mmc: sh_mmcif: simplify and use meaningful label names in error-handling
[deliverable/linux.git] / drivers / mmc / host / sh_mmcif.c
1 /*
2 * MMCIF eMMC driver.
3 *
4 * Copyright (C) 2010 Renesas Solutions Corp.
5 * Yusuke Goda <yusuke.goda.sx@renesas.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License.
10 *
11 *
12 * TODO
13 * 1. DMA
14 * 2. Power management
15 * 3. Handle MMC errors better
16 *
17 */
18
19 /*
20 * The MMCIF driver is now processing MMC requests asynchronously, according
21 * to the Linux MMC API requirement.
22 *
23 * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
24 * data, and optional stop. To achieve asynchronous processing each of these
25 * stages is split into two halves: a top and a bottom half. The top half
26 * initialises the hardware, installs a timeout handler to handle completion
27 * timeouts, and returns. In case of the command stage this immediately returns
28 * control to the caller, leaving all further processing to run asynchronously.
29 * All further request processing is performed by the bottom halves.
30 *
31 * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
32 * thread, a DMA completion callback, if DMA is used, a timeout work, and
33 * request- and stage-specific handler methods.
34 *
35 * Each bottom half run begins with either a hardware interrupt, a DMA callback
36 * invocation, or a timeout work run. In case of an error or a successful
37 * processing completion, the MMC core is informed and the request processing is
38 * finished. In case processing has to continue, i.e., if data has to be read
39 * from or written to the card, or if a stop command has to be sent, the next
40 * top half is called, which performs the necessary hardware handling and
41 * reschedules the timeout work. This returns the driver state machine into the
42 * bottom half waiting state.
43 */
44
45 #include <linux/bitops.h>
46 #include <linux/clk.h>
47 #include <linux/completion.h>
48 #include <linux/delay.h>
49 #include <linux/dma-mapping.h>
50 #include <linux/dmaengine.h>
51 #include <linux/mmc/card.h>
52 #include <linux/mmc/core.h>
53 #include <linux/mmc/host.h>
54 #include <linux/mmc/mmc.h>
55 #include <linux/mmc/sdio.h>
56 #include <linux/mmc/sh_mmcif.h>
57 #include <linux/pagemap.h>
58 #include <linux/platform_device.h>
59 #include <linux/pm_qos.h>
60 #include <linux/pm_runtime.h>
61 #include <linux/spinlock.h>
62 #include <linux/module.h>
63
64 #define DRIVER_NAME "sh_mmcif"
65 #define DRIVER_VERSION "2010-04-28"
66
67 /* CE_CMD_SET */
68 #define CMD_MASK 0x3f000000
69 #define CMD_SET_RTYP_NO ((0 << 23) | (0 << 22))
70 #define CMD_SET_RTYP_6B ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
71 #define CMD_SET_RTYP_17B ((1 << 23) | (0 << 22)) /* R2 */
72 #define CMD_SET_RBSY (1 << 21) /* R1b */
73 #define CMD_SET_CCSEN (1 << 20)
74 #define CMD_SET_WDAT (1 << 19) /* 1: on data, 0: no data */
75 #define CMD_SET_DWEN (1 << 18) /* 1: write, 0: read */
76 #define CMD_SET_CMLTE (1 << 17) /* 1: multi block trans, 0: single */
77 #define CMD_SET_CMD12EN (1 << 16) /* 1: CMD12 auto issue */
78 #define CMD_SET_RIDXC_INDEX ((0 << 15) | (0 << 14)) /* index check */
79 #define CMD_SET_RIDXC_BITS ((0 << 15) | (1 << 14)) /* check bits check */
80 #define CMD_SET_RIDXC_NO ((1 << 15) | (0 << 14)) /* no check */
81 #define CMD_SET_CRC7C ((0 << 13) | (0 << 12)) /* CRC7 check*/
82 #define CMD_SET_CRC7C_BITS ((0 << 13) | (1 << 12)) /* check bits check*/
83 #define CMD_SET_CRC7C_INTERNAL ((1 << 13) | (0 << 12)) /* internal CRC7 check*/
84 #define CMD_SET_CRC16C (1 << 10) /* 0: CRC16 check*/
85 #define CMD_SET_CRCSTE (1 << 8) /* 1: not receive CRC status */
86 #define CMD_SET_TBIT (1 << 7) /* 1: tran mission bit "Low" */
87 #define CMD_SET_OPDM (1 << 6) /* 1: open/drain */
88 #define CMD_SET_CCSH (1 << 5)
89 #define CMD_SET_DATW_1 ((0 << 1) | (0 << 0)) /* 1bit */
90 #define CMD_SET_DATW_4 ((0 << 1) | (1 << 0)) /* 4bit */
91 #define CMD_SET_DATW_8 ((1 << 1) | (0 << 0)) /* 8bit */
92
93 /* CE_CMD_CTRL */
94 #define CMD_CTRL_BREAK (1 << 0)
95
96 /* CE_BLOCK_SET */
97 #define BLOCK_SIZE_MASK 0x0000ffff
98
99 /* CE_INT */
100 #define INT_CCSDE (1 << 29)
101 #define INT_CMD12DRE (1 << 26)
102 #define INT_CMD12RBE (1 << 25)
103 #define INT_CMD12CRE (1 << 24)
104 #define INT_DTRANE (1 << 23)
105 #define INT_BUFRE (1 << 22)
106 #define INT_BUFWEN (1 << 21)
107 #define INT_BUFREN (1 << 20)
108 #define INT_CCSRCV (1 << 19)
109 #define INT_RBSYE (1 << 17)
110 #define INT_CRSPE (1 << 16)
111 #define INT_CMDVIO (1 << 15)
112 #define INT_BUFVIO (1 << 14)
113 #define INT_WDATERR (1 << 11)
114 #define INT_RDATERR (1 << 10)
115 #define INT_RIDXERR (1 << 9)
116 #define INT_RSPERR (1 << 8)
117 #define INT_CCSTO (1 << 5)
118 #define INT_CRCSTO (1 << 4)
119 #define INT_WDATTO (1 << 3)
120 #define INT_RDATTO (1 << 2)
121 #define INT_RBSYTO (1 << 1)
122 #define INT_RSPTO (1 << 0)
123 #define INT_ERR_STS (INT_CMDVIO | INT_BUFVIO | INT_WDATERR | \
124 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
125 INT_CCSTO | INT_CRCSTO | INT_WDATTO | \
126 INT_RDATTO | INT_RBSYTO | INT_RSPTO)
127
128 /* CE_INT_MASK */
129 #define MASK_ALL 0x00000000
130 #define MASK_MCCSDE (1 << 29)
131 #define MASK_MCMD12DRE (1 << 26)
132 #define MASK_MCMD12RBE (1 << 25)
133 #define MASK_MCMD12CRE (1 << 24)
134 #define MASK_MDTRANE (1 << 23)
135 #define MASK_MBUFRE (1 << 22)
136 #define MASK_MBUFWEN (1 << 21)
137 #define MASK_MBUFREN (1 << 20)
138 #define MASK_MCCSRCV (1 << 19)
139 #define MASK_MRBSYE (1 << 17)
140 #define MASK_MCRSPE (1 << 16)
141 #define MASK_MCMDVIO (1 << 15)
142 #define MASK_MBUFVIO (1 << 14)
143 #define MASK_MWDATERR (1 << 11)
144 #define MASK_MRDATERR (1 << 10)
145 #define MASK_MRIDXERR (1 << 9)
146 #define MASK_MRSPERR (1 << 8)
147 #define MASK_MCCSTO (1 << 5)
148 #define MASK_MCRCSTO (1 << 4)
149 #define MASK_MWDATTO (1 << 3)
150 #define MASK_MRDATTO (1 << 2)
151 #define MASK_MRBSYTO (1 << 1)
152 #define MASK_MRSPTO (1 << 0)
153
154 #define MASK_START_CMD (MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
155 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
156 MASK_MCCSTO | MASK_MCRCSTO | MASK_MWDATTO | \
157 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
158
159 /* CE_HOST_STS1 */
160 #define STS1_CMDSEQ (1 << 31)
161
162 /* CE_HOST_STS2 */
163 #define STS2_CRCSTE (1 << 31)
164 #define STS2_CRC16E (1 << 30)
165 #define STS2_AC12CRCE (1 << 29)
166 #define STS2_RSPCRC7E (1 << 28)
167 #define STS2_CRCSTEBE (1 << 27)
168 #define STS2_RDATEBE (1 << 26)
169 #define STS2_AC12REBE (1 << 25)
170 #define STS2_RSPEBE (1 << 24)
171 #define STS2_AC12IDXE (1 << 23)
172 #define STS2_RSPIDXE (1 << 22)
173 #define STS2_CCSTO (1 << 15)
174 #define STS2_RDATTO (1 << 14)
175 #define STS2_DATBSYTO (1 << 13)
176 #define STS2_CRCSTTO (1 << 12)
177 #define STS2_AC12BSYTO (1 << 11)
178 #define STS2_RSPBSYTO (1 << 10)
179 #define STS2_AC12RSPTO (1 << 9)
180 #define STS2_RSPTO (1 << 8)
181 #define STS2_CRC_ERR (STS2_CRCSTE | STS2_CRC16E | \
182 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
183 #define STS2_TIMEOUT_ERR (STS2_CCSTO | STS2_RDATTO | \
184 STS2_DATBSYTO | STS2_CRCSTTO | \
185 STS2_AC12BSYTO | STS2_RSPBSYTO | \
186 STS2_AC12RSPTO | STS2_RSPTO)
187
188 #define CLKDEV_EMMC_DATA 52000000 /* 52MHz */
189 #define CLKDEV_MMC_DATA 20000000 /* 20MHz */
190 #define CLKDEV_INIT 400000 /* 400 KHz */
191
192 enum mmcif_state {
193 STATE_IDLE,
194 STATE_REQUEST,
195 STATE_IOS,
196 };
197
198 enum mmcif_wait_for {
199 MMCIF_WAIT_FOR_REQUEST,
200 MMCIF_WAIT_FOR_CMD,
201 MMCIF_WAIT_FOR_MREAD,
202 MMCIF_WAIT_FOR_MWRITE,
203 MMCIF_WAIT_FOR_READ,
204 MMCIF_WAIT_FOR_WRITE,
205 MMCIF_WAIT_FOR_READ_END,
206 MMCIF_WAIT_FOR_WRITE_END,
207 MMCIF_WAIT_FOR_STOP,
208 };
209
210 struct sh_mmcif_host {
211 struct mmc_host *mmc;
212 struct mmc_request *mrq;
213 struct platform_device *pd;
214 struct sh_dmae_slave dma_slave_tx;
215 struct sh_dmae_slave dma_slave_rx;
216 struct clk *hclk;
217 unsigned int clk;
218 int bus_width;
219 bool sd_error;
220 bool dying;
221 long timeout;
222 void __iomem *addr;
223 u32 *pio_ptr;
224 spinlock_t lock; /* protect sh_mmcif_host::state */
225 enum mmcif_state state;
226 enum mmcif_wait_for wait_for;
227 struct delayed_work timeout_work;
228 size_t blocksize;
229 int sg_idx;
230 int sg_blkidx;
231 bool power;
232 bool card_present;
233
234 /* DMA support */
235 struct dma_chan *chan_rx;
236 struct dma_chan *chan_tx;
237 struct completion dma_complete;
238 bool dma_active;
239 };
240
241 static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
242 unsigned int reg, u32 val)
243 {
244 writel(val | readl(host->addr + reg), host->addr + reg);
245 }
246
247 static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
248 unsigned int reg, u32 val)
249 {
250 writel(~val & readl(host->addr + reg), host->addr + reg);
251 }
252
253 static void mmcif_dma_complete(void *arg)
254 {
255 struct sh_mmcif_host *host = arg;
256 struct mmc_data *data = host->mrq->data;
257
258 dev_dbg(&host->pd->dev, "Command completed\n");
259
260 if (WARN(!data, "%s: NULL data in DMA completion!\n",
261 dev_name(&host->pd->dev)))
262 return;
263
264 if (data->flags & MMC_DATA_READ)
265 dma_unmap_sg(host->chan_rx->device->dev,
266 data->sg, data->sg_len,
267 DMA_FROM_DEVICE);
268 else
269 dma_unmap_sg(host->chan_tx->device->dev,
270 data->sg, data->sg_len,
271 DMA_TO_DEVICE);
272
273 complete(&host->dma_complete);
274 }
275
276 static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
277 {
278 struct mmc_data *data = host->mrq->data;
279 struct scatterlist *sg = data->sg;
280 struct dma_async_tx_descriptor *desc = NULL;
281 struct dma_chan *chan = host->chan_rx;
282 dma_cookie_t cookie = -EINVAL;
283 int ret;
284
285 ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
286 DMA_FROM_DEVICE);
287 if (ret > 0) {
288 host->dma_active = true;
289 desc = dmaengine_prep_slave_sg(chan, sg, ret,
290 DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
291 }
292
293 if (desc) {
294 desc->callback = mmcif_dma_complete;
295 desc->callback_param = host;
296 cookie = dmaengine_submit(desc);
297 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
298 dma_async_issue_pending(chan);
299 }
300 dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
301 __func__, data->sg_len, ret, cookie);
302
303 if (!desc) {
304 /* DMA failed, fall back to PIO */
305 if (ret >= 0)
306 ret = -EIO;
307 host->chan_rx = NULL;
308 host->dma_active = false;
309 dma_release_channel(chan);
310 /* Free the Tx channel too */
311 chan = host->chan_tx;
312 if (chan) {
313 host->chan_tx = NULL;
314 dma_release_channel(chan);
315 }
316 dev_warn(&host->pd->dev,
317 "DMA failed: %d, falling back to PIO\n", ret);
318 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
319 }
320
321 dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
322 desc, cookie, data->sg_len);
323 }
324
325 static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
326 {
327 struct mmc_data *data = host->mrq->data;
328 struct scatterlist *sg = data->sg;
329 struct dma_async_tx_descriptor *desc = NULL;
330 struct dma_chan *chan = host->chan_tx;
331 dma_cookie_t cookie = -EINVAL;
332 int ret;
333
334 ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
335 DMA_TO_DEVICE);
336 if (ret > 0) {
337 host->dma_active = true;
338 desc = dmaengine_prep_slave_sg(chan, sg, ret,
339 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
340 }
341
342 if (desc) {
343 desc->callback = mmcif_dma_complete;
344 desc->callback_param = host;
345 cookie = dmaengine_submit(desc);
346 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
347 dma_async_issue_pending(chan);
348 }
349 dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
350 __func__, data->sg_len, ret, cookie);
351
352 if (!desc) {
353 /* DMA failed, fall back to PIO */
354 if (ret >= 0)
355 ret = -EIO;
356 host->chan_tx = NULL;
357 host->dma_active = false;
358 dma_release_channel(chan);
359 /* Free the Rx channel too */
360 chan = host->chan_rx;
361 if (chan) {
362 host->chan_rx = NULL;
363 dma_release_channel(chan);
364 }
365 dev_warn(&host->pd->dev,
366 "DMA failed: %d, falling back to PIO\n", ret);
367 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
368 }
369
370 dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d\n", __func__,
371 desc, cookie);
372 }
373
374 static bool sh_mmcif_filter(struct dma_chan *chan, void *arg)
375 {
376 dev_dbg(chan->device->dev, "%s: slave data %p\n", __func__, arg);
377 chan->private = arg;
378 return true;
379 }
380
381 static void sh_mmcif_request_dma(struct sh_mmcif_host *host,
382 struct sh_mmcif_plat_data *pdata)
383 {
384 struct sh_dmae_slave *tx, *rx;
385 host->dma_active = false;
386
387 /* We can only either use DMA for both Tx and Rx or not use it at all */
388 if (pdata->dma) {
389 dev_warn(&host->pd->dev,
390 "Update your platform to use embedded DMA slave IDs\n");
391 tx = &pdata->dma->chan_priv_tx;
392 rx = &pdata->dma->chan_priv_rx;
393 } else {
394 tx = &host->dma_slave_tx;
395 tx->slave_id = pdata->slave_id_tx;
396 rx = &host->dma_slave_rx;
397 rx->slave_id = pdata->slave_id_rx;
398 }
399 if (tx->slave_id > 0 && rx->slave_id > 0) {
400 dma_cap_mask_t mask;
401
402 dma_cap_zero(mask);
403 dma_cap_set(DMA_SLAVE, mask);
404
405 host->chan_tx = dma_request_channel(mask, sh_mmcif_filter, tx);
406 dev_dbg(&host->pd->dev, "%s: TX: got channel %p\n", __func__,
407 host->chan_tx);
408
409 if (!host->chan_tx)
410 return;
411
412 host->chan_rx = dma_request_channel(mask, sh_mmcif_filter, rx);
413 dev_dbg(&host->pd->dev, "%s: RX: got channel %p\n", __func__,
414 host->chan_rx);
415
416 if (!host->chan_rx) {
417 dma_release_channel(host->chan_tx);
418 host->chan_tx = NULL;
419 return;
420 }
421
422 init_completion(&host->dma_complete);
423 }
424 }
425
426 static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
427 {
428 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
429 /* Descriptors are freed automatically */
430 if (host->chan_tx) {
431 struct dma_chan *chan = host->chan_tx;
432 host->chan_tx = NULL;
433 dma_release_channel(chan);
434 }
435 if (host->chan_rx) {
436 struct dma_chan *chan = host->chan_rx;
437 host->chan_rx = NULL;
438 dma_release_channel(chan);
439 }
440
441 host->dma_active = false;
442 }
443
444 static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
445 {
446 struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
447
448 sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
449 sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
450
451 if (!clk)
452 return;
453 if (p->sup_pclk && clk == host->clk)
454 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_SUP_PCLK);
455 else
456 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR &
457 ((fls(DIV_ROUND_UP(host->clk,
458 clk) - 1) - 1) << 16));
459
460 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
461 }
462
463 static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
464 {
465 u32 tmp;
466
467 tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
468
469 sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
470 sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
471 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
472 SRSPTO_256 | SRBSYTO_29 | SRWDTO_29 | SCCSTO_29);
473 /* byte swap on */
474 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
475 }
476
477 static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
478 {
479 u32 state1, state2;
480 int ret, timeout;
481
482 host->sd_error = false;
483
484 state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
485 state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
486 dev_dbg(&host->pd->dev, "ERR HOST_STS1 = %08x\n", state1);
487 dev_dbg(&host->pd->dev, "ERR HOST_STS2 = %08x\n", state2);
488
489 if (state1 & STS1_CMDSEQ) {
490 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
491 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
492 for (timeout = 10000000; timeout; timeout--) {
493 if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
494 & STS1_CMDSEQ))
495 break;
496 mdelay(1);
497 }
498 if (!timeout) {
499 dev_err(&host->pd->dev,
500 "Forced end of command sequence timeout err\n");
501 return -EIO;
502 }
503 sh_mmcif_sync_reset(host);
504 dev_dbg(&host->pd->dev, "Forced end of command sequence\n");
505 return -EIO;
506 }
507
508 if (state2 & STS2_CRC_ERR) {
509 dev_dbg(&host->pd->dev, ": CRC error\n");
510 ret = -EIO;
511 } else if (state2 & STS2_TIMEOUT_ERR) {
512 dev_dbg(&host->pd->dev, ": Timeout\n");
513 ret = -ETIMEDOUT;
514 } else {
515 dev_dbg(&host->pd->dev, ": End/Index error\n");
516 ret = -EIO;
517 }
518 return ret;
519 }
520
521 static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
522 {
523 struct mmc_data *data = host->mrq->data;
524
525 host->sg_blkidx += host->blocksize;
526
527 /* data->sg->length must be a multiple of host->blocksize? */
528 BUG_ON(host->sg_blkidx > data->sg->length);
529
530 if (host->sg_blkidx == data->sg->length) {
531 host->sg_blkidx = 0;
532 if (++host->sg_idx < data->sg_len)
533 host->pio_ptr = sg_virt(++data->sg);
534 } else {
535 host->pio_ptr = p;
536 }
537
538 if (host->sg_idx == data->sg_len)
539 return false;
540
541 return true;
542 }
543
544 static void sh_mmcif_single_read(struct sh_mmcif_host *host,
545 struct mmc_request *mrq)
546 {
547 host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
548 BLOCK_SIZE_MASK) + 3;
549
550 host->wait_for = MMCIF_WAIT_FOR_READ;
551 schedule_delayed_work(&host->timeout_work, host->timeout);
552
553 /* buf read enable */
554 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
555 }
556
557 static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
558 {
559 struct mmc_data *data = host->mrq->data;
560 u32 *p = sg_virt(data->sg);
561 int i;
562
563 if (host->sd_error) {
564 data->error = sh_mmcif_error_manage(host);
565 return false;
566 }
567
568 for (i = 0; i < host->blocksize / 4; i++)
569 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
570
571 /* buffer read end */
572 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
573 host->wait_for = MMCIF_WAIT_FOR_READ_END;
574
575 return true;
576 }
577
578 static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
579 struct mmc_request *mrq)
580 {
581 struct mmc_data *data = mrq->data;
582
583 if (!data->sg_len || !data->sg->length)
584 return;
585
586 host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
587 BLOCK_SIZE_MASK;
588
589 host->wait_for = MMCIF_WAIT_FOR_MREAD;
590 host->sg_idx = 0;
591 host->sg_blkidx = 0;
592 host->pio_ptr = sg_virt(data->sg);
593 schedule_delayed_work(&host->timeout_work, host->timeout);
594 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
595 }
596
597 static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
598 {
599 struct mmc_data *data = host->mrq->data;
600 u32 *p = host->pio_ptr;
601 int i;
602
603 if (host->sd_error) {
604 data->error = sh_mmcif_error_manage(host);
605 return false;
606 }
607
608 BUG_ON(!data->sg->length);
609
610 for (i = 0; i < host->blocksize / 4; i++)
611 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
612
613 if (!sh_mmcif_next_block(host, p))
614 return false;
615
616 schedule_delayed_work(&host->timeout_work, host->timeout);
617 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
618
619 return true;
620 }
621
622 static void sh_mmcif_single_write(struct sh_mmcif_host *host,
623 struct mmc_request *mrq)
624 {
625 host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
626 BLOCK_SIZE_MASK) + 3;
627
628 host->wait_for = MMCIF_WAIT_FOR_WRITE;
629 schedule_delayed_work(&host->timeout_work, host->timeout);
630
631 /* buf write enable */
632 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
633 }
634
635 static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
636 {
637 struct mmc_data *data = host->mrq->data;
638 u32 *p = sg_virt(data->sg);
639 int i;
640
641 if (host->sd_error) {
642 data->error = sh_mmcif_error_manage(host);
643 return false;
644 }
645
646 for (i = 0; i < host->blocksize / 4; i++)
647 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
648
649 /* buffer write end */
650 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
651 host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
652
653 return true;
654 }
655
656 static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
657 struct mmc_request *mrq)
658 {
659 struct mmc_data *data = mrq->data;
660
661 if (!data->sg_len || !data->sg->length)
662 return;
663
664 host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
665 BLOCK_SIZE_MASK;
666
667 host->wait_for = MMCIF_WAIT_FOR_MWRITE;
668 host->sg_idx = 0;
669 host->sg_blkidx = 0;
670 host->pio_ptr = sg_virt(data->sg);
671 schedule_delayed_work(&host->timeout_work, host->timeout);
672 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
673 }
674
675 static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
676 {
677 struct mmc_data *data = host->mrq->data;
678 u32 *p = host->pio_ptr;
679 int i;
680
681 if (host->sd_error) {
682 data->error = sh_mmcif_error_manage(host);
683 return false;
684 }
685
686 BUG_ON(!data->sg->length);
687
688 for (i = 0; i < host->blocksize / 4; i++)
689 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
690
691 if (!sh_mmcif_next_block(host, p))
692 return false;
693
694 schedule_delayed_work(&host->timeout_work, host->timeout);
695 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
696
697 return true;
698 }
699
700 static void sh_mmcif_get_response(struct sh_mmcif_host *host,
701 struct mmc_command *cmd)
702 {
703 if (cmd->flags & MMC_RSP_136) {
704 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
705 cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
706 cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
707 cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
708 } else
709 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
710 }
711
712 static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
713 struct mmc_command *cmd)
714 {
715 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
716 }
717
718 static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
719 struct mmc_request *mrq)
720 {
721 struct mmc_data *data = mrq->data;
722 struct mmc_command *cmd = mrq->cmd;
723 u32 opc = cmd->opcode;
724 u32 tmp = 0;
725
726 /* Response Type check */
727 switch (mmc_resp_type(cmd)) {
728 case MMC_RSP_NONE:
729 tmp |= CMD_SET_RTYP_NO;
730 break;
731 case MMC_RSP_R1:
732 case MMC_RSP_R1B:
733 case MMC_RSP_R3:
734 tmp |= CMD_SET_RTYP_6B;
735 break;
736 case MMC_RSP_R2:
737 tmp |= CMD_SET_RTYP_17B;
738 break;
739 default:
740 dev_err(&host->pd->dev, "Unsupported response type.\n");
741 break;
742 }
743 switch (opc) {
744 /* RBSY */
745 case MMC_SWITCH:
746 case MMC_STOP_TRANSMISSION:
747 case MMC_SET_WRITE_PROT:
748 case MMC_CLR_WRITE_PROT:
749 case MMC_ERASE:
750 tmp |= CMD_SET_RBSY;
751 break;
752 }
753 /* WDAT / DATW */
754 if (data) {
755 tmp |= CMD_SET_WDAT;
756 switch (host->bus_width) {
757 case MMC_BUS_WIDTH_1:
758 tmp |= CMD_SET_DATW_1;
759 break;
760 case MMC_BUS_WIDTH_4:
761 tmp |= CMD_SET_DATW_4;
762 break;
763 case MMC_BUS_WIDTH_8:
764 tmp |= CMD_SET_DATW_8;
765 break;
766 default:
767 dev_err(&host->pd->dev, "Unsupported bus width.\n");
768 break;
769 }
770 }
771 /* DWEN */
772 if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
773 tmp |= CMD_SET_DWEN;
774 /* CMLTE/CMD12EN */
775 if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
776 tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
777 sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
778 data->blocks << 16);
779 }
780 /* RIDXC[1:0] check bits */
781 if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
782 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
783 tmp |= CMD_SET_RIDXC_BITS;
784 /* RCRC7C[1:0] check bits */
785 if (opc == MMC_SEND_OP_COND)
786 tmp |= CMD_SET_CRC7C_BITS;
787 /* RCRC7C[1:0] internal CRC7 */
788 if (opc == MMC_ALL_SEND_CID ||
789 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
790 tmp |= CMD_SET_CRC7C_INTERNAL;
791
792 return (opc << 24) | tmp;
793 }
794
795 static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
796 struct mmc_request *mrq, u32 opc)
797 {
798 switch (opc) {
799 case MMC_READ_MULTIPLE_BLOCK:
800 sh_mmcif_multi_read(host, mrq);
801 return 0;
802 case MMC_WRITE_MULTIPLE_BLOCK:
803 sh_mmcif_multi_write(host, mrq);
804 return 0;
805 case MMC_WRITE_BLOCK:
806 sh_mmcif_single_write(host, mrq);
807 return 0;
808 case MMC_READ_SINGLE_BLOCK:
809 case MMC_SEND_EXT_CSD:
810 sh_mmcif_single_read(host, mrq);
811 return 0;
812 default:
813 dev_err(&host->pd->dev, "UNSUPPORTED CMD = d'%08d\n", opc);
814 return -EINVAL;
815 }
816 }
817
818 static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
819 struct mmc_request *mrq)
820 {
821 struct mmc_command *cmd = mrq->cmd;
822 u32 opc = cmd->opcode;
823 u32 mask;
824
825 switch (opc) {
826 /* response busy check */
827 case MMC_SWITCH:
828 case MMC_STOP_TRANSMISSION:
829 case MMC_SET_WRITE_PROT:
830 case MMC_CLR_WRITE_PROT:
831 case MMC_ERASE:
832 mask = MASK_START_CMD | MASK_MRBSYE;
833 break;
834 default:
835 mask = MASK_START_CMD | MASK_MCRSPE;
836 break;
837 }
838
839 if (mrq->data) {
840 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
841 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
842 mrq->data->blksz);
843 }
844 opc = sh_mmcif_set_cmd(host, mrq);
845
846 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
847 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
848 /* set arg */
849 sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
850 /* set cmd */
851 sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
852
853 host->wait_for = MMCIF_WAIT_FOR_CMD;
854 schedule_delayed_work(&host->timeout_work, host->timeout);
855 }
856
857 static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
858 struct mmc_request *mrq)
859 {
860 switch (mrq->cmd->opcode) {
861 case MMC_READ_MULTIPLE_BLOCK:
862 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
863 break;
864 case MMC_WRITE_MULTIPLE_BLOCK:
865 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
866 break;
867 default:
868 dev_err(&host->pd->dev, "unsupported stop cmd\n");
869 mrq->stop->error = sh_mmcif_error_manage(host);
870 return;
871 }
872
873 host->wait_for = MMCIF_WAIT_FOR_STOP;
874 schedule_delayed_work(&host->timeout_work, host->timeout);
875 }
876
877 static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
878 {
879 struct sh_mmcif_host *host = mmc_priv(mmc);
880 unsigned long flags;
881
882 spin_lock_irqsave(&host->lock, flags);
883 if (host->state != STATE_IDLE) {
884 spin_unlock_irqrestore(&host->lock, flags);
885 mrq->cmd->error = -EAGAIN;
886 mmc_request_done(mmc, mrq);
887 return;
888 }
889
890 host->state = STATE_REQUEST;
891 spin_unlock_irqrestore(&host->lock, flags);
892
893 switch (mrq->cmd->opcode) {
894 /* MMCIF does not support SD/SDIO command */
895 case MMC_SLEEP_AWAKE: /* = SD_IO_SEND_OP_COND (5) */
896 case MMC_SEND_EXT_CSD: /* = SD_SEND_IF_COND (8) */
897 if ((mrq->cmd->flags & MMC_CMD_MASK) != MMC_CMD_BCR)
898 break;
899 case MMC_APP_CMD:
900 host->state = STATE_IDLE;
901 mrq->cmd->error = -ETIMEDOUT;
902 mmc_request_done(mmc, mrq);
903 return;
904 default:
905 break;
906 }
907
908 host->mrq = mrq;
909
910 sh_mmcif_start_cmd(host, mrq);
911 }
912
913 static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
914 {
915 struct sh_mmcif_host *host = mmc_priv(mmc);
916 struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
917 unsigned long flags;
918
919 spin_lock_irqsave(&host->lock, flags);
920 if (host->state != STATE_IDLE) {
921 spin_unlock_irqrestore(&host->lock, flags);
922 return;
923 }
924
925 host->state = STATE_IOS;
926 spin_unlock_irqrestore(&host->lock, flags);
927
928 if (ios->power_mode == MMC_POWER_UP) {
929 if (!host->card_present) {
930 /* See if we also get DMA */
931 sh_mmcif_request_dma(host, host->pd->dev.platform_data);
932 host->card_present = true;
933 }
934 } else if (ios->power_mode == MMC_POWER_OFF || !ios->clock) {
935 /* clock stop */
936 sh_mmcif_clock_control(host, 0);
937 if (ios->power_mode == MMC_POWER_OFF) {
938 if (host->card_present) {
939 sh_mmcif_release_dma(host);
940 host->card_present = false;
941 }
942 }
943 if (host->power) {
944 pm_runtime_put(&host->pd->dev);
945 host->power = false;
946 if (p->down_pwr && ios->power_mode == MMC_POWER_OFF)
947 p->down_pwr(host->pd);
948 }
949 host->state = STATE_IDLE;
950 return;
951 }
952
953 if (ios->clock) {
954 if (!host->power) {
955 if (p->set_pwr)
956 p->set_pwr(host->pd, ios->power_mode);
957 pm_runtime_get_sync(&host->pd->dev);
958 host->power = true;
959 sh_mmcif_sync_reset(host);
960 }
961 sh_mmcif_clock_control(host, ios->clock);
962 }
963
964 host->bus_width = ios->bus_width;
965 host->state = STATE_IDLE;
966 }
967
968 static int sh_mmcif_get_cd(struct mmc_host *mmc)
969 {
970 struct sh_mmcif_host *host = mmc_priv(mmc);
971 struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
972
973 if (!p->get_cd)
974 return -ENOSYS;
975 else
976 return p->get_cd(host->pd);
977 }
978
979 static struct mmc_host_ops sh_mmcif_ops = {
980 .request = sh_mmcif_request,
981 .set_ios = sh_mmcif_set_ios,
982 .get_cd = sh_mmcif_get_cd,
983 };
984
985 static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
986 {
987 struct mmc_command *cmd = host->mrq->cmd;
988 struct mmc_data *data = host->mrq->data;
989 long time;
990
991 if (host->sd_error) {
992 switch (cmd->opcode) {
993 case MMC_ALL_SEND_CID:
994 case MMC_SELECT_CARD:
995 case MMC_APP_CMD:
996 cmd->error = -ETIMEDOUT;
997 host->sd_error = false;
998 break;
999 default:
1000 cmd->error = sh_mmcif_error_manage(host);
1001 dev_dbg(&host->pd->dev, "Cmd(d'%d) error %d\n",
1002 cmd->opcode, cmd->error);
1003 break;
1004 }
1005 return false;
1006 }
1007 if (!(cmd->flags & MMC_RSP_PRESENT)) {
1008 cmd->error = 0;
1009 return false;
1010 }
1011
1012 sh_mmcif_get_response(host, cmd);
1013
1014 if (!data)
1015 return false;
1016
1017 if (data->flags & MMC_DATA_READ) {
1018 if (host->chan_rx)
1019 sh_mmcif_start_dma_rx(host);
1020 } else {
1021 if (host->chan_tx)
1022 sh_mmcif_start_dma_tx(host);
1023 }
1024
1025 if (!host->dma_active) {
1026 data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1027 if (!data->error)
1028 return true;
1029 return false;
1030 }
1031
1032 /* Running in the IRQ thread, can sleep */
1033 time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1034 host->timeout);
1035 if (host->sd_error) {
1036 dev_err(host->mmc->parent,
1037 "Error IRQ while waiting for DMA completion!\n");
1038 /* Woken up by an error IRQ: abort DMA */
1039 if (data->flags & MMC_DATA_READ)
1040 dmaengine_terminate_all(host->chan_rx);
1041 else
1042 dmaengine_terminate_all(host->chan_tx);
1043 data->error = sh_mmcif_error_manage(host);
1044 } else if (!time) {
1045 data->error = -ETIMEDOUT;
1046 } else if (time < 0) {
1047 data->error = time;
1048 }
1049 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1050 BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1051 host->dma_active = false;
1052
1053 if (data->error)
1054 data->bytes_xfered = 0;
1055
1056 return false;
1057 }
1058
1059 static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1060 {
1061 struct sh_mmcif_host *host = dev_id;
1062 struct mmc_request *mrq = host->mrq;
1063 struct mmc_data *data = mrq->data;
1064
1065 cancel_delayed_work_sync(&host->timeout_work);
1066
1067 /*
1068 * All handlers return true, if processing continues, and false, if the
1069 * request has to be completed - successfully or not
1070 */
1071 switch (host->wait_for) {
1072 case MMCIF_WAIT_FOR_REQUEST:
1073 /* We're too late, the timeout has already kicked in */
1074 return IRQ_HANDLED;
1075 case MMCIF_WAIT_FOR_CMD:
1076 if (sh_mmcif_end_cmd(host))
1077 /* Wait for data */
1078 return IRQ_HANDLED;
1079 break;
1080 case MMCIF_WAIT_FOR_MREAD:
1081 if (sh_mmcif_mread_block(host))
1082 /* Wait for more data */
1083 return IRQ_HANDLED;
1084 break;
1085 case MMCIF_WAIT_FOR_READ:
1086 if (sh_mmcif_read_block(host))
1087 /* Wait for data end */
1088 return IRQ_HANDLED;
1089 break;
1090 case MMCIF_WAIT_FOR_MWRITE:
1091 if (sh_mmcif_mwrite_block(host))
1092 /* Wait data to write */
1093 return IRQ_HANDLED;
1094 break;
1095 case MMCIF_WAIT_FOR_WRITE:
1096 if (sh_mmcif_write_block(host))
1097 /* Wait for data end */
1098 return IRQ_HANDLED;
1099 break;
1100 case MMCIF_WAIT_FOR_STOP:
1101 if (host->sd_error) {
1102 mrq->stop->error = sh_mmcif_error_manage(host);
1103 break;
1104 }
1105 sh_mmcif_get_cmd12response(host, mrq->stop);
1106 mrq->stop->error = 0;
1107 break;
1108 case MMCIF_WAIT_FOR_READ_END:
1109 case MMCIF_WAIT_FOR_WRITE_END:
1110 if (host->sd_error)
1111 data->error = sh_mmcif_error_manage(host);
1112 break;
1113 default:
1114 BUG();
1115 }
1116
1117 if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1118 if (!mrq->cmd->error && data && !data->error)
1119 data->bytes_xfered =
1120 data->blocks * data->blksz;
1121
1122 if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1123 sh_mmcif_stop_cmd(host, mrq);
1124 if (!mrq->stop->error)
1125 return IRQ_HANDLED;
1126 }
1127 }
1128
1129 host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1130 host->state = STATE_IDLE;
1131 host->mrq = NULL;
1132 mmc_request_done(host->mmc, mrq);
1133
1134 return IRQ_HANDLED;
1135 }
1136
1137 static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1138 {
1139 struct sh_mmcif_host *host = dev_id;
1140 u32 state;
1141 int err = 0;
1142
1143 state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1144
1145 if (state & INT_ERR_STS) {
1146 /* error interrupts - process first */
1147 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~state);
1148 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state);
1149 err = 1;
1150 } else if (state & INT_RBSYE) {
1151 sh_mmcif_writel(host->addr, MMCIF_CE_INT,
1152 ~(INT_RBSYE | INT_CRSPE));
1153 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MRBSYE);
1154 } else if (state & INT_CRSPE) {
1155 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_CRSPE);
1156 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCRSPE);
1157 } else if (state & INT_BUFREN) {
1158 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFREN);
1159 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
1160 } else if (state & INT_BUFWEN) {
1161 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFWEN);
1162 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
1163 } else if (state & INT_CMD12DRE) {
1164 sh_mmcif_writel(host->addr, MMCIF_CE_INT,
1165 ~(INT_CMD12DRE | INT_CMD12RBE |
1166 INT_CMD12CRE | INT_BUFRE));
1167 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
1168 } else if (state & INT_BUFRE) {
1169 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFRE);
1170 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
1171 } else if (state & INT_DTRANE) {
1172 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_DTRANE);
1173 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
1174 } else if (state & INT_CMD12RBE) {
1175 sh_mmcif_writel(host->addr, MMCIF_CE_INT,
1176 ~(INT_CMD12RBE | INT_CMD12CRE));
1177 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
1178 } else {
1179 dev_dbg(&host->pd->dev, "Unsupported interrupt: 0x%x\n", state);
1180 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~state);
1181 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state);
1182 err = 1;
1183 }
1184 if (err) {
1185 host->sd_error = true;
1186 dev_dbg(&host->pd->dev, "int err state = %08x\n", state);
1187 }
1188 if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1189 if (!host->dma_active)
1190 return IRQ_WAKE_THREAD;
1191 else if (host->sd_error)
1192 mmcif_dma_complete(host);
1193 } else {
1194 dev_dbg(&host->pd->dev, "Unexpected IRQ 0x%x\n", state);
1195 }
1196
1197 return IRQ_HANDLED;
1198 }
1199
1200 static void mmcif_timeout_work(struct work_struct *work)
1201 {
1202 struct delayed_work *d = container_of(work, struct delayed_work, work);
1203 struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1204 struct mmc_request *mrq = host->mrq;
1205
1206 if (host->dying)
1207 /* Don't run after mmc_remove_host() */
1208 return;
1209
1210 /*
1211 * Handle races with cancel_delayed_work(), unless
1212 * cancel_delayed_work_sync() is used
1213 */
1214 switch (host->wait_for) {
1215 case MMCIF_WAIT_FOR_CMD:
1216 mrq->cmd->error = sh_mmcif_error_manage(host);
1217 break;
1218 case MMCIF_WAIT_FOR_STOP:
1219 mrq->stop->error = sh_mmcif_error_manage(host);
1220 break;
1221 case MMCIF_WAIT_FOR_MREAD:
1222 case MMCIF_WAIT_FOR_MWRITE:
1223 case MMCIF_WAIT_FOR_READ:
1224 case MMCIF_WAIT_FOR_WRITE:
1225 case MMCIF_WAIT_FOR_READ_END:
1226 case MMCIF_WAIT_FOR_WRITE_END:
1227 mrq->data->error = sh_mmcif_error_manage(host);
1228 break;
1229 default:
1230 BUG();
1231 }
1232
1233 host->state = STATE_IDLE;
1234 host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1235 host->mrq = NULL;
1236 mmc_request_done(host->mmc, mrq);
1237 }
1238
1239 static int __devinit sh_mmcif_probe(struct platform_device *pdev)
1240 {
1241 int ret = 0, irq[2];
1242 struct mmc_host *mmc;
1243 struct sh_mmcif_host *host;
1244 struct sh_mmcif_plat_data *pd = pdev->dev.platform_data;
1245 struct resource *res;
1246 void __iomem *reg;
1247 char clk_name[8];
1248
1249 if (!pd) {
1250 dev_err(&pdev->dev, "sh_mmcif plat data error.\n");
1251 return -ENXIO;
1252 }
1253
1254 irq[0] = platform_get_irq(pdev, 0);
1255 irq[1] = platform_get_irq(pdev, 1);
1256 if (irq[0] < 0 || irq[1] < 0) {
1257 dev_err(&pdev->dev, "Get irq error\n");
1258 return -ENXIO;
1259 }
1260 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1261 if (!res) {
1262 dev_err(&pdev->dev, "platform_get_resource error.\n");
1263 return -ENXIO;
1264 }
1265 reg = ioremap(res->start, resource_size(res));
1266 if (!reg) {
1267 dev_err(&pdev->dev, "ioremap error.\n");
1268 return -ENOMEM;
1269 }
1270
1271 mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), &pdev->dev);
1272 if (!mmc) {
1273 ret = -ENOMEM;
1274 goto ealloch;
1275 }
1276 host = mmc_priv(mmc);
1277 host->mmc = mmc;
1278 host->addr = reg;
1279 host->timeout = 1000;
1280
1281 snprintf(clk_name, sizeof(clk_name), "mmc%d", pdev->id);
1282 host->hclk = clk_get(&pdev->dev, clk_name);
1283 if (IS_ERR(host->hclk)) {
1284 dev_err(&pdev->dev, "cannot get clock \"%s\"\n", clk_name);
1285 ret = PTR_ERR(host->hclk);
1286 goto eclkget;
1287 }
1288 clk_enable(host->hclk);
1289 host->clk = clk_get_rate(host->hclk);
1290 host->pd = pdev;
1291
1292 spin_lock_init(&host->lock);
1293
1294 mmc->ops = &sh_mmcif_ops;
1295 mmc->f_max = host->clk / 2;
1296 mmc->f_min = host->clk / 512;
1297 if (pd->ocr)
1298 mmc->ocr_avail = pd->ocr;
1299 mmc->caps = MMC_CAP_MMC_HIGHSPEED;
1300 if (pd->caps)
1301 mmc->caps |= pd->caps;
1302 mmc->max_segs = 32;
1303 mmc->max_blk_size = 512;
1304 mmc->max_req_size = PAGE_CACHE_SIZE * mmc->max_segs;
1305 mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1306 mmc->max_seg_size = mmc->max_req_size;
1307
1308 sh_mmcif_sync_reset(host);
1309 platform_set_drvdata(pdev, host);
1310
1311 pm_runtime_enable(&pdev->dev);
1312 host->power = false;
1313
1314 ret = pm_runtime_resume(&pdev->dev);
1315 if (ret < 0)
1316 goto eresume;
1317
1318 INIT_DELAYED_WORK(&host->timeout_work, mmcif_timeout_work);
1319
1320 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1321
1322 ret = request_threaded_irq(irq[0], sh_mmcif_intr, sh_mmcif_irqt, 0, "sh_mmc:error", host);
1323 if (ret) {
1324 dev_err(&pdev->dev, "request_irq error (sh_mmc:error)\n");
1325 goto ereqirq0;
1326 }
1327 ret = request_threaded_irq(irq[1], sh_mmcif_intr, sh_mmcif_irqt, 0, "sh_mmc:int", host);
1328 if (ret) {
1329 dev_err(&pdev->dev, "request_irq error (sh_mmc:int)\n");
1330 goto ereqirq1;
1331 }
1332
1333 ret = mmc_add_host(mmc);
1334 if (ret < 0)
1335 goto emmcaddh;
1336
1337 dev_pm_qos_expose_latency_limit(&pdev->dev, 100);
1338
1339 dev_info(&pdev->dev, "driver version %s\n", DRIVER_VERSION);
1340 dev_dbg(&pdev->dev, "chip ver H'%04x\n",
1341 sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0x0000ffff);
1342 return ret;
1343
1344 emmcaddh:
1345 free_irq(irq[1], host);
1346 ereqirq1:
1347 free_irq(irq[0], host);
1348 ereqirq0:
1349 pm_runtime_suspend(&pdev->dev);
1350 eresume:
1351 pm_runtime_disable(&pdev->dev);
1352 clk_disable(host->hclk);
1353 eclkget:
1354 mmc_free_host(mmc);
1355 ealloch:
1356 iounmap(reg);
1357 return ret;
1358 }
1359
1360 static int __devexit sh_mmcif_remove(struct platform_device *pdev)
1361 {
1362 struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1363 int irq[2];
1364
1365 host->dying = true;
1366 pm_runtime_get_sync(&pdev->dev);
1367
1368 dev_pm_qos_hide_latency_limit(&pdev->dev);
1369
1370 mmc_remove_host(host->mmc);
1371 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1372
1373 /*
1374 * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1375 * mmc_remove_host() call above. But swapping order doesn't help either
1376 * (a query on the linux-mmc mailing list didn't bring any replies).
1377 */
1378 cancel_delayed_work_sync(&host->timeout_work);
1379
1380 if (host->addr)
1381 iounmap(host->addr);
1382
1383 irq[0] = platform_get_irq(pdev, 0);
1384 irq[1] = platform_get_irq(pdev, 1);
1385
1386 free_irq(irq[0], host);
1387 free_irq(irq[1], host);
1388
1389 platform_set_drvdata(pdev, NULL);
1390
1391 clk_disable(host->hclk);
1392 mmc_free_host(host->mmc);
1393 pm_runtime_put_sync(&pdev->dev);
1394 pm_runtime_disable(&pdev->dev);
1395
1396 return 0;
1397 }
1398
1399 #ifdef CONFIG_PM
1400 static int sh_mmcif_suspend(struct device *dev)
1401 {
1402 struct platform_device *pdev = to_platform_device(dev);
1403 struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1404 int ret = mmc_suspend_host(host->mmc);
1405
1406 if (!ret) {
1407 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1408 clk_disable(host->hclk);
1409 }
1410
1411 return ret;
1412 }
1413
1414 static int sh_mmcif_resume(struct device *dev)
1415 {
1416 struct platform_device *pdev = to_platform_device(dev);
1417 struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1418
1419 clk_enable(host->hclk);
1420
1421 return mmc_resume_host(host->mmc);
1422 }
1423 #else
1424 #define sh_mmcif_suspend NULL
1425 #define sh_mmcif_resume NULL
1426 #endif /* CONFIG_PM */
1427
1428 static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1429 .suspend = sh_mmcif_suspend,
1430 .resume = sh_mmcif_resume,
1431 };
1432
1433 static struct platform_driver sh_mmcif_driver = {
1434 .probe = sh_mmcif_probe,
1435 .remove = sh_mmcif_remove,
1436 .driver = {
1437 .name = DRIVER_NAME,
1438 .pm = &sh_mmcif_dev_pm_ops,
1439 },
1440 };
1441
1442 module_platform_driver(sh_mmcif_driver);
1443
1444 MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1445 MODULE_LICENSE("GPL");
1446 MODULE_ALIAS("platform:" DRIVER_NAME);
1447 MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");
This page took 0.064239 seconds and 6 git commands to generate.