cfi-cmdset-0001: always update the chip status
[deliverable/linux.git] / drivers / mtd / chips / cfi_cmdset_0001.c
1 /*
2 * Common Flash Interface support:
3 * Intel Extended Vendor Command Set (ID 0x0001)
4 *
5 * (C) 2000 Red Hat. GPL'd
6 *
7 * $Id: cfi_cmdset_0001.c,v 1.186 2005/11/23 22:07:52 nico Exp $
8 *
9 *
10 * 10/10/2000 Nicolas Pitre <nico@cam.org>
11 * - completely revamped method functions so they are aware and
12 * independent of the flash geometry (buswidth, interleave, etc.)
13 * - scalability vs code size is completely set at compile-time
14 * (see include/linux/mtd/cfi.h for selection)
15 * - optimized write buffer method
16 * 02/05/2002 Christopher Hoover <ch@hpl.hp.com>/<ch@murgatroid.com>
17 * - reworked lock/unlock/erase support for var size flash
18 */
19
20 #include <linux/module.h>
21 #include <linux/types.h>
22 #include <linux/kernel.h>
23 #include <linux/sched.h>
24 #include <linux/init.h>
25 #include <asm/io.h>
26 #include <asm/byteorder.h>
27
28 #include <linux/errno.h>
29 #include <linux/slab.h>
30 #include <linux/delay.h>
31 #include <linux/interrupt.h>
32 #include <linux/reboot.h>
33 #include <linux/mtd/xip.h>
34 #include <linux/mtd/map.h>
35 #include <linux/mtd/mtd.h>
36 #include <linux/mtd/compatmac.h>
37 #include <linux/mtd/cfi.h>
38
39 /* #define CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE */
40 /* #define CMDSET0001_DISABLE_WRITE_SUSPEND */
41
42 // debugging, turns off buffer write mode if set to 1
43 #define FORCE_WORD_WRITE 0
44
45 #define MANUFACTURER_INTEL 0x0089
46 #define I82802AB 0x00ad
47 #define I82802AC 0x00ac
48 #define MANUFACTURER_ST 0x0020
49 #define M50LPW080 0x002F
50
51 static int cfi_intelext_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
52 static int cfi_intelext_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
53 static int cfi_intelext_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
54 static int cfi_intelext_writev(struct mtd_info *, const struct kvec *, unsigned long, loff_t, size_t *);
55 static int cfi_intelext_erase_varsize(struct mtd_info *, struct erase_info *);
56 static void cfi_intelext_sync (struct mtd_info *);
57 static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, size_t len);
58 static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, size_t len);
59 #ifdef CONFIG_MTD_OTP
60 static int cfi_intelext_read_fact_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
61 static int cfi_intelext_read_user_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
62 static int cfi_intelext_write_user_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
63 static int cfi_intelext_lock_user_prot_reg (struct mtd_info *, loff_t, size_t);
64 static int cfi_intelext_get_fact_prot_info (struct mtd_info *,
65 struct otp_info *, size_t);
66 static int cfi_intelext_get_user_prot_info (struct mtd_info *,
67 struct otp_info *, size_t);
68 #endif
69 static int cfi_intelext_suspend (struct mtd_info *);
70 static void cfi_intelext_resume (struct mtd_info *);
71 static int cfi_intelext_reboot (struct notifier_block *, unsigned long, void *);
72
73 static void cfi_intelext_destroy(struct mtd_info *);
74
75 struct mtd_info *cfi_cmdset_0001(struct map_info *, int);
76
77 static struct mtd_info *cfi_intelext_setup (struct mtd_info *);
78 static int cfi_intelext_partition_fixup(struct mtd_info *, struct cfi_private **);
79
80 static int cfi_intelext_point (struct mtd_info *mtd, loff_t from, size_t len,
81 size_t *retlen, u_char **mtdbuf);
82 static void cfi_intelext_unpoint (struct mtd_info *mtd, u_char *addr, loff_t from,
83 size_t len);
84
85 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
86 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
87 #include "fwh_lock.h"
88
89
90
91 /*
92 * *********** SETUP AND PROBE BITS ***********
93 */
94
95 static struct mtd_chip_driver cfi_intelext_chipdrv = {
96 .probe = NULL, /* Not usable directly */
97 .destroy = cfi_intelext_destroy,
98 .name = "cfi_cmdset_0001",
99 .module = THIS_MODULE
100 };
101
102 /* #define DEBUG_LOCK_BITS */
103 /* #define DEBUG_CFI_FEATURES */
104
105 #ifdef DEBUG_CFI_FEATURES
106 static void cfi_tell_features(struct cfi_pri_intelext *extp)
107 {
108 int i;
109 printk(" Extended Query version %c.%c\n", extp->MajorVersion, extp->MinorVersion);
110 printk(" Feature/Command Support: %4.4X\n", extp->FeatureSupport);
111 printk(" - Chip Erase: %s\n", extp->FeatureSupport&1?"supported":"unsupported");
112 printk(" - Suspend Erase: %s\n", extp->FeatureSupport&2?"supported":"unsupported");
113 printk(" - Suspend Program: %s\n", extp->FeatureSupport&4?"supported":"unsupported");
114 printk(" - Legacy Lock/Unlock: %s\n", extp->FeatureSupport&8?"supported":"unsupported");
115 printk(" - Queued Erase: %s\n", extp->FeatureSupport&16?"supported":"unsupported");
116 printk(" - Instant block lock: %s\n", extp->FeatureSupport&32?"supported":"unsupported");
117 printk(" - Protection Bits: %s\n", extp->FeatureSupport&64?"supported":"unsupported");
118 printk(" - Page-mode read: %s\n", extp->FeatureSupport&128?"supported":"unsupported");
119 printk(" - Synchronous read: %s\n", extp->FeatureSupport&256?"supported":"unsupported");
120 printk(" - Simultaneous operations: %s\n", extp->FeatureSupport&512?"supported":"unsupported");
121 printk(" - Extended Flash Array: %s\n", extp->FeatureSupport&1024?"supported":"unsupported");
122 for (i=11; i<32; i++) {
123 if (extp->FeatureSupport & (1<<i))
124 printk(" - Unknown Bit %X: supported\n", i);
125 }
126
127 printk(" Supported functions after Suspend: %2.2X\n", extp->SuspendCmdSupport);
128 printk(" - Program after Erase Suspend: %s\n", extp->SuspendCmdSupport&1?"supported":"unsupported");
129 for (i=1; i<8; i++) {
130 if (extp->SuspendCmdSupport & (1<<i))
131 printk(" - Unknown Bit %X: supported\n", i);
132 }
133
134 printk(" Block Status Register Mask: %4.4X\n", extp->BlkStatusRegMask);
135 printk(" - Lock Bit Active: %s\n", extp->BlkStatusRegMask&1?"yes":"no");
136 printk(" - Lock-Down Bit Active: %s\n", extp->BlkStatusRegMask&2?"yes":"no");
137 for (i=2; i<3; i++) {
138 if (extp->BlkStatusRegMask & (1<<i))
139 printk(" - Unknown Bit %X Active: yes\n",i);
140 }
141 printk(" - EFA Lock Bit: %s\n", extp->BlkStatusRegMask&16?"yes":"no");
142 printk(" - EFA Lock-Down Bit: %s\n", extp->BlkStatusRegMask&32?"yes":"no");
143 for (i=6; i<16; i++) {
144 if (extp->BlkStatusRegMask & (1<<i))
145 printk(" - Unknown Bit %X Active: yes\n",i);
146 }
147
148 printk(" Vcc Logic Supply Optimum Program/Erase Voltage: %d.%d V\n",
149 extp->VccOptimal >> 4, extp->VccOptimal & 0xf);
150 if (extp->VppOptimal)
151 printk(" Vpp Programming Supply Optimum Program/Erase Voltage: %d.%d V\n",
152 extp->VppOptimal >> 4, extp->VppOptimal & 0xf);
153 }
154 #endif
155
156 #ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE
157 /* Some Intel Strata Flash prior to FPO revision C has bugs in this area */
158 static void fixup_intel_strataflash(struct mtd_info *mtd, void* param)
159 {
160 struct map_info *map = mtd->priv;
161 struct cfi_private *cfi = map->fldrv_priv;
162 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
163
164 printk(KERN_WARNING "cfi_cmdset_0001: Suspend "
165 "erase on write disabled.\n");
166 extp->SuspendCmdSupport &= ~1;
167 }
168 #endif
169
170 #ifdef CMDSET0001_DISABLE_WRITE_SUSPEND
171 static void fixup_no_write_suspend(struct mtd_info *mtd, void* param)
172 {
173 struct map_info *map = mtd->priv;
174 struct cfi_private *cfi = map->fldrv_priv;
175 struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
176
177 if (cfip && (cfip->FeatureSupport&4)) {
178 cfip->FeatureSupport &= ~4;
179 printk(KERN_WARNING "cfi_cmdset_0001: write suspend disabled\n");
180 }
181 }
182 #endif
183
184 static void fixup_st_m28w320ct(struct mtd_info *mtd, void* param)
185 {
186 struct map_info *map = mtd->priv;
187 struct cfi_private *cfi = map->fldrv_priv;
188
189 cfi->cfiq->BufWriteTimeoutTyp = 0; /* Not supported */
190 cfi->cfiq->BufWriteTimeoutMax = 0; /* Not supported */
191 }
192
193 static void fixup_st_m28w320cb(struct mtd_info *mtd, void* param)
194 {
195 struct map_info *map = mtd->priv;
196 struct cfi_private *cfi = map->fldrv_priv;
197
198 /* Note this is done after the region info is endian swapped */
199 cfi->cfiq->EraseRegionInfo[1] =
200 (cfi->cfiq->EraseRegionInfo[1] & 0xffff0000) | 0x3e;
201 };
202
203 static void fixup_use_point(struct mtd_info *mtd, void *param)
204 {
205 struct map_info *map = mtd->priv;
206 if (!mtd->point && map_is_linear(map)) {
207 mtd->point = cfi_intelext_point;
208 mtd->unpoint = cfi_intelext_unpoint;
209 }
210 }
211
212 static void fixup_use_write_buffers(struct mtd_info *mtd, void *param)
213 {
214 struct map_info *map = mtd->priv;
215 struct cfi_private *cfi = map->fldrv_priv;
216 if (cfi->cfiq->BufWriteTimeoutTyp) {
217 printk(KERN_INFO "Using buffer write method\n" );
218 mtd->write = cfi_intelext_write_buffers;
219 mtd->writev = cfi_intelext_writev;
220 }
221 }
222
223 static struct cfi_fixup cfi_fixup_table[] = {
224 #ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE
225 { CFI_MFR_ANY, CFI_ID_ANY, fixup_intel_strataflash, NULL },
226 #endif
227 #ifdef CMDSET0001_DISABLE_WRITE_SUSPEND
228 { CFI_MFR_ANY, CFI_ID_ANY, fixup_no_write_suspend, NULL },
229 #endif
230 #if !FORCE_WORD_WRITE
231 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers, NULL },
232 #endif
233 { CFI_MFR_ST, 0x00ba, /* M28W320CT */ fixup_st_m28w320ct, NULL },
234 { CFI_MFR_ST, 0x00bb, /* M28W320CB */ fixup_st_m28w320cb, NULL },
235 { 0, 0, NULL, NULL }
236 };
237
238 static struct cfi_fixup jedec_fixup_table[] = {
239 { MANUFACTURER_INTEL, I82802AB, fixup_use_fwh_lock, NULL, },
240 { MANUFACTURER_INTEL, I82802AC, fixup_use_fwh_lock, NULL, },
241 { MANUFACTURER_ST, M50LPW080, fixup_use_fwh_lock, NULL, },
242 { 0, 0, NULL, NULL }
243 };
244 static struct cfi_fixup fixup_table[] = {
245 /* The CFI vendor ids and the JEDEC vendor IDs appear
246 * to be common. It is like the devices id's are as
247 * well. This table is to pick all cases where
248 * we know that is the case.
249 */
250 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_point, NULL },
251 { 0, 0, NULL, NULL }
252 };
253
254 static inline struct cfi_pri_intelext *
255 read_pri_intelext(struct map_info *map, __u16 adr)
256 {
257 struct cfi_pri_intelext *extp;
258 unsigned int extp_size = sizeof(*extp);
259
260 again:
261 extp = (struct cfi_pri_intelext *)cfi_read_pri(map, adr, extp_size, "Intel/Sharp");
262 if (!extp)
263 return NULL;
264
265 if (extp->MajorVersion != '1' ||
266 (extp->MinorVersion < '0' || extp->MinorVersion > '4')) {
267 printk(KERN_ERR " Unknown Intel/Sharp Extended Query "
268 "version %c.%c.\n", extp->MajorVersion,
269 extp->MinorVersion);
270 kfree(extp);
271 return NULL;
272 }
273
274 /* Do some byteswapping if necessary */
275 extp->FeatureSupport = le32_to_cpu(extp->FeatureSupport);
276 extp->BlkStatusRegMask = le16_to_cpu(extp->BlkStatusRegMask);
277 extp->ProtRegAddr = le16_to_cpu(extp->ProtRegAddr);
278
279 if (extp->MajorVersion == '1' && extp->MinorVersion >= '3') {
280 unsigned int extra_size = 0;
281 int nb_parts, i;
282
283 /* Protection Register info */
284 extra_size += (extp->NumProtectionFields - 1) *
285 sizeof(struct cfi_intelext_otpinfo);
286
287 /* Burst Read info */
288 extra_size += 2;
289 if (extp_size < sizeof(*extp) + extra_size)
290 goto need_more;
291 extra_size += extp->extra[extra_size-1];
292
293 /* Number of hardware-partitions */
294 extra_size += 1;
295 if (extp_size < sizeof(*extp) + extra_size)
296 goto need_more;
297 nb_parts = extp->extra[extra_size - 1];
298
299 /* skip the sizeof(partregion) field in CFI 1.4 */
300 if (extp->MinorVersion >= '4')
301 extra_size += 2;
302
303 for (i = 0; i < nb_parts; i++) {
304 struct cfi_intelext_regioninfo *rinfo;
305 rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[extra_size];
306 extra_size += sizeof(*rinfo);
307 if (extp_size < sizeof(*extp) + extra_size)
308 goto need_more;
309 rinfo->NumIdentPartitions=le16_to_cpu(rinfo->NumIdentPartitions);
310 extra_size += (rinfo->NumBlockTypes - 1)
311 * sizeof(struct cfi_intelext_blockinfo);
312 }
313
314 if (extp->MinorVersion >= '4')
315 extra_size += sizeof(struct cfi_intelext_programming_regioninfo);
316
317 if (extp_size < sizeof(*extp) + extra_size) {
318 need_more:
319 extp_size = sizeof(*extp) + extra_size;
320 kfree(extp);
321 if (extp_size > 4096) {
322 printk(KERN_ERR
323 "%s: cfi_pri_intelext is too fat\n",
324 __FUNCTION__);
325 return NULL;
326 }
327 goto again;
328 }
329 }
330
331 return extp;
332 }
333
334 struct mtd_info *cfi_cmdset_0001(struct map_info *map, int primary)
335 {
336 struct cfi_private *cfi = map->fldrv_priv;
337 struct mtd_info *mtd;
338 int i;
339
340 mtd = kmalloc(sizeof(*mtd), GFP_KERNEL);
341 if (!mtd) {
342 printk(KERN_ERR "Failed to allocate memory for MTD device\n");
343 return NULL;
344 }
345 memset(mtd, 0, sizeof(*mtd));
346 mtd->priv = map;
347 mtd->type = MTD_NORFLASH;
348
349 /* Fill in the default mtd operations */
350 mtd->erase = cfi_intelext_erase_varsize;
351 mtd->read = cfi_intelext_read;
352 mtd->write = cfi_intelext_write_words;
353 mtd->sync = cfi_intelext_sync;
354 mtd->lock = cfi_intelext_lock;
355 mtd->unlock = cfi_intelext_unlock;
356 mtd->suspend = cfi_intelext_suspend;
357 mtd->resume = cfi_intelext_resume;
358 mtd->flags = MTD_CAP_NORFLASH;
359 mtd->name = map->name;
360
361 mtd->reboot_notifier.notifier_call = cfi_intelext_reboot;
362
363 if (cfi->cfi_mode == CFI_MODE_CFI) {
364 /*
365 * It's a real CFI chip, not one for which the probe
366 * routine faked a CFI structure. So we read the feature
367 * table from it.
368 */
369 __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
370 struct cfi_pri_intelext *extp;
371
372 extp = read_pri_intelext(map, adr);
373 if (!extp) {
374 kfree(mtd);
375 return NULL;
376 }
377
378 /* Install our own private info structure */
379 cfi->cmdset_priv = extp;
380
381 cfi_fixup(mtd, cfi_fixup_table);
382
383 #ifdef DEBUG_CFI_FEATURES
384 /* Tell the user about it in lots of lovely detail */
385 cfi_tell_features(extp);
386 #endif
387
388 if(extp->SuspendCmdSupport & 1) {
389 printk(KERN_NOTICE "cfi_cmdset_0001: Erase suspend on write enabled\n");
390 }
391 }
392 else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
393 /* Apply jedec specific fixups */
394 cfi_fixup(mtd, jedec_fixup_table);
395 }
396 /* Apply generic fixups */
397 cfi_fixup(mtd, fixup_table);
398
399 for (i=0; i< cfi->numchips; i++) {
400 cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp;
401 cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp;
402 cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp;
403 cfi->chips[i].ref_point_counter = 0;
404 init_waitqueue_head(&(cfi->chips[i].wq));
405 }
406
407 map->fldrv = &cfi_intelext_chipdrv;
408
409 return cfi_intelext_setup(mtd);
410 }
411 struct mtd_info *cfi_cmdset_0003(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0001")));
412 struct mtd_info *cfi_cmdset_0200(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0001")));
413 EXPORT_SYMBOL_GPL(cfi_cmdset_0001);
414 EXPORT_SYMBOL_GPL(cfi_cmdset_0003);
415 EXPORT_SYMBOL_GPL(cfi_cmdset_0200);
416
417 static struct mtd_info *cfi_intelext_setup(struct mtd_info *mtd)
418 {
419 struct map_info *map = mtd->priv;
420 struct cfi_private *cfi = map->fldrv_priv;
421 unsigned long offset = 0;
422 int i,j;
423 unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
424
425 //printk(KERN_DEBUG "number of CFI chips: %d\n", cfi->numchips);
426
427 mtd->size = devsize * cfi->numchips;
428
429 mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
430 mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info)
431 * mtd->numeraseregions, GFP_KERNEL);
432 if (!mtd->eraseregions) {
433 printk(KERN_ERR "Failed to allocate memory for MTD erase region info\n");
434 goto setup_err;
435 }
436
437 for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
438 unsigned long ernum, ersize;
439 ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
440 ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
441
442 if (mtd->erasesize < ersize) {
443 mtd->erasesize = ersize;
444 }
445 for (j=0; j<cfi->numchips; j++) {
446 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
447 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
448 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
449 }
450 offset += (ersize * ernum);
451 }
452
453 if (offset != devsize) {
454 /* Argh */
455 printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
456 goto setup_err;
457 }
458
459 for (i=0; i<mtd->numeraseregions;i++){
460 printk(KERN_DEBUG "erase region %d: offset=0x%x,size=0x%x,blocks=%d\n",
461 i,mtd->eraseregions[i].offset,
462 mtd->eraseregions[i].erasesize,
463 mtd->eraseregions[i].numblocks);
464 }
465
466 #ifdef CONFIG_MTD_OTP
467 mtd->read_fact_prot_reg = cfi_intelext_read_fact_prot_reg;
468 mtd->read_user_prot_reg = cfi_intelext_read_user_prot_reg;
469 mtd->write_user_prot_reg = cfi_intelext_write_user_prot_reg;
470 mtd->lock_user_prot_reg = cfi_intelext_lock_user_prot_reg;
471 mtd->get_fact_prot_info = cfi_intelext_get_fact_prot_info;
472 mtd->get_user_prot_info = cfi_intelext_get_user_prot_info;
473 #endif
474
475 /* This function has the potential to distort the reality
476 a bit and therefore should be called last. */
477 if (cfi_intelext_partition_fixup(mtd, &cfi) != 0)
478 goto setup_err;
479
480 __module_get(THIS_MODULE);
481 register_reboot_notifier(&mtd->reboot_notifier);
482 return mtd;
483
484 setup_err:
485 if(mtd) {
486 kfree(mtd->eraseregions);
487 kfree(mtd);
488 }
489 kfree(cfi->cmdset_priv);
490 return NULL;
491 }
492
493 static int cfi_intelext_partition_fixup(struct mtd_info *mtd,
494 struct cfi_private **pcfi)
495 {
496 struct map_info *map = mtd->priv;
497 struct cfi_private *cfi = *pcfi;
498 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
499
500 /*
501 * Probing of multi-partition flash ships.
502 *
503 * To support multiple partitions when available, we simply arrange
504 * for each of them to have their own flchip structure even if they
505 * are on the same physical chip. This means completely recreating
506 * a new cfi_private structure right here which is a blatent code
507 * layering violation, but this is still the least intrusive
508 * arrangement at this point. This can be rearranged in the future
509 * if someone feels motivated enough. --nico
510 */
511 if (extp && extp->MajorVersion == '1' && extp->MinorVersion >= '3'
512 && extp->FeatureSupport & (1 << 9)) {
513 struct cfi_private *newcfi;
514 struct flchip *chip;
515 struct flchip_shared *shared;
516 int offs, numregions, numparts, partshift, numvirtchips, i, j;
517
518 /* Protection Register info */
519 offs = (extp->NumProtectionFields - 1) *
520 sizeof(struct cfi_intelext_otpinfo);
521
522 /* Burst Read info */
523 offs += extp->extra[offs+1]+2;
524
525 /* Number of partition regions */
526 numregions = extp->extra[offs];
527 offs += 1;
528
529 /* skip the sizeof(partregion) field in CFI 1.4 */
530 if (extp->MinorVersion >= '4')
531 offs += 2;
532
533 /* Number of hardware partitions */
534 numparts = 0;
535 for (i = 0; i < numregions; i++) {
536 struct cfi_intelext_regioninfo *rinfo;
537 rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[offs];
538 numparts += rinfo->NumIdentPartitions;
539 offs += sizeof(*rinfo)
540 + (rinfo->NumBlockTypes - 1) *
541 sizeof(struct cfi_intelext_blockinfo);
542 }
543
544 /* Programming Region info */
545 if (extp->MinorVersion >= '4') {
546 struct cfi_intelext_programming_regioninfo *prinfo;
547 prinfo = (struct cfi_intelext_programming_regioninfo *)&extp->extra[offs];
548 MTD_PROGREGION_SIZE(mtd) = cfi->interleave << prinfo->ProgRegShift;
549 MTD_PROGREGION_CTRLMODE_VALID(mtd) = cfi->interleave * prinfo->ControlValid;
550 MTD_PROGREGION_CTRLMODE_INVALID(mtd) = cfi->interleave * prinfo->ControlInvalid;
551 mtd->flags |= MTD_PROGRAM_REGIONS;
552 printk(KERN_DEBUG "%s: program region size/ctrl_valid/ctrl_inval = %d/%d/%d\n",
553 map->name, MTD_PROGREGION_SIZE(mtd),
554 MTD_PROGREGION_CTRLMODE_VALID(mtd),
555 MTD_PROGREGION_CTRLMODE_INVALID(mtd));
556 }
557
558 /*
559 * All functions below currently rely on all chips having
560 * the same geometry so we'll just assume that all hardware
561 * partitions are of the same size too.
562 */
563 partshift = cfi->chipshift - __ffs(numparts);
564
565 if ((1 << partshift) < mtd->erasesize) {
566 printk( KERN_ERR
567 "%s: bad number of hw partitions (%d)\n",
568 __FUNCTION__, numparts);
569 return -EINVAL;
570 }
571
572 numvirtchips = cfi->numchips * numparts;
573 newcfi = kmalloc(sizeof(struct cfi_private) + numvirtchips * sizeof(struct flchip), GFP_KERNEL);
574 if (!newcfi)
575 return -ENOMEM;
576 shared = kmalloc(sizeof(struct flchip_shared) * cfi->numchips, GFP_KERNEL);
577 if (!shared) {
578 kfree(newcfi);
579 return -ENOMEM;
580 }
581 memcpy(newcfi, cfi, sizeof(struct cfi_private));
582 newcfi->numchips = numvirtchips;
583 newcfi->chipshift = partshift;
584
585 chip = &newcfi->chips[0];
586 for (i = 0; i < cfi->numchips; i++) {
587 shared[i].writing = shared[i].erasing = NULL;
588 spin_lock_init(&shared[i].lock);
589 for (j = 0; j < numparts; j++) {
590 *chip = cfi->chips[i];
591 chip->start += j << partshift;
592 chip->priv = &shared[i];
593 /* those should be reset too since
594 they create memory references. */
595 init_waitqueue_head(&chip->wq);
596 spin_lock_init(&chip->_spinlock);
597 chip->mutex = &chip->_spinlock;
598 chip++;
599 }
600 }
601
602 printk(KERN_DEBUG "%s: %d set(s) of %d interleaved chips "
603 "--> %d partitions of %d KiB\n",
604 map->name, cfi->numchips, cfi->interleave,
605 newcfi->numchips, 1<<(newcfi->chipshift-10));
606
607 map->fldrv_priv = newcfi;
608 *pcfi = newcfi;
609 kfree(cfi);
610 }
611
612 return 0;
613 }
614
615 /*
616 * *********** CHIP ACCESS FUNCTIONS ***********
617 */
618
619 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
620 {
621 DECLARE_WAITQUEUE(wait, current);
622 struct cfi_private *cfi = map->fldrv_priv;
623 map_word status, status_OK = CMD(0x80), status_PWS = CMD(0x01);
624 unsigned long timeo;
625 struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
626
627 resettime:
628 timeo = jiffies + HZ;
629 retry:
630 if (chip->priv && (mode == FL_WRITING || mode == FL_ERASING || mode == FL_OTP_WRITE)) {
631 /*
632 * OK. We have possibility for contension on the write/erase
633 * operations which are global to the real chip and not per
634 * partition. So let's fight it over in the partition which
635 * currently has authority on the operation.
636 *
637 * The rules are as follows:
638 *
639 * - any write operation must own shared->writing.
640 *
641 * - any erase operation must own _both_ shared->writing and
642 * shared->erasing.
643 *
644 * - contension arbitration is handled in the owner's context.
645 *
646 * The 'shared' struct can be read and/or written only when
647 * its lock is taken.
648 */
649 struct flchip_shared *shared = chip->priv;
650 struct flchip *contender;
651 spin_lock(&shared->lock);
652 contender = shared->writing;
653 if (contender && contender != chip) {
654 /*
655 * The engine to perform desired operation on this
656 * partition is already in use by someone else.
657 * Let's fight over it in the context of the chip
658 * currently using it. If it is possible to suspend,
659 * that other partition will do just that, otherwise
660 * it'll happily send us to sleep. In any case, when
661 * get_chip returns success we're clear to go ahead.
662 */
663 int ret = spin_trylock(contender->mutex);
664 spin_unlock(&shared->lock);
665 if (!ret)
666 goto retry;
667 spin_unlock(chip->mutex);
668 ret = get_chip(map, contender, contender->start, mode);
669 spin_lock(chip->mutex);
670 if (ret) {
671 spin_unlock(contender->mutex);
672 return ret;
673 }
674 timeo = jiffies + HZ;
675 spin_lock(&shared->lock);
676 spin_unlock(contender->mutex);
677 }
678
679 /* We now own it */
680 shared->writing = chip;
681 if (mode == FL_ERASING)
682 shared->erasing = chip;
683 spin_unlock(&shared->lock);
684 }
685
686 switch (chip->state) {
687
688 case FL_STATUS:
689 for (;;) {
690 status = map_read(map, adr);
691 if (map_word_andequal(map, status, status_OK, status_OK))
692 break;
693
694 /* At this point we're fine with write operations
695 in other partitions as they don't conflict. */
696 if (chip->priv && map_word_andequal(map, status, status_PWS, status_PWS))
697 break;
698
699 if (time_after(jiffies, timeo)) {
700 printk(KERN_ERR "%s: Waiting for chip to be ready timed out. Status %lx\n",
701 map->name, status.x[0]);
702 return -EIO;
703 }
704 spin_unlock(chip->mutex);
705 cfi_udelay(1);
706 spin_lock(chip->mutex);
707 /* Someone else might have been playing with it. */
708 goto retry;
709 }
710
711 case FL_READY:
712 case FL_CFI_QUERY:
713 case FL_JEDEC_QUERY:
714 return 0;
715
716 case FL_ERASING:
717 if (!cfip ||
718 !(cfip->FeatureSupport & 2) ||
719 !(mode == FL_READY || mode == FL_POINT ||
720 (mode == FL_WRITING && (cfip->SuspendCmdSupport & 1))))
721 goto sleep;
722
723
724 /* Erase suspend */
725 map_write(map, CMD(0xB0), adr);
726
727 /* If the flash has finished erasing, then 'erase suspend'
728 * appears to make some (28F320) flash devices switch to
729 * 'read' mode. Make sure that we switch to 'read status'
730 * mode so we get the right data. --rmk
731 */
732 map_write(map, CMD(0x70), adr);
733 chip->oldstate = FL_ERASING;
734 chip->state = FL_ERASE_SUSPENDING;
735 chip->erase_suspended = 1;
736 for (;;) {
737 status = map_read(map, adr);
738 if (map_word_andequal(map, status, status_OK, status_OK))
739 break;
740
741 if (time_after(jiffies, timeo)) {
742 /* Urgh. Resume and pretend we weren't here. */
743 map_write(map, CMD(0xd0), adr);
744 /* Make sure we're in 'read status' mode if it had finished */
745 map_write(map, CMD(0x70), adr);
746 chip->state = FL_ERASING;
747 chip->oldstate = FL_READY;
748 printk(KERN_ERR "%s: Chip not ready after erase "
749 "suspended: status = 0x%lx\n", map->name, status.x[0]);
750 return -EIO;
751 }
752
753 spin_unlock(chip->mutex);
754 cfi_udelay(1);
755 spin_lock(chip->mutex);
756 /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
757 So we can just loop here. */
758 }
759 chip->state = FL_STATUS;
760 return 0;
761
762 case FL_XIP_WHILE_ERASING:
763 if (mode != FL_READY && mode != FL_POINT &&
764 (mode != FL_WRITING || !cfip || !(cfip->SuspendCmdSupport&1)))
765 goto sleep;
766 chip->oldstate = chip->state;
767 chip->state = FL_READY;
768 return 0;
769
770 case FL_POINT:
771 /* Only if there's no operation suspended... */
772 if (mode == FL_READY && chip->oldstate == FL_READY)
773 return 0;
774
775 default:
776 sleep:
777 set_current_state(TASK_UNINTERRUPTIBLE);
778 add_wait_queue(&chip->wq, &wait);
779 spin_unlock(chip->mutex);
780 schedule();
781 remove_wait_queue(&chip->wq, &wait);
782 spin_lock(chip->mutex);
783 goto resettime;
784 }
785 }
786
787 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
788 {
789 struct cfi_private *cfi = map->fldrv_priv;
790
791 if (chip->priv) {
792 struct flchip_shared *shared = chip->priv;
793 spin_lock(&shared->lock);
794 if (shared->writing == chip && chip->oldstate == FL_READY) {
795 /* We own the ability to write, but we're done */
796 shared->writing = shared->erasing;
797 if (shared->writing && shared->writing != chip) {
798 /* give back ownership to who we loaned it from */
799 struct flchip *loaner = shared->writing;
800 spin_lock(loaner->mutex);
801 spin_unlock(&shared->lock);
802 spin_unlock(chip->mutex);
803 put_chip(map, loaner, loaner->start);
804 spin_lock(chip->mutex);
805 spin_unlock(loaner->mutex);
806 wake_up(&chip->wq);
807 return;
808 }
809 shared->erasing = NULL;
810 shared->writing = NULL;
811 } else if (shared->erasing == chip && shared->writing != chip) {
812 /*
813 * We own the ability to erase without the ability
814 * to write, which means the erase was suspended
815 * and some other partition is currently writing.
816 * Don't let the switch below mess things up since
817 * we don't have ownership to resume anything.
818 */
819 spin_unlock(&shared->lock);
820 wake_up(&chip->wq);
821 return;
822 }
823 spin_unlock(&shared->lock);
824 }
825
826 switch(chip->oldstate) {
827 case FL_ERASING:
828 chip->state = chip->oldstate;
829 /* What if one interleaved chip has finished and the
830 other hasn't? The old code would leave the finished
831 one in READY mode. That's bad, and caused -EROFS
832 errors to be returned from do_erase_oneblock because
833 that's the only bit it checked for at the time.
834 As the state machine appears to explicitly allow
835 sending the 0x70 (Read Status) command to an erasing
836 chip and expecting it to be ignored, that's what we
837 do. */
838 map_write(map, CMD(0xd0), adr);
839 map_write(map, CMD(0x70), adr);
840 chip->oldstate = FL_READY;
841 chip->state = FL_ERASING;
842 break;
843
844 case FL_XIP_WHILE_ERASING:
845 chip->state = chip->oldstate;
846 chip->oldstate = FL_READY;
847 break;
848
849 case FL_READY:
850 case FL_STATUS:
851 case FL_JEDEC_QUERY:
852 /* We should really make set_vpp() count, rather than doing this */
853 DISABLE_VPP(map);
854 break;
855 default:
856 printk(KERN_ERR "%s: put_chip() called with oldstate %d!!\n", map->name, chip->oldstate);
857 }
858 wake_up(&chip->wq);
859 }
860
861 #ifdef CONFIG_MTD_XIP
862
863 /*
864 * No interrupt what so ever can be serviced while the flash isn't in array
865 * mode. This is ensured by the xip_disable() and xip_enable() functions
866 * enclosing any code path where the flash is known not to be in array mode.
867 * And within a XIP disabled code path, only functions marked with __xipram
868 * may be called and nothing else (it's a good thing to inspect generated
869 * assembly to make sure inline functions were actually inlined and that gcc
870 * didn't emit calls to its own support functions). Also configuring MTD CFI
871 * support to a single buswidth and a single interleave is also recommended.
872 */
873
874 static void xip_disable(struct map_info *map, struct flchip *chip,
875 unsigned long adr)
876 {
877 /* TODO: chips with no XIP use should ignore and return */
878 (void) map_read(map, adr); /* ensure mmu mapping is up to date */
879 local_irq_disable();
880 }
881
882 static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
883 unsigned long adr)
884 {
885 struct cfi_private *cfi = map->fldrv_priv;
886 if (chip->state != FL_POINT && chip->state != FL_READY) {
887 map_write(map, CMD(0xff), adr);
888 chip->state = FL_READY;
889 }
890 (void) map_read(map, adr);
891 xip_iprefetch();
892 local_irq_enable();
893 }
894
895 /*
896 * When a delay is required for the flash operation to complete, the
897 * xip_udelay() function is polling for both the given timeout and pending
898 * (but still masked) hardware interrupts. Whenever there is an interrupt
899 * pending then the flash erase or write operation is suspended, array mode
900 * restored and interrupts unmasked. Task scheduling might also happen at that
901 * point. The CPU eventually returns from the interrupt or the call to
902 * schedule() and the suspended flash operation is resumed for the remaining
903 * of the delay period.
904 *
905 * Warning: this function _will_ fool interrupt latency tracing tools.
906 */
907
908 static void __xipram xip_udelay(struct map_info *map, struct flchip *chip,
909 unsigned long adr, int usec)
910 {
911 struct cfi_private *cfi = map->fldrv_priv;
912 struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
913 map_word status, OK = CMD(0x80);
914 unsigned long suspended, start = xip_currtime();
915 flstate_t oldstate, newstate;
916
917 do {
918 cpu_relax();
919 if (xip_irqpending() && cfip &&
920 ((chip->state == FL_ERASING && (cfip->FeatureSupport&2)) ||
921 (chip->state == FL_WRITING && (cfip->FeatureSupport&4))) &&
922 (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
923 /*
924 * Let's suspend the erase or write operation when
925 * supported. Note that we currently don't try to
926 * suspend interleaved chips if there is already
927 * another operation suspended (imagine what happens
928 * when one chip was already done with the current
929 * operation while another chip suspended it, then
930 * we resume the whole thing at once). Yes, it
931 * can happen!
932 */
933 map_write(map, CMD(0xb0), adr);
934 map_write(map, CMD(0x70), adr);
935 usec -= xip_elapsed_since(start);
936 suspended = xip_currtime();
937 do {
938 if (xip_elapsed_since(suspended) > 100000) {
939 /*
940 * The chip doesn't want to suspend
941 * after waiting for 100 msecs.
942 * This is a critical error but there
943 * is not much we can do here.
944 */
945 return;
946 }
947 status = map_read(map, adr);
948 } while (!map_word_andequal(map, status, OK, OK));
949
950 /* Suspend succeeded */
951 oldstate = chip->state;
952 if (oldstate == FL_ERASING) {
953 if (!map_word_bitsset(map, status, CMD(0x40)))
954 break;
955 newstate = FL_XIP_WHILE_ERASING;
956 chip->erase_suspended = 1;
957 } else {
958 if (!map_word_bitsset(map, status, CMD(0x04)))
959 break;
960 newstate = FL_XIP_WHILE_WRITING;
961 chip->write_suspended = 1;
962 }
963 chip->state = newstate;
964 map_write(map, CMD(0xff), adr);
965 (void) map_read(map, adr);
966 asm volatile (".rep 8; nop; .endr");
967 local_irq_enable();
968 spin_unlock(chip->mutex);
969 asm volatile (".rep 8; nop; .endr");
970 cond_resched();
971
972 /*
973 * We're back. However someone else might have
974 * decided to go write to the chip if we are in
975 * a suspended erase state. If so let's wait
976 * until it's done.
977 */
978 spin_lock(chip->mutex);
979 while (chip->state != newstate) {
980 DECLARE_WAITQUEUE(wait, current);
981 set_current_state(TASK_UNINTERRUPTIBLE);
982 add_wait_queue(&chip->wq, &wait);
983 spin_unlock(chip->mutex);
984 schedule();
985 remove_wait_queue(&chip->wq, &wait);
986 spin_lock(chip->mutex);
987 }
988 /* Disallow XIP again */
989 local_irq_disable();
990
991 /* Resume the write or erase operation */
992 map_write(map, CMD(0xd0), adr);
993 map_write(map, CMD(0x70), adr);
994 chip->state = oldstate;
995 start = xip_currtime();
996 } else if (usec >= 1000000/HZ) {
997 /*
998 * Try to save on CPU power when waiting delay
999 * is at least a system timer tick period.
1000 * No need to be extremely accurate here.
1001 */
1002 xip_cpu_idle();
1003 }
1004 status = map_read(map, adr);
1005 } while (!map_word_andequal(map, status, OK, OK)
1006 && xip_elapsed_since(start) < usec);
1007 }
1008
1009 #define UDELAY(map, chip, adr, usec) xip_udelay(map, chip, adr, usec)
1010
1011 /*
1012 * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
1013 * the flash is actively programming or erasing since we have to poll for
1014 * the operation to complete anyway. We can't do that in a generic way with
1015 * a XIP setup so do it before the actual flash operation in this case
1016 * and stub it out from INVALIDATE_CACHE_UDELAY.
1017 */
1018 #define XIP_INVAL_CACHED_RANGE(map, from, size) \
1019 INVALIDATE_CACHED_RANGE(map, from, size)
1020
1021 #define INVALIDATE_CACHE_UDELAY(map, chip, cmd_adr, adr, len, usec) \
1022 UDELAY(map, chip, cmd_adr, usec)
1023
1024 /*
1025 * Extra notes:
1026 *
1027 * Activating this XIP support changes the way the code works a bit. For
1028 * example the code to suspend the current process when concurrent access
1029 * happens is never executed because xip_udelay() will always return with the
1030 * same chip state as it was entered with. This is why there is no care for
1031 * the presence of add_wait_queue() or schedule() calls from within a couple
1032 * xip_disable()'d areas of code, like in do_erase_oneblock for example.
1033 * The queueing and scheduling are always happening within xip_udelay().
1034 *
1035 * Similarly, get_chip() and put_chip() just happen to always be executed
1036 * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state
1037 * is in array mode, therefore never executing many cases therein and not
1038 * causing any problem with XIP.
1039 */
1040
1041 #else
1042
1043 #define xip_disable(map, chip, adr)
1044 #define xip_enable(map, chip, adr)
1045 #define XIP_INVAL_CACHED_RANGE(x...)
1046
1047 #define UDELAY(map, chip, adr, usec) \
1048 do { \
1049 spin_unlock(chip->mutex); \
1050 cfi_udelay(usec); \
1051 spin_lock(chip->mutex); \
1052 } while (0)
1053
1054 #define INVALIDATE_CACHE_UDELAY(map, chip, cmd_adr, adr, len, usec) \
1055 do { \
1056 spin_unlock(chip->mutex); \
1057 INVALIDATE_CACHED_RANGE(map, adr, len); \
1058 cfi_udelay(usec); \
1059 spin_lock(chip->mutex); \
1060 } while (0)
1061
1062 #endif
1063
1064 static int do_point_onechip (struct map_info *map, struct flchip *chip, loff_t adr, size_t len)
1065 {
1066 unsigned long cmd_addr;
1067 struct cfi_private *cfi = map->fldrv_priv;
1068 int ret = 0;
1069
1070 adr += chip->start;
1071
1072 /* Ensure cmd read/writes are aligned. */
1073 cmd_addr = adr & ~(map_bankwidth(map)-1);
1074
1075 spin_lock(chip->mutex);
1076
1077 ret = get_chip(map, chip, cmd_addr, FL_POINT);
1078
1079 if (!ret) {
1080 if (chip->state != FL_POINT && chip->state != FL_READY)
1081 map_write(map, CMD(0xff), cmd_addr);
1082
1083 chip->state = FL_POINT;
1084 chip->ref_point_counter++;
1085 }
1086 spin_unlock(chip->mutex);
1087
1088 return ret;
1089 }
1090
1091 static int cfi_intelext_point (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char **mtdbuf)
1092 {
1093 struct map_info *map = mtd->priv;
1094 struct cfi_private *cfi = map->fldrv_priv;
1095 unsigned long ofs;
1096 int chipnum;
1097 int ret = 0;
1098
1099 if (!map->virt || (from + len > mtd->size))
1100 return -EINVAL;
1101
1102 *mtdbuf = (void *)map->virt + from;
1103 *retlen = 0;
1104
1105 /* Now lock the chip(s) to POINT state */
1106
1107 /* ofs: offset within the first chip that the first read should start */
1108 chipnum = (from >> cfi->chipshift);
1109 ofs = from - (chipnum << cfi->chipshift);
1110
1111 while (len) {
1112 unsigned long thislen;
1113
1114 if (chipnum >= cfi->numchips)
1115 break;
1116
1117 if ((len + ofs -1) >> cfi->chipshift)
1118 thislen = (1<<cfi->chipshift) - ofs;
1119 else
1120 thislen = len;
1121
1122 ret = do_point_onechip(map, &cfi->chips[chipnum], ofs, thislen);
1123 if (ret)
1124 break;
1125
1126 *retlen += thislen;
1127 len -= thislen;
1128
1129 ofs = 0;
1130 chipnum++;
1131 }
1132 return 0;
1133 }
1134
1135 static void cfi_intelext_unpoint (struct mtd_info *mtd, u_char *addr, loff_t from, size_t len)
1136 {
1137 struct map_info *map = mtd->priv;
1138 struct cfi_private *cfi = map->fldrv_priv;
1139 unsigned long ofs;
1140 int chipnum;
1141
1142 /* Now unlock the chip(s) POINT state */
1143
1144 /* ofs: offset within the first chip that the first read should start */
1145 chipnum = (from >> cfi->chipshift);
1146 ofs = from - (chipnum << cfi->chipshift);
1147
1148 while (len) {
1149 unsigned long thislen;
1150 struct flchip *chip;
1151
1152 chip = &cfi->chips[chipnum];
1153 if (chipnum >= cfi->numchips)
1154 break;
1155
1156 if ((len + ofs -1) >> cfi->chipshift)
1157 thislen = (1<<cfi->chipshift) - ofs;
1158 else
1159 thislen = len;
1160
1161 spin_lock(chip->mutex);
1162 if (chip->state == FL_POINT) {
1163 chip->ref_point_counter--;
1164 if(chip->ref_point_counter == 0)
1165 chip->state = FL_READY;
1166 } else
1167 printk(KERN_ERR "%s: Warning: unpoint called on non pointed region\n", map->name); /* Should this give an error? */
1168
1169 put_chip(map, chip, chip->start);
1170 spin_unlock(chip->mutex);
1171
1172 len -= thislen;
1173 ofs = 0;
1174 chipnum++;
1175 }
1176 }
1177
1178 static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
1179 {
1180 unsigned long cmd_addr;
1181 struct cfi_private *cfi = map->fldrv_priv;
1182 int ret;
1183
1184 adr += chip->start;
1185
1186 /* Ensure cmd read/writes are aligned. */
1187 cmd_addr = adr & ~(map_bankwidth(map)-1);
1188
1189 spin_lock(chip->mutex);
1190 ret = get_chip(map, chip, cmd_addr, FL_READY);
1191 if (ret) {
1192 spin_unlock(chip->mutex);
1193 return ret;
1194 }
1195
1196 if (chip->state != FL_POINT && chip->state != FL_READY) {
1197 map_write(map, CMD(0xff), cmd_addr);
1198
1199 chip->state = FL_READY;
1200 }
1201
1202 map_copy_from(map, buf, adr, len);
1203
1204 put_chip(map, chip, cmd_addr);
1205
1206 spin_unlock(chip->mutex);
1207 return 0;
1208 }
1209
1210 static int cfi_intelext_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1211 {
1212 struct map_info *map = mtd->priv;
1213 struct cfi_private *cfi = map->fldrv_priv;
1214 unsigned long ofs;
1215 int chipnum;
1216 int ret = 0;
1217
1218 /* ofs: offset within the first chip that the first read should start */
1219 chipnum = (from >> cfi->chipshift);
1220 ofs = from - (chipnum << cfi->chipshift);
1221
1222 *retlen = 0;
1223
1224 while (len) {
1225 unsigned long thislen;
1226
1227 if (chipnum >= cfi->numchips)
1228 break;
1229
1230 if ((len + ofs -1) >> cfi->chipshift)
1231 thislen = (1<<cfi->chipshift) - ofs;
1232 else
1233 thislen = len;
1234
1235 ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1236 if (ret)
1237 break;
1238
1239 *retlen += thislen;
1240 len -= thislen;
1241 buf += thislen;
1242
1243 ofs = 0;
1244 chipnum++;
1245 }
1246 return ret;
1247 }
1248
1249 static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
1250 unsigned long adr, map_word datum, int mode)
1251 {
1252 struct cfi_private *cfi = map->fldrv_priv;
1253 map_word status, status_OK, write_cmd;
1254 unsigned long timeo;
1255 int z, ret=0;
1256
1257 adr += chip->start;
1258
1259 /* Let's determine those according to the interleave only once */
1260 status_OK = CMD(0x80);
1261 switch (mode) {
1262 case FL_WRITING:
1263 write_cmd = (cfi->cfiq->P_ID != 0x0200) ? CMD(0x40) : CMD(0x41);
1264 break;
1265 case FL_OTP_WRITE:
1266 write_cmd = CMD(0xc0);
1267 break;
1268 default:
1269 return -EINVAL;
1270 }
1271
1272 spin_lock(chip->mutex);
1273 ret = get_chip(map, chip, adr, mode);
1274 if (ret) {
1275 spin_unlock(chip->mutex);
1276 return ret;
1277 }
1278
1279 XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
1280 ENABLE_VPP(map);
1281 xip_disable(map, chip, adr);
1282 map_write(map, write_cmd, adr);
1283 map_write(map, datum, adr);
1284 chip->state = mode;
1285
1286 INVALIDATE_CACHE_UDELAY(map, chip, adr,
1287 adr, map_bankwidth(map),
1288 chip->word_write_time);
1289
1290 timeo = jiffies + (HZ/2);
1291 z = 0;
1292 for (;;) {
1293 if (chip->state != mode) {
1294 /* Someone's suspended the write. Sleep */
1295 DECLARE_WAITQUEUE(wait, current);
1296
1297 set_current_state(TASK_UNINTERRUPTIBLE);
1298 add_wait_queue(&chip->wq, &wait);
1299 spin_unlock(chip->mutex);
1300 schedule();
1301 remove_wait_queue(&chip->wq, &wait);
1302 timeo = jiffies + (HZ / 2); /* FIXME */
1303 spin_lock(chip->mutex);
1304 continue;
1305 }
1306
1307 status = map_read(map, adr);
1308 if (map_word_andequal(map, status, status_OK, status_OK))
1309 break;
1310
1311 /* OK Still waiting */
1312 if (time_after(jiffies, timeo)) {
1313 map_write(map, CMD(0x70), adr);
1314 chip->state = FL_STATUS;
1315 xip_enable(map, chip, adr);
1316 printk(KERN_ERR "%s: word write error (status timeout)\n", map->name);
1317 ret = -EIO;
1318 goto out;
1319 }
1320
1321 /* Latency issues. Drop the lock, wait a while and retry */
1322 z++;
1323 UDELAY(map, chip, adr, 1);
1324 }
1325 if (!z) {
1326 chip->word_write_time--;
1327 if (!chip->word_write_time)
1328 chip->word_write_time = 1;
1329 }
1330 if (z > 1)
1331 chip->word_write_time++;
1332
1333 /* Done and happy. */
1334 chip->state = FL_STATUS;
1335
1336 /* check for errors */
1337 if (map_word_bitsset(map, status, CMD(0x1a))) {
1338 unsigned long chipstatus = MERGESTATUS(status);
1339
1340 /* reset status */
1341 map_write(map, CMD(0x50), adr);
1342 map_write(map, CMD(0x70), adr);
1343 xip_enable(map, chip, adr);
1344
1345 if (chipstatus & 0x02) {
1346 ret = -EROFS;
1347 } else if (chipstatus & 0x08) {
1348 printk(KERN_ERR "%s: word write error (bad VPP)\n", map->name);
1349 ret = -EIO;
1350 } else {
1351 printk(KERN_ERR "%s: word write error (status 0x%lx)\n", map->name, chipstatus);
1352 ret = -EINVAL;
1353 }
1354
1355 goto out;
1356 }
1357
1358 xip_enable(map, chip, adr);
1359 out: put_chip(map, chip, adr);
1360 spin_unlock(chip->mutex);
1361 return ret;
1362 }
1363
1364
1365 static int cfi_intelext_write_words (struct mtd_info *mtd, loff_t to , size_t len, size_t *retlen, const u_char *buf)
1366 {
1367 struct map_info *map = mtd->priv;
1368 struct cfi_private *cfi = map->fldrv_priv;
1369 int ret = 0;
1370 int chipnum;
1371 unsigned long ofs;
1372
1373 *retlen = 0;
1374 if (!len)
1375 return 0;
1376
1377 chipnum = to >> cfi->chipshift;
1378 ofs = to - (chipnum << cfi->chipshift);
1379
1380 /* If it's not bus-aligned, do the first byte write */
1381 if (ofs & (map_bankwidth(map)-1)) {
1382 unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
1383 int gap = ofs - bus_ofs;
1384 int n;
1385 map_word datum;
1386
1387 n = min_t(int, len, map_bankwidth(map)-gap);
1388 datum = map_word_ff(map);
1389 datum = map_word_load_partial(map, datum, buf, gap, n);
1390
1391 ret = do_write_oneword(map, &cfi->chips[chipnum],
1392 bus_ofs, datum, FL_WRITING);
1393 if (ret)
1394 return ret;
1395
1396 len -= n;
1397 ofs += n;
1398 buf += n;
1399 (*retlen) += n;
1400
1401 if (ofs >> cfi->chipshift) {
1402 chipnum ++;
1403 ofs = 0;
1404 if (chipnum == cfi->numchips)
1405 return 0;
1406 }
1407 }
1408
1409 while(len >= map_bankwidth(map)) {
1410 map_word datum = map_word_load(map, buf);
1411
1412 ret = do_write_oneword(map, &cfi->chips[chipnum],
1413 ofs, datum, FL_WRITING);
1414 if (ret)
1415 return ret;
1416
1417 ofs += map_bankwidth(map);
1418 buf += map_bankwidth(map);
1419 (*retlen) += map_bankwidth(map);
1420 len -= map_bankwidth(map);
1421
1422 if (ofs >> cfi->chipshift) {
1423 chipnum ++;
1424 ofs = 0;
1425 if (chipnum == cfi->numchips)
1426 return 0;
1427 }
1428 }
1429
1430 if (len & (map_bankwidth(map)-1)) {
1431 map_word datum;
1432
1433 datum = map_word_ff(map);
1434 datum = map_word_load_partial(map, datum, buf, 0, len);
1435
1436 ret = do_write_oneword(map, &cfi->chips[chipnum],
1437 ofs, datum, FL_WRITING);
1438 if (ret)
1439 return ret;
1440
1441 (*retlen) += len;
1442 }
1443
1444 return 0;
1445 }
1446
1447
1448 static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
1449 unsigned long adr, const struct kvec **pvec,
1450 unsigned long *pvec_seek, int len)
1451 {
1452 struct cfi_private *cfi = map->fldrv_priv;
1453 map_word status, status_OK, write_cmd, datum;
1454 unsigned long cmd_adr, timeo;
1455 int wbufsize, z, ret=0, word_gap, words;
1456 const struct kvec *vec;
1457 unsigned long vec_seek;
1458
1459 wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1460 adr += chip->start;
1461 cmd_adr = adr & ~(wbufsize-1);
1462
1463 /* Let's determine this according to the interleave only once */
1464 status_OK = CMD(0x80);
1465 write_cmd = (cfi->cfiq->P_ID != 0x0200) ? CMD(0xe8) : CMD(0xe9);
1466
1467 spin_lock(chip->mutex);
1468 ret = get_chip(map, chip, cmd_adr, FL_WRITING);
1469 if (ret) {
1470 spin_unlock(chip->mutex);
1471 return ret;
1472 }
1473
1474 XIP_INVAL_CACHED_RANGE(map, adr, len);
1475 ENABLE_VPP(map);
1476 xip_disable(map, chip, cmd_adr);
1477
1478 /* §4.8 of the 28FxxxJ3A datasheet says "Any time SR.4 and/or SR.5 is set
1479 [...], the device will not accept any more Write to Buffer commands".
1480 So we must check here and reset those bits if they're set. Otherwise
1481 we're just pissing in the wind */
1482 if (chip->state != FL_STATUS) {
1483 map_write(map, CMD(0x70), cmd_adr);
1484 chip->state = FL_STATUS;
1485 }
1486 status = map_read(map, cmd_adr);
1487 if (map_word_bitsset(map, status, CMD(0x30))) {
1488 xip_enable(map, chip, cmd_adr);
1489 printk(KERN_WARNING "SR.4 or SR.5 bits set in buffer write (status %lx). Clearing.\n", status.x[0]);
1490 xip_disable(map, chip, cmd_adr);
1491 map_write(map, CMD(0x50), cmd_adr);
1492 map_write(map, CMD(0x70), cmd_adr);
1493 }
1494
1495 chip->state = FL_WRITING_TO_BUFFER;
1496
1497 z = 0;
1498 for (;;) {
1499 map_write(map, write_cmd, cmd_adr);
1500
1501 status = map_read(map, cmd_adr);
1502 if (map_word_andequal(map, status, status_OK, status_OK))
1503 break;
1504
1505 UDELAY(map, chip, cmd_adr, 1);
1506
1507 if (++z > 20) {
1508 /* Argh. Not ready for write to buffer */
1509 map_word Xstatus;
1510 map_write(map, CMD(0x70), cmd_adr);
1511 chip->state = FL_STATUS;
1512 Xstatus = map_read(map, cmd_adr);
1513 /* Odd. Clear status bits */
1514 map_write(map, CMD(0x50), cmd_adr);
1515 map_write(map, CMD(0x70), cmd_adr);
1516 xip_enable(map, chip, cmd_adr);
1517 printk(KERN_ERR "%s: Chip not ready for buffer write. status = %lx, Xstatus = %lx\n",
1518 map->name, status.x[0], Xstatus.x[0]);
1519 ret = -EIO;
1520 goto out;
1521 }
1522 }
1523
1524 /* Figure out the number of words to write */
1525 word_gap = (-adr & (map_bankwidth(map)-1));
1526 words = (len - word_gap + map_bankwidth(map) - 1) / map_bankwidth(map);
1527 if (!word_gap) {
1528 words--;
1529 } else {
1530 word_gap = map_bankwidth(map) - word_gap;
1531 adr -= word_gap;
1532 datum = map_word_ff(map);
1533 }
1534
1535 /* Write length of data to come */
1536 map_write(map, CMD(words), cmd_adr );
1537
1538 /* Write data */
1539 vec = *pvec;
1540 vec_seek = *pvec_seek;
1541 do {
1542 int n = map_bankwidth(map) - word_gap;
1543 if (n > vec->iov_len - vec_seek)
1544 n = vec->iov_len - vec_seek;
1545 if (n > len)
1546 n = len;
1547
1548 if (!word_gap && len < map_bankwidth(map))
1549 datum = map_word_ff(map);
1550
1551 datum = map_word_load_partial(map, datum,
1552 vec->iov_base + vec_seek,
1553 word_gap, n);
1554
1555 len -= n;
1556 word_gap += n;
1557 if (!len || word_gap == map_bankwidth(map)) {
1558 map_write(map, datum, adr);
1559 adr += map_bankwidth(map);
1560 word_gap = 0;
1561 }
1562
1563 vec_seek += n;
1564 if (vec_seek == vec->iov_len) {
1565 vec++;
1566 vec_seek = 0;
1567 }
1568 } while (len);
1569 *pvec = vec;
1570 *pvec_seek = vec_seek;
1571
1572 /* GO GO GO */
1573 map_write(map, CMD(0xd0), cmd_adr);
1574 chip->state = FL_WRITING;
1575
1576 INVALIDATE_CACHE_UDELAY(map, chip, cmd_adr,
1577 adr, len,
1578 chip->buffer_write_time);
1579
1580 timeo = jiffies + (HZ/2);
1581 z = 0;
1582 for (;;) {
1583 if (chip->state != FL_WRITING) {
1584 /* Someone's suspended the write. Sleep */
1585 DECLARE_WAITQUEUE(wait, current);
1586 set_current_state(TASK_UNINTERRUPTIBLE);
1587 add_wait_queue(&chip->wq, &wait);
1588 spin_unlock(chip->mutex);
1589 schedule();
1590 remove_wait_queue(&chip->wq, &wait);
1591 timeo = jiffies + (HZ / 2); /* FIXME */
1592 spin_lock(chip->mutex);
1593 continue;
1594 }
1595
1596 status = map_read(map, cmd_adr);
1597 if (map_word_andequal(map, status, status_OK, status_OK))
1598 break;
1599
1600 /* OK Still waiting */
1601 if (time_after(jiffies, timeo)) {
1602 map_write(map, CMD(0x70), cmd_adr);
1603 chip->state = FL_STATUS;
1604 xip_enable(map, chip, cmd_adr);
1605 printk(KERN_ERR "%s: buffer write error (status timeout)\n", map->name);
1606 ret = -EIO;
1607 goto out;
1608 }
1609
1610 /* Latency issues. Drop the lock, wait a while and retry */
1611 z++;
1612 UDELAY(map, chip, cmd_adr, 1);
1613 }
1614 if (!z) {
1615 chip->buffer_write_time--;
1616 if (!chip->buffer_write_time)
1617 chip->buffer_write_time = 1;
1618 }
1619 if (z > 1)
1620 chip->buffer_write_time++;
1621
1622 /* Done and happy. */
1623 chip->state = FL_STATUS;
1624
1625 /* check for errors */
1626 if (map_word_bitsset(map, status, CMD(0x1a))) {
1627 unsigned long chipstatus = MERGESTATUS(status);
1628
1629 /* reset status */
1630 map_write(map, CMD(0x50), cmd_adr);
1631 map_write(map, CMD(0x70), cmd_adr);
1632 xip_enable(map, chip, cmd_adr);
1633
1634 if (chipstatus & 0x02) {
1635 ret = -EROFS;
1636 } else if (chipstatus & 0x08) {
1637 printk(KERN_ERR "%s: buffer write error (bad VPP)\n", map->name);
1638 ret = -EIO;
1639 } else {
1640 printk(KERN_ERR "%s: buffer write error (status 0x%lx)\n", map->name, chipstatus);
1641 ret = -EINVAL;
1642 }
1643
1644 goto out;
1645 }
1646
1647 xip_enable(map, chip, cmd_adr);
1648 out: put_chip(map, chip, cmd_adr);
1649 spin_unlock(chip->mutex);
1650 return ret;
1651 }
1652
1653 static int cfi_intelext_writev (struct mtd_info *mtd, const struct kvec *vecs,
1654 unsigned long count, loff_t to, size_t *retlen)
1655 {
1656 struct map_info *map = mtd->priv;
1657 struct cfi_private *cfi = map->fldrv_priv;
1658 int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1659 int ret = 0;
1660 int chipnum;
1661 unsigned long ofs, vec_seek, i;
1662 size_t len = 0;
1663
1664 for (i = 0; i < count; i++)
1665 len += vecs[i].iov_len;
1666
1667 *retlen = 0;
1668 if (!len)
1669 return 0;
1670
1671 chipnum = to >> cfi->chipshift;
1672 ofs = to - (chipnum << cfi->chipshift);
1673 vec_seek = 0;
1674
1675 do {
1676 /* We must not cross write block boundaries */
1677 int size = wbufsize - (ofs & (wbufsize-1));
1678
1679 if (size > len)
1680 size = len;
1681 ret = do_write_buffer(map, &cfi->chips[chipnum],
1682 ofs, &vecs, &vec_seek, size);
1683 if (ret)
1684 return ret;
1685
1686 ofs += size;
1687 (*retlen) += size;
1688 len -= size;
1689
1690 if (ofs >> cfi->chipshift) {
1691 chipnum ++;
1692 ofs = 0;
1693 if (chipnum == cfi->numchips)
1694 return 0;
1695 }
1696
1697 /* Be nice and reschedule with the chip in a usable state for other
1698 processes. */
1699 cond_resched();
1700
1701 } while (len);
1702
1703 return 0;
1704 }
1705
1706 static int cfi_intelext_write_buffers (struct mtd_info *mtd, loff_t to,
1707 size_t len, size_t *retlen, const u_char *buf)
1708 {
1709 struct kvec vec;
1710
1711 vec.iov_base = (void *) buf;
1712 vec.iov_len = len;
1713
1714 return cfi_intelext_writev(mtd, &vec, 1, to, retlen);
1715 }
1716
1717 static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip,
1718 unsigned long adr, int len, void *thunk)
1719 {
1720 struct cfi_private *cfi = map->fldrv_priv;
1721 map_word status, status_OK;
1722 unsigned long timeo;
1723 int retries = 3;
1724 DECLARE_WAITQUEUE(wait, current);
1725 int ret = 0;
1726
1727 adr += chip->start;
1728
1729 /* Let's determine this according to the interleave only once */
1730 status_OK = CMD(0x80);
1731
1732 retry:
1733 spin_lock(chip->mutex);
1734 ret = get_chip(map, chip, adr, FL_ERASING);
1735 if (ret) {
1736 spin_unlock(chip->mutex);
1737 return ret;
1738 }
1739
1740 XIP_INVAL_CACHED_RANGE(map, adr, len);
1741 ENABLE_VPP(map);
1742 xip_disable(map, chip, adr);
1743
1744 /* Clear the status register first */
1745 map_write(map, CMD(0x50), adr);
1746
1747 /* Now erase */
1748 map_write(map, CMD(0x20), adr);
1749 map_write(map, CMD(0xD0), adr);
1750 chip->state = FL_ERASING;
1751 chip->erase_suspended = 0;
1752
1753 INVALIDATE_CACHE_UDELAY(map, chip, adr,
1754 adr, len,
1755 chip->erase_time*1000/2);
1756
1757 /* FIXME. Use a timer to check this, and return immediately. */
1758 /* Once the state machine's known to be working I'll do that */
1759
1760 timeo = jiffies + (HZ*20);
1761 for (;;) {
1762 if (chip->state != FL_ERASING) {
1763 /* Someone's suspended the erase. Sleep */
1764 set_current_state(TASK_UNINTERRUPTIBLE);
1765 add_wait_queue(&chip->wq, &wait);
1766 spin_unlock(chip->mutex);
1767 schedule();
1768 remove_wait_queue(&chip->wq, &wait);
1769 spin_lock(chip->mutex);
1770 continue;
1771 }
1772 if (chip->erase_suspended) {
1773 /* This erase was suspended and resumed.
1774 Adjust the timeout */
1775 timeo = jiffies + (HZ*20); /* FIXME */
1776 chip->erase_suspended = 0;
1777 }
1778
1779 status = map_read(map, adr);
1780 if (map_word_andequal(map, status, status_OK, status_OK))
1781 break;
1782
1783 /* OK Still waiting */
1784 if (time_after(jiffies, timeo)) {
1785 map_write(map, CMD(0x70), adr);
1786 chip->state = FL_STATUS;
1787 xip_enable(map, chip, adr);
1788 printk(KERN_ERR "%s: block erase error: (status timeout)\n", map->name);
1789 ret = -EIO;
1790 goto out;
1791 }
1792
1793 /* Latency issues. Drop the lock, wait a while and retry */
1794 UDELAY(map, chip, adr, 1000000/HZ);
1795 }
1796
1797 /* We've broken this before. It doesn't hurt to be safe */
1798 map_write(map, CMD(0x70), adr);
1799 chip->state = FL_STATUS;
1800 status = map_read(map, adr);
1801
1802 /* check for errors */
1803 if (map_word_bitsset(map, status, CMD(0x3a))) {
1804 unsigned long chipstatus = MERGESTATUS(status);
1805
1806 /* Reset the error bits */
1807 map_write(map, CMD(0x50), adr);
1808 map_write(map, CMD(0x70), adr);
1809 xip_enable(map, chip, adr);
1810
1811 if ((chipstatus & 0x30) == 0x30) {
1812 printk(KERN_ERR "%s: block erase error: (bad command sequence, status 0x%lx)\n", map->name, chipstatus);
1813 ret = -EINVAL;
1814 } else if (chipstatus & 0x02) {
1815 /* Protection bit set */
1816 ret = -EROFS;
1817 } else if (chipstatus & 0x8) {
1818 /* Voltage */
1819 printk(KERN_ERR "%s: block erase error: (bad VPP)\n", map->name);
1820 ret = -EIO;
1821 } else if (chipstatus & 0x20 && retries--) {
1822 printk(KERN_DEBUG "block erase failed at 0x%08lx: status 0x%lx. Retrying...\n", adr, chipstatus);
1823 timeo = jiffies + HZ;
1824 put_chip(map, chip, adr);
1825 spin_unlock(chip->mutex);
1826 goto retry;
1827 } else {
1828 printk(KERN_ERR "%s: block erase failed at 0x%08lx (status 0x%lx)\n", map->name, adr, chipstatus);
1829 ret = -EIO;
1830 }
1831
1832 goto out;
1833 }
1834
1835 xip_enable(map, chip, adr);
1836 out: put_chip(map, chip, adr);
1837 spin_unlock(chip->mutex);
1838 return ret;
1839 }
1840
1841 int cfi_intelext_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
1842 {
1843 unsigned long ofs, len;
1844 int ret;
1845
1846 ofs = instr->addr;
1847 len = instr->len;
1848
1849 ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL);
1850 if (ret)
1851 return ret;
1852
1853 instr->state = MTD_ERASE_DONE;
1854 mtd_erase_callback(instr);
1855
1856 return 0;
1857 }
1858
1859 static void cfi_intelext_sync (struct mtd_info *mtd)
1860 {
1861 struct map_info *map = mtd->priv;
1862 struct cfi_private *cfi = map->fldrv_priv;
1863 int i;
1864 struct flchip *chip;
1865 int ret = 0;
1866
1867 for (i=0; !ret && i<cfi->numchips; i++) {
1868 chip = &cfi->chips[i];
1869
1870 spin_lock(chip->mutex);
1871 ret = get_chip(map, chip, chip->start, FL_SYNCING);
1872
1873 if (!ret) {
1874 chip->oldstate = chip->state;
1875 chip->state = FL_SYNCING;
1876 /* No need to wake_up() on this state change -
1877 * as the whole point is that nobody can do anything
1878 * with the chip now anyway.
1879 */
1880 }
1881 spin_unlock(chip->mutex);
1882 }
1883
1884 /* Unlock the chips again */
1885
1886 for (i--; i >=0; i--) {
1887 chip = &cfi->chips[i];
1888
1889 spin_lock(chip->mutex);
1890
1891 if (chip->state == FL_SYNCING) {
1892 chip->state = chip->oldstate;
1893 chip->oldstate = FL_READY;
1894 wake_up(&chip->wq);
1895 }
1896 spin_unlock(chip->mutex);
1897 }
1898 }
1899
1900 #ifdef DEBUG_LOCK_BITS
1901 static int __xipram do_printlockstatus_oneblock(struct map_info *map,
1902 struct flchip *chip,
1903 unsigned long adr,
1904 int len, void *thunk)
1905 {
1906 struct cfi_private *cfi = map->fldrv_priv;
1907 int status, ofs_factor = cfi->interleave * cfi->device_type;
1908
1909 adr += chip->start;
1910 xip_disable(map, chip, adr+(2*ofs_factor));
1911 map_write(map, CMD(0x90), adr+(2*ofs_factor));
1912 chip->state = FL_JEDEC_QUERY;
1913 status = cfi_read_query(map, adr+(2*ofs_factor));
1914 xip_enable(map, chip, 0);
1915 printk(KERN_DEBUG "block status register for 0x%08lx is %x\n",
1916 adr, status);
1917 return 0;
1918 }
1919 #endif
1920
1921 #define DO_XXLOCK_ONEBLOCK_LOCK ((void *) 1)
1922 #define DO_XXLOCK_ONEBLOCK_UNLOCK ((void *) 2)
1923
1924 static int __xipram do_xxlock_oneblock(struct map_info *map, struct flchip *chip,
1925 unsigned long adr, int len, void *thunk)
1926 {
1927 struct cfi_private *cfi = map->fldrv_priv;
1928 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
1929 map_word status, status_OK;
1930 unsigned long timeo = jiffies + HZ;
1931 int ret;
1932
1933 adr += chip->start;
1934
1935 /* Let's determine this according to the interleave only once */
1936 status_OK = CMD(0x80);
1937
1938 spin_lock(chip->mutex);
1939 ret = get_chip(map, chip, adr, FL_LOCKING);
1940 if (ret) {
1941 spin_unlock(chip->mutex);
1942 return ret;
1943 }
1944
1945 ENABLE_VPP(map);
1946 xip_disable(map, chip, adr);
1947
1948 map_write(map, CMD(0x60), adr);
1949 if (thunk == DO_XXLOCK_ONEBLOCK_LOCK) {
1950 map_write(map, CMD(0x01), adr);
1951 chip->state = FL_LOCKING;
1952 } else if (thunk == DO_XXLOCK_ONEBLOCK_UNLOCK) {
1953 map_write(map, CMD(0xD0), adr);
1954 chip->state = FL_UNLOCKING;
1955 } else
1956 BUG();
1957
1958 /*
1959 * If Instant Individual Block Locking supported then no need
1960 * to delay.
1961 */
1962
1963 if (!extp || !(extp->FeatureSupport & (1 << 5)))
1964 UDELAY(map, chip, adr, 1000000/HZ);
1965
1966 /* FIXME. Use a timer to check this, and return immediately. */
1967 /* Once the state machine's known to be working I'll do that */
1968
1969 timeo = jiffies + (HZ*20);
1970 for (;;) {
1971
1972 status = map_read(map, adr);
1973 if (map_word_andequal(map, status, status_OK, status_OK))
1974 break;
1975
1976 /* OK Still waiting */
1977 if (time_after(jiffies, timeo)) {
1978 map_write(map, CMD(0x70), adr);
1979 chip->state = FL_STATUS;
1980 xip_enable(map, chip, adr);
1981 printk(KERN_ERR "%s: block unlock error: (status timeout)\n", map->name);
1982 put_chip(map, chip, adr);
1983 spin_unlock(chip->mutex);
1984 return -EIO;
1985 }
1986
1987 /* Latency issues. Drop the lock, wait a while and retry */
1988 UDELAY(map, chip, adr, 1);
1989 }
1990
1991 /* Done and happy. */
1992 chip->state = FL_STATUS;
1993 xip_enable(map, chip, adr);
1994 put_chip(map, chip, adr);
1995 spin_unlock(chip->mutex);
1996 return 0;
1997 }
1998
1999 static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
2000 {
2001 int ret;
2002
2003 #ifdef DEBUG_LOCK_BITS
2004 printk(KERN_DEBUG "%s: lock status before, ofs=0x%08llx, len=0x%08X\n",
2005 __FUNCTION__, ofs, len);
2006 cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
2007 ofs, len, 0);
2008 #endif
2009
2010 ret = cfi_varsize_frob(mtd, do_xxlock_oneblock,
2011 ofs, len, DO_XXLOCK_ONEBLOCK_LOCK);
2012
2013 #ifdef DEBUG_LOCK_BITS
2014 printk(KERN_DEBUG "%s: lock status after, ret=%d\n",
2015 __FUNCTION__, ret);
2016 cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
2017 ofs, len, 0);
2018 #endif
2019
2020 return ret;
2021 }
2022
2023 static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
2024 {
2025 int ret;
2026
2027 #ifdef DEBUG_LOCK_BITS
2028 printk(KERN_DEBUG "%s: lock status before, ofs=0x%08llx, len=0x%08X\n",
2029 __FUNCTION__, ofs, len);
2030 cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
2031 ofs, len, 0);
2032 #endif
2033
2034 ret = cfi_varsize_frob(mtd, do_xxlock_oneblock,
2035 ofs, len, DO_XXLOCK_ONEBLOCK_UNLOCK);
2036
2037 #ifdef DEBUG_LOCK_BITS
2038 printk(KERN_DEBUG "%s: lock status after, ret=%d\n",
2039 __FUNCTION__, ret);
2040 cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
2041 ofs, len, 0);
2042 #endif
2043
2044 return ret;
2045 }
2046
2047 #ifdef CONFIG_MTD_OTP
2048
2049 typedef int (*otp_op_t)(struct map_info *map, struct flchip *chip,
2050 u_long data_offset, u_char *buf, u_int size,
2051 u_long prot_offset, u_int groupno, u_int groupsize);
2052
2053 static int __xipram
2054 do_otp_read(struct map_info *map, struct flchip *chip, u_long offset,
2055 u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
2056 {
2057 struct cfi_private *cfi = map->fldrv_priv;
2058 int ret;
2059
2060 spin_lock(chip->mutex);
2061 ret = get_chip(map, chip, chip->start, FL_JEDEC_QUERY);
2062 if (ret) {
2063 spin_unlock(chip->mutex);
2064 return ret;
2065 }
2066
2067 /* let's ensure we're not reading back cached data from array mode */
2068 INVALIDATE_CACHED_RANGE(map, chip->start + offset, size);
2069
2070 xip_disable(map, chip, chip->start);
2071 if (chip->state != FL_JEDEC_QUERY) {
2072 map_write(map, CMD(0x90), chip->start);
2073 chip->state = FL_JEDEC_QUERY;
2074 }
2075 map_copy_from(map, buf, chip->start + offset, size);
2076 xip_enable(map, chip, chip->start);
2077
2078 /* then ensure we don't keep OTP data in the cache */
2079 INVALIDATE_CACHED_RANGE(map, chip->start + offset, size);
2080
2081 put_chip(map, chip, chip->start);
2082 spin_unlock(chip->mutex);
2083 return 0;
2084 }
2085
2086 static int
2087 do_otp_write(struct map_info *map, struct flchip *chip, u_long offset,
2088 u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
2089 {
2090 int ret;
2091
2092 while (size) {
2093 unsigned long bus_ofs = offset & ~(map_bankwidth(map)-1);
2094 int gap = offset - bus_ofs;
2095 int n = min_t(int, size, map_bankwidth(map)-gap);
2096 map_word datum = map_word_ff(map);
2097
2098 datum = map_word_load_partial(map, datum, buf, gap, n);
2099 ret = do_write_oneword(map, chip, bus_ofs, datum, FL_OTP_WRITE);
2100 if (ret)
2101 return ret;
2102
2103 offset += n;
2104 buf += n;
2105 size -= n;
2106 }
2107
2108 return 0;
2109 }
2110
2111 static int
2112 do_otp_lock(struct map_info *map, struct flchip *chip, u_long offset,
2113 u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
2114 {
2115 struct cfi_private *cfi = map->fldrv_priv;
2116 map_word datum;
2117
2118 /* make sure area matches group boundaries */
2119 if (size != grpsz)
2120 return -EXDEV;
2121
2122 datum = map_word_ff(map);
2123 datum = map_word_clr(map, datum, CMD(1 << grpno));
2124 return do_write_oneword(map, chip, prot, datum, FL_OTP_WRITE);
2125 }
2126
2127 static int cfi_intelext_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
2128 size_t *retlen, u_char *buf,
2129 otp_op_t action, int user_regs)
2130 {
2131 struct map_info *map = mtd->priv;
2132 struct cfi_private *cfi = map->fldrv_priv;
2133 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
2134 struct flchip *chip;
2135 struct cfi_intelext_otpinfo *otp;
2136 u_long devsize, reg_prot_offset, data_offset;
2137 u_int chip_num, chip_step, field, reg_fact_size, reg_user_size;
2138 u_int groups, groupno, groupsize, reg_fact_groups, reg_user_groups;
2139 int ret;
2140
2141 *retlen = 0;
2142
2143 /* Check that we actually have some OTP registers */
2144 if (!extp || !(extp->FeatureSupport & 64) || !extp->NumProtectionFields)
2145 return -ENODATA;
2146
2147 /* we need real chips here not virtual ones */
2148 devsize = (1 << cfi->cfiq->DevSize) * cfi->interleave;
2149 chip_step = devsize >> cfi->chipshift;
2150 chip_num = 0;
2151
2152 /* Some chips have OTP located in the _top_ partition only.
2153 For example: Intel 28F256L18T (T means top-parameter device) */
2154 if (cfi->mfr == MANUFACTURER_INTEL) {
2155 switch (cfi->id) {
2156 case 0x880b:
2157 case 0x880c:
2158 case 0x880d:
2159 chip_num = chip_step - 1;
2160 }
2161 }
2162
2163 for ( ; chip_num < cfi->numchips; chip_num += chip_step) {
2164 chip = &cfi->chips[chip_num];
2165 otp = (struct cfi_intelext_otpinfo *)&extp->extra[0];
2166
2167 /* first OTP region */
2168 field = 0;
2169 reg_prot_offset = extp->ProtRegAddr;
2170 reg_fact_groups = 1;
2171 reg_fact_size = 1 << extp->FactProtRegSize;
2172 reg_user_groups = 1;
2173 reg_user_size = 1 << extp->UserProtRegSize;
2174
2175 while (len > 0) {
2176 /* flash geometry fixup */
2177 data_offset = reg_prot_offset + 1;
2178 data_offset *= cfi->interleave * cfi->device_type;
2179 reg_prot_offset *= cfi->interleave * cfi->device_type;
2180 reg_fact_size *= cfi->interleave;
2181 reg_user_size *= cfi->interleave;
2182
2183 if (user_regs) {
2184 groups = reg_user_groups;
2185 groupsize = reg_user_size;
2186 /* skip over factory reg area */
2187 groupno = reg_fact_groups;
2188 data_offset += reg_fact_groups * reg_fact_size;
2189 } else {
2190 groups = reg_fact_groups;
2191 groupsize = reg_fact_size;
2192 groupno = 0;
2193 }
2194
2195 while (len > 0 && groups > 0) {
2196 if (!action) {
2197 /*
2198 * Special case: if action is NULL
2199 * we fill buf with otp_info records.
2200 */
2201 struct otp_info *otpinfo;
2202 map_word lockword;
2203 len -= sizeof(struct otp_info);
2204 if (len <= 0)
2205 return -ENOSPC;
2206 ret = do_otp_read(map, chip,
2207 reg_prot_offset,
2208 (u_char *)&lockword,
2209 map_bankwidth(map),
2210 0, 0, 0);
2211 if (ret)
2212 return ret;
2213 otpinfo = (struct otp_info *)buf;
2214 otpinfo->start = from;
2215 otpinfo->length = groupsize;
2216 otpinfo->locked =
2217 !map_word_bitsset(map, lockword,
2218 CMD(1 << groupno));
2219 from += groupsize;
2220 buf += sizeof(*otpinfo);
2221 *retlen += sizeof(*otpinfo);
2222 } else if (from >= groupsize) {
2223 from -= groupsize;
2224 data_offset += groupsize;
2225 } else {
2226 int size = groupsize;
2227 data_offset += from;
2228 size -= from;
2229 from = 0;
2230 if (size > len)
2231 size = len;
2232 ret = action(map, chip, data_offset,
2233 buf, size, reg_prot_offset,
2234 groupno, groupsize);
2235 if (ret < 0)
2236 return ret;
2237 buf += size;
2238 len -= size;
2239 *retlen += size;
2240 data_offset += size;
2241 }
2242 groupno++;
2243 groups--;
2244 }
2245
2246 /* next OTP region */
2247 if (++field == extp->NumProtectionFields)
2248 break;
2249 reg_prot_offset = otp->ProtRegAddr;
2250 reg_fact_groups = otp->FactGroups;
2251 reg_fact_size = 1 << otp->FactProtRegSize;
2252 reg_user_groups = otp->UserGroups;
2253 reg_user_size = 1 << otp->UserProtRegSize;
2254 otp++;
2255 }
2256 }
2257
2258 return 0;
2259 }
2260
2261 static int cfi_intelext_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
2262 size_t len, size_t *retlen,
2263 u_char *buf)
2264 {
2265 return cfi_intelext_otp_walk(mtd, from, len, retlen,
2266 buf, do_otp_read, 0);
2267 }
2268
2269 static int cfi_intelext_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
2270 size_t len, size_t *retlen,
2271 u_char *buf)
2272 {
2273 return cfi_intelext_otp_walk(mtd, from, len, retlen,
2274 buf, do_otp_read, 1);
2275 }
2276
2277 static int cfi_intelext_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
2278 size_t len, size_t *retlen,
2279 u_char *buf)
2280 {
2281 return cfi_intelext_otp_walk(mtd, from, len, retlen,
2282 buf, do_otp_write, 1);
2283 }
2284
2285 static int cfi_intelext_lock_user_prot_reg(struct mtd_info *mtd,
2286 loff_t from, size_t len)
2287 {
2288 size_t retlen;
2289 return cfi_intelext_otp_walk(mtd, from, len, &retlen,
2290 NULL, do_otp_lock, 1);
2291 }
2292
2293 static int cfi_intelext_get_fact_prot_info(struct mtd_info *mtd,
2294 struct otp_info *buf, size_t len)
2295 {
2296 size_t retlen;
2297 int ret;
2298
2299 ret = cfi_intelext_otp_walk(mtd, 0, len, &retlen, (u_char *)buf, NULL, 0);
2300 return ret ? : retlen;
2301 }
2302
2303 static int cfi_intelext_get_user_prot_info(struct mtd_info *mtd,
2304 struct otp_info *buf, size_t len)
2305 {
2306 size_t retlen;
2307 int ret;
2308
2309 ret = cfi_intelext_otp_walk(mtd, 0, len, &retlen, (u_char *)buf, NULL, 1);
2310 return ret ? : retlen;
2311 }
2312
2313 #endif
2314
2315 static int cfi_intelext_suspend(struct mtd_info *mtd)
2316 {
2317 struct map_info *map = mtd->priv;
2318 struct cfi_private *cfi = map->fldrv_priv;
2319 int i;
2320 struct flchip *chip;
2321 int ret = 0;
2322
2323 for (i=0; !ret && i<cfi->numchips; i++) {
2324 chip = &cfi->chips[i];
2325
2326 spin_lock(chip->mutex);
2327
2328 switch (chip->state) {
2329 case FL_READY:
2330 case FL_STATUS:
2331 case FL_CFI_QUERY:
2332 case FL_JEDEC_QUERY:
2333 if (chip->oldstate == FL_READY) {
2334 chip->oldstate = chip->state;
2335 chip->state = FL_PM_SUSPENDED;
2336 /* No need to wake_up() on this state change -
2337 * as the whole point is that nobody can do anything
2338 * with the chip now anyway.
2339 */
2340 } else {
2341 /* There seems to be an operation pending. We must wait for it. */
2342 printk(KERN_NOTICE "Flash device refused suspend due to pending operation (oldstate %d)\n", chip->oldstate);
2343 ret = -EAGAIN;
2344 }
2345 break;
2346 default:
2347 /* Should we actually wait? Once upon a time these routines weren't
2348 allowed to. Or should we return -EAGAIN, because the upper layers
2349 ought to have already shut down anything which was using the device
2350 anyway? The latter for now. */
2351 printk(KERN_NOTICE "Flash device refused suspend due to active operation (state %d)\n", chip->oldstate);
2352 ret = -EAGAIN;
2353 case FL_PM_SUSPENDED:
2354 break;
2355 }
2356 spin_unlock(chip->mutex);
2357 }
2358
2359 /* Unlock the chips again */
2360
2361 if (ret) {
2362 for (i--; i >=0; i--) {
2363 chip = &cfi->chips[i];
2364
2365 spin_lock(chip->mutex);
2366
2367 if (chip->state == FL_PM_SUSPENDED) {
2368 /* No need to force it into a known state here,
2369 because we're returning failure, and it didn't
2370 get power cycled */
2371 chip->state = chip->oldstate;
2372 chip->oldstate = FL_READY;
2373 wake_up(&chip->wq);
2374 }
2375 spin_unlock(chip->mutex);
2376 }
2377 }
2378
2379 return ret;
2380 }
2381
2382 static void cfi_intelext_resume(struct mtd_info *mtd)
2383 {
2384 struct map_info *map = mtd->priv;
2385 struct cfi_private *cfi = map->fldrv_priv;
2386 int i;
2387 struct flchip *chip;
2388
2389 for (i=0; i<cfi->numchips; i++) {
2390
2391 chip = &cfi->chips[i];
2392
2393 spin_lock(chip->mutex);
2394
2395 /* Go to known state. Chip may have been power cycled */
2396 if (chip->state == FL_PM_SUSPENDED) {
2397 map_write(map, CMD(0xFF), cfi->chips[i].start);
2398 chip->oldstate = chip->state = FL_READY;
2399 wake_up(&chip->wq);
2400 }
2401
2402 spin_unlock(chip->mutex);
2403 }
2404 }
2405
2406 static int cfi_intelext_reset(struct mtd_info *mtd)
2407 {
2408 struct map_info *map = mtd->priv;
2409 struct cfi_private *cfi = map->fldrv_priv;
2410 int i, ret;
2411
2412 for (i=0; i < cfi->numchips; i++) {
2413 struct flchip *chip = &cfi->chips[i];
2414
2415 /* force the completion of any ongoing operation
2416 and switch to array mode so any bootloader in
2417 flash is accessible for soft reboot. */
2418 spin_lock(chip->mutex);
2419 ret = get_chip(map, chip, chip->start, FL_SYNCING);
2420 if (!ret) {
2421 map_write(map, CMD(0xff), chip->start);
2422 chip->state = FL_READY;
2423 }
2424 spin_unlock(chip->mutex);
2425 }
2426
2427 return 0;
2428 }
2429
2430 static int cfi_intelext_reboot(struct notifier_block *nb, unsigned long val,
2431 void *v)
2432 {
2433 struct mtd_info *mtd;
2434
2435 mtd = container_of(nb, struct mtd_info, reboot_notifier);
2436 cfi_intelext_reset(mtd);
2437 return NOTIFY_DONE;
2438 }
2439
2440 static void cfi_intelext_destroy(struct mtd_info *mtd)
2441 {
2442 struct map_info *map = mtd->priv;
2443 struct cfi_private *cfi = map->fldrv_priv;
2444 cfi_intelext_reset(mtd);
2445 unregister_reboot_notifier(&mtd->reboot_notifier);
2446 kfree(cfi->cmdset_priv);
2447 kfree(cfi->cfiq);
2448 kfree(cfi->chips[0].priv);
2449 kfree(cfi);
2450 kfree(mtd->eraseregions);
2451 }
2452
2453 MODULE_LICENSE("GPL");
2454 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org> et al.");
2455 MODULE_DESCRIPTION("MTD chip driver for Intel/Sharp flash chips");
2456 MODULE_ALIAS("cfi_cmdset_0003");
2457 MODULE_ALIAS("cfi_cmdset_0200");
This page took 0.090212 seconds and 5 git commands to generate.