[MTD] Unlocking all Intel flash that is locked on power up.
[deliverable/linux.git] / drivers / mtd / chips / cfi_cmdset_0001.c
1 /*
2 * Common Flash Interface support:
3 * Intel Extended Vendor Command Set (ID 0x0001)
4 *
5 * (C) 2000 Red Hat. GPL'd
6 *
7 * $Id: cfi_cmdset_0001.c,v 1.186 2005/11/23 22:07:52 nico Exp $
8 *
9 *
10 * 10/10/2000 Nicolas Pitre <nico@cam.org>
11 * - completely revamped method functions so they are aware and
12 * independent of the flash geometry (buswidth, interleave, etc.)
13 * - scalability vs code size is completely set at compile-time
14 * (see include/linux/mtd/cfi.h for selection)
15 * - optimized write buffer method
16 * 02/05/2002 Christopher Hoover <ch@hpl.hp.com>/<ch@murgatroid.com>
17 * - reworked lock/unlock/erase support for var size flash
18 * 21/03/2007 Rodolfo Giometti <giometti@linux.it>
19 * - auto unlock sectors on resume for auto locking flash on power up
20 */
21
22 #include <linux/module.h>
23 #include <linux/types.h>
24 #include <linux/kernel.h>
25 #include <linux/sched.h>
26 #include <linux/init.h>
27 #include <asm/io.h>
28 #include <asm/byteorder.h>
29
30 #include <linux/errno.h>
31 #include <linux/slab.h>
32 #include <linux/delay.h>
33 #include <linux/interrupt.h>
34 #include <linux/reboot.h>
35 #include <linux/bitmap.h>
36 #include <linux/mtd/xip.h>
37 #include <linux/mtd/map.h>
38 #include <linux/mtd/mtd.h>
39 #include <linux/mtd/compatmac.h>
40 #include <linux/mtd/cfi.h>
41
42 /* #define CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE */
43 /* #define CMDSET0001_DISABLE_WRITE_SUSPEND */
44
45 // debugging, turns off buffer write mode if set to 1
46 #define FORCE_WORD_WRITE 0
47
48 #define MANUFACTURER_INTEL 0x0089
49 #define I82802AB 0x00ad
50 #define I82802AC 0x00ac
51 #define MANUFACTURER_ST 0x0020
52 #define M50LPW080 0x002F
53 #define AT49BV640D 0x02de
54
55 static int cfi_intelext_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
56 static int cfi_intelext_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
57 static int cfi_intelext_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
58 static int cfi_intelext_writev(struct mtd_info *, const struct kvec *, unsigned long, loff_t, size_t *);
59 static int cfi_intelext_erase_varsize(struct mtd_info *, struct erase_info *);
60 static void cfi_intelext_sync (struct mtd_info *);
61 static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, size_t len);
62 static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, size_t len);
63 #ifdef CONFIG_MTD_OTP
64 static int cfi_intelext_read_fact_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
65 static int cfi_intelext_read_user_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
66 static int cfi_intelext_write_user_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
67 static int cfi_intelext_lock_user_prot_reg (struct mtd_info *, loff_t, size_t);
68 static int cfi_intelext_get_fact_prot_info (struct mtd_info *,
69 struct otp_info *, size_t);
70 static int cfi_intelext_get_user_prot_info (struct mtd_info *,
71 struct otp_info *, size_t);
72 #endif
73 static int cfi_intelext_suspend (struct mtd_info *);
74 static void cfi_intelext_resume (struct mtd_info *);
75 static int cfi_intelext_reboot (struct notifier_block *, unsigned long, void *);
76
77 static void cfi_intelext_destroy(struct mtd_info *);
78
79 struct mtd_info *cfi_cmdset_0001(struct map_info *, int);
80
81 static struct mtd_info *cfi_intelext_setup (struct mtd_info *);
82 static int cfi_intelext_partition_fixup(struct mtd_info *, struct cfi_private **);
83
84 static int cfi_intelext_point (struct mtd_info *mtd, loff_t from, size_t len,
85 size_t *retlen, u_char **mtdbuf);
86 static void cfi_intelext_unpoint (struct mtd_info *mtd, u_char *addr, loff_t from,
87 size_t len);
88
89 static int chip_ready (struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
90 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
91 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
92 #include "fwh_lock.h"
93
94
95
96 /*
97 * *********** SETUP AND PROBE BITS ***********
98 */
99
100 static struct mtd_chip_driver cfi_intelext_chipdrv = {
101 .probe = NULL, /* Not usable directly */
102 .destroy = cfi_intelext_destroy,
103 .name = "cfi_cmdset_0001",
104 .module = THIS_MODULE
105 };
106
107 /* #define DEBUG_LOCK_BITS */
108 /* #define DEBUG_CFI_FEATURES */
109
110 #ifdef DEBUG_CFI_FEATURES
111 static void cfi_tell_features(struct cfi_pri_intelext *extp)
112 {
113 int i;
114 printk(" Extended Query version %c.%c\n", extp->MajorVersion, extp->MinorVersion);
115 printk(" Feature/Command Support: %4.4X\n", extp->FeatureSupport);
116 printk(" - Chip Erase: %s\n", extp->FeatureSupport&1?"supported":"unsupported");
117 printk(" - Suspend Erase: %s\n", extp->FeatureSupport&2?"supported":"unsupported");
118 printk(" - Suspend Program: %s\n", extp->FeatureSupport&4?"supported":"unsupported");
119 printk(" - Legacy Lock/Unlock: %s\n", extp->FeatureSupport&8?"supported":"unsupported");
120 printk(" - Queued Erase: %s\n", extp->FeatureSupport&16?"supported":"unsupported");
121 printk(" - Instant block lock: %s\n", extp->FeatureSupport&32?"supported":"unsupported");
122 printk(" - Protection Bits: %s\n", extp->FeatureSupport&64?"supported":"unsupported");
123 printk(" - Page-mode read: %s\n", extp->FeatureSupport&128?"supported":"unsupported");
124 printk(" - Synchronous read: %s\n", extp->FeatureSupport&256?"supported":"unsupported");
125 printk(" - Simultaneous operations: %s\n", extp->FeatureSupport&512?"supported":"unsupported");
126 printk(" - Extended Flash Array: %s\n", extp->FeatureSupport&1024?"supported":"unsupported");
127 for (i=11; i<32; i++) {
128 if (extp->FeatureSupport & (1<<i))
129 printk(" - Unknown Bit %X: supported\n", i);
130 }
131
132 printk(" Supported functions after Suspend: %2.2X\n", extp->SuspendCmdSupport);
133 printk(" - Program after Erase Suspend: %s\n", extp->SuspendCmdSupport&1?"supported":"unsupported");
134 for (i=1; i<8; i++) {
135 if (extp->SuspendCmdSupport & (1<<i))
136 printk(" - Unknown Bit %X: supported\n", i);
137 }
138
139 printk(" Block Status Register Mask: %4.4X\n", extp->BlkStatusRegMask);
140 printk(" - Lock Bit Active: %s\n", extp->BlkStatusRegMask&1?"yes":"no");
141 printk(" - Lock-Down Bit Active: %s\n", extp->BlkStatusRegMask&2?"yes":"no");
142 for (i=2; i<3; i++) {
143 if (extp->BlkStatusRegMask & (1<<i))
144 printk(" - Unknown Bit %X Active: yes\n",i);
145 }
146 printk(" - EFA Lock Bit: %s\n", extp->BlkStatusRegMask&16?"yes":"no");
147 printk(" - EFA Lock-Down Bit: %s\n", extp->BlkStatusRegMask&32?"yes":"no");
148 for (i=6; i<16; i++) {
149 if (extp->BlkStatusRegMask & (1<<i))
150 printk(" - Unknown Bit %X Active: yes\n",i);
151 }
152
153 printk(" Vcc Logic Supply Optimum Program/Erase Voltage: %d.%d V\n",
154 extp->VccOptimal >> 4, extp->VccOptimal & 0xf);
155 if (extp->VppOptimal)
156 printk(" Vpp Programming Supply Optimum Program/Erase Voltage: %d.%d V\n",
157 extp->VppOptimal >> 4, extp->VppOptimal & 0xf);
158 }
159 #endif
160
161 /* Atmel chips don't use the same PRI format as Intel chips */
162 static void fixup_convert_atmel_pri(struct mtd_info *mtd, void *param)
163 {
164 struct map_info *map = mtd->priv;
165 struct cfi_private *cfi = map->fldrv_priv;
166 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
167 struct cfi_pri_atmel atmel_pri;
168 uint32_t features = 0;
169
170 /* Reverse byteswapping */
171 extp->FeatureSupport = cpu_to_le32(extp->FeatureSupport);
172 extp->BlkStatusRegMask = cpu_to_le16(extp->BlkStatusRegMask);
173 extp->ProtRegAddr = cpu_to_le16(extp->ProtRegAddr);
174
175 memcpy(&atmel_pri, extp, sizeof(atmel_pri));
176 memset((char *)extp + 5, 0, sizeof(*extp) - 5);
177
178 printk(KERN_ERR "atmel Features: %02x\n", atmel_pri.Features);
179
180 if (atmel_pri.Features & 0x01) /* chip erase supported */
181 features |= (1<<0);
182 if (atmel_pri.Features & 0x02) /* erase suspend supported */
183 features |= (1<<1);
184 if (atmel_pri.Features & 0x04) /* program suspend supported */
185 features |= (1<<2);
186 if (atmel_pri.Features & 0x08) /* simultaneous operations supported */
187 features |= (1<<9);
188 if (atmel_pri.Features & 0x20) /* page mode read supported */
189 features |= (1<<7);
190 if (atmel_pri.Features & 0x40) /* queued erase supported */
191 features |= (1<<4);
192 if (atmel_pri.Features & 0x80) /* Protection bits supported */
193 features |= (1<<6);
194
195 extp->FeatureSupport = features;
196
197 /* burst write mode not supported */
198 cfi->cfiq->BufWriteTimeoutTyp = 0;
199 cfi->cfiq->BufWriteTimeoutMax = 0;
200 }
201
202 #ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE
203 /* Some Intel Strata Flash prior to FPO revision C has bugs in this area */
204 static void fixup_intel_strataflash(struct mtd_info *mtd, void* param)
205 {
206 struct map_info *map = mtd->priv;
207 struct cfi_private *cfi = map->fldrv_priv;
208 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
209
210 printk(KERN_WARNING "cfi_cmdset_0001: Suspend "
211 "erase on write disabled.\n");
212 extp->SuspendCmdSupport &= ~1;
213 }
214 #endif
215
216 #ifdef CMDSET0001_DISABLE_WRITE_SUSPEND
217 static void fixup_no_write_suspend(struct mtd_info *mtd, void* param)
218 {
219 struct map_info *map = mtd->priv;
220 struct cfi_private *cfi = map->fldrv_priv;
221 struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
222
223 if (cfip && (cfip->FeatureSupport&4)) {
224 cfip->FeatureSupport &= ~4;
225 printk(KERN_WARNING "cfi_cmdset_0001: write suspend disabled\n");
226 }
227 }
228 #endif
229
230 static void fixup_st_m28w320ct(struct mtd_info *mtd, void* param)
231 {
232 struct map_info *map = mtd->priv;
233 struct cfi_private *cfi = map->fldrv_priv;
234
235 cfi->cfiq->BufWriteTimeoutTyp = 0; /* Not supported */
236 cfi->cfiq->BufWriteTimeoutMax = 0; /* Not supported */
237 }
238
239 static void fixup_st_m28w320cb(struct mtd_info *mtd, void* param)
240 {
241 struct map_info *map = mtd->priv;
242 struct cfi_private *cfi = map->fldrv_priv;
243
244 /* Note this is done after the region info is endian swapped */
245 cfi->cfiq->EraseRegionInfo[1] =
246 (cfi->cfiq->EraseRegionInfo[1] & 0xffff0000) | 0x3e;
247 };
248
249 static void fixup_use_point(struct mtd_info *mtd, void *param)
250 {
251 struct map_info *map = mtd->priv;
252 if (!mtd->point && map_is_linear(map)) {
253 mtd->point = cfi_intelext_point;
254 mtd->unpoint = cfi_intelext_unpoint;
255 }
256 }
257
258 static void fixup_use_write_buffers(struct mtd_info *mtd, void *param)
259 {
260 struct map_info *map = mtd->priv;
261 struct cfi_private *cfi = map->fldrv_priv;
262 if (cfi->cfiq->BufWriteTimeoutTyp) {
263 printk(KERN_INFO "Using buffer write method\n" );
264 mtd->write = cfi_intelext_write_buffers;
265 mtd->writev = cfi_intelext_writev;
266 }
267 }
268
269 /*
270 * Some chips power-up with all sectors locked by default.
271 */
272 static void fixup_unlock_powerup_lock(struct mtd_info *mtd, void *param)
273 {
274 struct map_info *map = mtd->priv;
275 struct cfi_private *cfi = map->fldrv_priv;
276 struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
277
278 if (cfip->FeatureSupport&32) {
279 printk(KERN_INFO "Using auto-unlock on power-up/resume\n" );
280 mtd->flags |= MTD_POWERUP_LOCK;
281 }
282 }
283
284 static struct cfi_fixup cfi_fixup_table[] = {
285 { CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri, NULL },
286 #ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE
287 { CFI_MFR_ANY, CFI_ID_ANY, fixup_intel_strataflash, NULL },
288 #endif
289 #ifdef CMDSET0001_DISABLE_WRITE_SUSPEND
290 { CFI_MFR_ANY, CFI_ID_ANY, fixup_no_write_suspend, NULL },
291 #endif
292 #if !FORCE_WORD_WRITE
293 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers, NULL },
294 #endif
295 { CFI_MFR_ST, 0x00ba, /* M28W320CT */ fixup_st_m28w320ct, NULL },
296 { CFI_MFR_ST, 0x00bb, /* M28W320CB */ fixup_st_m28w320cb, NULL },
297 { MANUFACTURER_INTEL, CFI_ID_ANY, fixup_unlock_powerup_lock, NULL, },
298 { 0, 0, NULL, NULL }
299 };
300
301 static struct cfi_fixup jedec_fixup_table[] = {
302 { MANUFACTURER_INTEL, I82802AB, fixup_use_fwh_lock, NULL, },
303 { MANUFACTURER_INTEL, I82802AC, fixup_use_fwh_lock, NULL, },
304 { MANUFACTURER_ST, M50LPW080, fixup_use_fwh_lock, NULL, },
305 { 0, 0, NULL, NULL }
306 };
307 static struct cfi_fixup fixup_table[] = {
308 /* The CFI vendor ids and the JEDEC vendor IDs appear
309 * to be common. It is like the devices id's are as
310 * well. This table is to pick all cases where
311 * we know that is the case.
312 */
313 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_point, NULL },
314 { 0, 0, NULL, NULL }
315 };
316
317 static inline struct cfi_pri_intelext *
318 read_pri_intelext(struct map_info *map, __u16 adr)
319 {
320 struct cfi_pri_intelext *extp;
321 unsigned int extp_size = sizeof(*extp);
322
323 again:
324 extp = (struct cfi_pri_intelext *)cfi_read_pri(map, adr, extp_size, "Intel/Sharp");
325 if (!extp)
326 return NULL;
327
328 if (extp->MajorVersion != '1' ||
329 (extp->MinorVersion < '0' || extp->MinorVersion > '5')) {
330 printk(KERN_ERR " Unknown Intel/Sharp Extended Query "
331 "version %c.%c.\n", extp->MajorVersion,
332 extp->MinorVersion);
333 kfree(extp);
334 return NULL;
335 }
336
337 /* Do some byteswapping if necessary */
338 extp->FeatureSupport = le32_to_cpu(extp->FeatureSupport);
339 extp->BlkStatusRegMask = le16_to_cpu(extp->BlkStatusRegMask);
340 extp->ProtRegAddr = le16_to_cpu(extp->ProtRegAddr);
341
342 if (extp->MajorVersion == '1' && extp->MinorVersion >= '3') {
343 unsigned int extra_size = 0;
344 int nb_parts, i;
345
346 /* Protection Register info */
347 extra_size += (extp->NumProtectionFields - 1) *
348 sizeof(struct cfi_intelext_otpinfo);
349
350 /* Burst Read info */
351 extra_size += 2;
352 if (extp_size < sizeof(*extp) + extra_size)
353 goto need_more;
354 extra_size += extp->extra[extra_size-1];
355
356 /* Number of hardware-partitions */
357 extra_size += 1;
358 if (extp_size < sizeof(*extp) + extra_size)
359 goto need_more;
360 nb_parts = extp->extra[extra_size - 1];
361
362 /* skip the sizeof(partregion) field in CFI 1.4 */
363 if (extp->MinorVersion >= '4')
364 extra_size += 2;
365
366 for (i = 0; i < nb_parts; i++) {
367 struct cfi_intelext_regioninfo *rinfo;
368 rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[extra_size];
369 extra_size += sizeof(*rinfo);
370 if (extp_size < sizeof(*extp) + extra_size)
371 goto need_more;
372 rinfo->NumIdentPartitions=le16_to_cpu(rinfo->NumIdentPartitions);
373 extra_size += (rinfo->NumBlockTypes - 1)
374 * sizeof(struct cfi_intelext_blockinfo);
375 }
376
377 if (extp->MinorVersion >= '4')
378 extra_size += sizeof(struct cfi_intelext_programming_regioninfo);
379
380 if (extp_size < sizeof(*extp) + extra_size) {
381 need_more:
382 extp_size = sizeof(*extp) + extra_size;
383 kfree(extp);
384 if (extp_size > 4096) {
385 printk(KERN_ERR
386 "%s: cfi_pri_intelext is too fat\n",
387 __FUNCTION__);
388 return NULL;
389 }
390 goto again;
391 }
392 }
393
394 return extp;
395 }
396
397 struct mtd_info *cfi_cmdset_0001(struct map_info *map, int primary)
398 {
399 struct cfi_private *cfi = map->fldrv_priv;
400 struct mtd_info *mtd;
401 int i;
402
403 mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
404 if (!mtd) {
405 printk(KERN_ERR "Failed to allocate memory for MTD device\n");
406 return NULL;
407 }
408 mtd->priv = map;
409 mtd->type = MTD_NORFLASH;
410
411 /* Fill in the default mtd operations */
412 mtd->erase = cfi_intelext_erase_varsize;
413 mtd->read = cfi_intelext_read;
414 mtd->write = cfi_intelext_write_words;
415 mtd->sync = cfi_intelext_sync;
416 mtd->lock = cfi_intelext_lock;
417 mtd->unlock = cfi_intelext_unlock;
418 mtd->suspend = cfi_intelext_suspend;
419 mtd->resume = cfi_intelext_resume;
420 mtd->flags = MTD_CAP_NORFLASH;
421 mtd->name = map->name;
422 mtd->writesize = 1;
423
424 mtd->reboot_notifier.notifier_call = cfi_intelext_reboot;
425
426 if (cfi->cfi_mode == CFI_MODE_CFI) {
427 /*
428 * It's a real CFI chip, not one for which the probe
429 * routine faked a CFI structure. So we read the feature
430 * table from it.
431 */
432 __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
433 struct cfi_pri_intelext *extp;
434
435 extp = read_pri_intelext(map, adr);
436 if (!extp) {
437 kfree(mtd);
438 return NULL;
439 }
440
441 /* Install our own private info structure */
442 cfi->cmdset_priv = extp;
443
444 cfi_fixup(mtd, cfi_fixup_table);
445
446 #ifdef DEBUG_CFI_FEATURES
447 /* Tell the user about it in lots of lovely detail */
448 cfi_tell_features(extp);
449 #endif
450
451 if(extp->SuspendCmdSupport & 1) {
452 printk(KERN_NOTICE "cfi_cmdset_0001: Erase suspend on write enabled\n");
453 }
454 }
455 else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
456 /* Apply jedec specific fixups */
457 cfi_fixup(mtd, jedec_fixup_table);
458 }
459 /* Apply generic fixups */
460 cfi_fixup(mtd, fixup_table);
461
462 for (i=0; i< cfi->numchips; i++) {
463 if (cfi->cfiq->WordWriteTimeoutTyp)
464 cfi->chips[i].word_write_time =
465 1<<cfi->cfiq->WordWriteTimeoutTyp;
466 else
467 cfi->chips[i].word_write_time = 50000;
468
469 if (cfi->cfiq->BufWriteTimeoutTyp)
470 cfi->chips[i].buffer_write_time =
471 1<<cfi->cfiq->BufWriteTimeoutTyp;
472 /* No default; if it isn't specified, we won't use it */
473
474 if (cfi->cfiq->BlockEraseTimeoutTyp)
475 cfi->chips[i].erase_time =
476 1000<<cfi->cfiq->BlockEraseTimeoutTyp;
477 else
478 cfi->chips[i].erase_time = 2000000;
479
480 cfi->chips[i].ref_point_counter = 0;
481 init_waitqueue_head(&(cfi->chips[i].wq));
482 }
483
484 map->fldrv = &cfi_intelext_chipdrv;
485
486 return cfi_intelext_setup(mtd);
487 }
488 struct mtd_info *cfi_cmdset_0003(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0001")));
489 struct mtd_info *cfi_cmdset_0200(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0001")));
490 EXPORT_SYMBOL_GPL(cfi_cmdset_0001);
491 EXPORT_SYMBOL_GPL(cfi_cmdset_0003);
492 EXPORT_SYMBOL_GPL(cfi_cmdset_0200);
493
494 static struct mtd_info *cfi_intelext_setup(struct mtd_info *mtd)
495 {
496 struct map_info *map = mtd->priv;
497 struct cfi_private *cfi = map->fldrv_priv;
498 unsigned long offset = 0;
499 int i,j;
500 unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
501
502 //printk(KERN_DEBUG "number of CFI chips: %d\n", cfi->numchips);
503
504 mtd->size = devsize * cfi->numchips;
505
506 mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
507 mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info)
508 * mtd->numeraseregions, GFP_KERNEL);
509 if (!mtd->eraseregions) {
510 printk(KERN_ERR "Failed to allocate memory for MTD erase region info\n");
511 goto setup_err;
512 }
513
514 for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
515 unsigned long ernum, ersize;
516 ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
517 ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
518
519 if (mtd->erasesize < ersize) {
520 mtd->erasesize = ersize;
521 }
522 for (j=0; j<cfi->numchips; j++) {
523 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
524 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
525 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
526 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].lockmap = kmalloc(ernum / 8 + 1, GFP_KERNEL);
527 }
528 offset += (ersize * ernum);
529 }
530
531 if (offset != devsize) {
532 /* Argh */
533 printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
534 goto setup_err;
535 }
536
537 for (i=0; i<mtd->numeraseregions;i++){
538 printk(KERN_DEBUG "erase region %d: offset=0x%x,size=0x%x,blocks=%d\n",
539 i,mtd->eraseregions[i].offset,
540 mtd->eraseregions[i].erasesize,
541 mtd->eraseregions[i].numblocks);
542 }
543
544 #ifdef CONFIG_MTD_OTP
545 mtd->read_fact_prot_reg = cfi_intelext_read_fact_prot_reg;
546 mtd->read_user_prot_reg = cfi_intelext_read_user_prot_reg;
547 mtd->write_user_prot_reg = cfi_intelext_write_user_prot_reg;
548 mtd->lock_user_prot_reg = cfi_intelext_lock_user_prot_reg;
549 mtd->get_fact_prot_info = cfi_intelext_get_fact_prot_info;
550 mtd->get_user_prot_info = cfi_intelext_get_user_prot_info;
551 #endif
552
553 /* This function has the potential to distort the reality
554 a bit and therefore should be called last. */
555 if (cfi_intelext_partition_fixup(mtd, &cfi) != 0)
556 goto setup_err;
557
558 __module_get(THIS_MODULE);
559 register_reboot_notifier(&mtd->reboot_notifier);
560 return mtd;
561
562 setup_err:
563 if(mtd) {
564 kfree(mtd->eraseregions);
565 kfree(mtd);
566 }
567 kfree(cfi->cmdset_priv);
568 return NULL;
569 }
570
571 static int cfi_intelext_partition_fixup(struct mtd_info *mtd,
572 struct cfi_private **pcfi)
573 {
574 struct map_info *map = mtd->priv;
575 struct cfi_private *cfi = *pcfi;
576 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
577
578 /*
579 * Probing of multi-partition flash chips.
580 *
581 * To support multiple partitions when available, we simply arrange
582 * for each of them to have their own flchip structure even if they
583 * are on the same physical chip. This means completely recreating
584 * a new cfi_private structure right here which is a blatent code
585 * layering violation, but this is still the least intrusive
586 * arrangement at this point. This can be rearranged in the future
587 * if someone feels motivated enough. --nico
588 */
589 if (extp && extp->MajorVersion == '1' && extp->MinorVersion >= '3'
590 && extp->FeatureSupport & (1 << 9)) {
591 struct cfi_private *newcfi;
592 struct flchip *chip;
593 struct flchip_shared *shared;
594 int offs, numregions, numparts, partshift, numvirtchips, i, j;
595
596 /* Protection Register info */
597 offs = (extp->NumProtectionFields - 1) *
598 sizeof(struct cfi_intelext_otpinfo);
599
600 /* Burst Read info */
601 offs += extp->extra[offs+1]+2;
602
603 /* Number of partition regions */
604 numregions = extp->extra[offs];
605 offs += 1;
606
607 /* skip the sizeof(partregion) field in CFI 1.4 */
608 if (extp->MinorVersion >= '4')
609 offs += 2;
610
611 /* Number of hardware partitions */
612 numparts = 0;
613 for (i = 0; i < numregions; i++) {
614 struct cfi_intelext_regioninfo *rinfo;
615 rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[offs];
616 numparts += rinfo->NumIdentPartitions;
617 offs += sizeof(*rinfo)
618 + (rinfo->NumBlockTypes - 1) *
619 sizeof(struct cfi_intelext_blockinfo);
620 }
621
622 /* Programming Region info */
623 if (extp->MinorVersion >= '4') {
624 struct cfi_intelext_programming_regioninfo *prinfo;
625 prinfo = (struct cfi_intelext_programming_regioninfo *)&extp->extra[offs];
626 mtd->writesize = cfi->interleave << prinfo->ProgRegShift;
627 mtd->flags &= ~MTD_BIT_WRITEABLE;
628 printk(KERN_DEBUG "%s: program region size/ctrl_valid/ctrl_inval = %d/%d/%d\n",
629 map->name, mtd->writesize,
630 cfi->interleave * prinfo->ControlValid,
631 cfi->interleave * prinfo->ControlInvalid);
632 }
633
634 /*
635 * All functions below currently rely on all chips having
636 * the same geometry so we'll just assume that all hardware
637 * partitions are of the same size too.
638 */
639 partshift = cfi->chipshift - __ffs(numparts);
640
641 if ((1 << partshift) < mtd->erasesize) {
642 printk( KERN_ERR
643 "%s: bad number of hw partitions (%d)\n",
644 __FUNCTION__, numparts);
645 return -EINVAL;
646 }
647
648 numvirtchips = cfi->numchips * numparts;
649 newcfi = kmalloc(sizeof(struct cfi_private) + numvirtchips * sizeof(struct flchip), GFP_KERNEL);
650 if (!newcfi)
651 return -ENOMEM;
652 shared = kmalloc(sizeof(struct flchip_shared) * cfi->numchips, GFP_KERNEL);
653 if (!shared) {
654 kfree(newcfi);
655 return -ENOMEM;
656 }
657 memcpy(newcfi, cfi, sizeof(struct cfi_private));
658 newcfi->numchips = numvirtchips;
659 newcfi->chipshift = partshift;
660
661 chip = &newcfi->chips[0];
662 for (i = 0; i < cfi->numchips; i++) {
663 shared[i].writing = shared[i].erasing = NULL;
664 spin_lock_init(&shared[i].lock);
665 for (j = 0; j < numparts; j++) {
666 *chip = cfi->chips[i];
667 chip->start += j << partshift;
668 chip->priv = &shared[i];
669 /* those should be reset too since
670 they create memory references. */
671 init_waitqueue_head(&chip->wq);
672 spin_lock_init(&chip->_spinlock);
673 chip->mutex = &chip->_spinlock;
674 chip++;
675 }
676 }
677
678 printk(KERN_DEBUG "%s: %d set(s) of %d interleaved chips "
679 "--> %d partitions of %d KiB\n",
680 map->name, cfi->numchips, cfi->interleave,
681 newcfi->numchips, 1<<(newcfi->chipshift-10));
682
683 map->fldrv_priv = newcfi;
684 *pcfi = newcfi;
685 kfree(cfi);
686 }
687
688 return 0;
689 }
690
691 /*
692 * *********** CHIP ACCESS FUNCTIONS ***********
693 */
694 static int chip_ready (struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
695 {
696 DECLARE_WAITQUEUE(wait, current);
697 struct cfi_private *cfi = map->fldrv_priv;
698 map_word status, status_OK = CMD(0x80), status_PWS = CMD(0x01);
699 struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
700 unsigned long timeo = jiffies + HZ;
701
702 switch (chip->state) {
703
704 case FL_STATUS:
705 for (;;) {
706 status = map_read(map, adr);
707 if (map_word_andequal(map, status, status_OK, status_OK))
708 break;
709
710 /* At this point we're fine with write operations
711 in other partitions as they don't conflict. */
712 if (chip->priv && map_word_andequal(map, status, status_PWS, status_PWS))
713 break;
714
715 spin_unlock(chip->mutex);
716 cfi_udelay(1);
717 spin_lock(chip->mutex);
718 /* Someone else might have been playing with it. */
719 return -EAGAIN;
720 }
721
722 case FL_READY:
723 case FL_CFI_QUERY:
724 case FL_JEDEC_QUERY:
725 return 0;
726
727 case FL_ERASING:
728 if (!cfip ||
729 !(cfip->FeatureSupport & 2) ||
730 !(mode == FL_READY || mode == FL_POINT ||
731 (mode == FL_WRITING && (cfip->SuspendCmdSupport & 1))))
732 goto sleep;
733
734
735 /* Erase suspend */
736 map_write(map, CMD(0xB0), adr);
737
738 /* If the flash has finished erasing, then 'erase suspend'
739 * appears to make some (28F320) flash devices switch to
740 * 'read' mode. Make sure that we switch to 'read status'
741 * mode so we get the right data. --rmk
742 */
743 map_write(map, CMD(0x70), adr);
744 chip->oldstate = FL_ERASING;
745 chip->state = FL_ERASE_SUSPENDING;
746 chip->erase_suspended = 1;
747 for (;;) {
748 status = map_read(map, adr);
749 if (map_word_andequal(map, status, status_OK, status_OK))
750 break;
751
752 if (time_after(jiffies, timeo)) {
753 /* Urgh. Resume and pretend we weren't here. */
754 map_write(map, CMD(0xd0), adr);
755 /* Make sure we're in 'read status' mode if it had finished */
756 map_write(map, CMD(0x70), adr);
757 chip->state = FL_ERASING;
758 chip->oldstate = FL_READY;
759 printk(KERN_ERR "%s: Chip not ready after erase "
760 "suspended: status = 0x%lx\n", map->name, status.x[0]);
761 return -EIO;
762 }
763
764 spin_unlock(chip->mutex);
765 cfi_udelay(1);
766 spin_lock(chip->mutex);
767 /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
768 So we can just loop here. */
769 }
770 chip->state = FL_STATUS;
771 return 0;
772
773 case FL_XIP_WHILE_ERASING:
774 if (mode != FL_READY && mode != FL_POINT &&
775 (mode != FL_WRITING || !cfip || !(cfip->SuspendCmdSupport&1)))
776 goto sleep;
777 chip->oldstate = chip->state;
778 chip->state = FL_READY;
779 return 0;
780
781 case FL_POINT:
782 /* Only if there's no operation suspended... */
783 if (mode == FL_READY && chip->oldstate == FL_READY)
784 return 0;
785
786 case FL_SHUTDOWN:
787 /* The machine is rebooting now,so no one can get chip anymore */
788 return -EIO;
789 default:
790 sleep:
791 set_current_state(TASK_UNINTERRUPTIBLE);
792 add_wait_queue(&chip->wq, &wait);
793 spin_unlock(chip->mutex);
794 schedule();
795 remove_wait_queue(&chip->wq, &wait);
796 spin_lock(chip->mutex);
797 return -EAGAIN;
798 }
799 }
800
801 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
802 {
803 int ret;
804 DECLARE_WAITQUEUE(wait, current);
805
806 retry:
807 if (chip->priv && (mode == FL_WRITING || mode == FL_ERASING
808 || mode == FL_OTP_WRITE || mode == FL_SHUTDOWN)) {
809 /*
810 * OK. We have possibility for contention on the write/erase
811 * operations which are global to the real chip and not per
812 * partition. So let's fight it over in the partition which
813 * currently has authority on the operation.
814 *
815 * The rules are as follows:
816 *
817 * - any write operation must own shared->writing.
818 *
819 * - any erase operation must own _both_ shared->writing and
820 * shared->erasing.
821 *
822 * - contention arbitration is handled in the owner's context.
823 *
824 * The 'shared' struct can be read and/or written only when
825 * its lock is taken.
826 */
827 struct flchip_shared *shared = chip->priv;
828 struct flchip *contender;
829 spin_lock(&shared->lock);
830 contender = shared->writing;
831 if (contender && contender != chip) {
832 /*
833 * The engine to perform desired operation on this
834 * partition is already in use by someone else.
835 * Let's fight over it in the context of the chip
836 * currently using it. If it is possible to suspend,
837 * that other partition will do just that, otherwise
838 * it'll happily send us to sleep. In any case, when
839 * get_chip returns success we're clear to go ahead.
840 */
841 ret = spin_trylock(contender->mutex);
842 spin_unlock(&shared->lock);
843 if (!ret)
844 goto retry;
845 spin_unlock(chip->mutex);
846 ret = chip_ready(map, contender, contender->start, mode);
847 spin_lock(chip->mutex);
848
849 if (ret == -EAGAIN) {
850 spin_unlock(contender->mutex);
851 goto retry;
852 }
853 if (ret) {
854 spin_unlock(contender->mutex);
855 return ret;
856 }
857 spin_lock(&shared->lock);
858 spin_unlock(contender->mutex);
859 }
860
861 /* Check if we already have suspended erase
862 * on this chip. Sleep. */
863 if (mode == FL_ERASING && shared->erasing
864 && shared->erasing->oldstate == FL_ERASING) {
865 spin_unlock(&shared->lock);
866 set_current_state(TASK_UNINTERRUPTIBLE);
867 add_wait_queue(&chip->wq, &wait);
868 spin_unlock(chip->mutex);
869 schedule();
870 remove_wait_queue(&chip->wq, &wait);
871 spin_lock(chip->mutex);
872 goto retry;
873 }
874
875 /* We now own it */
876 shared->writing = chip;
877 if (mode == FL_ERASING)
878 shared->erasing = chip;
879 spin_unlock(&shared->lock);
880 }
881 ret = chip_ready(map, chip, adr, mode);
882 if (ret == -EAGAIN)
883 goto retry;
884
885 return ret;
886 }
887
888 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
889 {
890 struct cfi_private *cfi = map->fldrv_priv;
891
892 if (chip->priv) {
893 struct flchip_shared *shared = chip->priv;
894 spin_lock(&shared->lock);
895 if (shared->writing == chip && chip->oldstate == FL_READY) {
896 /* We own the ability to write, but we're done */
897 shared->writing = shared->erasing;
898 if (shared->writing && shared->writing != chip) {
899 /* give back ownership to who we loaned it from */
900 struct flchip *loaner = shared->writing;
901 spin_lock(loaner->mutex);
902 spin_unlock(&shared->lock);
903 spin_unlock(chip->mutex);
904 put_chip(map, loaner, loaner->start);
905 spin_lock(chip->mutex);
906 spin_unlock(loaner->mutex);
907 wake_up(&chip->wq);
908 return;
909 }
910 shared->erasing = NULL;
911 shared->writing = NULL;
912 } else if (shared->erasing == chip && shared->writing != chip) {
913 /*
914 * We own the ability to erase without the ability
915 * to write, which means the erase was suspended
916 * and some other partition is currently writing.
917 * Don't let the switch below mess things up since
918 * we don't have ownership to resume anything.
919 */
920 spin_unlock(&shared->lock);
921 wake_up(&chip->wq);
922 return;
923 }
924 spin_unlock(&shared->lock);
925 }
926
927 switch(chip->oldstate) {
928 case FL_ERASING:
929 chip->state = chip->oldstate;
930 /* What if one interleaved chip has finished and the
931 other hasn't? The old code would leave the finished
932 one in READY mode. That's bad, and caused -EROFS
933 errors to be returned from do_erase_oneblock because
934 that's the only bit it checked for at the time.
935 As the state machine appears to explicitly allow
936 sending the 0x70 (Read Status) command to an erasing
937 chip and expecting it to be ignored, that's what we
938 do. */
939 map_write(map, CMD(0xd0), adr);
940 map_write(map, CMD(0x70), adr);
941 chip->oldstate = FL_READY;
942 chip->state = FL_ERASING;
943 break;
944
945 case FL_XIP_WHILE_ERASING:
946 chip->state = chip->oldstate;
947 chip->oldstate = FL_READY;
948 break;
949
950 case FL_READY:
951 case FL_STATUS:
952 case FL_JEDEC_QUERY:
953 /* We should really make set_vpp() count, rather than doing this */
954 DISABLE_VPP(map);
955 break;
956 default:
957 printk(KERN_ERR "%s: put_chip() called with oldstate %d!!\n", map->name, chip->oldstate);
958 }
959 wake_up(&chip->wq);
960 }
961
962 #ifdef CONFIG_MTD_XIP
963
964 /*
965 * No interrupt what so ever can be serviced while the flash isn't in array
966 * mode. This is ensured by the xip_disable() and xip_enable() functions
967 * enclosing any code path where the flash is known not to be in array mode.
968 * And within a XIP disabled code path, only functions marked with __xipram
969 * may be called and nothing else (it's a good thing to inspect generated
970 * assembly to make sure inline functions were actually inlined and that gcc
971 * didn't emit calls to its own support functions). Also configuring MTD CFI
972 * support to a single buswidth and a single interleave is also recommended.
973 */
974
975 static void xip_disable(struct map_info *map, struct flchip *chip,
976 unsigned long adr)
977 {
978 /* TODO: chips with no XIP use should ignore and return */
979 (void) map_read(map, adr); /* ensure mmu mapping is up to date */
980 local_irq_disable();
981 }
982
983 static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
984 unsigned long adr)
985 {
986 struct cfi_private *cfi = map->fldrv_priv;
987 if (chip->state != FL_POINT && chip->state != FL_READY) {
988 map_write(map, CMD(0xff), adr);
989 chip->state = FL_READY;
990 }
991 (void) map_read(map, adr);
992 xip_iprefetch();
993 local_irq_enable();
994 }
995
996 /*
997 * When a delay is required for the flash operation to complete, the
998 * xip_wait_for_operation() function is polling for both the given timeout
999 * and pending (but still masked) hardware interrupts. Whenever there is an
1000 * interrupt pending then the flash erase or write operation is suspended,
1001 * array mode restored and interrupts unmasked. Task scheduling might also
1002 * happen at that point. The CPU eventually returns from the interrupt or
1003 * the call to schedule() and the suspended flash operation is resumed for
1004 * the remaining of the delay period.
1005 *
1006 * Warning: this function _will_ fool interrupt latency tracing tools.
1007 */
1008
1009 static int __xipram xip_wait_for_operation(
1010 struct map_info *map, struct flchip *chip,
1011 unsigned long adr, unsigned int chip_op_time )
1012 {
1013 struct cfi_private *cfi = map->fldrv_priv;
1014 struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
1015 map_word status, OK = CMD(0x80);
1016 unsigned long usec, suspended, start, done;
1017 flstate_t oldstate, newstate;
1018
1019 start = xip_currtime();
1020 usec = chip_op_time * 8;
1021 if (usec == 0)
1022 usec = 500000;
1023 done = 0;
1024
1025 do {
1026 cpu_relax();
1027 if (xip_irqpending() && cfip &&
1028 ((chip->state == FL_ERASING && (cfip->FeatureSupport&2)) ||
1029 (chip->state == FL_WRITING && (cfip->FeatureSupport&4))) &&
1030 (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
1031 /*
1032 * Let's suspend the erase or write operation when
1033 * supported. Note that we currently don't try to
1034 * suspend interleaved chips if there is already
1035 * another operation suspended (imagine what happens
1036 * when one chip was already done with the current
1037 * operation while another chip suspended it, then
1038 * we resume the whole thing at once). Yes, it
1039 * can happen!
1040 */
1041 usec -= done;
1042 map_write(map, CMD(0xb0), adr);
1043 map_write(map, CMD(0x70), adr);
1044 suspended = xip_currtime();
1045 do {
1046 if (xip_elapsed_since(suspended) > 100000) {
1047 /*
1048 * The chip doesn't want to suspend
1049 * after waiting for 100 msecs.
1050 * This is a critical error but there
1051 * is not much we can do here.
1052 */
1053 return -EIO;
1054 }
1055 status = map_read(map, adr);
1056 } while (!map_word_andequal(map, status, OK, OK));
1057
1058 /* Suspend succeeded */
1059 oldstate = chip->state;
1060 if (oldstate == FL_ERASING) {
1061 if (!map_word_bitsset(map, status, CMD(0x40)))
1062 break;
1063 newstate = FL_XIP_WHILE_ERASING;
1064 chip->erase_suspended = 1;
1065 } else {
1066 if (!map_word_bitsset(map, status, CMD(0x04)))
1067 break;
1068 newstate = FL_XIP_WHILE_WRITING;
1069 chip->write_suspended = 1;
1070 }
1071 chip->state = newstate;
1072 map_write(map, CMD(0xff), adr);
1073 (void) map_read(map, adr);
1074 asm volatile (".rep 8; nop; .endr");
1075 local_irq_enable();
1076 spin_unlock(chip->mutex);
1077 asm volatile (".rep 8; nop; .endr");
1078 cond_resched();
1079
1080 /*
1081 * We're back. However someone else might have
1082 * decided to go write to the chip if we are in
1083 * a suspended erase state. If so let's wait
1084 * until it's done.
1085 */
1086 spin_lock(chip->mutex);
1087 while (chip->state != newstate) {
1088 DECLARE_WAITQUEUE(wait, current);
1089 set_current_state(TASK_UNINTERRUPTIBLE);
1090 add_wait_queue(&chip->wq, &wait);
1091 spin_unlock(chip->mutex);
1092 schedule();
1093 remove_wait_queue(&chip->wq, &wait);
1094 spin_lock(chip->mutex);
1095 }
1096 /* Disallow XIP again */
1097 local_irq_disable();
1098
1099 /* Resume the write or erase operation */
1100 map_write(map, CMD(0xd0), adr);
1101 map_write(map, CMD(0x70), adr);
1102 chip->state = oldstate;
1103 start = xip_currtime();
1104 } else if (usec >= 1000000/HZ) {
1105 /*
1106 * Try to save on CPU power when waiting delay
1107 * is at least a system timer tick period.
1108 * No need to be extremely accurate here.
1109 */
1110 xip_cpu_idle();
1111 }
1112 status = map_read(map, adr);
1113 done = xip_elapsed_since(start);
1114 } while (!map_word_andequal(map, status, OK, OK)
1115 && done < usec);
1116
1117 return (done >= usec) ? -ETIME : 0;
1118 }
1119
1120 /*
1121 * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
1122 * the flash is actively programming or erasing since we have to poll for
1123 * the operation to complete anyway. We can't do that in a generic way with
1124 * a XIP setup so do it before the actual flash operation in this case
1125 * and stub it out from INVAL_CACHE_AND_WAIT.
1126 */
1127 #define XIP_INVAL_CACHED_RANGE(map, from, size) \
1128 INVALIDATE_CACHED_RANGE(map, from, size)
1129
1130 #define INVAL_CACHE_AND_WAIT(map, chip, cmd_adr, inval_adr, inval_len, usec) \
1131 xip_wait_for_operation(map, chip, cmd_adr, usec)
1132
1133 #else
1134
1135 #define xip_disable(map, chip, adr)
1136 #define xip_enable(map, chip, adr)
1137 #define XIP_INVAL_CACHED_RANGE(x...)
1138 #define INVAL_CACHE_AND_WAIT inval_cache_and_wait_for_operation
1139
1140 static int inval_cache_and_wait_for_operation(
1141 struct map_info *map, struct flchip *chip,
1142 unsigned long cmd_adr, unsigned long inval_adr, int inval_len,
1143 unsigned int chip_op_time)
1144 {
1145 struct cfi_private *cfi = map->fldrv_priv;
1146 map_word status, status_OK = CMD(0x80);
1147 int chip_state = chip->state;
1148 unsigned int timeo, sleep_time;
1149
1150 spin_unlock(chip->mutex);
1151 if (inval_len)
1152 INVALIDATE_CACHED_RANGE(map, inval_adr, inval_len);
1153 spin_lock(chip->mutex);
1154
1155 /* set our timeout to 8 times the expected delay */
1156 timeo = chip_op_time * 8;
1157 if (!timeo)
1158 timeo = 500000;
1159 sleep_time = chip_op_time / 2;
1160
1161 for (;;) {
1162 status = map_read(map, cmd_adr);
1163 if (map_word_andequal(map, status, status_OK, status_OK))
1164 break;
1165
1166 if (!timeo) {
1167 map_write(map, CMD(0x70), cmd_adr);
1168 chip->state = FL_STATUS;
1169 return -ETIME;
1170 }
1171
1172 /* OK Still waiting. Drop the lock, wait a while and retry. */
1173 spin_unlock(chip->mutex);
1174 if (sleep_time >= 1000000/HZ) {
1175 /*
1176 * Half of the normal delay still remaining
1177 * can be performed with a sleeping delay instead
1178 * of busy waiting.
1179 */
1180 msleep(sleep_time/1000);
1181 timeo -= sleep_time;
1182 sleep_time = 1000000/HZ;
1183 } else {
1184 udelay(1);
1185 cond_resched();
1186 timeo--;
1187 }
1188 spin_lock(chip->mutex);
1189
1190 while (chip->state != chip_state) {
1191 /* Someone's suspended the operation: sleep */
1192 DECLARE_WAITQUEUE(wait, current);
1193 set_current_state(TASK_UNINTERRUPTIBLE);
1194 add_wait_queue(&chip->wq, &wait);
1195 spin_unlock(chip->mutex);
1196 schedule();
1197 remove_wait_queue(&chip->wq, &wait);
1198 spin_lock(chip->mutex);
1199 }
1200 }
1201
1202 /* Done and happy. */
1203 chip->state = FL_STATUS;
1204 return 0;
1205 }
1206
1207 #endif
1208
1209 #define WAIT_TIMEOUT(map, chip, adr, udelay) \
1210 INVAL_CACHE_AND_WAIT(map, chip, adr, 0, 0, udelay);
1211
1212
1213 static int do_point_onechip (struct map_info *map, struct flchip *chip, loff_t adr, size_t len)
1214 {
1215 unsigned long cmd_addr;
1216 struct cfi_private *cfi = map->fldrv_priv;
1217 int ret = 0;
1218
1219 adr += chip->start;
1220
1221 /* Ensure cmd read/writes are aligned. */
1222 cmd_addr = adr & ~(map_bankwidth(map)-1);
1223
1224 spin_lock(chip->mutex);
1225
1226 ret = get_chip(map, chip, cmd_addr, FL_POINT);
1227
1228 if (!ret) {
1229 if (chip->state != FL_POINT && chip->state != FL_READY)
1230 map_write(map, CMD(0xff), cmd_addr);
1231
1232 chip->state = FL_POINT;
1233 chip->ref_point_counter++;
1234 }
1235 spin_unlock(chip->mutex);
1236
1237 return ret;
1238 }
1239
1240 static int cfi_intelext_point (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char **mtdbuf)
1241 {
1242 struct map_info *map = mtd->priv;
1243 struct cfi_private *cfi = map->fldrv_priv;
1244 unsigned long ofs, last_end = 0;
1245 int chipnum;
1246 int ret = 0;
1247
1248 if (!map->virt || (from + len > mtd->size))
1249 return -EINVAL;
1250
1251 /* Now lock the chip(s) to POINT state */
1252
1253 /* ofs: offset within the first chip that the first read should start */
1254 chipnum = (from >> cfi->chipshift);
1255 ofs = from - (chipnum << cfi->chipshift);
1256
1257 *mtdbuf = (void *)map->virt + cfi->chips[chipnum].start + ofs;
1258 *retlen = 0;
1259
1260 while (len) {
1261 unsigned long thislen;
1262
1263 if (chipnum >= cfi->numchips)
1264 break;
1265
1266 /* We cannot point across chips that are virtually disjoint */
1267 if (!last_end)
1268 last_end = cfi->chips[chipnum].start;
1269 else if (cfi->chips[chipnum].start != last_end)
1270 break;
1271
1272 if ((len + ofs -1) >> cfi->chipshift)
1273 thislen = (1<<cfi->chipshift) - ofs;
1274 else
1275 thislen = len;
1276
1277 ret = do_point_onechip(map, &cfi->chips[chipnum], ofs, thislen);
1278 if (ret)
1279 break;
1280
1281 *retlen += thislen;
1282 len -= thislen;
1283
1284 ofs = 0;
1285 last_end += 1 << cfi->chipshift;
1286 chipnum++;
1287 }
1288 return 0;
1289 }
1290
1291 static void cfi_intelext_unpoint (struct mtd_info *mtd, u_char *addr, loff_t from, size_t len)
1292 {
1293 struct map_info *map = mtd->priv;
1294 struct cfi_private *cfi = map->fldrv_priv;
1295 unsigned long ofs;
1296 int chipnum;
1297
1298 /* Now unlock the chip(s) POINT state */
1299
1300 /* ofs: offset within the first chip that the first read should start */
1301 chipnum = (from >> cfi->chipshift);
1302 ofs = from - (chipnum << cfi->chipshift);
1303
1304 while (len) {
1305 unsigned long thislen;
1306 struct flchip *chip;
1307
1308 chip = &cfi->chips[chipnum];
1309 if (chipnum >= cfi->numchips)
1310 break;
1311
1312 if ((len + ofs -1) >> cfi->chipshift)
1313 thislen = (1<<cfi->chipshift) - ofs;
1314 else
1315 thislen = len;
1316
1317 spin_lock(chip->mutex);
1318 if (chip->state == FL_POINT) {
1319 chip->ref_point_counter--;
1320 if(chip->ref_point_counter == 0)
1321 chip->state = FL_READY;
1322 } else
1323 printk(KERN_ERR "%s: Warning: unpoint called on non pointed region\n", map->name); /* Should this give an error? */
1324
1325 put_chip(map, chip, chip->start);
1326 spin_unlock(chip->mutex);
1327
1328 len -= thislen;
1329 ofs = 0;
1330 chipnum++;
1331 }
1332 }
1333
1334 static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
1335 {
1336 unsigned long cmd_addr;
1337 struct cfi_private *cfi = map->fldrv_priv;
1338 int ret;
1339
1340 adr += chip->start;
1341
1342 /* Ensure cmd read/writes are aligned. */
1343 cmd_addr = adr & ~(map_bankwidth(map)-1);
1344
1345 spin_lock(chip->mutex);
1346 ret = get_chip(map, chip, cmd_addr, FL_READY);
1347 if (ret) {
1348 spin_unlock(chip->mutex);
1349 return ret;
1350 }
1351
1352 if (chip->state != FL_POINT && chip->state != FL_READY) {
1353 map_write(map, CMD(0xff), cmd_addr);
1354
1355 chip->state = FL_READY;
1356 }
1357
1358 map_copy_from(map, buf, adr, len);
1359
1360 put_chip(map, chip, cmd_addr);
1361
1362 spin_unlock(chip->mutex);
1363 return 0;
1364 }
1365
1366 static int cfi_intelext_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1367 {
1368 struct map_info *map = mtd->priv;
1369 struct cfi_private *cfi = map->fldrv_priv;
1370 unsigned long ofs;
1371 int chipnum;
1372 int ret = 0;
1373
1374 /* ofs: offset within the first chip that the first read should start */
1375 chipnum = (from >> cfi->chipshift);
1376 ofs = from - (chipnum << cfi->chipshift);
1377
1378 *retlen = 0;
1379
1380 while (len) {
1381 unsigned long thislen;
1382
1383 if (chipnum >= cfi->numchips)
1384 break;
1385
1386 if ((len + ofs -1) >> cfi->chipshift)
1387 thislen = (1<<cfi->chipshift) - ofs;
1388 else
1389 thislen = len;
1390
1391 ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1392 if (ret)
1393 break;
1394
1395 *retlen += thislen;
1396 len -= thislen;
1397 buf += thislen;
1398
1399 ofs = 0;
1400 chipnum++;
1401 }
1402 return ret;
1403 }
1404
1405 static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
1406 unsigned long adr, map_word datum, int mode)
1407 {
1408 struct cfi_private *cfi = map->fldrv_priv;
1409 map_word status, write_cmd;
1410 int ret=0;
1411
1412 adr += chip->start;
1413
1414 switch (mode) {
1415 case FL_WRITING:
1416 write_cmd = (cfi->cfiq->P_ID != 0x0200) ? CMD(0x40) : CMD(0x41);
1417 break;
1418 case FL_OTP_WRITE:
1419 write_cmd = CMD(0xc0);
1420 break;
1421 default:
1422 return -EINVAL;
1423 }
1424
1425 spin_lock(chip->mutex);
1426 ret = get_chip(map, chip, adr, mode);
1427 if (ret) {
1428 spin_unlock(chip->mutex);
1429 return ret;
1430 }
1431
1432 XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
1433 ENABLE_VPP(map);
1434 xip_disable(map, chip, adr);
1435 map_write(map, write_cmd, adr);
1436 map_write(map, datum, adr);
1437 chip->state = mode;
1438
1439 ret = INVAL_CACHE_AND_WAIT(map, chip, adr,
1440 adr, map_bankwidth(map),
1441 chip->word_write_time);
1442 if (ret) {
1443 xip_enable(map, chip, adr);
1444 printk(KERN_ERR "%s: word write error (status timeout)\n", map->name);
1445 goto out;
1446 }
1447
1448 /* check for errors */
1449 status = map_read(map, adr);
1450 if (map_word_bitsset(map, status, CMD(0x1a))) {
1451 unsigned long chipstatus = MERGESTATUS(status);
1452
1453 /* reset status */
1454 map_write(map, CMD(0x50), adr);
1455 map_write(map, CMD(0x70), adr);
1456 xip_enable(map, chip, adr);
1457
1458 if (chipstatus & 0x02) {
1459 ret = -EROFS;
1460 } else if (chipstatus & 0x08) {
1461 printk(KERN_ERR "%s: word write error (bad VPP)\n", map->name);
1462 ret = -EIO;
1463 } else {
1464 printk(KERN_ERR "%s: word write error (status 0x%lx)\n", map->name, chipstatus);
1465 ret = -EINVAL;
1466 }
1467
1468 goto out;
1469 }
1470
1471 xip_enable(map, chip, adr);
1472 out: put_chip(map, chip, adr);
1473 spin_unlock(chip->mutex);
1474 return ret;
1475 }
1476
1477
1478 static int cfi_intelext_write_words (struct mtd_info *mtd, loff_t to , size_t len, size_t *retlen, const u_char *buf)
1479 {
1480 struct map_info *map = mtd->priv;
1481 struct cfi_private *cfi = map->fldrv_priv;
1482 int ret = 0;
1483 int chipnum;
1484 unsigned long ofs;
1485
1486 *retlen = 0;
1487 if (!len)
1488 return 0;
1489
1490 chipnum = to >> cfi->chipshift;
1491 ofs = to - (chipnum << cfi->chipshift);
1492
1493 /* If it's not bus-aligned, do the first byte write */
1494 if (ofs & (map_bankwidth(map)-1)) {
1495 unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
1496 int gap = ofs - bus_ofs;
1497 int n;
1498 map_word datum;
1499
1500 n = min_t(int, len, map_bankwidth(map)-gap);
1501 datum = map_word_ff(map);
1502 datum = map_word_load_partial(map, datum, buf, gap, n);
1503
1504 ret = do_write_oneword(map, &cfi->chips[chipnum],
1505 bus_ofs, datum, FL_WRITING);
1506 if (ret)
1507 return ret;
1508
1509 len -= n;
1510 ofs += n;
1511 buf += n;
1512 (*retlen) += n;
1513
1514 if (ofs >> cfi->chipshift) {
1515 chipnum ++;
1516 ofs = 0;
1517 if (chipnum == cfi->numchips)
1518 return 0;
1519 }
1520 }
1521
1522 while(len >= map_bankwidth(map)) {
1523 map_word datum = map_word_load(map, buf);
1524
1525 ret = do_write_oneword(map, &cfi->chips[chipnum],
1526 ofs, datum, FL_WRITING);
1527 if (ret)
1528 return ret;
1529
1530 ofs += map_bankwidth(map);
1531 buf += map_bankwidth(map);
1532 (*retlen) += map_bankwidth(map);
1533 len -= map_bankwidth(map);
1534
1535 if (ofs >> cfi->chipshift) {
1536 chipnum ++;
1537 ofs = 0;
1538 if (chipnum == cfi->numchips)
1539 return 0;
1540 }
1541 }
1542
1543 if (len & (map_bankwidth(map)-1)) {
1544 map_word datum;
1545
1546 datum = map_word_ff(map);
1547 datum = map_word_load_partial(map, datum, buf, 0, len);
1548
1549 ret = do_write_oneword(map, &cfi->chips[chipnum],
1550 ofs, datum, FL_WRITING);
1551 if (ret)
1552 return ret;
1553
1554 (*retlen) += len;
1555 }
1556
1557 return 0;
1558 }
1559
1560
1561 static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
1562 unsigned long adr, const struct kvec **pvec,
1563 unsigned long *pvec_seek, int len)
1564 {
1565 struct cfi_private *cfi = map->fldrv_priv;
1566 map_word status, write_cmd, datum;
1567 unsigned long cmd_adr;
1568 int ret, wbufsize, word_gap, words;
1569 const struct kvec *vec;
1570 unsigned long vec_seek;
1571
1572 wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1573 adr += chip->start;
1574 cmd_adr = adr & ~(wbufsize-1);
1575
1576 /* Let's determine this according to the interleave only once */
1577 write_cmd = (cfi->cfiq->P_ID != 0x0200) ? CMD(0xe8) : CMD(0xe9);
1578
1579 spin_lock(chip->mutex);
1580 ret = get_chip(map, chip, cmd_adr, FL_WRITING);
1581 if (ret) {
1582 spin_unlock(chip->mutex);
1583 return ret;
1584 }
1585
1586 XIP_INVAL_CACHED_RANGE(map, adr, len);
1587 ENABLE_VPP(map);
1588 xip_disable(map, chip, cmd_adr);
1589
1590 /* §4.8 of the 28FxxxJ3A datasheet says "Any time SR.4 and/or SR.5 is set
1591 [...], the device will not accept any more Write to Buffer commands".
1592 So we must check here and reset those bits if they're set. Otherwise
1593 we're just pissing in the wind */
1594 if (chip->state != FL_STATUS) {
1595 map_write(map, CMD(0x70), cmd_adr);
1596 chip->state = FL_STATUS;
1597 }
1598 status = map_read(map, cmd_adr);
1599 if (map_word_bitsset(map, status, CMD(0x30))) {
1600 xip_enable(map, chip, cmd_adr);
1601 printk(KERN_WARNING "SR.4 or SR.5 bits set in buffer write (status %lx). Clearing.\n", status.x[0]);
1602 xip_disable(map, chip, cmd_adr);
1603 map_write(map, CMD(0x50), cmd_adr);
1604 map_write(map, CMD(0x70), cmd_adr);
1605 }
1606
1607 chip->state = FL_WRITING_TO_BUFFER;
1608 map_write(map, write_cmd, cmd_adr);
1609 ret = WAIT_TIMEOUT(map, chip, cmd_adr, 0);
1610 if (ret) {
1611 /* Argh. Not ready for write to buffer */
1612 map_word Xstatus = map_read(map, cmd_adr);
1613 map_write(map, CMD(0x70), cmd_adr);
1614 chip->state = FL_STATUS;
1615 status = map_read(map, cmd_adr);
1616 map_write(map, CMD(0x50), cmd_adr);
1617 map_write(map, CMD(0x70), cmd_adr);
1618 xip_enable(map, chip, cmd_adr);
1619 printk(KERN_ERR "%s: Chip not ready for buffer write. Xstatus = %lx, status = %lx\n",
1620 map->name, Xstatus.x[0], status.x[0]);
1621 goto out;
1622 }
1623
1624 /* Figure out the number of words to write */
1625 word_gap = (-adr & (map_bankwidth(map)-1));
1626 words = (len - word_gap + map_bankwidth(map) - 1) / map_bankwidth(map);
1627 if (!word_gap) {
1628 words--;
1629 } else {
1630 word_gap = map_bankwidth(map) - word_gap;
1631 adr -= word_gap;
1632 datum = map_word_ff(map);
1633 }
1634
1635 /* Write length of data to come */
1636 map_write(map, CMD(words), cmd_adr );
1637
1638 /* Write data */
1639 vec = *pvec;
1640 vec_seek = *pvec_seek;
1641 do {
1642 int n = map_bankwidth(map) - word_gap;
1643 if (n > vec->iov_len - vec_seek)
1644 n = vec->iov_len - vec_seek;
1645 if (n > len)
1646 n = len;
1647
1648 if (!word_gap && len < map_bankwidth(map))
1649 datum = map_word_ff(map);
1650
1651 datum = map_word_load_partial(map, datum,
1652 vec->iov_base + vec_seek,
1653 word_gap, n);
1654
1655 len -= n;
1656 word_gap += n;
1657 if (!len || word_gap == map_bankwidth(map)) {
1658 map_write(map, datum, adr);
1659 adr += map_bankwidth(map);
1660 word_gap = 0;
1661 }
1662
1663 vec_seek += n;
1664 if (vec_seek == vec->iov_len) {
1665 vec++;
1666 vec_seek = 0;
1667 }
1668 } while (len);
1669 *pvec = vec;
1670 *pvec_seek = vec_seek;
1671
1672 /* GO GO GO */
1673 map_write(map, CMD(0xd0), cmd_adr);
1674 chip->state = FL_WRITING;
1675
1676 ret = INVAL_CACHE_AND_WAIT(map, chip, cmd_adr,
1677 adr, len,
1678 chip->buffer_write_time);
1679 if (ret) {
1680 map_write(map, CMD(0x70), cmd_adr);
1681 chip->state = FL_STATUS;
1682 xip_enable(map, chip, cmd_adr);
1683 printk(KERN_ERR "%s: buffer write error (status timeout)\n", map->name);
1684 goto out;
1685 }
1686
1687 /* check for errors */
1688 status = map_read(map, cmd_adr);
1689 if (map_word_bitsset(map, status, CMD(0x1a))) {
1690 unsigned long chipstatus = MERGESTATUS(status);
1691
1692 /* reset status */
1693 map_write(map, CMD(0x50), cmd_adr);
1694 map_write(map, CMD(0x70), cmd_adr);
1695 xip_enable(map, chip, cmd_adr);
1696
1697 if (chipstatus & 0x02) {
1698 ret = -EROFS;
1699 } else if (chipstatus & 0x08) {
1700 printk(KERN_ERR "%s: buffer write error (bad VPP)\n", map->name);
1701 ret = -EIO;
1702 } else {
1703 printk(KERN_ERR "%s: buffer write error (status 0x%lx)\n", map->name, chipstatus);
1704 ret = -EINVAL;
1705 }
1706
1707 goto out;
1708 }
1709
1710 xip_enable(map, chip, cmd_adr);
1711 out: put_chip(map, chip, cmd_adr);
1712 spin_unlock(chip->mutex);
1713 return ret;
1714 }
1715
1716 static int cfi_intelext_writev (struct mtd_info *mtd, const struct kvec *vecs,
1717 unsigned long count, loff_t to, size_t *retlen)
1718 {
1719 struct map_info *map = mtd->priv;
1720 struct cfi_private *cfi = map->fldrv_priv;
1721 int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1722 int ret = 0;
1723 int chipnum;
1724 unsigned long ofs, vec_seek, i;
1725 size_t len = 0;
1726
1727 for (i = 0; i < count; i++)
1728 len += vecs[i].iov_len;
1729
1730 *retlen = 0;
1731 if (!len)
1732 return 0;
1733
1734 chipnum = to >> cfi->chipshift;
1735 ofs = to - (chipnum << cfi->chipshift);
1736 vec_seek = 0;
1737
1738 do {
1739 /* We must not cross write block boundaries */
1740 int size = wbufsize - (ofs & (wbufsize-1));
1741
1742 if (size > len)
1743 size = len;
1744 ret = do_write_buffer(map, &cfi->chips[chipnum],
1745 ofs, &vecs, &vec_seek, size);
1746 if (ret)
1747 return ret;
1748
1749 ofs += size;
1750 (*retlen) += size;
1751 len -= size;
1752
1753 if (ofs >> cfi->chipshift) {
1754 chipnum ++;
1755 ofs = 0;
1756 if (chipnum == cfi->numchips)
1757 return 0;
1758 }
1759
1760 /* Be nice and reschedule with the chip in a usable state for other
1761 processes. */
1762 cond_resched();
1763
1764 } while (len);
1765
1766 return 0;
1767 }
1768
1769 static int cfi_intelext_write_buffers (struct mtd_info *mtd, loff_t to,
1770 size_t len, size_t *retlen, const u_char *buf)
1771 {
1772 struct kvec vec;
1773
1774 vec.iov_base = (void *) buf;
1775 vec.iov_len = len;
1776
1777 return cfi_intelext_writev(mtd, &vec, 1, to, retlen);
1778 }
1779
1780 static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip,
1781 unsigned long adr, int len, void *thunk)
1782 {
1783 struct cfi_private *cfi = map->fldrv_priv;
1784 map_word status;
1785 int retries = 3;
1786 int ret;
1787
1788 adr += chip->start;
1789
1790 retry:
1791 spin_lock(chip->mutex);
1792 ret = get_chip(map, chip, adr, FL_ERASING);
1793 if (ret) {
1794 spin_unlock(chip->mutex);
1795 return ret;
1796 }
1797
1798 XIP_INVAL_CACHED_RANGE(map, adr, len);
1799 ENABLE_VPP(map);
1800 xip_disable(map, chip, adr);
1801
1802 /* Clear the status register first */
1803 map_write(map, CMD(0x50), adr);
1804
1805 /* Now erase */
1806 map_write(map, CMD(0x20), adr);
1807 map_write(map, CMD(0xD0), adr);
1808 chip->state = FL_ERASING;
1809 chip->erase_suspended = 0;
1810
1811 ret = INVAL_CACHE_AND_WAIT(map, chip, adr,
1812 adr, len,
1813 chip->erase_time);
1814 if (ret) {
1815 map_write(map, CMD(0x70), adr);
1816 chip->state = FL_STATUS;
1817 xip_enable(map, chip, adr);
1818 printk(KERN_ERR "%s: block erase error: (status timeout)\n", map->name);
1819 goto out;
1820 }
1821
1822 /* We've broken this before. It doesn't hurt to be safe */
1823 map_write(map, CMD(0x70), adr);
1824 chip->state = FL_STATUS;
1825 status = map_read(map, adr);
1826
1827 /* check for errors */
1828 if (map_word_bitsset(map, status, CMD(0x3a))) {
1829 unsigned long chipstatus = MERGESTATUS(status);
1830
1831 /* Reset the error bits */
1832 map_write(map, CMD(0x50), adr);
1833 map_write(map, CMD(0x70), adr);
1834 xip_enable(map, chip, adr);
1835
1836 if ((chipstatus & 0x30) == 0x30) {
1837 printk(KERN_ERR "%s: block erase error: (bad command sequence, status 0x%lx)\n", map->name, chipstatus);
1838 ret = -EINVAL;
1839 } else if (chipstatus & 0x02) {
1840 /* Protection bit set */
1841 ret = -EROFS;
1842 } else if (chipstatus & 0x8) {
1843 /* Voltage */
1844 printk(KERN_ERR "%s: block erase error: (bad VPP)\n", map->name);
1845 ret = -EIO;
1846 } else if (chipstatus & 0x20 && retries--) {
1847 printk(KERN_DEBUG "block erase failed at 0x%08lx: status 0x%lx. Retrying...\n", adr, chipstatus);
1848 put_chip(map, chip, adr);
1849 spin_unlock(chip->mutex);
1850 goto retry;
1851 } else {
1852 printk(KERN_ERR "%s: block erase failed at 0x%08lx (status 0x%lx)\n", map->name, adr, chipstatus);
1853 ret = -EIO;
1854 }
1855
1856 goto out;
1857 }
1858
1859 xip_enable(map, chip, adr);
1860 out: put_chip(map, chip, adr);
1861 spin_unlock(chip->mutex);
1862 return ret;
1863 }
1864
1865 static int cfi_intelext_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
1866 {
1867 unsigned long ofs, len;
1868 int ret;
1869
1870 ofs = instr->addr;
1871 len = instr->len;
1872
1873 ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL);
1874 if (ret)
1875 return ret;
1876
1877 instr->state = MTD_ERASE_DONE;
1878 mtd_erase_callback(instr);
1879
1880 return 0;
1881 }
1882
1883 static void cfi_intelext_sync (struct mtd_info *mtd)
1884 {
1885 struct map_info *map = mtd->priv;
1886 struct cfi_private *cfi = map->fldrv_priv;
1887 int i;
1888 struct flchip *chip;
1889 int ret = 0;
1890
1891 for (i=0; !ret && i<cfi->numchips; i++) {
1892 chip = &cfi->chips[i];
1893
1894 spin_lock(chip->mutex);
1895 ret = get_chip(map, chip, chip->start, FL_SYNCING);
1896
1897 if (!ret) {
1898 chip->oldstate = chip->state;
1899 chip->state = FL_SYNCING;
1900 /* No need to wake_up() on this state change -
1901 * as the whole point is that nobody can do anything
1902 * with the chip now anyway.
1903 */
1904 }
1905 spin_unlock(chip->mutex);
1906 }
1907
1908 /* Unlock the chips again */
1909
1910 for (i--; i >=0; i--) {
1911 chip = &cfi->chips[i];
1912
1913 spin_lock(chip->mutex);
1914
1915 if (chip->state == FL_SYNCING) {
1916 chip->state = chip->oldstate;
1917 chip->oldstate = FL_READY;
1918 wake_up(&chip->wq);
1919 }
1920 spin_unlock(chip->mutex);
1921 }
1922 }
1923
1924 static int __xipram do_getlockstatus_oneblock(struct map_info *map,
1925 struct flchip *chip,
1926 unsigned long adr,
1927 int len, void *thunk)
1928 {
1929 struct cfi_private *cfi = map->fldrv_priv;
1930 int status, ofs_factor = cfi->interleave * cfi->device_type;
1931
1932 adr += chip->start;
1933 xip_disable(map, chip, adr+(2*ofs_factor));
1934 map_write(map, CMD(0x90), adr+(2*ofs_factor));
1935 chip->state = FL_JEDEC_QUERY;
1936 status = cfi_read_query(map, adr+(2*ofs_factor));
1937 xip_enable(map, chip, 0);
1938 return status;
1939 }
1940
1941 #ifdef DEBUG_LOCK_BITS
1942 static int __xipram do_printlockstatus_oneblock(struct map_info *map,
1943 struct flchip *chip,
1944 unsigned long adr,
1945 int len, void *thunk)
1946 {
1947 printk(KERN_DEBUG "block status register for 0x%08lx is %x\n",
1948 adr, do_getlockstatus_oneblock(map, chip, adr, len, thunk));
1949 return 0;
1950 }
1951 #endif
1952
1953 #define DO_XXLOCK_ONEBLOCK_LOCK ((void *) 1)
1954 #define DO_XXLOCK_ONEBLOCK_UNLOCK ((void *) 2)
1955
1956 static int __xipram do_xxlock_oneblock(struct map_info *map, struct flchip *chip,
1957 unsigned long adr, int len, void *thunk)
1958 {
1959 struct cfi_private *cfi = map->fldrv_priv;
1960 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
1961 int udelay;
1962 int ret;
1963
1964 adr += chip->start;
1965
1966 spin_lock(chip->mutex);
1967 ret = get_chip(map, chip, adr, FL_LOCKING);
1968 if (ret) {
1969 spin_unlock(chip->mutex);
1970 return ret;
1971 }
1972
1973 ENABLE_VPP(map);
1974 xip_disable(map, chip, adr);
1975
1976 map_write(map, CMD(0x60), adr);
1977 if (thunk == DO_XXLOCK_ONEBLOCK_LOCK) {
1978 map_write(map, CMD(0x01), adr);
1979 chip->state = FL_LOCKING;
1980 } else if (thunk == DO_XXLOCK_ONEBLOCK_UNLOCK) {
1981 map_write(map, CMD(0xD0), adr);
1982 chip->state = FL_UNLOCKING;
1983 } else
1984 BUG();
1985
1986 /*
1987 * If Instant Individual Block Locking supported then no need
1988 * to delay.
1989 */
1990 udelay = (!extp || !(extp->FeatureSupport & (1 << 5))) ? 1000000/HZ : 0;
1991
1992 ret = WAIT_TIMEOUT(map, chip, adr, udelay);
1993 if (ret) {
1994 map_write(map, CMD(0x70), adr);
1995 chip->state = FL_STATUS;
1996 xip_enable(map, chip, adr);
1997 printk(KERN_ERR "%s: block unlock error: (status timeout)\n", map->name);
1998 goto out;
1999 }
2000
2001 xip_enable(map, chip, adr);
2002 out: put_chip(map, chip, adr);
2003 spin_unlock(chip->mutex);
2004 return ret;
2005 }
2006
2007 static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
2008 {
2009 int ret;
2010
2011 #ifdef DEBUG_LOCK_BITS
2012 printk(KERN_DEBUG "%s: lock status before, ofs=0x%08llx, len=0x%08X\n",
2013 __FUNCTION__, ofs, len);
2014 cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
2015 ofs, len, NULL);
2016 #endif
2017
2018 ret = cfi_varsize_frob(mtd, do_xxlock_oneblock,
2019 ofs, len, DO_XXLOCK_ONEBLOCK_LOCK);
2020
2021 #ifdef DEBUG_LOCK_BITS
2022 printk(KERN_DEBUG "%s: lock status after, ret=%d\n",
2023 __FUNCTION__, ret);
2024 cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
2025 ofs, len, NULL);
2026 #endif
2027
2028 return ret;
2029 }
2030
2031 static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
2032 {
2033 int ret;
2034
2035 #ifdef DEBUG_LOCK_BITS
2036 printk(KERN_DEBUG "%s: lock status before, ofs=0x%08llx, len=0x%08X\n",
2037 __FUNCTION__, ofs, len);
2038 cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
2039 ofs, len, NULL);
2040 #endif
2041
2042 ret = cfi_varsize_frob(mtd, do_xxlock_oneblock,
2043 ofs, len, DO_XXLOCK_ONEBLOCK_UNLOCK);
2044
2045 #ifdef DEBUG_LOCK_BITS
2046 printk(KERN_DEBUG "%s: lock status after, ret=%d\n",
2047 __FUNCTION__, ret);
2048 cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
2049 ofs, len, NULL);
2050 #endif
2051
2052 return ret;
2053 }
2054
2055 #ifdef CONFIG_MTD_OTP
2056
2057 typedef int (*otp_op_t)(struct map_info *map, struct flchip *chip,
2058 u_long data_offset, u_char *buf, u_int size,
2059 u_long prot_offset, u_int groupno, u_int groupsize);
2060
2061 static int __xipram
2062 do_otp_read(struct map_info *map, struct flchip *chip, u_long offset,
2063 u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
2064 {
2065 struct cfi_private *cfi = map->fldrv_priv;
2066 int ret;
2067
2068 spin_lock(chip->mutex);
2069 ret = get_chip(map, chip, chip->start, FL_JEDEC_QUERY);
2070 if (ret) {
2071 spin_unlock(chip->mutex);
2072 return ret;
2073 }
2074
2075 /* let's ensure we're not reading back cached data from array mode */
2076 INVALIDATE_CACHED_RANGE(map, chip->start + offset, size);
2077
2078 xip_disable(map, chip, chip->start);
2079 if (chip->state != FL_JEDEC_QUERY) {
2080 map_write(map, CMD(0x90), chip->start);
2081 chip->state = FL_JEDEC_QUERY;
2082 }
2083 map_copy_from(map, buf, chip->start + offset, size);
2084 xip_enable(map, chip, chip->start);
2085
2086 /* then ensure we don't keep OTP data in the cache */
2087 INVALIDATE_CACHED_RANGE(map, chip->start + offset, size);
2088
2089 put_chip(map, chip, chip->start);
2090 spin_unlock(chip->mutex);
2091 return 0;
2092 }
2093
2094 static int
2095 do_otp_write(struct map_info *map, struct flchip *chip, u_long offset,
2096 u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
2097 {
2098 int ret;
2099
2100 while (size) {
2101 unsigned long bus_ofs = offset & ~(map_bankwidth(map)-1);
2102 int gap = offset - bus_ofs;
2103 int n = min_t(int, size, map_bankwidth(map)-gap);
2104 map_word datum = map_word_ff(map);
2105
2106 datum = map_word_load_partial(map, datum, buf, gap, n);
2107 ret = do_write_oneword(map, chip, bus_ofs, datum, FL_OTP_WRITE);
2108 if (ret)
2109 return ret;
2110
2111 offset += n;
2112 buf += n;
2113 size -= n;
2114 }
2115
2116 return 0;
2117 }
2118
2119 static int
2120 do_otp_lock(struct map_info *map, struct flchip *chip, u_long offset,
2121 u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
2122 {
2123 struct cfi_private *cfi = map->fldrv_priv;
2124 map_word datum;
2125
2126 /* make sure area matches group boundaries */
2127 if (size != grpsz)
2128 return -EXDEV;
2129
2130 datum = map_word_ff(map);
2131 datum = map_word_clr(map, datum, CMD(1 << grpno));
2132 return do_write_oneword(map, chip, prot, datum, FL_OTP_WRITE);
2133 }
2134
2135 static int cfi_intelext_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
2136 size_t *retlen, u_char *buf,
2137 otp_op_t action, int user_regs)
2138 {
2139 struct map_info *map = mtd->priv;
2140 struct cfi_private *cfi = map->fldrv_priv;
2141 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
2142 struct flchip *chip;
2143 struct cfi_intelext_otpinfo *otp;
2144 u_long devsize, reg_prot_offset, data_offset;
2145 u_int chip_num, chip_step, field, reg_fact_size, reg_user_size;
2146 u_int groups, groupno, groupsize, reg_fact_groups, reg_user_groups;
2147 int ret;
2148
2149 *retlen = 0;
2150
2151 /* Check that we actually have some OTP registers */
2152 if (!extp || !(extp->FeatureSupport & 64) || !extp->NumProtectionFields)
2153 return -ENODATA;
2154
2155 /* we need real chips here not virtual ones */
2156 devsize = (1 << cfi->cfiq->DevSize) * cfi->interleave;
2157 chip_step = devsize >> cfi->chipshift;
2158 chip_num = 0;
2159
2160 /* Some chips have OTP located in the _top_ partition only.
2161 For example: Intel 28F256L18T (T means top-parameter device) */
2162 if (cfi->mfr == MANUFACTURER_INTEL) {
2163 switch (cfi->id) {
2164 case 0x880b:
2165 case 0x880c:
2166 case 0x880d:
2167 chip_num = chip_step - 1;
2168 }
2169 }
2170
2171 for ( ; chip_num < cfi->numchips; chip_num += chip_step) {
2172 chip = &cfi->chips[chip_num];
2173 otp = (struct cfi_intelext_otpinfo *)&extp->extra[0];
2174
2175 /* first OTP region */
2176 field = 0;
2177 reg_prot_offset = extp->ProtRegAddr;
2178 reg_fact_groups = 1;
2179 reg_fact_size = 1 << extp->FactProtRegSize;
2180 reg_user_groups = 1;
2181 reg_user_size = 1 << extp->UserProtRegSize;
2182
2183 while (len > 0) {
2184 /* flash geometry fixup */
2185 data_offset = reg_prot_offset + 1;
2186 data_offset *= cfi->interleave * cfi->device_type;
2187 reg_prot_offset *= cfi->interleave * cfi->device_type;
2188 reg_fact_size *= cfi->interleave;
2189 reg_user_size *= cfi->interleave;
2190
2191 if (user_regs) {
2192 groups = reg_user_groups;
2193 groupsize = reg_user_size;
2194 /* skip over factory reg area */
2195 groupno = reg_fact_groups;
2196 data_offset += reg_fact_groups * reg_fact_size;
2197 } else {
2198 groups = reg_fact_groups;
2199 groupsize = reg_fact_size;
2200 groupno = 0;
2201 }
2202
2203 while (len > 0 && groups > 0) {
2204 if (!action) {
2205 /*
2206 * Special case: if action is NULL
2207 * we fill buf with otp_info records.
2208 */
2209 struct otp_info *otpinfo;
2210 map_word lockword;
2211 len -= sizeof(struct otp_info);
2212 if (len <= 0)
2213 return -ENOSPC;
2214 ret = do_otp_read(map, chip,
2215 reg_prot_offset,
2216 (u_char *)&lockword,
2217 map_bankwidth(map),
2218 0, 0, 0);
2219 if (ret)
2220 return ret;
2221 otpinfo = (struct otp_info *)buf;
2222 otpinfo->start = from;
2223 otpinfo->length = groupsize;
2224 otpinfo->locked =
2225 !map_word_bitsset(map, lockword,
2226 CMD(1 << groupno));
2227 from += groupsize;
2228 buf += sizeof(*otpinfo);
2229 *retlen += sizeof(*otpinfo);
2230 } else if (from >= groupsize) {
2231 from -= groupsize;
2232 data_offset += groupsize;
2233 } else {
2234 int size = groupsize;
2235 data_offset += from;
2236 size -= from;
2237 from = 0;
2238 if (size > len)
2239 size = len;
2240 ret = action(map, chip, data_offset,
2241 buf, size, reg_prot_offset,
2242 groupno, groupsize);
2243 if (ret < 0)
2244 return ret;
2245 buf += size;
2246 len -= size;
2247 *retlen += size;
2248 data_offset += size;
2249 }
2250 groupno++;
2251 groups--;
2252 }
2253
2254 /* next OTP region */
2255 if (++field == extp->NumProtectionFields)
2256 break;
2257 reg_prot_offset = otp->ProtRegAddr;
2258 reg_fact_groups = otp->FactGroups;
2259 reg_fact_size = 1 << otp->FactProtRegSize;
2260 reg_user_groups = otp->UserGroups;
2261 reg_user_size = 1 << otp->UserProtRegSize;
2262 otp++;
2263 }
2264 }
2265
2266 return 0;
2267 }
2268
2269 static int cfi_intelext_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
2270 size_t len, size_t *retlen,
2271 u_char *buf)
2272 {
2273 return cfi_intelext_otp_walk(mtd, from, len, retlen,
2274 buf, do_otp_read, 0);
2275 }
2276
2277 static int cfi_intelext_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
2278 size_t len, size_t *retlen,
2279 u_char *buf)
2280 {
2281 return cfi_intelext_otp_walk(mtd, from, len, retlen,
2282 buf, do_otp_read, 1);
2283 }
2284
2285 static int cfi_intelext_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
2286 size_t len, size_t *retlen,
2287 u_char *buf)
2288 {
2289 return cfi_intelext_otp_walk(mtd, from, len, retlen,
2290 buf, do_otp_write, 1);
2291 }
2292
2293 static int cfi_intelext_lock_user_prot_reg(struct mtd_info *mtd,
2294 loff_t from, size_t len)
2295 {
2296 size_t retlen;
2297 return cfi_intelext_otp_walk(mtd, from, len, &retlen,
2298 NULL, do_otp_lock, 1);
2299 }
2300
2301 static int cfi_intelext_get_fact_prot_info(struct mtd_info *mtd,
2302 struct otp_info *buf, size_t len)
2303 {
2304 size_t retlen;
2305 int ret;
2306
2307 ret = cfi_intelext_otp_walk(mtd, 0, len, &retlen, (u_char *)buf, NULL, 0);
2308 return ret ? : retlen;
2309 }
2310
2311 static int cfi_intelext_get_user_prot_info(struct mtd_info *mtd,
2312 struct otp_info *buf, size_t len)
2313 {
2314 size_t retlen;
2315 int ret;
2316
2317 ret = cfi_intelext_otp_walk(mtd, 0, len, &retlen, (u_char *)buf, NULL, 1);
2318 return ret ? : retlen;
2319 }
2320
2321 #endif
2322
2323 static void cfi_intelext_save_locks(struct mtd_info *mtd)
2324 {
2325 struct mtd_erase_region_info *region;
2326 int block, status, i;
2327 unsigned long adr;
2328 size_t len;
2329
2330 for (i = 0; i < mtd->numeraseregions; i++) {
2331 region = &mtd->eraseregions[i];
2332 if (!region->lockmap)
2333 continue;
2334
2335 for (block = 0; block < region->numblocks; block++){
2336 len = region->erasesize;
2337 adr = region->offset + block * len;
2338
2339 status = cfi_varsize_frob(mtd,
2340 do_getlockstatus_oneblock, adr, len, NULL);
2341 if (status)
2342 set_bit(block, region->lockmap);
2343 else
2344 clear_bit(block, region->lockmap);
2345 }
2346 }
2347 }
2348
2349 static int cfi_intelext_suspend(struct mtd_info *mtd)
2350 {
2351 struct map_info *map = mtd->priv;
2352 struct cfi_private *cfi = map->fldrv_priv;
2353 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
2354 int i;
2355 struct flchip *chip;
2356 int ret = 0;
2357
2358 if ((mtd->flags & MTD_POWERUP_LOCK)
2359 && extp && (extp->FeatureSupport & (1 << 5)))
2360 cfi_intelext_save_locks(mtd);
2361
2362 for (i=0; !ret && i<cfi->numchips; i++) {
2363 chip = &cfi->chips[i];
2364
2365 spin_lock(chip->mutex);
2366
2367 switch (chip->state) {
2368 case FL_READY:
2369 case FL_STATUS:
2370 case FL_CFI_QUERY:
2371 case FL_JEDEC_QUERY:
2372 if (chip->oldstate == FL_READY) {
2373 /* place the chip in a known state before suspend */
2374 map_write(map, CMD(0xFF), cfi->chips[i].start);
2375 chip->oldstate = chip->state;
2376 chip->state = FL_PM_SUSPENDED;
2377 /* No need to wake_up() on this state change -
2378 * as the whole point is that nobody can do anything
2379 * with the chip now anyway.
2380 */
2381 } else {
2382 /* There seems to be an operation pending. We must wait for it. */
2383 printk(KERN_NOTICE "Flash device refused suspend due to pending operation (oldstate %d)\n", chip->oldstate);
2384 ret = -EAGAIN;
2385 }
2386 break;
2387 default:
2388 /* Should we actually wait? Once upon a time these routines weren't
2389 allowed to. Or should we return -EAGAIN, because the upper layers
2390 ought to have already shut down anything which was using the device
2391 anyway? The latter for now. */
2392 printk(KERN_NOTICE "Flash device refused suspend due to active operation (state %d)\n", chip->oldstate);
2393 ret = -EAGAIN;
2394 case FL_PM_SUSPENDED:
2395 break;
2396 }
2397 spin_unlock(chip->mutex);
2398 }
2399
2400 /* Unlock the chips again */
2401
2402 if (ret) {
2403 for (i--; i >=0; i--) {
2404 chip = &cfi->chips[i];
2405
2406 spin_lock(chip->mutex);
2407
2408 if (chip->state == FL_PM_SUSPENDED) {
2409 /* No need to force it into a known state here,
2410 because we're returning failure, and it didn't
2411 get power cycled */
2412 chip->state = chip->oldstate;
2413 chip->oldstate = FL_READY;
2414 wake_up(&chip->wq);
2415 }
2416 spin_unlock(chip->mutex);
2417 }
2418 }
2419
2420 return ret;
2421 }
2422
2423 static void cfi_intelext_restore_locks(struct mtd_info *mtd)
2424 {
2425 struct mtd_erase_region_info *region;
2426 int block, i;
2427 unsigned long adr;
2428 size_t len;
2429
2430 for (i = 0; i < mtd->numeraseregions; i++) {
2431 region = &mtd->eraseregions[i];
2432 if (!region->lockmap)
2433 continue;
2434
2435 for (block = 0; block < region->numblocks; block++) {
2436 len = region->erasesize;
2437 adr = region->offset + block * len;
2438
2439 if (!test_bit(block, region->lockmap))
2440 cfi_intelext_unlock(mtd, adr, len);
2441 }
2442 }
2443 }
2444
2445 static void cfi_intelext_resume(struct mtd_info *mtd)
2446 {
2447 struct map_info *map = mtd->priv;
2448 struct cfi_private *cfi = map->fldrv_priv;
2449 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
2450 int i;
2451 struct flchip *chip;
2452
2453 for (i=0; i<cfi->numchips; i++) {
2454
2455 chip = &cfi->chips[i];
2456
2457 spin_lock(chip->mutex);
2458
2459 /* Go to known state. Chip may have been power cycled */
2460 if (chip->state == FL_PM_SUSPENDED) {
2461 map_write(map, CMD(0xFF), cfi->chips[i].start);
2462 chip->oldstate = chip->state = FL_READY;
2463 wake_up(&chip->wq);
2464 }
2465
2466 spin_unlock(chip->mutex);
2467 }
2468
2469 if ((mtd->flags & MTD_POWERUP_LOCK)
2470 && extp && (extp->FeatureSupport & (1 << 5)))
2471 cfi_intelext_restore_locks(mtd);
2472 }
2473
2474 static int cfi_intelext_reset(struct mtd_info *mtd)
2475 {
2476 struct map_info *map = mtd->priv;
2477 struct cfi_private *cfi = map->fldrv_priv;
2478 int i, ret;
2479
2480 for (i=0; i < cfi->numchips; i++) {
2481 struct flchip *chip = &cfi->chips[i];
2482
2483 /* force the completion of any ongoing operation
2484 and switch to array mode so any bootloader in
2485 flash is accessible for soft reboot. */
2486 spin_lock(chip->mutex);
2487 ret = get_chip(map, chip, chip->start, FL_SHUTDOWN);
2488 if (!ret) {
2489 map_write(map, CMD(0xff), chip->start);
2490 chip->state = FL_SHUTDOWN;
2491 }
2492 spin_unlock(chip->mutex);
2493 }
2494
2495 return 0;
2496 }
2497
2498 static int cfi_intelext_reboot(struct notifier_block *nb, unsigned long val,
2499 void *v)
2500 {
2501 struct mtd_info *mtd;
2502
2503 mtd = container_of(nb, struct mtd_info, reboot_notifier);
2504 cfi_intelext_reset(mtd);
2505 return NOTIFY_DONE;
2506 }
2507
2508 static void cfi_intelext_destroy(struct mtd_info *mtd)
2509 {
2510 struct map_info *map = mtd->priv;
2511 struct cfi_private *cfi = map->fldrv_priv;
2512 struct mtd_erase_region_info *region;
2513 int i;
2514 cfi_intelext_reset(mtd);
2515 unregister_reboot_notifier(&mtd->reboot_notifier);
2516 kfree(cfi->cmdset_priv);
2517 kfree(cfi->cfiq);
2518 kfree(cfi->chips[0].priv);
2519 kfree(cfi);
2520 for (i = 0; i < mtd->numeraseregions; i++) {
2521 region = &mtd->eraseregions[i];
2522 if (region->lockmap)
2523 kfree(region->lockmap);
2524 }
2525 kfree(mtd->eraseregions);
2526 }
2527
2528 MODULE_LICENSE("GPL");
2529 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org> et al.");
2530 MODULE_DESCRIPTION("MTD chip driver for Intel/Sharp flash chips");
2531 MODULE_ALIAS("cfi_cmdset_0003");
2532 MODULE_ALIAS("cfi_cmdset_0200");
This page took 0.089271 seconds and 5 git commands to generate.