_1;
765 break;
766 case MMC_BUS_WIDTH_4:
767 tmp |= CMD_SET_DATW_4;
768 break;
769 case MMC_BUS_WIDTH_8:
770 tmp |= CMD_SET_DATW_8;
771 break;
772 default:
773 dev_err(&host->pd->dev, "Unsupported bus width.\n");
774 break;
775 }
776 }
777 /* DWEN */
778 if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
779 tmp |= CMD_SET_DWEN;
780 /* CMLTE/CMD12EN */
781 if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
782 tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
783 sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
784 data->blocks << 16);
785 }
786 /* RIDXC[1:0] check bits */
787 if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
788 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
789 tmp |= CMD_SET_RIDXC_BITS;
790 /* RCRC7C[1:0] check bits */
791 if (opc == MMC_SEND_OP_COND)
792 tmp |= CMD_SET_CRC7C_BITS;
793 /* RCRC7C[1:0] internal CRC7 */
794 if (opc == MMC_ALL_SEND_CID ||
795 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
796 tmp |= CMD_SET_CRC7C_INTERNAL;
797
798 return (opc << 24) | tmp;
799 }
800
801 static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
802 struct mmc_request *mrq, u32 opc)
803 {
804 switch (opc) {
805 case MMC_READ_MULTIPLE_BLOCK:
806 sh_mmcif_multi_read(host, mrq);
807 return 0;
808 case MMC_WRITE_MULTIPLE_BLOCK:
809 sh_mmcif_multi_write(host, mrq);
810 return 0;
811 case MMC_WRITE_BLOCK:
812 sh_mmcif_single_write(host, mrq);
813 return 0;
814 case MMC_READ_SINGLE_BLOCK:
815 case MMC_SEND_EXT_CSD:
816 sh_mmcif_single_read(host, mrq);
817 return 0;
818 default:
819 dev_err(&host->pd->dev, "UNSUPPORTED CMD = d'%08d\n", opc);
820 return -EINVAL;
821 }
822 }
823
824 static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
825 struct mmc_request *mrq)
826 {
827 struct mmc_command *cmd = mrq->cmd;
828 u32 opc = cmd->opcode;
829 u32 mask;
830
831 switch (opc) {
832 /* response busy check */
833 case MMC_SWITCH:
834 case MMC_STOP_TRANSMISSION:
835 case MMC_SET_WRITE_PROT:
836 case MMC_CLR_WRITE_PROT:
837 case MMC_ERASE:
838 mask = MASK_START_CMD | MASK_MRBSYE;
839 break;
840 default:
841 mask = MASK_START_CMD | MASK_MCRSPE;
842 break;
843 }
844
845 if (mrq->data) {
846 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
847 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
848 mrq->data->blksz);
849 }
850 opc = sh_mmcif_set_cmd(host, mrq);
851
852 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
853 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
854 /* set arg */
855 sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
856 /* set cmd */
857 sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
858
859 host->wait_for = MMCIF_WAIT_FOR_CMD;
860 schedule_delayed_work(&host->timeout_work, host->timeout);
861 }
862
863 static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
864 struct mmc_request *mrq)
865 {
866 switch (mrq->cmd->opcode) {
867 case MMC_READ_MULTIPLE_BLOCK:
868 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
869 break;
870 case MMC_WRITE_MULTIPLE_BLOCK:
871 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
872 break;
873 default:
874 dev_err(&host->pd->dev, "unsupported stop cmd\n");
875 mrq->stop->error = sh_mmcif_error_manage(host);
876 return;
877 }
878
879 host->wait_for = MMCIF_WAIT_FOR_STOP;
880 schedule_delayed_work(&host->timeout_work, host->timeout);
881 }
882
883 static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
884 {
885 struct sh_mmcif_host *host = mmc_priv(mmc);
886 unsigned long flags;
887
888 spin_lock_irqsave(&host->lock, flags);
889 if (host->state != STATE_IDLE) {
890 spin_unlock_irqrestore(&host->lock, flags);
891 mrq->cmd->error = -EAGAIN;
892 mmc_request_done(mmc, mrq);
893 return;
894 }
895
896 host->state = STATE_REQUEST;
897 spin_unlock_irqrestore(&host->lock, flags);
898
899 switch (mrq->cmd->opcode) {
900 /* MMCIF does not support SD/SDIO command */
901 case MMC_SLEEP_AWAKE: /* = SD_IO_SEND_OP_COND (5) */
902 case MMC_SEND_EXT_CSD: /* = SD_SEND_IF_COND (8) */
903 if ((mrq->cmd->flags & MMC_CMD_MASK) != MMC_CMD_BCR)
904 break;
905 case MMC_APP_CMD:
906 host->state = STATE_IDLE;
907 mrq->cmd->error = -ETIMEDOUT;
908 mmc_request_done(mmc, mrq);
909 return;
910 default:
911 break;
912 }
913
914 host->mrq = mrq;
915
916 sh_mmcif_start_cmd(host, mrq);
917 }
918
919 static int sh_mmcif_clk_update(struct sh_mmcif_host *host)
920 {
921 int ret = clk_enable(host->hclk);
922
923 if (!ret) {
924 host->clk = clk_get_rate(host->hclk);
925 host->mmc->f_max = host->clk / 2;
926 host->mmc->f_min = host->clk / 512;
927 }
928
929 return ret;
930 }
931
932 static void sh_mmcif_set_power(struct sh_mmcif_host *host, struct mmc_ios *ios)
933 {
934 struct sh_mmcif_plat_data *pd = host->pd->dev.platform_data;
935 struct mmc_host *mmc = host->mmc;
936
937 if (pd && pd->set_pwr)
938 pd->set_pwr(host->pd, ios->power_mode != MMC_POWER_OFF);
939 if (!IS_ERR(mmc->supply.vmmc))
940 /* Errors ignored... */
941 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
942 ios->power_mode ? ios->vdd : 0);
943 }
944
945 static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
946 {
947 struct sh_mmcif_host *host = mmc_priv(mmc);
948 unsigned long flags;
949
950 spin_lock_irqsave(&host->lock, flags);
951 if (host->state != STATE_IDLE) {
952 spin_unlock_irqrestore(&host->lock, flags);
953 return;
954 }
955
956 host->state = STATE_IOS;
957 spin_unlock_irqrestore(&host->lock, flags);
958
959 if (ios->power_mode == MMC_POWER_UP) {
960 if (!host->card_present) {
961 /* See if we also get DMA */
962 sh_mmcif_request_dma(host, host->pd->dev.platform_data);
963 host->card_present = true;
964 }
965 sh_mmcif_set_power(host, ios);
966 } else if (ios->power_mode == MMC_POWER_OFF || !ios->clock) {
967 /* clock stop */
968 sh_mmcif_clock_control(host, 0);
969 if (ios->power_mode == MMC_POWER_OFF) {
970 if (host->card_present) {
971 sh_mmcif_release_dma(host);
972 host->card_present = false;
973 }
974 }
975 if (host->power) {
976 pm_runtime_put(&host->pd->dev);
977 clk_disable(host->hclk);
978 host->power = false;
979 if (ios->power_mode == MMC_POWER_OFF)
980 sh_mmcif_set_power(host, ios);
981 }
982 host->state = STATE_IDLE;
983 return;
984 }
985
986 if (ios->clock) {
987 if (!host->power) {
988 sh_mmcif_clk_update(host);
989 pm_runtime_get_sync(&host->pd->dev);
990 host->power = true;
991 sh_mmcif_sync_reset(host);
992 }
993 sh_mmcif_clock_control(host, ios->clock);
994 }
995
996 host->bus_width = ios->bus_width;
997 host->state = STATE_IDLE;
998 }
999
1000 static int sh_mmcif_get_cd(struct mmc_host *mmc)
1001 {
1002 struct sh_mmcif_host *host = mmc_priv(mmc);
1003 struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
1004 int ret = mmc_gpio_get_cd(mmc);
1005
1006 if (ret >= 0)
1007 return ret;
1008
1009 if (!p || !p->get_cd)
1010 return -ENOSYS;
1011 else
1012 return p->get_cd(host->pd);
1013 }
1014
1015 static struct mmc_host_ops sh_mmcif_ops = {
1016 .request = sh_mmcif_request,
1017 .set_ios = sh_mmcif_set_ios,
1018 .get_cd = sh_mmcif_get_cd,
1019 };
1020
1021 static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
1022 {
1023 struct mmc_command *cmd = host->mrq->cmd;
1024 struct mmc_data *data = host->mrq->data;
1025 long time;
1026
1027 if (host->sd_error) {
1028 switch (cmd->opcode) {
1029 case MMC_ALL_SEND_CID:
1030 case MMC_SELECT_CARD:
1031 case MMC_APP_CMD:
1032 cmd->error = -ETIMEDOUT;
1033 host->sd_error = false;
1034 break;
1035 default:
1036 cmd->error = sh_mmcif_error_manage(host);
1037 dev_dbg(&host->pd->dev, "Cmd(d'%d) error %d\n",
1038 cmd->opcode, cmd->error);
1039 break;
1040 }
1041 return false;
1042 }
1043 if (!(cmd->flags & MMC_RSP_PRESENT)) {
1044 cmd->error = 0;
1045 return false;
1046 }
1047
1048 sh_mmcif_get_response(host, cmd);
1049
1050 if (!data)
1051 return false;
1052
1053 if (data->flags & MMC_DATA_READ) {
1054 if (host->chan_rx)
1055 sh_mmcif_start_dma_rx(host);
1056 } else {
1057 if (host->chan_tx)
1058 sh_mmcif_start_dma_tx(host);
1059 }
1060
1061 if (!host->dma_active) {
1062 data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1063 if (!data->error)
1064 return true;
1065 return false;
1066 }
1067
1068 /* Running in the IRQ thread, can sleep */
1069 time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1070 host->timeout);
1071 if (host->sd_error) {
1072 dev_err(host->mmc->parent,
1073 "Error IRQ while waiting for DMA completion!\n");
1074 /* Woken up by an error IRQ: abort DMA */
1075 if (data->flags & MMC_DATA_READ)
1076 dmaengine_terminate_all(host->chan_rx);
1077 else
1078 dmaengine_terminate_all(host->chan_tx);
1079 data->error = sh_mmcif_error_manage(host);
1080 } else if (!time) {
1081 data->error = -ETIMEDOUT;
1082 } else if (time < 0) {
1083 data->error = time;
1084 }
1085 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1086 BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1087 host->dma_active = false;
1088
1089 if (data->error)
1090 data->bytes_xfered = 0;
1091
1092 return false;
1093 }
1094
1095 static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1096 {
1097 struct sh_mmcif_host *host = dev_id;
1098 struct mmc_request *mrq = host->mrq;
1099 struct mmc_data *data = mrq->data;
1100
1101 cancel_delayed_work_sync(&host->timeout_work);
1102
1103 /*
1104 * All handlers return true, if processing continues, and false, if the
1105 * request has to be completed - successfully or not
1106 */
1107 switch (host->wait_for) {
1108 case MMCIF_WAIT_FOR_REQUEST:
1109 /* We're too late, the timeout has already kicked in */
1110 return IRQ_HANDLED;
1111 case MMCIF_WAIT_FOR_CMD:
1112 if (sh_mmcif_end_cmd(host))
1113 /* Wait for data */
1114 return IRQ_HANDLED;
1115 break;
1116 case MMCIF_WAIT_FOR_MREAD:
1117 if (sh_mmcif_mread_block(host))
1118 /* Wait for more data */
1119 return IRQ_HANDLED;
1120 break;
1121 case MMCIF_WAIT_FOR_READ:
1122 if (sh_mmcif_read_block(host))
1123 /* Wait for data end */
1124 return IRQ_HANDLED;
1125 break;
1126 case MMCIF_WAIT_FOR_MWRITE:
1127 if (sh_mmcif_mwrite_block(host))
1128 /* Wait data to write */
1129 return IRQ_HANDLED;
1130 break;
1131 case MMCIF_WAIT_FOR_WRITE:
1132 if (sh_mmcif_write_block(host))
1133 /* Wait for data end */
1134 return IRQ_HANDLED;
1135 break;
1136 case MMCIF_WAIT_FOR_STOP:
1137 if (host->sd_error) {
1138 mrq->stop->error = sh_mmcif_error_manage(host);
1139 break;
1140 }
1141 sh_mmcif_get_cmd12response(host, mrq->stop);
1142 mrq->stop->error = 0;
1143 break;
1144 case MMCIF_WAIT_FOR_READ_END:
1145 case MMCIF_WAIT_FOR_WRITE_END:
1146 if (host->sd_error)
1147 data->error = sh_mmcif_error_manage(host);
1148 break;
1149 default:
1150 BUG();
1151 }
1152
1153 if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1154 if (!mrq->cmd->error && data && !data->error)
1155 data->bytes_xfered =
1156 data->blocks * data->blksz;
1157
1158 if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1159 sh_mmcif_stop_cmd(host, mrq);
1160 if (!mrq->stop->error)
1161 return IRQ_HANDLED;
1162 }
1163 }
1164
1165 host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1166 host->state = STATE_IDLE;
1167 host->mrq = NULL;
1168 mmc_request_done(host->mmc, mrq);
1169
1170 return IRQ_HANDLED;
1171 }
1172
1173 static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1174 {
1175 struct sh_mmcif_host *host = dev_id;
1176 u32 state;
1177 int err = 0;
1178
1179 state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1180
1181 if (state & INT_ERR_STS) {
1182 /* error interrupts - process first */
1183 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~state);
1184 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state);
1185 err = 1;
1186 } else if (state & INT_RBSYE) {
1187 sh_mmcif_writel(host->addr, MMCIF_CE_INT,
1188 ~(INT_RBSYE | INT_CRSPE));
1189 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MRBSYE);
1190 } else if (state & INT_CRSPE) {
1191 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_CRSPE);
1192 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCRSPE);
1193 } else if (state & INT_BUFREN) {
1194 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFREN);
1195 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
1196 } else if (state & INT_BUFWEN) {
1197 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFWEN);
1198 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
1199 } else if (state & INT_CMD12DRE) {
1200 sh_mmcif_writel(host->addr, MMCIF_CE_INT,
1201 ~(INT_CMD12DRE | INT_CMD12RBE |
1202 INT_CMD12CRE | INT_BUFRE));
1203 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
1204 } else if (state & INT_BUFRE) {
1205 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFRE);
1206 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
1207 } else if (state & INT_DTRANE) {
1208 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_DTRANE);
1209 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
1210 } else if (state & INT_CMD12RBE) {
1211 sh_mmcif_writel(host->addr, MMCIF_CE_INT,
1212 ~(INT_CMD12RBE | INT_CMD12CRE));
1213 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
1214 } else {
1215 dev_dbg(&host->pd->dev, "Unsupported interrupt: 0x%x\n", state);
1216 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~state);
1217 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state);
1218 err = 1;
1219 }
1220 if (err) {
1221 host->sd_error = true;
1222 dev_dbg(&host->pd->dev, "int err state = %08x\n", state);
1223 }
1224 if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1225 if (!host->dma_active)
1226 return IRQ_WAKE_THREAD;
1227 else if (host->sd_error)
1228 mmcif_dma_complete(host);
1229 } else {
1230 dev_dbg(&host->pd->dev, "Unexpected IRQ 0x%x\n", state);
1231 }
1232
1233 return IRQ_HANDLED;
1234 }
1235
1236 static void mmcif_timeout_work(struct work_struct *work)
1237 {
1238 struct delayed_work *d = container_of(work, struct delayed_work, work);
1239 struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1240 struct mmc_request *mrq = host->mrq;
1241
1242 if (host->dying)
1243 /* Don't run after mmc_remove_host() */
1244 return;
1245
1246 /*
1247 * Handle races with cancel_delayed_work(), unless
1248 * cancel_delayed_work_sync() is used
1249 */
1250 switch (host->wait_for) {
1251 case MMCIF_WAIT_FOR_CMD:
1252 mrq->cmd->error = sh_mmcif_error_manage(host);
1253 break;
1254 case MMCIF_WAIT_FOR_STOP:
1255 mrq->stop->error = sh_mmcif_error_manage(host);
1256 break;
1257 case MMCIF_WAIT_FOR_MREAD:
1258 case MMCIF_WAIT_FOR_MWRITE:
1259 case MMCIF_WAIT_FOR_READ:
1260 case MMCIF_WAIT_FOR_WRITE:
1261 case MMCIF_WAIT_FOR_READ_END:
1262 case MMCIF_WAIT_FOR_WRITE_END:
1263 mrq->data->error = sh_mmcif_error_manage(host);
1264 break;
1265 default:
1266 BUG();
1267 }
1268
1269 host->state = STATE_IDLE;
1270 host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1271 host->mrq = NULL;
1272 mmc_request_done(host->mmc, mrq);
1273 }
1274
1275 static void sh_mmcif_init_ocr(struct sh_mmcif_host *host)
1276 {
1277 struct sh_mmcif_plat_data *pd = host->pd->dev.platform_data;
1278 struct mmc_host *mmc = host->mmc;
1279
1280 mmc_regulator_get_supply(mmc);
1281
1282 if (!pd)
1283 return;
1284
1285 if (!mmc->ocr_avail)
1286 mmc->ocr_avail = pd->ocr;
1287 else if (pd->ocr)
1288 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1289 }
1290
1291 static int __devinit sh_mmcif_probe(struct platform_device *pdev)
1292 {
1293 int ret = 0, irq[2];
1294 struct mmc_host *mmc;
1295 struct sh_mmcif_host *host;
1296 struct sh_mmcif_plat_data *pd = pdev->dev.platform_data;
1297 struct resource *res;
1298 void __iomem *reg;
1299 char clk_name[8];
1300
1301 irq[0] = platform_get_irq(pdev, 0);
1302 irq[1] = platform_get_irq(pdev, 1);
1303 if (irq[0] < 0 || irq[1] < 0) {
1304 dev_err(&pdev->dev, "Get irq error\n");
1305 return -ENXIO;
1306 }
1307 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1308 if (!res) {
1309 dev_err(&pdev->dev, "platform_get_resource error.\n");
1310 return -ENXIO;
1311 }
1312 reg = ioremap(res->start, resource_size(res));
1313 if (!reg) {
1314 dev_err(&pdev->dev, "ioremap error.\n");
1315 return -ENOMEM;
1316 }
1317
1318 mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), &pdev->dev);
1319 if (!mmc) {
1320 ret = -ENOMEM;
1321 goto ealloch;
1322 }
1323 host = mmc_priv(mmc);
1324 host->mmc = mmc;
1325 host->addr = reg;
1326 host->timeout = 1000;
1327
1328 host->pd = pdev;
1329
1330 spin_lock_init(&host->lock);
1331
1332 mmc->ops = &sh_mmcif_ops;
1333 sh_mmcif_init_ocr(host);
1334
1335 mmc->caps = MMC_CAP_MMC_HIGHSPEED;
1336 if (pd && pd->caps)
1337 mmc->caps |= pd->caps;
1338 mmc->max_segs = 32;
1339 mmc->max_blk_size = 512;
1340 mmc->max_req_size = PAGE_CACHE_SIZE * mmc->max_segs;
1341 mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1342 mmc->max_seg_size = mmc->max_req_size;
1343
1344 platform_set_drvdata(pdev, host);
1345
1346 pm_runtime_enable(&pdev->dev);
1347 host->power = false;
1348
1349 snprintf(clk_name, sizeof(clk_name), "mmc%d", pdev->id);
1350 host->hclk = clk_get(&pdev->dev, clk_name);
1351 if (IS_ERR(host->hclk)) {
1352 ret = PTR_ERR(host->hclk);
1353 dev_err(&pdev->dev, "cannot get clock \"%s\": %d\n", clk_name, ret);
1354 goto eclkget;
1355 }
1356 ret = sh_mmcif_clk_update(host);
1357 if (ret < 0)
1358 goto eclkupdate;
1359
1360 ret = pm_runtime_resume(&pdev->dev);
1361 if (ret < 0)
1362 goto eresume;
1363
1364 INIT_DELAYED_WORK(&host->timeout_work, mmcif_timeout_work);
1365
1366 sh_mmcif_sync_reset(host);
1367 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1368
1369 ret = request_threaded_irq(irq[0], sh_mmcif_intr, sh_mmcif_irqt, 0, "sh_mmc:error", host);
1370 if (ret) {
1371 dev_err(&pdev->dev, "request_irq error (sh_mmc:error)\n");
1372 goto ereqirq0;
1373 }
1374 ret = request_threaded_irq(irq[1], sh_mmcif_intr, sh_mmcif_irqt, 0, "sh_mmc:int", host);
1375 if (ret) {
1376 dev_err(&pdev->dev, "request_irq error (sh_mmc:int)\n");
1377 goto ereqirq1;
1378 }
1379
1380 if (pd && pd->use_cd_gpio) {
1381 ret = mmc_gpio_request_cd(mmc, pd->cd_gpio);
1382 if (ret < 0)
1383 goto erqcd;
1384 }
1385
1386 clk_disable(host->hclk);
1387 ret = mmc_add_host(mmc);
1388 if (ret < 0)
1389 goto emmcaddh;
1390
1391 dev_pm_qos_expose_latency_limit(&pdev->dev, 100);
1392
1393 dev_info(&pdev->dev, "driver version %s\n", DRIVER_VERSION);
1394 dev_dbg(&pdev->dev, "chip ver H'%04x\n",
1395 sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0x0000ffff);
1396 return ret;
1397
1398 emmcaddh:
1399 if (pd && pd->use_cd_gpio)
1400 mmc_gpio_free_cd(mmc);
1401 erqcd:
1402 free_irq(irq[1], host);
1403 ereqirq1:
1404 free_irq(irq[0], host);
1405 ereqirq0:
1406 pm_runtime_suspend(&pdev->dev);
1407 eresume:
1408 clk_disable(host->hclk);
1409 eclkupdate:
1410 clk_put(host->hclk);
1411 eclkget:
1412 pm_runtime_disable(&pdev->dev);
1413 mmc_free_host(mmc);
1414 ealloch:
1415 iounmap(reg);
1416 return ret;
1417 }
1418
1419 static int __devexit sh_mmcif_remove(struct platform_device *pdev)
1420 {
1421 struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1422 struct sh_mmcif_plat_data *pd = pdev->dev.platform_data;
1423 int irq[2];
1424
1425 host->dying = true;
1426 clk_enable(host->hclk);
1427 pm_runtime_get_sync(&pdev->dev);
1428
1429 dev_pm_qos_hide_latency_limit(&pdev->dev);
1430
1431 if (pd && pd->use_cd_gpio)
1432 mmc_gpio_free_cd(host->mmc);
1433
1434 mmc_remove_host(host->mmc);
1435 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1436
1437 /*
1438 * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1439 * mmc_remove_host() call above. But swapping order doesn't help either
1440 * (a query on the linux-mmc mailing list didn't bring any replies).
1441 */
1442 cancel_delayed_work_sync(&host->timeout_work);
1443
1444 if (host->addr)
1445 iounmap(host->addr);
1446
1447 irq[0] = platform_get_irq(pdev, 0);
1448 irq[1] = platform_get_irq(pdev, 1);
1449
1450 free_irq(irq[0], host);
1451 free_irq(irq[1], host);
1452
1453 platform_set_drvdata(pdev, NULL);
1454
1455 mmc_free_host(host->mmc);
1456 pm_runtime_put_sync(&pdev->dev);
1457 clk_disable(host->hclk);
1458 pm_runtime_disable(&pdev->dev);
1459
1460 return 0;
1461 }
1462
1463 #ifdef CONFIG_PM
1464 static int sh_mmcif_suspend(struct device *dev)
1465 {
1466 struct sh_mmcif_host *host = dev_get_drvdata(dev);
1467 int ret = mmc_suspend_host(host->mmc);
1468
1469 if (!ret)
1470 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1471
1472 return ret;
1473 }
1474
1475 static int sh_mmcif_resume(struct device *dev)
1476 {
1477 struct sh_mmcif_host *host = dev_get_drvdata(dev);
1478
1479 return mmc_resume_host(host->mmc);
1480 }
1481 #else
1482 #define sh_mmcif_suspend NULL
1483 #define sh_mmcif_resume NULL
1484 #endif /* CONFIG_PM */
1485
1486 static const struct of_device_id mmcif_of_match[] = {
1487 { .compatible = "renesas,sh-mmcif" },
1488 { }
1489 };
1490 MODULE_DEVICE_TABLE(of, mmcif_of_match);
1491
1492 static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1493 .suspend = sh_mmcif_suspend,
1494 .resume = sh_mmcif_resume,
1495 };
1496
1497 static struct platform_driver sh_mmcif_driver = {
1498 .probe = sh_mmcif_probe,
1499 .remove = sh_mmcif_remove,
1500 .driver = {
1501 .name = DRIVER_NAME,
1502 .pm = &sh_mmcif_dev_pm_ops,
1503 .owner = THIS_MODULE,
1504 .of_match_table = mmcif_of_match,
1505 },
1506 };
1507
1508 module_platform_driver(sh_mmcif_driver);
1509
1510 MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1511 MODULE_LICENSE("GPL");
1512 MODULE_ALIAS("platform:" DRIVER_NAME);
1513 MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");
This page took 0.094291 seconds and 6 git commands to generate.