Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound-2.6
[deliverable/linux.git] / drivers / mtd / chips / cfi_cmdset_0001.c
1 /*
2 * Common Flash Interface support:
3 * Intel Extended Vendor Command Set (ID 0x0001)
4 *
5 * (C) 2000 Red Hat. GPL'd
6 *
7 *
8 * 10/10/2000 Nicolas Pitre <nico@fluxnic.net>
9 * - completely revamped method functions so they are aware and
10 * independent of the flash geometry (buswidth, interleave, etc.)
11 * - scalability vs code size is completely set at compile-time
12 * (see include/linux/mtd/cfi.h for selection)
13 * - optimized write buffer method
14 * 02/05/2002 Christopher Hoover <ch@hpl.hp.com>/<ch@murgatroid.com>
15 * - reworked lock/unlock/erase support for var size flash
16 * 21/03/2007 Rodolfo Giometti <giometti@linux.it>
17 * - auto unlock sectors on resume for auto locking flash on power up
18 */
19
20 #include <linux/module.h>
21 #include <linux/types.h>
22 #include <linux/kernel.h>
23 #include <linux/sched.h>
24 #include <linux/init.h>
25 #include <asm/io.h>
26 #include <asm/byteorder.h>
27
28 #include <linux/errno.h>
29 #include <linux/slab.h>
30 #include <linux/delay.h>
31 #include <linux/interrupt.h>
32 #include <linux/reboot.h>
33 #include <linux/bitmap.h>
34 #include <linux/mtd/xip.h>
35 #include <linux/mtd/map.h>
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/cfi.h>
38
39 /* #define CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE */
40 /* #define CMDSET0001_DISABLE_WRITE_SUSPEND */
41
42 // debugging, turns off buffer write mode if set to 1
43 #define FORCE_WORD_WRITE 0
44
45 /* Intel chips */
46 #define I82802AB 0x00ad
47 #define I82802AC 0x00ac
48 #define PF38F4476 0x881c
49 /* STMicroelectronics chips */
50 #define M50LPW080 0x002F
51 #define M50FLW080A 0x0080
52 #define M50FLW080B 0x0081
53 /* Atmel chips */
54 #define AT49BV640D 0x02de
55 #define AT49BV640DT 0x02db
56
57 static int cfi_intelext_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
58 static int cfi_intelext_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
59 static int cfi_intelext_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
60 static int cfi_intelext_writev(struct mtd_info *, const struct kvec *, unsigned long, loff_t, size_t *);
61 static int cfi_intelext_erase_varsize(struct mtd_info *, struct erase_info *);
62 static void cfi_intelext_sync (struct mtd_info *);
63 static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
64 static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
65 static int cfi_intelext_is_locked(struct mtd_info *mtd, loff_t ofs,
66 uint64_t len);
67 #ifdef CONFIG_MTD_OTP
68 static int cfi_intelext_read_fact_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
69 static int cfi_intelext_read_user_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
70 static int cfi_intelext_write_user_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
71 static int cfi_intelext_lock_user_prot_reg (struct mtd_info *, loff_t, size_t);
72 static int cfi_intelext_get_fact_prot_info (struct mtd_info *,
73 struct otp_info *, size_t);
74 static int cfi_intelext_get_user_prot_info (struct mtd_info *,
75 struct otp_info *, size_t);
76 #endif
77 static int cfi_intelext_suspend (struct mtd_info *);
78 static void cfi_intelext_resume (struct mtd_info *);
79 static int cfi_intelext_reboot (struct notifier_block *, unsigned long, void *);
80
81 static void cfi_intelext_destroy(struct mtd_info *);
82
83 struct mtd_info *cfi_cmdset_0001(struct map_info *, int);
84
85 static struct mtd_info *cfi_intelext_setup (struct mtd_info *);
86 static int cfi_intelext_partition_fixup(struct mtd_info *, struct cfi_private **);
87
88 static int cfi_intelext_point (struct mtd_info *mtd, loff_t from, size_t len,
89 size_t *retlen, void **virt, resource_size_t *phys);
90 static void cfi_intelext_unpoint(struct mtd_info *mtd, loff_t from, size_t len);
91
92 static int chip_ready (struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
93 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
94 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
95 #include "fwh_lock.h"
96
97
98
99 /*
100 * *********** SETUP AND PROBE BITS ***********
101 */
102
103 static struct mtd_chip_driver cfi_intelext_chipdrv = {
104 .probe = NULL, /* Not usable directly */
105 .destroy = cfi_intelext_destroy,
106 .name = "cfi_cmdset_0001",
107 .module = THIS_MODULE
108 };
109
110 /* #define DEBUG_LOCK_BITS */
111 /* #define DEBUG_CFI_FEATURES */
112
113 #ifdef DEBUG_CFI_FEATURES
114 static void cfi_tell_features(struct cfi_pri_intelext *extp)
115 {
116 int i;
117 printk(" Extended Query version %c.%c\n", extp->MajorVersion, extp->MinorVersion);
118 printk(" Feature/Command Support: %4.4X\n", extp->FeatureSupport);
119 printk(" - Chip Erase: %s\n", extp->FeatureSupport&1?"supported":"unsupported");
120 printk(" - Suspend Erase: %s\n", extp->FeatureSupport&2?"supported":"unsupported");
121 printk(" - Suspend Program: %s\n", extp->FeatureSupport&4?"supported":"unsupported");
122 printk(" - Legacy Lock/Unlock: %s\n", extp->FeatureSupport&8?"supported":"unsupported");
123 printk(" - Queued Erase: %s\n", extp->FeatureSupport&16?"supported":"unsupported");
124 printk(" - Instant block lock: %s\n", extp->FeatureSupport&32?"supported":"unsupported");
125 printk(" - Protection Bits: %s\n", extp->FeatureSupport&64?"supported":"unsupported");
126 printk(" - Page-mode read: %s\n", extp->FeatureSupport&128?"supported":"unsupported");
127 printk(" - Synchronous read: %s\n", extp->FeatureSupport&256?"supported":"unsupported");
128 printk(" - Simultaneous operations: %s\n", extp->FeatureSupport&512?"supported":"unsupported");
129 printk(" - Extended Flash Array: %s\n", extp->FeatureSupport&1024?"supported":"unsupported");
130 for (i=11; i<32; i++) {
131 if (extp->FeatureSupport & (1<<i))
132 printk(" - Unknown Bit %X: supported\n", i);
133 }
134
135 printk(" Supported functions after Suspend: %2.2X\n", extp->SuspendCmdSupport);
136 printk(" - Program after Erase Suspend: %s\n", extp->SuspendCmdSupport&1?"supported":"unsupported");
137 for (i=1; i<8; i++) {
138 if (extp->SuspendCmdSupport & (1<<i))
139 printk(" - Unknown Bit %X: supported\n", i);
140 }
141
142 printk(" Block Status Register Mask: %4.4X\n", extp->BlkStatusRegMask);
143 printk(" - Lock Bit Active: %s\n", extp->BlkStatusRegMask&1?"yes":"no");
144 printk(" - Lock-Down Bit Active: %s\n", extp->BlkStatusRegMask&2?"yes":"no");
145 for (i=2; i<3; i++) {
146 if (extp->BlkStatusRegMask & (1<<i))
147 printk(" - Unknown Bit %X Active: yes\n",i);
148 }
149 printk(" - EFA Lock Bit: %s\n", extp->BlkStatusRegMask&16?"yes":"no");
150 printk(" - EFA Lock-Down Bit: %s\n", extp->BlkStatusRegMask&32?"yes":"no");
151 for (i=6; i<16; i++) {
152 if (extp->BlkStatusRegMask & (1<<i))
153 printk(" - Unknown Bit %X Active: yes\n",i);
154 }
155
156 printk(" Vcc Logic Supply Optimum Program/Erase Voltage: %d.%d V\n",
157 extp->VccOptimal >> 4, extp->VccOptimal & 0xf);
158 if (extp->VppOptimal)
159 printk(" Vpp Programming Supply Optimum Program/Erase Voltage: %d.%d V\n",
160 extp->VppOptimal >> 4, extp->VppOptimal & 0xf);
161 }
162 #endif
163
164 /* Atmel chips don't use the same PRI format as Intel chips */
165 static void fixup_convert_atmel_pri(struct mtd_info *mtd, void *param)
166 {
167 struct map_info *map = mtd->priv;
168 struct cfi_private *cfi = map->fldrv_priv;
169 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
170 struct cfi_pri_atmel atmel_pri;
171 uint32_t features = 0;
172
173 /* Reverse byteswapping */
174 extp->FeatureSupport = cpu_to_le32(extp->FeatureSupport);
175 extp->BlkStatusRegMask = cpu_to_le16(extp->BlkStatusRegMask);
176 extp->ProtRegAddr = cpu_to_le16(extp->ProtRegAddr);
177
178 memcpy(&atmel_pri, extp, sizeof(atmel_pri));
179 memset((char *)extp + 5, 0, sizeof(*extp) - 5);
180
181 printk(KERN_ERR "atmel Features: %02x\n", atmel_pri.Features);
182
183 if (atmel_pri.Features & 0x01) /* chip erase supported */
184 features |= (1<<0);
185 if (atmel_pri.Features & 0x02) /* erase suspend supported */
186 features |= (1<<1);
187 if (atmel_pri.Features & 0x04) /* program suspend supported */
188 features |= (1<<2);
189 if (atmel_pri.Features & 0x08) /* simultaneous operations supported */
190 features |= (1<<9);
191 if (atmel_pri.Features & 0x20) /* page mode read supported */
192 features |= (1<<7);
193 if (atmel_pri.Features & 0x40) /* queued erase supported */
194 features |= (1<<4);
195 if (atmel_pri.Features & 0x80) /* Protection bits supported */
196 features |= (1<<6);
197
198 extp->FeatureSupport = features;
199
200 /* burst write mode not supported */
201 cfi->cfiq->BufWriteTimeoutTyp = 0;
202 cfi->cfiq->BufWriteTimeoutMax = 0;
203 }
204
205 static void fixup_at49bv640dx_lock(struct mtd_info *mtd, void *param)
206 {
207 struct map_info *map = mtd->priv;
208 struct cfi_private *cfi = map->fldrv_priv;
209 struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
210
211 cfip->FeatureSupport |= (1 << 5);
212 mtd->flags |= MTD_POWERUP_LOCK;
213 }
214
215 #ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE
216 /* Some Intel Strata Flash prior to FPO revision C has bugs in this area */
217 static void fixup_intel_strataflash(struct mtd_info *mtd, void* param)
218 {
219 struct map_info *map = mtd->priv;
220 struct cfi_private *cfi = map->fldrv_priv;
221 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
222
223 printk(KERN_WARNING "cfi_cmdset_0001: Suspend "
224 "erase on write disabled.\n");
225 extp->SuspendCmdSupport &= ~1;
226 }
227 #endif
228
229 #ifdef CMDSET0001_DISABLE_WRITE_SUSPEND
230 static void fixup_no_write_suspend(struct mtd_info *mtd, void* param)
231 {
232 struct map_info *map = mtd->priv;
233 struct cfi_private *cfi = map->fldrv_priv;
234 struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
235
236 if (cfip && (cfip->FeatureSupport&4)) {
237 cfip->FeatureSupport &= ~4;
238 printk(KERN_WARNING "cfi_cmdset_0001: write suspend disabled\n");
239 }
240 }
241 #endif
242
243 static void fixup_st_m28w320ct(struct mtd_info *mtd, void* param)
244 {
245 struct map_info *map = mtd->priv;
246 struct cfi_private *cfi = map->fldrv_priv;
247
248 cfi->cfiq->BufWriteTimeoutTyp = 0; /* Not supported */
249 cfi->cfiq->BufWriteTimeoutMax = 0; /* Not supported */
250 }
251
252 static void fixup_st_m28w320cb(struct mtd_info *mtd, void* param)
253 {
254 struct map_info *map = mtd->priv;
255 struct cfi_private *cfi = map->fldrv_priv;
256
257 /* Note this is done after the region info is endian swapped */
258 cfi->cfiq->EraseRegionInfo[1] =
259 (cfi->cfiq->EraseRegionInfo[1] & 0xffff0000) | 0x3e;
260 };
261
262 static void fixup_use_point(struct mtd_info *mtd, void *param)
263 {
264 struct map_info *map = mtd->priv;
265 if (!mtd->point && map_is_linear(map)) {
266 mtd->point = cfi_intelext_point;
267 mtd->unpoint = cfi_intelext_unpoint;
268 }
269 }
270
271 static void fixup_use_write_buffers(struct mtd_info *mtd, void *param)
272 {
273 struct map_info *map = mtd->priv;
274 struct cfi_private *cfi = map->fldrv_priv;
275 if (cfi->cfiq->BufWriteTimeoutTyp) {
276 printk(KERN_INFO "Using buffer write method\n" );
277 mtd->write = cfi_intelext_write_buffers;
278 mtd->writev = cfi_intelext_writev;
279 }
280 }
281
282 /*
283 * Some chips power-up with all sectors locked by default.
284 */
285 static void fixup_unlock_powerup_lock(struct mtd_info *mtd, void *param)
286 {
287 struct map_info *map = mtd->priv;
288 struct cfi_private *cfi = map->fldrv_priv;
289 struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
290
291 if (cfip->FeatureSupport&32) {
292 printk(KERN_INFO "Using auto-unlock on power-up/resume\n" );
293 mtd->flags |= MTD_POWERUP_LOCK;
294 }
295 }
296
297 static struct cfi_fixup cfi_fixup_table[] = {
298 { CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri, NULL },
299 { CFI_MFR_ATMEL, AT49BV640D, fixup_at49bv640dx_lock, NULL },
300 { CFI_MFR_ATMEL, AT49BV640DT, fixup_at49bv640dx_lock, NULL },
301 #ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE
302 { CFI_MFR_ANY, CFI_ID_ANY, fixup_intel_strataflash, NULL },
303 #endif
304 #ifdef CMDSET0001_DISABLE_WRITE_SUSPEND
305 { CFI_MFR_ANY, CFI_ID_ANY, fixup_no_write_suspend, NULL },
306 #endif
307 #if !FORCE_WORD_WRITE
308 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers, NULL },
309 #endif
310 { CFI_MFR_ST, 0x00ba, /* M28W320CT */ fixup_st_m28w320ct, NULL },
311 { CFI_MFR_ST, 0x00bb, /* M28W320CB */ fixup_st_m28w320cb, NULL },
312 { CFI_MFR_INTEL, CFI_ID_ANY, fixup_unlock_powerup_lock, NULL, },
313 { 0, 0, NULL, NULL }
314 };
315
316 static struct cfi_fixup jedec_fixup_table[] = {
317 { CFI_MFR_INTEL, I82802AB, fixup_use_fwh_lock, NULL, },
318 { CFI_MFR_INTEL, I82802AC, fixup_use_fwh_lock, NULL, },
319 { CFI_MFR_ST, M50LPW080, fixup_use_fwh_lock, NULL, },
320 { CFI_MFR_ST, M50FLW080A, fixup_use_fwh_lock, NULL, },
321 { CFI_MFR_ST, M50FLW080B, fixup_use_fwh_lock, NULL, },
322 { 0, 0, NULL, NULL }
323 };
324 static struct cfi_fixup fixup_table[] = {
325 /* The CFI vendor ids and the JEDEC vendor IDs appear
326 * to be common. It is like the devices id's are as
327 * well. This table is to pick all cases where
328 * we know that is the case.
329 */
330 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_point, NULL },
331 { 0, 0, NULL, NULL }
332 };
333
334 static void cfi_fixup_major_minor(struct cfi_private *cfi,
335 struct cfi_pri_intelext *extp)
336 {
337 if (cfi->mfr == CFI_MFR_INTEL &&
338 cfi->id == PF38F4476 && extp->MinorVersion == '3')
339 extp->MinorVersion = '1';
340 }
341
342 static inline struct cfi_pri_intelext *
343 read_pri_intelext(struct map_info *map, __u16 adr)
344 {
345 struct cfi_private *cfi = map->fldrv_priv;
346 struct cfi_pri_intelext *extp;
347 unsigned int extra_size = 0;
348 unsigned int extp_size = sizeof(*extp);
349
350 again:
351 extp = (struct cfi_pri_intelext *)cfi_read_pri(map, adr, extp_size, "Intel/Sharp");
352 if (!extp)
353 return NULL;
354
355 cfi_fixup_major_minor(cfi, extp);
356
357 if (extp->MajorVersion != '1' ||
358 (extp->MinorVersion < '0' || extp->MinorVersion > '5')) {
359 printk(KERN_ERR " Unknown Intel/Sharp Extended Query "
360 "version %c.%c.\n", extp->MajorVersion,
361 extp->MinorVersion);
362 kfree(extp);
363 return NULL;
364 }
365
366 /* Do some byteswapping if necessary */
367 extp->FeatureSupport = le32_to_cpu(extp->FeatureSupport);
368 extp->BlkStatusRegMask = le16_to_cpu(extp->BlkStatusRegMask);
369 extp->ProtRegAddr = le16_to_cpu(extp->ProtRegAddr);
370
371 if (extp->MinorVersion >= '0') {
372 extra_size = 0;
373
374 /* Protection Register info */
375 extra_size += (extp->NumProtectionFields - 1) *
376 sizeof(struct cfi_intelext_otpinfo);
377 }
378
379 if (extp->MinorVersion >= '1') {
380 /* Burst Read info */
381 extra_size += 2;
382 if (extp_size < sizeof(*extp) + extra_size)
383 goto need_more;
384 extra_size += extp->extra[extra_size - 1];
385 }
386
387 if (extp->MinorVersion >= '3') {
388 int nb_parts, i;
389
390 /* Number of hardware-partitions */
391 extra_size += 1;
392 if (extp_size < sizeof(*extp) + extra_size)
393 goto need_more;
394 nb_parts = extp->extra[extra_size - 1];
395
396 /* skip the sizeof(partregion) field in CFI 1.4 */
397 if (extp->MinorVersion >= '4')
398 extra_size += 2;
399
400 for (i = 0; i < nb_parts; i++) {
401 struct cfi_intelext_regioninfo *rinfo;
402 rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[extra_size];
403 extra_size += sizeof(*rinfo);
404 if (extp_size < sizeof(*extp) + extra_size)
405 goto need_more;
406 rinfo->NumIdentPartitions=le16_to_cpu(rinfo->NumIdentPartitions);
407 extra_size += (rinfo->NumBlockTypes - 1)
408 * sizeof(struct cfi_intelext_blockinfo);
409 }
410
411 if (extp->MinorVersion >= '4')
412 extra_size += sizeof(struct cfi_intelext_programming_regioninfo);
413
414 if (extp_size < sizeof(*extp) + extra_size) {
415 need_more:
416 extp_size = sizeof(*extp) + extra_size;
417 kfree(extp);
418 if (extp_size > 4096) {
419 printk(KERN_ERR
420 "%s: cfi_pri_intelext is too fat\n",
421 __func__);
422 return NULL;
423 }
424 goto again;
425 }
426 }
427
428 return extp;
429 }
430
431 struct mtd_info *cfi_cmdset_0001(struct map_info *map, int primary)
432 {
433 struct cfi_private *cfi = map->fldrv_priv;
434 struct mtd_info *mtd;
435 int i;
436
437 mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
438 if (!mtd) {
439 printk(KERN_ERR "Failed to allocate memory for MTD device\n");
440 return NULL;
441 }
442 mtd->priv = map;
443 mtd->type = MTD_NORFLASH;
444
445 /* Fill in the default mtd operations */
446 mtd->erase = cfi_intelext_erase_varsize;
447 mtd->read = cfi_intelext_read;
448 mtd->write = cfi_intelext_write_words;
449 mtd->sync = cfi_intelext_sync;
450 mtd->lock = cfi_intelext_lock;
451 mtd->unlock = cfi_intelext_unlock;
452 mtd->is_locked = cfi_intelext_is_locked;
453 mtd->suspend = cfi_intelext_suspend;
454 mtd->resume = cfi_intelext_resume;
455 mtd->flags = MTD_CAP_NORFLASH;
456 mtd->name = map->name;
457 mtd->writesize = 1;
458
459 mtd->reboot_notifier.notifier_call = cfi_intelext_reboot;
460
461 if (cfi->cfi_mode == CFI_MODE_CFI) {
462 /*
463 * It's a real CFI chip, not one for which the probe
464 * routine faked a CFI structure. So we read the feature
465 * table from it.
466 */
467 __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
468 struct cfi_pri_intelext *extp;
469
470 extp = read_pri_intelext(map, adr);
471 if (!extp) {
472 kfree(mtd);
473 return NULL;
474 }
475
476 /* Install our own private info structure */
477 cfi->cmdset_priv = extp;
478
479 cfi_fixup(mtd, cfi_fixup_table);
480
481 #ifdef DEBUG_CFI_FEATURES
482 /* Tell the user about it in lots of lovely detail */
483 cfi_tell_features(extp);
484 #endif
485
486 if(extp->SuspendCmdSupport & 1) {
487 printk(KERN_NOTICE "cfi_cmdset_0001: Erase suspend on write enabled\n");
488 }
489 }
490 else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
491 /* Apply jedec specific fixups */
492 cfi_fixup(mtd, jedec_fixup_table);
493 }
494 /* Apply generic fixups */
495 cfi_fixup(mtd, fixup_table);
496
497 for (i=0; i< cfi->numchips; i++) {
498 if (cfi->cfiq->WordWriteTimeoutTyp)
499 cfi->chips[i].word_write_time =
500 1<<cfi->cfiq->WordWriteTimeoutTyp;
501 else
502 cfi->chips[i].word_write_time = 50000;
503
504 if (cfi->cfiq->BufWriteTimeoutTyp)
505 cfi->chips[i].buffer_write_time =
506 1<<cfi->cfiq->BufWriteTimeoutTyp;
507 /* No default; if it isn't specified, we won't use it */
508
509 if (cfi->cfiq->BlockEraseTimeoutTyp)
510 cfi->chips[i].erase_time =
511 1000<<cfi->cfiq->BlockEraseTimeoutTyp;
512 else
513 cfi->chips[i].erase_time = 2000000;
514
515 if (cfi->cfiq->WordWriteTimeoutTyp &&
516 cfi->cfiq->WordWriteTimeoutMax)
517 cfi->chips[i].word_write_time_max =
518 1<<(cfi->cfiq->WordWriteTimeoutTyp +
519 cfi->cfiq->WordWriteTimeoutMax);
520 else
521 cfi->chips[i].word_write_time_max = 50000 * 8;
522
523 if (cfi->cfiq->BufWriteTimeoutTyp &&
524 cfi->cfiq->BufWriteTimeoutMax)
525 cfi->chips[i].buffer_write_time_max =
526 1<<(cfi->cfiq->BufWriteTimeoutTyp +
527 cfi->cfiq->BufWriteTimeoutMax);
528
529 if (cfi->cfiq->BlockEraseTimeoutTyp &&
530 cfi->cfiq->BlockEraseTimeoutMax)
531 cfi->chips[i].erase_time_max =
532 1000<<(cfi->cfiq->BlockEraseTimeoutTyp +
533 cfi->cfiq->BlockEraseTimeoutMax);
534 else
535 cfi->chips[i].erase_time_max = 2000000 * 8;
536
537 cfi->chips[i].ref_point_counter = 0;
538 init_waitqueue_head(&(cfi->chips[i].wq));
539 }
540
541 map->fldrv = &cfi_intelext_chipdrv;
542
543 return cfi_intelext_setup(mtd);
544 }
545 struct mtd_info *cfi_cmdset_0003(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0001")));
546 struct mtd_info *cfi_cmdset_0200(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0001")));
547 EXPORT_SYMBOL_GPL(cfi_cmdset_0001);
548 EXPORT_SYMBOL_GPL(cfi_cmdset_0003);
549 EXPORT_SYMBOL_GPL(cfi_cmdset_0200);
550
551 static struct mtd_info *cfi_intelext_setup(struct mtd_info *mtd)
552 {
553 struct map_info *map = mtd->priv;
554 struct cfi_private *cfi = map->fldrv_priv;
555 unsigned long offset = 0;
556 int i,j;
557 unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
558
559 //printk(KERN_DEBUG "number of CFI chips: %d\n", cfi->numchips);
560
561 mtd->size = devsize * cfi->numchips;
562
563 mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
564 mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info)
565 * mtd->numeraseregions, GFP_KERNEL);
566 if (!mtd->eraseregions) {
567 printk(KERN_ERR "Failed to allocate memory for MTD erase region info\n");
568 goto setup_err;
569 }
570
571 for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
572 unsigned long ernum, ersize;
573 ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
574 ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
575
576 if (mtd->erasesize < ersize) {
577 mtd->erasesize = ersize;
578 }
579 for (j=0; j<cfi->numchips; j++) {
580 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
581 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
582 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
583 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].lockmap = kmalloc(ernum / 8 + 1, GFP_KERNEL);
584 }
585 offset += (ersize * ernum);
586 }
587
588 if (offset != devsize) {
589 /* Argh */
590 printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
591 goto setup_err;
592 }
593
594 for (i=0; i<mtd->numeraseregions;i++){
595 printk(KERN_DEBUG "erase region %d: offset=0x%llx,size=0x%x,blocks=%d\n",
596 i,(unsigned long long)mtd->eraseregions[i].offset,
597 mtd->eraseregions[i].erasesize,
598 mtd->eraseregions[i].numblocks);
599 }
600
601 #ifdef CONFIG_MTD_OTP
602 mtd->read_fact_prot_reg = cfi_intelext_read_fact_prot_reg;
603 mtd->read_user_prot_reg = cfi_intelext_read_user_prot_reg;
604 mtd->write_user_prot_reg = cfi_intelext_write_user_prot_reg;
605 mtd->lock_user_prot_reg = cfi_intelext_lock_user_prot_reg;
606 mtd->get_fact_prot_info = cfi_intelext_get_fact_prot_info;
607 mtd->get_user_prot_info = cfi_intelext_get_user_prot_info;
608 #endif
609
610 /* This function has the potential to distort the reality
611 a bit and therefore should be called last. */
612 if (cfi_intelext_partition_fixup(mtd, &cfi) != 0)
613 goto setup_err;
614
615 __module_get(THIS_MODULE);
616 register_reboot_notifier(&mtd->reboot_notifier);
617 return mtd;
618
619 setup_err:
620 kfree(mtd->eraseregions);
621 kfree(mtd);
622 kfree(cfi->cmdset_priv);
623 return NULL;
624 }
625
626 static int cfi_intelext_partition_fixup(struct mtd_info *mtd,
627 struct cfi_private **pcfi)
628 {
629 struct map_info *map = mtd->priv;
630 struct cfi_private *cfi = *pcfi;
631 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
632
633 /*
634 * Probing of multi-partition flash chips.
635 *
636 * To support multiple partitions when available, we simply arrange
637 * for each of them to have their own flchip structure even if they
638 * are on the same physical chip. This means completely recreating
639 * a new cfi_private structure right here which is a blatent code
640 * layering violation, but this is still the least intrusive
641 * arrangement at this point. This can be rearranged in the future
642 * if someone feels motivated enough. --nico
643 */
644 if (extp && extp->MajorVersion == '1' && extp->MinorVersion >= '3'
645 && extp->FeatureSupport & (1 << 9)) {
646 struct cfi_private *newcfi;
647 struct flchip *chip;
648 struct flchip_shared *shared;
649 int offs, numregions, numparts, partshift, numvirtchips, i, j;
650
651 /* Protection Register info */
652 offs = (extp->NumProtectionFields - 1) *
653 sizeof(struct cfi_intelext_otpinfo);
654
655 /* Burst Read info */
656 offs += extp->extra[offs+1]+2;
657
658 /* Number of partition regions */
659 numregions = extp->extra[offs];
660 offs += 1;
661
662 /* skip the sizeof(partregion) field in CFI 1.4 */
663 if (extp->MinorVersion >= '4')
664 offs += 2;
665
666 /* Number of hardware partitions */
667 numparts = 0;
668 for (i = 0; i < numregions; i++) {
669 struct cfi_intelext_regioninfo *rinfo;
670 rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[offs];
671 numparts += rinfo->NumIdentPartitions;
672 offs += sizeof(*rinfo)
673 + (rinfo->NumBlockTypes - 1) *
674 sizeof(struct cfi_intelext_blockinfo);
675 }
676
677 if (!numparts)
678 numparts = 1;
679
680 /* Programming Region info */
681 if (extp->MinorVersion >= '4') {
682 struct cfi_intelext_programming_regioninfo *prinfo;
683 prinfo = (struct cfi_intelext_programming_regioninfo *)&extp->extra[offs];
684 mtd->writesize = cfi->interleave << prinfo->ProgRegShift;
685 mtd->flags &= ~MTD_BIT_WRITEABLE;
686 printk(KERN_DEBUG "%s: program region size/ctrl_valid/ctrl_inval = %d/%d/%d\n",
687 map->name, mtd->writesize,
688 cfi->interleave * prinfo->ControlValid,
689 cfi->interleave * prinfo->ControlInvalid);
690 }
691
692 /*
693 * All functions below currently rely on all chips having
694 * the same geometry so we'll just assume that all hardware
695 * partitions are of the same size too.
696 */
697 partshift = cfi->chipshift - __ffs(numparts);
698
699 if ((1 << partshift) < mtd->erasesize) {
700 printk( KERN_ERR
701 "%s: bad number of hw partitions (%d)\n",
702 __func__, numparts);
703 return -EINVAL;
704 }
705
706 numvirtchips = cfi->numchips * numparts;
707 newcfi = kmalloc(sizeof(struct cfi_private) + numvirtchips * sizeof(struct flchip), GFP_KERNEL);
708 if (!newcfi)
709 return -ENOMEM;
710 shared = kmalloc(sizeof(struct flchip_shared) * cfi->numchips, GFP_KERNEL);
711 if (!shared) {
712 kfree(newcfi);
713 return -ENOMEM;
714 }
715 memcpy(newcfi, cfi, sizeof(struct cfi_private));
716 newcfi->numchips = numvirtchips;
717 newcfi->chipshift = partshift;
718
719 chip = &newcfi->chips[0];
720 for (i = 0; i < cfi->numchips; i++) {
721 shared[i].writing = shared[i].erasing = NULL;
722 mutex_init(&shared[i].lock);
723 for (j = 0; j < numparts; j++) {
724 *chip = cfi->chips[i];
725 chip->start += j << partshift;
726 chip->priv = &shared[i];
727 /* those should be reset too since
728 they create memory references. */
729 init_waitqueue_head(&chip->wq);
730 mutex_init(&chip->mutex);
731 chip++;
732 }
733 }
734
735 printk(KERN_DEBUG "%s: %d set(s) of %d interleaved chips "
736 "--> %d partitions of %d KiB\n",
737 map->name, cfi->numchips, cfi->interleave,
738 newcfi->numchips, 1<<(newcfi->chipshift-10));
739
740 map->fldrv_priv = newcfi;
741 *pcfi = newcfi;
742 kfree(cfi);
743 }
744
745 return 0;
746 }
747
748 /*
749 * *********** CHIP ACCESS FUNCTIONS ***********
750 */
751 static int chip_ready (struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
752 {
753 DECLARE_WAITQUEUE(wait, current);
754 struct cfi_private *cfi = map->fldrv_priv;
755 map_word status, status_OK = CMD(0x80), status_PWS = CMD(0x01);
756 struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
757 unsigned long timeo = jiffies + HZ;
758
759 /* Prevent setting state FL_SYNCING for chip in suspended state. */
760 if (mode == FL_SYNCING && chip->oldstate != FL_READY)
761 goto sleep;
762
763 switch (chip->state) {
764
765 case FL_STATUS:
766 for (;;) {
767 status = map_read(map, adr);
768 if (map_word_andequal(map, status, status_OK, status_OK))
769 break;
770
771 /* At this point we're fine with write operations
772 in other partitions as they don't conflict. */
773 if (chip->priv && map_word_andequal(map, status, status_PWS, status_PWS))
774 break;
775
776 mutex_unlock(&chip->mutex);
777 cfi_udelay(1);
778 mutex_lock(&chip->mutex);
779 /* Someone else might have been playing with it. */
780 return -EAGAIN;
781 }
782 /* Fall through */
783 case FL_READY:
784 case FL_CFI_QUERY:
785 case FL_JEDEC_QUERY:
786 return 0;
787
788 case FL_ERASING:
789 if (!cfip ||
790 !(cfip->FeatureSupport & 2) ||
791 !(mode == FL_READY || mode == FL_POINT ||
792 (mode == FL_WRITING && (cfip->SuspendCmdSupport & 1))))
793 goto sleep;
794
795
796 /* Erase suspend */
797 map_write(map, CMD(0xB0), adr);
798
799 /* If the flash has finished erasing, then 'erase suspend'
800 * appears to make some (28F320) flash devices switch to
801 * 'read' mode. Make sure that we switch to 'read status'
802 * mode so we get the right data. --rmk
803 */
804 map_write(map, CMD(0x70), adr);
805 chip->oldstate = FL_ERASING;
806 chip->state = FL_ERASE_SUSPENDING;
807 chip->erase_suspended = 1;
808 for (;;) {
809 status = map_read(map, adr);
810 if (map_word_andequal(map, status, status_OK, status_OK))
811 break;
812
813 if (time_after(jiffies, timeo)) {
814 /* Urgh. Resume and pretend we weren't here. */
815 map_write(map, CMD(0xd0), adr);
816 /* Make sure we're in 'read status' mode if it had finished */
817 map_write(map, CMD(0x70), adr);
818 chip->state = FL_ERASING;
819 chip->oldstate = FL_READY;
820 printk(KERN_ERR "%s: Chip not ready after erase "
821 "suspended: status = 0x%lx\n", map->name, status.x[0]);
822 return -EIO;
823 }
824
825 mutex_unlock(&chip->mutex);
826 cfi_udelay(1);
827 mutex_lock(&chip->mutex);
828 /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
829 So we can just loop here. */
830 }
831 chip->state = FL_STATUS;
832 return 0;
833
834 case FL_XIP_WHILE_ERASING:
835 if (mode != FL_READY && mode != FL_POINT &&
836 (mode != FL_WRITING || !cfip || !(cfip->SuspendCmdSupport&1)))
837 goto sleep;
838 chip->oldstate = chip->state;
839 chip->state = FL_READY;
840 return 0;
841
842 case FL_SHUTDOWN:
843 /* The machine is rebooting now,so no one can get chip anymore */
844 return -EIO;
845 case FL_POINT:
846 /* Only if there's no operation suspended... */
847 if (mode == FL_READY && chip->oldstate == FL_READY)
848 return 0;
849 /* Fall through */
850 default:
851 sleep:
852 set_current_state(TASK_UNINTERRUPTIBLE);
853 add_wait_queue(&chip->wq, &wait);
854 mutex_unlock(&chip->mutex);
855 schedule();
856 remove_wait_queue(&chip->wq, &wait);
857 mutex_lock(&chip->mutex);
858 return -EAGAIN;
859 }
860 }
861
862 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
863 {
864 int ret;
865 DECLARE_WAITQUEUE(wait, current);
866
867 retry:
868 if (chip->priv &&
869 (mode == FL_WRITING || mode == FL_ERASING || mode == FL_OTP_WRITE
870 || mode == FL_SHUTDOWN) && chip->state != FL_SYNCING) {
871 /*
872 * OK. We have possibility for contention on the write/erase
873 * operations which are global to the real chip and not per
874 * partition. So let's fight it over in the partition which
875 * currently has authority on the operation.
876 *
877 * The rules are as follows:
878 *
879 * - any write operation must own shared->writing.
880 *
881 * - any erase operation must own _both_ shared->writing and
882 * shared->erasing.
883 *
884 * - contention arbitration is handled in the owner's context.
885 *
886 * The 'shared' struct can be read and/or written only when
887 * its lock is taken.
888 */
889 struct flchip_shared *shared = chip->priv;
890 struct flchip *contender;
891 mutex_lock(&shared->lock);
892 contender = shared->writing;
893 if (contender && contender != chip) {
894 /*
895 * The engine to perform desired operation on this
896 * partition is already in use by someone else.
897 * Let's fight over it in the context of the chip
898 * currently using it. If it is possible to suspend,
899 * that other partition will do just that, otherwise
900 * it'll happily send us to sleep. In any case, when
901 * get_chip returns success we're clear to go ahead.
902 */
903 ret = mutex_trylock(&contender->mutex);
904 mutex_unlock(&shared->lock);
905 if (!ret)
906 goto retry;
907 mutex_unlock(&chip->mutex);
908 ret = chip_ready(map, contender, contender->start, mode);
909 mutex_lock(&chip->mutex);
910
911 if (ret == -EAGAIN) {
912 mutex_unlock(&contender->mutex);
913 goto retry;
914 }
915 if (ret) {
916 mutex_unlock(&contender->mutex);
917 return ret;
918 }
919 mutex_lock(&shared->lock);
920
921 /* We should not own chip if it is already
922 * in FL_SYNCING state. Put contender and retry. */
923 if (chip->state == FL_SYNCING) {
924 put_chip(map, contender, contender->start);
925 mutex_unlock(&contender->mutex);
926 goto retry;
927 }
928 mutex_unlock(&contender->mutex);
929 }
930
931 /* Check if we already have suspended erase
932 * on this chip. Sleep. */
933 if (mode == FL_ERASING && shared->erasing
934 && shared->erasing->oldstate == FL_ERASING) {
935 mutex_unlock(&shared->lock);
936 set_current_state(TASK_UNINTERRUPTIBLE);
937 add_wait_queue(&chip->wq, &wait);
938 mutex_unlock(&chip->mutex);
939 schedule();
940 remove_wait_queue(&chip->wq, &wait);
941 mutex_lock(&chip->mutex);
942 goto retry;
943 }
944
945 /* We now own it */
946 shared->writing = chip;
947 if (mode == FL_ERASING)
948 shared->erasing = chip;
949 mutex_unlock(&shared->lock);
950 }
951 ret = chip_ready(map, chip, adr, mode);
952 if (ret == -EAGAIN)
953 goto retry;
954
955 return ret;
956 }
957
958 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
959 {
960 struct cfi_private *cfi = map->fldrv_priv;
961
962 if (chip->priv) {
963 struct flchip_shared *shared = chip->priv;
964 mutex_lock(&shared->lock);
965 if (shared->writing == chip && chip->oldstate == FL_READY) {
966 /* We own the ability to write, but we're done */
967 shared->writing = shared->erasing;
968 if (shared->writing && shared->writing != chip) {
969 /* give back ownership to who we loaned it from */
970 struct flchip *loaner = shared->writing;
971 mutex_lock(&loaner->mutex);
972 mutex_unlock(&shared->lock);
973 mutex_unlock(&chip->mutex);
974 put_chip(map, loaner, loaner->start);
975 mutex_lock(&chip->mutex);
976 mutex_unlock(&loaner->mutex);
977 wake_up(&chip->wq);
978 return;
979 }
980 shared->erasing = NULL;
981 shared->writing = NULL;
982 } else if (shared->erasing == chip && shared->writing != chip) {
983 /*
984 * We own the ability to erase without the ability
985 * to write, which means the erase was suspended
986 * and some other partition is currently writing.
987 * Don't let the switch below mess things up since
988 * we don't have ownership to resume anything.
989 */
990 mutex_unlock(&shared->lock);
991 wake_up(&chip->wq);
992 return;
993 }
994 mutex_unlock(&shared->lock);
995 }
996
997 switch(chip->oldstate) {
998 case FL_ERASING:
999 chip->state = chip->oldstate;
1000 /* What if one interleaved chip has finished and the
1001 other hasn't? The old code would leave the finished
1002 one in READY mode. That's bad, and caused -EROFS
1003 errors to be returned from do_erase_oneblock because
1004 that's the only bit it checked for at the time.
1005 As the state machine appears to explicitly allow
1006 sending the 0x70 (Read Status) command to an erasing
1007 chip and expecting it to be ignored, that's what we
1008 do. */
1009 map_write(map, CMD(0xd0), adr);
1010 map_write(map, CMD(0x70), adr);
1011 chip->oldstate = FL_READY;
1012 chip->state = FL_ERASING;
1013 break;
1014
1015 case FL_XIP_WHILE_ERASING:
1016 chip->state = chip->oldstate;
1017 chip->oldstate = FL_READY;
1018 break;
1019
1020 case FL_READY:
1021 case FL_STATUS:
1022 case FL_JEDEC_QUERY:
1023 /* We should really make set_vpp() count, rather than doing this */
1024 DISABLE_VPP(map);
1025 break;
1026 default:
1027 printk(KERN_ERR "%s: put_chip() called with oldstate %d!!\n", map->name, chip->oldstate);
1028 }
1029 wake_up(&chip->wq);
1030 }
1031
1032 #ifdef CONFIG_MTD_XIP
1033
1034 /*
1035 * No interrupt what so ever can be serviced while the flash isn't in array
1036 * mode. This is ensured by the xip_disable() and xip_enable() functions
1037 * enclosing any code path where the flash is known not to be in array mode.
1038 * And within a XIP disabled code path, only functions marked with __xipram
1039 * may be called and nothing else (it's a good thing to inspect generated
1040 * assembly to make sure inline functions were actually inlined and that gcc
1041 * didn't emit calls to its own support functions). Also configuring MTD CFI
1042 * support to a single buswidth and a single interleave is also recommended.
1043 */
1044
1045 static void xip_disable(struct map_info *map, struct flchip *chip,
1046 unsigned long adr)
1047 {
1048 /* TODO: chips with no XIP use should ignore and return */
1049 (void) map_read(map, adr); /* ensure mmu mapping is up to date */
1050 local_irq_disable();
1051 }
1052
1053 static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
1054 unsigned long adr)
1055 {
1056 struct cfi_private *cfi = map->fldrv_priv;
1057 if (chip->state != FL_POINT && chip->state != FL_READY) {
1058 map_write(map, CMD(0xff), adr);
1059 chip->state = FL_READY;
1060 }
1061 (void) map_read(map, adr);
1062 xip_iprefetch();
1063 local_irq_enable();
1064 }
1065
1066 /*
1067 * When a delay is required for the flash operation to complete, the
1068 * xip_wait_for_operation() function is polling for both the given timeout
1069 * and pending (but still masked) hardware interrupts. Whenever there is an
1070 * interrupt pending then the flash erase or write operation is suspended,
1071 * array mode restored and interrupts unmasked. Task scheduling might also
1072 * happen at that point. The CPU eventually returns from the interrupt or
1073 * the call to schedule() and the suspended flash operation is resumed for
1074 * the remaining of the delay period.
1075 *
1076 * Warning: this function _will_ fool interrupt latency tracing tools.
1077 */
1078
1079 static int __xipram xip_wait_for_operation(
1080 struct map_info *map, struct flchip *chip,
1081 unsigned long adr, unsigned int chip_op_time_max)
1082 {
1083 struct cfi_private *cfi = map->fldrv_priv;
1084 struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
1085 map_word status, OK = CMD(0x80);
1086 unsigned long usec, suspended, start, done;
1087 flstate_t oldstate, newstate;
1088
1089 start = xip_currtime();
1090 usec = chip_op_time_max;
1091 if (usec == 0)
1092 usec = 500000;
1093 done = 0;
1094
1095 do {
1096 cpu_relax();
1097 if (xip_irqpending() && cfip &&
1098 ((chip->state == FL_ERASING && (cfip->FeatureSupport&2)) ||
1099 (chip->state == FL_WRITING && (cfip->FeatureSupport&4))) &&
1100 (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
1101 /*
1102 * Let's suspend the erase or write operation when
1103 * supported. Note that we currently don't try to
1104 * suspend interleaved chips if there is already
1105 * another operation suspended (imagine what happens
1106 * when one chip was already done with the current
1107 * operation while another chip suspended it, then
1108 * we resume the whole thing at once). Yes, it
1109 * can happen!
1110 */
1111 usec -= done;
1112 map_write(map, CMD(0xb0), adr);
1113 map_write(map, CMD(0x70), adr);
1114 suspended = xip_currtime();
1115 do {
1116 if (xip_elapsed_since(suspended) > 100000) {
1117 /*
1118 * The chip doesn't want to suspend
1119 * after waiting for 100 msecs.
1120 * This is a critical error but there
1121 * is not much we can do here.
1122 */
1123 return -EIO;
1124 }
1125 status = map_read(map, adr);
1126 } while (!map_word_andequal(map, status, OK, OK));
1127
1128 /* Suspend succeeded */
1129 oldstate = chip->state;
1130 if (oldstate == FL_ERASING) {
1131 if (!map_word_bitsset(map, status, CMD(0x40)))
1132 break;
1133 newstate = FL_XIP_WHILE_ERASING;
1134 chip->erase_suspended = 1;
1135 } else {
1136 if (!map_word_bitsset(map, status, CMD(0x04)))
1137 break;
1138 newstate = FL_XIP_WHILE_WRITING;
1139 chip->write_suspended = 1;
1140 }
1141 chip->state = newstate;
1142 map_write(map, CMD(0xff), adr);
1143 (void) map_read(map, adr);
1144 xip_iprefetch();
1145 local_irq_enable();
1146 mutex_unlock(&chip->mutex);
1147 xip_iprefetch();
1148 cond_resched();
1149
1150 /*
1151 * We're back. However someone else might have
1152 * decided to go write to the chip if we are in
1153 * a suspended erase state. If so let's wait
1154 * until it's done.
1155 */
1156 mutex_lock(&chip->mutex);
1157 while (chip->state != newstate) {
1158 DECLARE_WAITQUEUE(wait, current);
1159 set_current_state(TASK_UNINTERRUPTIBLE);
1160 add_wait_queue(&chip->wq, &wait);
1161 mutex_unlock(&chip->mutex);
1162 schedule();
1163 remove_wait_queue(&chip->wq, &wait);
1164 mutex_lock(&chip->mutex);
1165 }
1166 /* Disallow XIP again */
1167 local_irq_disable();
1168
1169 /* Resume the write or erase operation */
1170 map_write(map, CMD(0xd0), adr);
1171 map_write(map, CMD(0x70), adr);
1172 chip->state = oldstate;
1173 start = xip_currtime();
1174 } else if (usec >= 1000000/HZ) {
1175 /*
1176 * Try to save on CPU power when waiting delay
1177 * is at least a system timer tick period.
1178 * No need to be extremely accurate here.
1179 */
1180 xip_cpu_idle();
1181 }
1182 status = map_read(map, adr);
1183 done = xip_elapsed_since(start);
1184 } while (!map_word_andequal(map, status, OK, OK)
1185 && done < usec);
1186
1187 return (done >= usec) ? -ETIME : 0;
1188 }
1189
1190 /*
1191 * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
1192 * the flash is actively programming or erasing since we have to poll for
1193 * the operation to complete anyway. We can't do that in a generic way with
1194 * a XIP setup so do it before the actual flash operation in this case
1195 * and stub it out from INVAL_CACHE_AND_WAIT.
1196 */
1197 #define XIP_INVAL_CACHED_RANGE(map, from, size) \
1198 INVALIDATE_CACHED_RANGE(map, from, size)
1199
1200 #define INVAL_CACHE_AND_WAIT(map, chip, cmd_adr, inval_adr, inval_len, usec, usec_max) \
1201 xip_wait_for_operation(map, chip, cmd_adr, usec_max)
1202
1203 #else
1204
1205 #define xip_disable(map, chip, adr)
1206 #define xip_enable(map, chip, adr)
1207 #define XIP_INVAL_CACHED_RANGE(x...)
1208 #define INVAL_CACHE_AND_WAIT inval_cache_and_wait_for_operation
1209
1210 static int inval_cache_and_wait_for_operation(
1211 struct map_info *map, struct flchip *chip,
1212 unsigned long cmd_adr, unsigned long inval_adr, int inval_len,
1213 unsigned int chip_op_time, unsigned int chip_op_time_max)
1214 {
1215 struct cfi_private *cfi = map->fldrv_priv;
1216 map_word status, status_OK = CMD(0x80);
1217 int chip_state = chip->state;
1218 unsigned int timeo, sleep_time, reset_timeo;
1219
1220 mutex_unlock(&chip->mutex);
1221 if (inval_len)
1222 INVALIDATE_CACHED_RANGE(map, inval_adr, inval_len);
1223 mutex_lock(&chip->mutex);
1224
1225 timeo = chip_op_time_max;
1226 if (!timeo)
1227 timeo = 500000;
1228 reset_timeo = timeo;
1229 sleep_time = chip_op_time / 2;
1230
1231 for (;;) {
1232 status = map_read(map, cmd_adr);
1233 if (map_word_andequal(map, status, status_OK, status_OK))
1234 break;
1235
1236 if (!timeo) {
1237 map_write(map, CMD(0x70), cmd_adr);
1238 chip->state = FL_STATUS;
1239 return -ETIME;
1240 }
1241
1242 /* OK Still waiting. Drop the lock, wait a while and retry. */
1243 mutex_unlock(&chip->mutex);
1244 if (sleep_time >= 1000000/HZ) {
1245 /*
1246 * Half of the normal delay still remaining
1247 * can be performed with a sleeping delay instead
1248 * of busy waiting.
1249 */
1250 msleep(sleep_time/1000);
1251 timeo -= sleep_time;
1252 sleep_time = 1000000/HZ;
1253 } else {
1254 udelay(1);
1255 cond_resched();
1256 timeo--;
1257 }
1258 mutex_lock(&chip->mutex);
1259
1260 while (chip->state != chip_state) {
1261 /* Someone's suspended the operation: sleep */
1262 DECLARE_WAITQUEUE(wait, current);
1263 set_current_state(TASK_UNINTERRUPTIBLE);
1264 add_wait_queue(&chip->wq, &wait);
1265 mutex_unlock(&chip->mutex);
1266 schedule();
1267 remove_wait_queue(&chip->wq, &wait);
1268 mutex_lock(&chip->mutex);
1269 }
1270 if (chip->erase_suspended && chip_state == FL_ERASING) {
1271 /* Erase suspend occured while sleep: reset timeout */
1272 timeo = reset_timeo;
1273 chip->erase_suspended = 0;
1274 }
1275 if (chip->write_suspended && chip_state == FL_WRITING) {
1276 /* Write suspend occured while sleep: reset timeout */
1277 timeo = reset_timeo;
1278 chip->write_suspended = 0;
1279 }
1280 }
1281
1282 /* Done and happy. */
1283 chip->state = FL_STATUS;
1284 return 0;
1285 }
1286
1287 #endif
1288
1289 #define WAIT_TIMEOUT(map, chip, adr, udelay, udelay_max) \
1290 INVAL_CACHE_AND_WAIT(map, chip, adr, 0, 0, udelay, udelay_max);
1291
1292
1293 static int do_point_onechip (struct map_info *map, struct flchip *chip, loff_t adr, size_t len)
1294 {
1295 unsigned long cmd_addr;
1296 struct cfi_private *cfi = map->fldrv_priv;
1297 int ret = 0;
1298
1299 adr += chip->start;
1300
1301 /* Ensure cmd read/writes are aligned. */
1302 cmd_addr = adr & ~(map_bankwidth(map)-1);
1303
1304 mutex_lock(&chip->mutex);
1305
1306 ret = get_chip(map, chip, cmd_addr, FL_POINT);
1307
1308 if (!ret) {
1309 if (chip->state != FL_POINT && chip->state != FL_READY)
1310 map_write(map, CMD(0xff), cmd_addr);
1311
1312 chip->state = FL_POINT;
1313 chip->ref_point_counter++;
1314 }
1315 mutex_unlock(&chip->mutex);
1316
1317 return ret;
1318 }
1319
1320 static int cfi_intelext_point(struct mtd_info *mtd, loff_t from, size_t len,
1321 size_t *retlen, void **virt, resource_size_t *phys)
1322 {
1323 struct map_info *map = mtd->priv;
1324 struct cfi_private *cfi = map->fldrv_priv;
1325 unsigned long ofs, last_end = 0;
1326 int chipnum;
1327 int ret = 0;
1328
1329 if (!map->virt || (from + len > mtd->size))
1330 return -EINVAL;
1331
1332 /* Now lock the chip(s) to POINT state */
1333
1334 /* ofs: offset within the first chip that the first read should start */
1335 chipnum = (from >> cfi->chipshift);
1336 ofs = from - (chipnum << cfi->chipshift);
1337
1338 *virt = map->virt + cfi->chips[chipnum].start + ofs;
1339 *retlen = 0;
1340 if (phys)
1341 *phys = map->phys + cfi->chips[chipnum].start + ofs;
1342
1343 while (len) {
1344 unsigned long thislen;
1345
1346 if (chipnum >= cfi->numchips)
1347 break;
1348
1349 /* We cannot point across chips that are virtually disjoint */
1350 if (!last_end)
1351 last_end = cfi->chips[chipnum].start;
1352 else if (cfi->chips[chipnum].start != last_end)
1353 break;
1354
1355 if ((len + ofs -1) >> cfi->chipshift)
1356 thislen = (1<<cfi->chipshift) - ofs;
1357 else
1358 thislen = len;
1359
1360 ret = do_point_onechip(map, &cfi->chips[chipnum], ofs, thislen);
1361 if (ret)
1362 break;
1363
1364 *retlen += thislen;
1365 len -= thislen;
1366
1367 ofs = 0;
1368 last_end += 1 << cfi->chipshift;
1369 chipnum++;
1370 }
1371 return 0;
1372 }
1373
1374 static void cfi_intelext_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1375 {
1376 struct map_info *map = mtd->priv;
1377 struct cfi_private *cfi = map->fldrv_priv;
1378 unsigned long ofs;
1379 int chipnum;
1380
1381 /* Now unlock the chip(s) POINT state */
1382
1383 /* ofs: offset within the first chip that the first read should start */
1384 chipnum = (from >> cfi->chipshift);
1385 ofs = from - (chipnum << cfi->chipshift);
1386
1387 while (len) {
1388 unsigned long thislen;
1389 struct flchip *chip;
1390
1391 chip = &cfi->chips[chipnum];
1392 if (chipnum >= cfi->numchips)
1393 break;
1394
1395 if ((len + ofs -1) >> cfi->chipshift)
1396 thislen = (1<<cfi->chipshift) - ofs;
1397 else
1398 thislen = len;
1399
1400 mutex_lock(&chip->mutex);
1401 if (chip->state == FL_POINT) {
1402 chip->ref_point_counter--;
1403 if(chip->ref_point_counter == 0)
1404 chip->state = FL_READY;
1405 } else
1406 printk(KERN_ERR "%s: Warning: unpoint called on non pointed region\n", map->name); /* Should this give an error? */
1407
1408 put_chip(map, chip, chip->start);
1409 mutex_unlock(&chip->mutex);
1410
1411 len -= thislen;
1412 ofs = 0;
1413 chipnum++;
1414 }
1415 }
1416
1417 static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
1418 {
1419 unsigned long cmd_addr;
1420 struct cfi_private *cfi = map->fldrv_priv;
1421 int ret;
1422
1423 adr += chip->start;
1424
1425 /* Ensure cmd read/writes are aligned. */
1426 cmd_addr = adr & ~(map_bankwidth(map)-1);
1427
1428 mutex_lock(&chip->mutex);
1429 ret = get_chip(map, chip, cmd_addr, FL_READY);
1430 if (ret) {
1431 mutex_unlock(&chip->mutex);
1432 return ret;
1433 }
1434
1435 if (chip->state != FL_POINT && chip->state != FL_READY) {
1436 map_write(map, CMD(0xff), cmd_addr);
1437
1438 chip->state = FL_READY;
1439 }
1440
1441 map_copy_from(map, buf, adr, len);
1442
1443 put_chip(map, chip, cmd_addr);
1444
1445 mutex_unlock(&chip->mutex);
1446 return 0;
1447 }
1448
1449 static int cfi_intelext_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1450 {
1451 struct map_info *map = mtd->priv;
1452 struct cfi_private *cfi = map->fldrv_priv;
1453 unsigned long ofs;
1454 int chipnum;
1455 int ret = 0;
1456
1457 /* ofs: offset within the first chip that the first read should start */
1458 chipnum = (from >> cfi->chipshift);
1459 ofs = from - (chipnum << cfi->chipshift);
1460
1461 *retlen = 0;
1462
1463 while (len) {
1464 unsigned long thislen;
1465
1466 if (chipnum >= cfi->numchips)
1467 break;
1468
1469 if ((len + ofs -1) >> cfi->chipshift)
1470 thislen = (1<<cfi->chipshift) - ofs;
1471 else
1472 thislen = len;
1473
1474 ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1475 if (ret)
1476 break;
1477
1478 *retlen += thislen;
1479 len -= thislen;
1480 buf += thislen;
1481
1482 ofs = 0;
1483 chipnum++;
1484 }
1485 return ret;
1486 }
1487
1488 static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
1489 unsigned long adr, map_word datum, int mode)
1490 {
1491 struct cfi_private *cfi = map->fldrv_priv;
1492 map_word status, write_cmd;
1493 int ret=0;
1494
1495 adr += chip->start;
1496
1497 switch (mode) {
1498 case FL_WRITING:
1499 write_cmd = (cfi->cfiq->P_ID != 0x0200) ? CMD(0x40) : CMD(0x41);
1500 break;
1501 case FL_OTP_WRITE:
1502 write_cmd = CMD(0xc0);
1503 break;
1504 default:
1505 return -EINVAL;
1506 }
1507
1508 mutex_lock(&chip->mutex);
1509 ret = get_chip(map, chip, adr, mode);
1510 if (ret) {
1511 mutex_unlock(&chip->mutex);
1512 return ret;
1513 }
1514
1515 XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
1516 ENABLE_VPP(map);
1517 xip_disable(map, chip, adr);
1518 map_write(map, write_cmd, adr);
1519 map_write(map, datum, adr);
1520 chip->state = mode;
1521
1522 ret = INVAL_CACHE_AND_WAIT(map, chip, adr,
1523 adr, map_bankwidth(map),
1524 chip->word_write_time,
1525 chip->word_write_time_max);
1526 if (ret) {
1527 xip_enable(map, chip, adr);
1528 printk(KERN_ERR "%s: word write error (status timeout)\n", map->name);
1529 goto out;
1530 }
1531
1532 /* check for errors */
1533 status = map_read(map, adr);
1534 if (map_word_bitsset(map, status, CMD(0x1a))) {
1535 unsigned long chipstatus = MERGESTATUS(status);
1536
1537 /* reset status */
1538 map_write(map, CMD(0x50), adr);
1539 map_write(map, CMD(0x70), adr);
1540 xip_enable(map, chip, adr);
1541
1542 if (chipstatus & 0x02) {
1543 ret = -EROFS;
1544 } else if (chipstatus & 0x08) {
1545 printk(KERN_ERR "%s: word write error (bad VPP)\n", map->name);
1546 ret = -EIO;
1547 } else {
1548 printk(KERN_ERR "%s: word write error (status 0x%lx)\n", map->name, chipstatus);
1549 ret = -EINVAL;
1550 }
1551
1552 goto out;
1553 }
1554
1555 xip_enable(map, chip, adr);
1556 out: put_chip(map, chip, adr);
1557 mutex_unlock(&chip->mutex);
1558 return ret;
1559 }
1560
1561
1562 static int cfi_intelext_write_words (struct mtd_info *mtd, loff_t to , size_t len, size_t *retlen, const u_char *buf)
1563 {
1564 struct map_info *map = mtd->priv;
1565 struct cfi_private *cfi = map->fldrv_priv;
1566 int ret = 0;
1567 int chipnum;
1568 unsigned long ofs;
1569
1570 *retlen = 0;
1571 if (!len)
1572 return 0;
1573
1574 chipnum = to >> cfi->chipshift;
1575 ofs = to - (chipnum << cfi->chipshift);
1576
1577 /* If it's not bus-aligned, do the first byte write */
1578 if (ofs & (map_bankwidth(map)-1)) {
1579 unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
1580 int gap = ofs - bus_ofs;
1581 int n;
1582 map_word datum;
1583
1584 n = min_t(int, len, map_bankwidth(map)-gap);
1585 datum = map_word_ff(map);
1586 datum = map_word_load_partial(map, datum, buf, gap, n);
1587
1588 ret = do_write_oneword(map, &cfi->chips[chipnum],
1589 bus_ofs, datum, FL_WRITING);
1590 if (ret)
1591 return ret;
1592
1593 len -= n;
1594 ofs += n;
1595 buf += n;
1596 (*retlen) += n;
1597
1598 if (ofs >> cfi->chipshift) {
1599 chipnum ++;
1600 ofs = 0;
1601 if (chipnum == cfi->numchips)
1602 return 0;
1603 }
1604 }
1605
1606 while(len >= map_bankwidth(map)) {
1607 map_word datum = map_word_load(map, buf);
1608
1609 ret = do_write_oneword(map, &cfi->chips[chipnum],
1610 ofs, datum, FL_WRITING);
1611 if (ret)
1612 return ret;
1613
1614 ofs += map_bankwidth(map);
1615 buf += map_bankwidth(map);
1616 (*retlen) += map_bankwidth(map);
1617 len -= map_bankwidth(map);
1618
1619 if (ofs >> cfi->chipshift) {
1620 chipnum ++;
1621 ofs = 0;
1622 if (chipnum == cfi->numchips)
1623 return 0;
1624 }
1625 }
1626
1627 if (len & (map_bankwidth(map)-1)) {
1628 map_word datum;
1629
1630 datum = map_word_ff(map);
1631 datum = map_word_load_partial(map, datum, buf, 0, len);
1632
1633 ret = do_write_oneword(map, &cfi->chips[chipnum],
1634 ofs, datum, FL_WRITING);
1635 if (ret)
1636 return ret;
1637
1638 (*retlen) += len;
1639 }
1640
1641 return 0;
1642 }
1643
1644
1645 static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
1646 unsigned long adr, const struct kvec **pvec,
1647 unsigned long *pvec_seek, int len)
1648 {
1649 struct cfi_private *cfi = map->fldrv_priv;
1650 map_word status, write_cmd, datum;
1651 unsigned long cmd_adr;
1652 int ret, wbufsize, word_gap, words;
1653 const struct kvec *vec;
1654 unsigned long vec_seek;
1655 unsigned long initial_adr;
1656 int initial_len = len;
1657
1658 wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1659 adr += chip->start;
1660 initial_adr = adr;
1661 cmd_adr = adr & ~(wbufsize-1);
1662
1663 /* Let's determine this according to the interleave only once */
1664 write_cmd = (cfi->cfiq->P_ID != 0x0200) ? CMD(0xe8) : CMD(0xe9);
1665
1666 mutex_lock(&chip->mutex);
1667 ret = get_chip(map, chip, cmd_adr, FL_WRITING);
1668 if (ret) {
1669 mutex_unlock(&chip->mutex);
1670 return ret;
1671 }
1672
1673 XIP_INVAL_CACHED_RANGE(map, initial_adr, initial_len);
1674 ENABLE_VPP(map);
1675 xip_disable(map, chip, cmd_adr);
1676
1677 /* §4.8 of the 28FxxxJ3A datasheet says "Any time SR.4 and/or SR.5 is set
1678 [...], the device will not accept any more Write to Buffer commands".
1679 So we must check here and reset those bits if they're set. Otherwise
1680 we're just pissing in the wind */
1681 if (chip->state != FL_STATUS) {
1682 map_write(map, CMD(0x70), cmd_adr);
1683 chip->state = FL_STATUS;
1684 }
1685 status = map_read(map, cmd_adr);
1686 if (map_word_bitsset(map, status, CMD(0x30))) {
1687 xip_enable(map, chip, cmd_adr);
1688 printk(KERN_WARNING "SR.4 or SR.5 bits set in buffer write (status %lx). Clearing.\n", status.x[0]);
1689 xip_disable(map, chip, cmd_adr);
1690 map_write(map, CMD(0x50), cmd_adr);
1691 map_write(map, CMD(0x70), cmd_adr);
1692 }
1693
1694 chip->state = FL_WRITING_TO_BUFFER;
1695 map_write(map, write_cmd, cmd_adr);
1696 ret = WAIT_TIMEOUT(map, chip, cmd_adr, 0, 0);
1697 if (ret) {
1698 /* Argh. Not ready for write to buffer */
1699 map_word Xstatus = map_read(map, cmd_adr);
1700 map_write(map, CMD(0x70), cmd_adr);
1701 chip->state = FL_STATUS;
1702 status = map_read(map, cmd_adr);
1703 map_write(map, CMD(0x50), cmd_adr);
1704 map_write(map, CMD(0x70), cmd_adr);
1705 xip_enable(map, chip, cmd_adr);
1706 printk(KERN_ERR "%s: Chip not ready for buffer write. Xstatus = %lx, status = %lx\n",
1707 map->name, Xstatus.x[0], status.x[0]);
1708 goto out;
1709 }
1710
1711 /* Figure out the number of words to write */
1712 word_gap = (-adr & (map_bankwidth(map)-1));
1713 words = DIV_ROUND_UP(len - word_gap, map_bankwidth(map));
1714 if (!word_gap) {
1715 words--;
1716 } else {
1717 word_gap = map_bankwidth(map) - word_gap;
1718 adr -= word_gap;
1719 datum = map_word_ff(map);
1720 }
1721
1722 /* Write length of data to come */
1723 map_write(map, CMD(words), cmd_adr );
1724
1725 /* Write data */
1726 vec = *pvec;
1727 vec_seek = *pvec_seek;
1728 do {
1729 int n = map_bankwidth(map) - word_gap;
1730 if (n > vec->iov_len - vec_seek)
1731 n = vec->iov_len - vec_seek;
1732 if (n > len)
1733 n = len;
1734
1735 if (!word_gap && len < map_bankwidth(map))
1736 datum = map_word_ff(map);
1737
1738 datum = map_word_load_partial(map, datum,
1739 vec->iov_base + vec_seek,
1740 word_gap, n);
1741
1742 len -= n;
1743 word_gap += n;
1744 if (!len || word_gap == map_bankwidth(map)) {
1745 map_write(map, datum, adr);
1746 adr += map_bankwidth(map);
1747 word_gap = 0;
1748 }
1749
1750 vec_seek += n;
1751 if (vec_seek == vec->iov_len) {
1752 vec++;
1753 vec_seek = 0;
1754 }
1755 } while (len);
1756 *pvec = vec;
1757 *pvec_seek = vec_seek;
1758
1759 /* GO GO GO */
1760 map_write(map, CMD(0xd0), cmd_adr);
1761 chip->state = FL_WRITING;
1762
1763 ret = INVAL_CACHE_AND_WAIT(map, chip, cmd_adr,
1764 initial_adr, initial_len,
1765 chip->buffer_write_time,
1766 chip->buffer_write_time_max);
1767 if (ret) {
1768 map_write(map, CMD(0x70), cmd_adr);
1769 chip->state = FL_STATUS;
1770 xip_enable(map, chip, cmd_adr);
1771 printk(KERN_ERR "%s: buffer write error (status timeout)\n", map->name);
1772 goto out;
1773 }
1774
1775 /* check for errors */
1776 status = map_read(map, cmd_adr);
1777 if (map_word_bitsset(map, status, CMD(0x1a))) {
1778 unsigned long chipstatus = MERGESTATUS(status);
1779
1780 /* reset status */
1781 map_write(map, CMD(0x50), cmd_adr);
1782 map_write(map, CMD(0x70), cmd_adr);
1783 xip_enable(map, chip, cmd_adr);
1784
1785 if (chipstatus & 0x02) {
1786 ret = -EROFS;
1787 } else if (chipstatus & 0x08) {
1788 printk(KERN_ERR "%s: buffer write error (bad VPP)\n", map->name);
1789 ret = -EIO;
1790 } else {
1791 printk(KERN_ERR "%s: buffer write error (status 0x%lx)\n", map->name, chipstatus);
1792 ret = -EINVAL;
1793 }
1794
1795 goto out;
1796 }
1797
1798 xip_enable(map, chip, cmd_adr);
1799 out: put_chip(map, chip, cmd_adr);
1800 mutex_unlock(&chip->mutex);
1801 return ret;
1802 }
1803
1804 static int cfi_intelext_writev (struct mtd_info *mtd, const struct kvec *vecs,
1805 unsigned long count, loff_t to, size_t *retlen)
1806 {
1807 struct map_info *map = mtd->priv;
1808 struct cfi_private *cfi = map->fldrv_priv;
1809 int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1810 int ret = 0;
1811 int chipnum;
1812 unsigned long ofs, vec_seek, i;
1813 size_t len = 0;
1814
1815 for (i = 0; i < count; i++)
1816 len += vecs[i].iov_len;
1817
1818 *retlen = 0;
1819 if (!len)
1820 return 0;
1821
1822 chipnum = to >> cfi->chipshift;
1823 ofs = to - (chipnum << cfi->chipshift);
1824 vec_seek = 0;
1825
1826 do {
1827 /* We must not cross write block boundaries */
1828 int size = wbufsize - (ofs & (wbufsize-1));
1829
1830 if (size > len)
1831 size = len;
1832 ret = do_write_buffer(map, &cfi->chips[chipnum],
1833 ofs, &vecs, &vec_seek, size);
1834 if (ret)
1835 return ret;
1836
1837 ofs += size;
1838 (*retlen) += size;
1839 len -= size;
1840
1841 if (ofs >> cfi->chipshift) {
1842 chipnum ++;
1843 ofs = 0;
1844 if (chipnum == cfi->numchips)
1845 return 0;
1846 }
1847
1848 /* Be nice and reschedule with the chip in a usable state for other
1849 processes. */
1850 cond_resched();
1851
1852 } while (len);
1853
1854 return 0;
1855 }
1856
1857 static int cfi_intelext_write_buffers (struct mtd_info *mtd, loff_t to,
1858 size_t len, size_t *retlen, const u_char *buf)
1859 {
1860 struct kvec vec;
1861
1862 vec.iov_base = (void *) buf;
1863 vec.iov_len = len;
1864
1865 return cfi_intelext_writev(mtd, &vec, 1, to, retlen);
1866 }
1867
1868 static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip,
1869 unsigned long adr, int len, void *thunk)
1870 {
1871 struct cfi_private *cfi = map->fldrv_priv;
1872 map_word status;
1873 int retries = 3;
1874 int ret;
1875
1876 adr += chip->start;
1877
1878 retry:
1879 mutex_lock(&chip->mutex);
1880 ret = get_chip(map, chip, adr, FL_ERASING);
1881 if (ret) {
1882 mutex_unlock(&chip->mutex);
1883 return ret;
1884 }
1885
1886 XIP_INVAL_CACHED_RANGE(map, adr, len);
1887 ENABLE_VPP(map);
1888 xip_disable(map, chip, adr);
1889
1890 /* Clear the status register first */
1891 map_write(map, CMD(0x50), adr);
1892
1893 /* Now erase */
1894 map_write(map, CMD(0x20), adr);
1895 map_write(map, CMD(0xD0), adr);
1896 chip->state = FL_ERASING;
1897 chip->erase_suspended = 0;
1898
1899 ret = INVAL_CACHE_AND_WAIT(map, chip, adr,
1900 adr, len,
1901 chip->erase_time,
1902 chip->erase_time_max);
1903 if (ret) {
1904 map_write(map, CMD(0x70), adr);
1905 chip->state = FL_STATUS;
1906 xip_enable(map, chip, adr);
1907 printk(KERN_ERR "%s: block erase error: (status timeout)\n", map->name);
1908 goto out;
1909 }
1910
1911 /* We've broken this before. It doesn't hurt to be safe */
1912 map_write(map, CMD(0x70), adr);
1913 chip->state = FL_STATUS;
1914 status = map_read(map, adr);
1915
1916 /* check for errors */
1917 if (map_word_bitsset(map, status, CMD(0x3a))) {
1918 unsigned long chipstatus = MERGESTATUS(status);
1919
1920 /* Reset the error bits */
1921 map_write(map, CMD(0x50), adr);
1922 map_write(map, CMD(0x70), adr);
1923 xip_enable(map, chip, adr);
1924
1925 if ((chipstatus & 0x30) == 0x30) {
1926 printk(KERN_ERR "%s: block erase error: (bad command sequence, status 0x%lx)\n", map->name, chipstatus);
1927 ret = -EINVAL;
1928 } else if (chipstatus & 0x02) {
1929 /* Protection bit set */
1930 ret = -EROFS;
1931 } else if (chipstatus & 0x8) {
1932 /* Voltage */
1933 printk(KERN_ERR "%s: block erase error: (bad VPP)\n", map->name);
1934 ret = -EIO;
1935 } else if (chipstatus & 0x20 && retries--) {
1936 printk(KERN_DEBUG "block erase failed at 0x%08lx: status 0x%lx. Retrying...\n", adr, chipstatus);
1937 put_chip(map, chip, adr);
1938 mutex_unlock(&chip->mutex);
1939 goto retry;
1940 } else {
1941 printk(KERN_ERR "%s: block erase failed at 0x%08lx (status 0x%lx)\n", map->name, adr, chipstatus);
1942 ret = -EIO;
1943 }
1944
1945 goto out;
1946 }
1947
1948 xip_enable(map, chip, adr);
1949 out: put_chip(map, chip, adr);
1950 mutex_unlock(&chip->mutex);
1951 return ret;
1952 }
1953
1954 static int cfi_intelext_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
1955 {
1956 unsigned long ofs, len;
1957 int ret;
1958
1959 ofs = instr->addr;
1960 len = instr->len;
1961
1962 ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL);
1963 if (ret)
1964 return ret;
1965
1966 instr->state = MTD_ERASE_DONE;
1967 mtd_erase_callback(instr);
1968
1969 return 0;
1970 }
1971
1972 static void cfi_intelext_sync (struct mtd_info *mtd)
1973 {
1974 struct map_info *map = mtd->priv;
1975 struct cfi_private *cfi = map->fldrv_priv;
1976 int i;
1977 struct flchip *chip;
1978 int ret = 0;
1979
1980 for (i=0; !ret && i<cfi->numchips; i++) {
1981 chip = &cfi->chips[i];
1982
1983 mutex_lock(&chip->mutex);
1984 ret = get_chip(map, chip, chip->start, FL_SYNCING);
1985
1986 if (!ret) {
1987 chip->oldstate = chip->state;
1988 chip->state = FL_SYNCING;
1989 /* No need to wake_up() on this state change -
1990 * as the whole point is that nobody can do anything
1991 * with the chip now anyway.
1992 */
1993 }
1994 mutex_unlock(&chip->mutex);
1995 }
1996
1997 /* Unlock the chips again */
1998
1999 for (i--; i >=0; i--) {
2000 chip = &cfi->chips[i];
2001
2002 mutex_lock(&chip->mutex);
2003
2004 if (chip->state == FL_SYNCING) {
2005 chip->state = chip->oldstate;
2006 chip->oldstate = FL_READY;
2007 wake_up(&chip->wq);
2008 }
2009 mutex_unlock(&chip->mutex);
2010 }
2011 }
2012
2013 static int __xipram do_getlockstatus_oneblock(struct map_info *map,
2014 struct flchip *chip,
2015 unsigned long adr,
2016 int len, void *thunk)
2017 {
2018 struct cfi_private *cfi = map->fldrv_priv;
2019 int status, ofs_factor = cfi->interleave * cfi->device_type;
2020
2021 adr += chip->start;
2022 xip_disable(map, chip, adr+(2*ofs_factor));
2023 map_write(map, CMD(0x90), adr+(2*ofs_factor));
2024 chip->state = FL_JEDEC_QUERY;
2025 status = cfi_read_query(map, adr+(2*ofs_factor));
2026 xip_enable(map, chip, 0);
2027 return status;
2028 }
2029
2030 #ifdef DEBUG_LOCK_BITS
2031 static int __xipram do_printlockstatus_oneblock(struct map_info *map,
2032 struct flchip *chip,
2033 unsigned long adr,
2034 int len, void *thunk)
2035 {
2036 printk(KERN_DEBUG "block status register for 0x%08lx is %x\n",
2037 adr, do_getlockstatus_oneblock(map, chip, adr, len, thunk));
2038 return 0;
2039 }
2040 #endif
2041
2042 #define DO_XXLOCK_ONEBLOCK_LOCK ((void *) 1)
2043 #define DO_XXLOCK_ONEBLOCK_UNLOCK ((void *) 2)
2044
2045 static int __xipram do_xxlock_oneblock(struct map_info *map, struct flchip *chip,
2046 unsigned long adr, int len, void *thunk)
2047 {
2048 struct cfi_private *cfi = map->fldrv_priv;
2049 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
2050 int udelay;
2051 int ret;
2052
2053 adr += chip->start;
2054
2055 mutex_lock(&chip->mutex);
2056 ret = get_chip(map, chip, adr, FL_LOCKING);
2057 if (ret) {
2058 mutex_unlock(&chip->mutex);
2059 return ret;
2060 }
2061
2062 ENABLE_VPP(map);
2063 xip_disable(map, chip, adr);
2064
2065 map_write(map, CMD(0x60), adr);
2066 if (thunk == DO_XXLOCK_ONEBLOCK_LOCK) {
2067 map_write(map, CMD(0x01), adr);
2068 chip->state = FL_LOCKING;
2069 } else if (thunk == DO_XXLOCK_ONEBLOCK_UNLOCK) {
2070 map_write(map, CMD(0xD0), adr);
2071 chip->state = FL_UNLOCKING;
2072 } else
2073 BUG();
2074
2075 /*
2076 * If Instant Individual Block Locking supported then no need
2077 * to delay.
2078 */
2079 udelay = (!extp || !(extp->FeatureSupport & (1 << 5))) ? 1000000/HZ : 0;
2080
2081 ret = WAIT_TIMEOUT(map, chip, adr, udelay, udelay * 100);
2082 if (ret) {
2083 map_write(map, CMD(0x70), adr);
2084 chip->state = FL_STATUS;
2085 xip_enable(map, chip, adr);
2086 printk(KERN_ERR "%s: block unlock error: (status timeout)\n", map->name);
2087 goto out;
2088 }
2089
2090 xip_enable(map, chip, adr);
2091 out: put_chip(map, chip, adr);
2092 mutex_unlock(&chip->mutex);
2093 return ret;
2094 }
2095
2096 static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2097 {
2098 int ret;
2099
2100 #ifdef DEBUG_LOCK_BITS
2101 printk(KERN_DEBUG "%s: lock status before, ofs=0x%08llx, len=0x%08X\n",
2102 __func__, ofs, len);
2103 cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
2104 ofs, len, NULL);
2105 #endif
2106
2107 ret = cfi_varsize_frob(mtd, do_xxlock_oneblock,
2108 ofs, len, DO_XXLOCK_ONEBLOCK_LOCK);
2109
2110 #ifdef DEBUG_LOCK_BITS
2111 printk(KERN_DEBUG "%s: lock status after, ret=%d\n",
2112 __func__, ret);
2113 cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
2114 ofs, len, NULL);
2115 #endif
2116
2117 return ret;
2118 }
2119
2120 static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2121 {
2122 int ret;
2123
2124 #ifdef DEBUG_LOCK_BITS
2125 printk(KERN_DEBUG "%s: lock status before, ofs=0x%08llx, len=0x%08X\n",
2126 __func__, ofs, len);
2127 cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
2128 ofs, len, NULL);
2129 #endif
2130
2131 ret = cfi_varsize_frob(mtd, do_xxlock_oneblock,
2132 ofs, len, DO_XXLOCK_ONEBLOCK_UNLOCK);
2133
2134 #ifdef DEBUG_LOCK_BITS
2135 printk(KERN_DEBUG "%s: lock status after, ret=%d\n",
2136 __func__, ret);
2137 cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
2138 ofs, len, NULL);
2139 #endif
2140
2141 return ret;
2142 }
2143
2144 static int cfi_intelext_is_locked(struct mtd_info *mtd, loff_t ofs,
2145 uint64_t len)
2146 {
2147 return cfi_varsize_frob(mtd, do_getlockstatus_oneblock,
2148 ofs, len, NULL) ? 1 : 0;
2149 }
2150
2151 #ifdef CONFIG_MTD_OTP
2152
2153 typedef int (*otp_op_t)(struct map_info *map, struct flchip *chip,
2154 u_long data_offset, u_char *buf, u_int size,
2155 u_long prot_offset, u_int groupno, u_int groupsize);
2156
2157 static int __xipram
2158 do_otp_read(struct map_info *map, struct flchip *chip, u_long offset,
2159 u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
2160 {
2161 struct cfi_private *cfi = map->fldrv_priv;
2162 int ret;
2163
2164 mutex_lock(&chip->mutex);
2165 ret = get_chip(map, chip, chip->start, FL_JEDEC_QUERY);
2166 if (ret) {
2167 mutex_unlock(&chip->mutex);
2168 return ret;
2169 }
2170
2171 /* let's ensure we're not reading back cached data from array mode */
2172 INVALIDATE_CACHED_RANGE(map, chip->start + offset, size);
2173
2174 xip_disable(map, chip, chip->start);
2175 if (chip->state != FL_JEDEC_QUERY) {
2176 map_write(map, CMD(0x90), chip->start);
2177 chip->state = FL_JEDEC_QUERY;
2178 }
2179 map_copy_from(map, buf, chip->start + offset, size);
2180 xip_enable(map, chip, chip->start);
2181
2182 /* then ensure we don't keep OTP data in the cache */
2183 INVALIDATE_CACHED_RANGE(map, chip->start + offset, size);
2184
2185 put_chip(map, chip, chip->start);
2186 mutex_unlock(&chip->mutex);
2187 return 0;
2188 }
2189
2190 static int
2191 do_otp_write(struct map_info *map, struct flchip *chip, u_long offset,
2192 u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
2193 {
2194 int ret;
2195
2196 while (size) {
2197 unsigned long bus_ofs = offset & ~(map_bankwidth(map)-1);
2198 int gap = offset - bus_ofs;
2199 int n = min_t(int, size, map_bankwidth(map)-gap);
2200 map_word datum = map_word_ff(map);
2201
2202 datum = map_word_load_partial(map, datum, buf, gap, n);
2203 ret = do_write_oneword(map, chip, bus_ofs, datum, FL_OTP_WRITE);
2204 if (ret)
2205 return ret;
2206
2207 offset += n;
2208 buf += n;
2209 size -= n;
2210 }
2211
2212 return 0;
2213 }
2214
2215 static int
2216 do_otp_lock(struct map_info *map, struct flchip *chip, u_long offset,
2217 u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
2218 {
2219 struct cfi_private *cfi = map->fldrv_priv;
2220 map_word datum;
2221
2222 /* make sure area matches group boundaries */
2223 if (size != grpsz)
2224 return -EXDEV;
2225
2226 datum = map_word_ff(map);
2227 datum = map_word_clr(map, datum, CMD(1 << grpno));
2228 return do_write_oneword(map, chip, prot, datum, FL_OTP_WRITE);
2229 }
2230
2231 static int cfi_intelext_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
2232 size_t *retlen, u_char *buf,
2233 otp_op_t action, int user_regs)
2234 {
2235 struct map_info *map = mtd->priv;
2236 struct cfi_private *cfi = map->fldrv_priv;
2237 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
2238 struct flchip *chip;
2239 struct cfi_intelext_otpinfo *otp;
2240 u_long devsize, reg_prot_offset, data_offset;
2241 u_int chip_num, chip_step, field, reg_fact_size, reg_user_size;
2242 u_int groups, groupno, groupsize, reg_fact_groups, reg_user_groups;
2243 int ret;
2244
2245 *retlen = 0;
2246
2247 /* Check that we actually have some OTP registers */
2248 if (!extp || !(extp->FeatureSupport & 64) || !extp->NumProtectionFields)
2249 return -ENODATA;
2250
2251 /* we need real chips here not virtual ones */
2252 devsize = (1 << cfi->cfiq->DevSize) * cfi->interleave;
2253 chip_step = devsize >> cfi->chipshift;
2254 chip_num = 0;
2255
2256 /* Some chips have OTP located in the _top_ partition only.
2257 For example: Intel 28F256L18T (T means top-parameter device) */
2258 if (cfi->mfr == CFI_MFR_INTEL) {
2259 switch (cfi->id) {
2260 case 0x880b:
2261 case 0x880c:
2262 case 0x880d:
2263 chip_num = chip_step - 1;
2264 }
2265 }
2266
2267 for ( ; chip_num < cfi->numchips; chip_num += chip_step) {
2268 chip = &cfi->chips[chip_num];
2269 otp = (struct cfi_intelext_otpinfo *)&extp->extra[0];
2270
2271 /* first OTP region */
2272 field = 0;
2273 reg_prot_offset = extp->ProtRegAddr;
2274 reg_fact_groups = 1;
2275 reg_fact_size = 1 << extp->FactProtRegSize;
2276 reg_user_groups = 1;
2277 reg_user_size = 1 << extp->UserProtRegSize;
2278
2279 while (len > 0) {
2280 /* flash geometry fixup */
2281 data_offset = reg_prot_offset + 1;
2282 data_offset *= cfi->interleave * cfi->device_type;
2283 reg_prot_offset *= cfi->interleave * cfi->device_type;
2284 reg_fact_size *= cfi->interleave;
2285 reg_user_size *= cfi->interleave;
2286
2287 if (user_regs) {
2288 groups = reg_user_groups;
2289 groupsize = reg_user_size;
2290 /* skip over factory reg area */
2291 groupno = reg_fact_groups;
2292 data_offset += reg_fact_groups * reg_fact_size;
2293 } else {
2294 groups = reg_fact_groups;
2295 groupsize = reg_fact_size;
2296 groupno = 0;
2297 }
2298
2299 while (len > 0 && groups > 0) {
2300 if (!action) {
2301 /*
2302 * Special case: if action is NULL
2303 * we fill buf with otp_info records.
2304 */
2305 struct otp_info *otpinfo;
2306 map_word lockword;
2307 len -= sizeof(struct otp_info);
2308 if (len <= 0)
2309 return -ENOSPC;
2310 ret = do_otp_read(map, chip,
2311 reg_prot_offset,
2312 (u_char *)&lockword,
2313 map_bankwidth(map),
2314 0, 0, 0);
2315 if (ret)
2316 return ret;
2317 otpinfo = (struct otp_info *)buf;
2318 otpinfo->start = from;
2319 otpinfo->length = groupsize;
2320 otpinfo->locked =
2321 !map_word_bitsset(map, lockword,
2322 CMD(1 << groupno));
2323 from += groupsize;
2324 buf += sizeof(*otpinfo);
2325 *retlen += sizeof(*otpinfo);
2326 } else if (from >= groupsize) {
2327 from -= groupsize;
2328 data_offset += groupsize;
2329 } else {
2330 int size = groupsize;
2331 data_offset += from;
2332 size -= from;
2333 from = 0;
2334 if (size > len)
2335 size = len;
2336 ret = action(map, chip, data_offset,
2337 buf, size, reg_prot_offset,
2338 groupno, groupsize);
2339 if (ret < 0)
2340 return ret;
2341 buf += size;
2342 len -= size;
2343 *retlen += size;
2344 data_offset += size;
2345 }
2346 groupno++;
2347 groups--;
2348 }
2349
2350 /* next OTP region */
2351 if (++field == extp->NumProtectionFields)
2352 break;
2353 reg_prot_offset = otp->ProtRegAddr;
2354 reg_fact_groups = otp->FactGroups;
2355 reg_fact_size = 1 << otp->FactProtRegSize;
2356 reg_user_groups = otp->UserGroups;
2357 reg_user_size = 1 << otp->UserProtRegSize;
2358 otp++;
2359 }
2360 }
2361
2362 return 0;
2363 }
2364
2365 static int cfi_intelext_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
2366 size_t len, size_t *retlen,
2367 u_char *buf)
2368 {
2369 return cfi_intelext_otp_walk(mtd, from, len, retlen,
2370 buf, do_otp_read, 0);
2371 }
2372
2373 static int cfi_intelext_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
2374 size_t len, size_t *retlen,
2375 u_char *buf)
2376 {
2377 return cfi_intelext_otp_walk(mtd, from, len, retlen,
2378 buf, do_otp_read, 1);
2379 }
2380
2381 static int cfi_intelext_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
2382 size_t len, size_t *retlen,
2383 u_char *buf)
2384 {
2385 return cfi_intelext_otp_walk(mtd, from, len, retlen,
2386 buf, do_otp_write, 1);
2387 }
2388
2389 static int cfi_intelext_lock_user_prot_reg(struct mtd_info *mtd,
2390 loff_t from, size_t len)
2391 {
2392 size_t retlen;
2393 return cfi_intelext_otp_walk(mtd, from, len, &retlen,
2394 NULL, do_otp_lock, 1);
2395 }
2396
2397 static int cfi_intelext_get_fact_prot_info(struct mtd_info *mtd,
2398 struct otp_info *buf, size_t len)
2399 {
2400 size_t retlen;
2401 int ret;
2402
2403 ret = cfi_intelext_otp_walk(mtd, 0, len, &retlen, (u_char *)buf, NULL, 0);
2404 return ret ? : retlen;
2405 }
2406
2407 static int cfi_intelext_get_user_prot_info(struct mtd_info *mtd,
2408 struct otp_info *buf, size_t len)
2409 {
2410 size_t retlen;
2411 int ret;
2412
2413 ret = cfi_intelext_otp_walk(mtd, 0, len, &retlen, (u_char *)buf, NULL, 1);
2414 return ret ? : retlen;
2415 }
2416
2417 #endif
2418
2419 static void cfi_intelext_save_locks(struct mtd_info *mtd)
2420 {
2421 struct mtd_erase_region_info *region;
2422 int block, status, i;
2423 unsigned long adr;
2424 size_t len;
2425
2426 for (i = 0; i < mtd->numeraseregions; i++) {
2427 region = &mtd->eraseregions[i];
2428 if (!region->lockmap)
2429 continue;
2430
2431 for (block = 0; block < region->numblocks; block++){
2432 len = region->erasesize;
2433 adr = region->offset + block * len;
2434
2435 status = cfi_varsize_frob(mtd,
2436 do_getlockstatus_oneblock, adr, len, NULL);
2437 if (status)
2438 set_bit(block, region->lockmap);
2439 else
2440 clear_bit(block, region->lockmap);
2441 }
2442 }
2443 }
2444
2445 static int cfi_intelext_suspend(struct mtd_info *mtd)
2446 {
2447 struct map_info *map = mtd->priv;
2448 struct cfi_private *cfi = map->fldrv_priv;
2449 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
2450 int i;
2451 struct flchip *chip;
2452 int ret = 0;
2453
2454 if ((mtd->flags & MTD_POWERUP_LOCK)
2455 && extp && (extp->FeatureSupport & (1 << 5)))
2456 cfi_intelext_save_locks(mtd);
2457
2458 for (i=0; !ret && i<cfi->numchips; i++) {
2459 chip = &cfi->chips[i];
2460
2461 mutex_lock(&chip->mutex);
2462
2463 switch (chip->state) {
2464 case FL_READY:
2465 case FL_STATUS:
2466 case FL_CFI_QUERY:
2467 case FL_JEDEC_QUERY:
2468 if (chip->oldstate == FL_READY) {
2469 /* place the chip in a known state before suspend */
2470 map_write(map, CMD(0xFF), cfi->chips[i].start);
2471 chip->oldstate = chip->state;
2472 chip->state = FL_PM_SUSPENDED;
2473 /* No need to wake_up() on this state change -
2474 * as the whole point is that nobody can do anything
2475 * with the chip now anyway.
2476 */
2477 } else {
2478 /* There seems to be an operation pending. We must wait for it. */
2479 printk(KERN_NOTICE "Flash device refused suspend due to pending operation (oldstate %d)\n", chip->oldstate);
2480 ret = -EAGAIN;
2481 }
2482 break;
2483 default:
2484 /* Should we actually wait? Once upon a time these routines weren't
2485 allowed to. Or should we return -EAGAIN, because the upper layers
2486 ought to have already shut down anything which was using the device
2487 anyway? The latter for now. */
2488 printk(KERN_NOTICE "Flash device refused suspend due to active operation (state %d)\n", chip->oldstate);
2489 ret = -EAGAIN;
2490 case FL_PM_SUSPENDED:
2491 break;
2492 }
2493 mutex_unlock(&chip->mutex);
2494 }
2495
2496 /* Unlock the chips again */
2497
2498 if (ret) {
2499 for (i--; i >=0; i--) {
2500 chip = &cfi->chips[i];
2501
2502 mutex_lock(&chip->mutex);
2503
2504 if (chip->state == FL_PM_SUSPENDED) {
2505 /* No need to force it into a known state here,
2506 because we're returning failure, and it didn't
2507 get power cycled */
2508 chip->state = chip->oldstate;
2509 chip->oldstate = FL_READY;
2510 wake_up(&chip->wq);
2511 }
2512 mutex_unlock(&chip->mutex);
2513 }
2514 }
2515
2516 return ret;
2517 }
2518
2519 static void cfi_intelext_restore_locks(struct mtd_info *mtd)
2520 {
2521 struct mtd_erase_region_info *region;
2522 int block, i;
2523 unsigned long adr;
2524 size_t len;
2525
2526 for (i = 0; i < mtd->numeraseregions; i++) {
2527 region = &mtd->eraseregions[i];
2528 if (!region->lockmap)
2529 continue;
2530
2531 for (block = 0; block < region->numblocks; block++) {
2532 len = region->erasesize;
2533 adr = region->offset + block * len;
2534
2535 if (!test_bit(block, region->lockmap))
2536 cfi_intelext_unlock(mtd, adr, len);
2537 }
2538 }
2539 }
2540
2541 static void cfi_intelext_resume(struct mtd_info *mtd)
2542 {
2543 struct map_info *map = mtd->priv;
2544 struct cfi_private *cfi = map->fldrv_priv;
2545 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
2546 int i;
2547 struct flchip *chip;
2548
2549 for (i=0; i<cfi->numchips; i++) {
2550
2551 chip = &cfi->chips[i];
2552
2553 mutex_lock(&chip->mutex);
2554
2555 /* Go to known state. Chip may have been power cycled */
2556 if (chip->state == FL_PM_SUSPENDED) {
2557 map_write(map, CMD(0xFF), cfi->chips[i].start);
2558 chip->oldstate = chip->state = FL_READY;
2559 wake_up(&chip->wq);
2560 }
2561
2562 mutex_unlock(&chip->mutex);
2563 }
2564
2565 if ((mtd->flags & MTD_POWERUP_LOCK)
2566 && extp && (extp->FeatureSupport & (1 << 5)))
2567 cfi_intelext_restore_locks(mtd);
2568 }
2569
2570 static int cfi_intelext_reset(struct mtd_info *mtd)
2571 {
2572 struct map_info *map = mtd->priv;
2573 struct cfi_private *cfi = map->fldrv_priv;
2574 int i, ret;
2575
2576 for (i=0; i < cfi->numchips; i++) {
2577 struct flchip *chip = &cfi->chips[i];
2578
2579 /* force the completion of any ongoing operation
2580 and switch to array mode so any bootloader in
2581 flash is accessible for soft reboot. */
2582 mutex_lock(&chip->mutex);
2583 ret = get_chip(map, chip, chip->start, FL_SHUTDOWN);
2584 if (!ret) {
2585 map_write(map, CMD(0xff), chip->start);
2586 chip->state = FL_SHUTDOWN;
2587 put_chip(map, chip, chip->start);
2588 }
2589 mutex_unlock(&chip->mutex);
2590 }
2591
2592 return 0;
2593 }
2594
2595 static int cfi_intelext_reboot(struct notifier_block *nb, unsigned long val,
2596 void *v)
2597 {
2598 struct mtd_info *mtd;
2599
2600 mtd = container_of(nb, struct mtd_info, reboot_notifier);
2601 cfi_intelext_reset(mtd);
2602 return NOTIFY_DONE;
2603 }
2604
2605 static void cfi_intelext_destroy(struct mtd_info *mtd)
2606 {
2607 struct map_info *map = mtd->priv;
2608 struct cfi_private *cfi = map->fldrv_priv;
2609 struct mtd_erase_region_info *region;
2610 int i;
2611 cfi_intelext_reset(mtd);
2612 unregister_reboot_notifier(&mtd->reboot_notifier);
2613 kfree(cfi->cmdset_priv);
2614 kfree(cfi->cfiq);
2615 kfree(cfi->chips[0].priv);
2616 kfree(cfi);
2617 for (i = 0; i < mtd->numeraseregions; i++) {
2618 region = &mtd->eraseregions[i];
2619 if (region->lockmap)
2620 kfree(region->lockmap);
2621 }
2622 kfree(mtd->eraseregions);
2623 }
2624
2625 MODULE_LICENSE("GPL");
2626 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org> et al.");
2627 MODULE_DESCRIPTION("MTD chip driver for Intel/Sharp flash chips");
2628 MODULE_ALIAS("cfi_cmdset_0003");
2629 MODULE_ALIAS("cfi_cmdset_0200");
This page took 0.100395 seconds and 6 git commands to generate.