Merge branch 'fixefi' of git://git.kernel.org/pub/scm/linux/kernel/git/aegl/linux-2.6
[deliverable/linux.git] / drivers / mtd / chips / cfi_cmdset_0002.c
1 /*
2 * Common Flash Interface support:
3 * AMD & Fujitsu Standard Vendor Command Set (ID 0x0002)
4 *
5 * Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp>
6 * Copyright (C) 2004 Arcom Control Systems Ltd <linux@arcom.com>
7 * Copyright (C) 2005 MontaVista Software Inc. <source@mvista.com>
8 *
9 * 2_by_8 routines added by Simon Munton
10 *
11 * 4_by_16 work by Carolyn J. Smith
12 *
13 * XIP support hooks by Vitaly Wool (based on code for Intel flash
14 * by Nicolas Pitre)
15 *
16 * 25/09/2008 Christopher Moore: TopBottom fixup for many Macronix with CFI V1.0
17 *
18 * Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com
19 *
20 * This code is GPL
21 */
22
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/kernel.h>
26 #include <linux/sched.h>
27 #include <linux/init.h>
28 #include <asm/io.h>
29 #include <asm/byteorder.h>
30
31 #include <linux/errno.h>
32 #include <linux/slab.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/reboot.h>
36 #include <linux/mtd/map.h>
37 #include <linux/mtd/mtd.h>
38 #include <linux/mtd/cfi.h>
39 #include <linux/mtd/xip.h>
40
41 #define AMD_BOOTLOC_BUG
42 #define FORCE_WORD_WRITE 0
43
44 #define MAX_WORD_RETRIES 3
45
46 #define SST49LF004B 0x0060
47 #define SST49LF040B 0x0050
48 #define SST49LF008A 0x005a
49 #define AT49BV6416 0x00d6
50
51 static int cfi_amdstd_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
52 static int cfi_amdstd_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
53 static int cfi_amdstd_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
54 static int cfi_amdstd_erase_chip(struct mtd_info *, struct erase_info *);
55 static int cfi_amdstd_erase_varsize(struct mtd_info *, struct erase_info *);
56 static void cfi_amdstd_sync (struct mtd_info *);
57 static int cfi_amdstd_suspend (struct mtd_info *);
58 static void cfi_amdstd_resume (struct mtd_info *);
59 static int cfi_amdstd_reboot(struct notifier_block *, unsigned long, void *);
60 static int cfi_amdstd_secsi_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
61
62 static void cfi_amdstd_destroy(struct mtd_info *);
63
64 struct mtd_info *cfi_cmdset_0002(struct map_info *, int);
65 static struct mtd_info *cfi_amdstd_setup (struct mtd_info *);
66
67 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
68 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
69 #include "fwh_lock.h"
70
71 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
72 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
73
74 static struct mtd_chip_driver cfi_amdstd_chipdrv = {
75 .probe = NULL, /* Not usable directly */
76 .destroy = cfi_amdstd_destroy,
77 .name = "cfi_cmdset_0002",
78 .module = THIS_MODULE
79 };
80
81
82 /* #define DEBUG_CFI_FEATURES */
83
84
85 #ifdef DEBUG_CFI_FEATURES
86 static void cfi_tell_features(struct cfi_pri_amdstd *extp)
87 {
88 const char* erase_suspend[3] = {
89 "Not supported", "Read only", "Read/write"
90 };
91 const char* top_bottom[6] = {
92 "No WP", "8x8KiB sectors at top & bottom, no WP",
93 "Bottom boot", "Top boot",
94 "Uniform, Bottom WP", "Uniform, Top WP"
95 };
96
97 printk(" Silicon revision: %d\n", extp->SiliconRevision >> 1);
98 printk(" Address sensitive unlock: %s\n",
99 (extp->SiliconRevision & 1) ? "Not required" : "Required");
100
101 if (extp->EraseSuspend < ARRAY_SIZE(erase_suspend))
102 printk(" Erase Suspend: %s\n", erase_suspend[extp->EraseSuspend]);
103 else
104 printk(" Erase Suspend: Unknown value %d\n", extp->EraseSuspend);
105
106 if (extp->BlkProt == 0)
107 printk(" Block protection: Not supported\n");
108 else
109 printk(" Block protection: %d sectors per group\n", extp->BlkProt);
110
111
112 printk(" Temporary block unprotect: %s\n",
113 extp->TmpBlkUnprotect ? "Supported" : "Not supported");
114 printk(" Block protect/unprotect scheme: %d\n", extp->BlkProtUnprot);
115 printk(" Number of simultaneous operations: %d\n", extp->SimultaneousOps);
116 printk(" Burst mode: %s\n",
117 extp->BurstMode ? "Supported" : "Not supported");
118 if (extp->PageMode == 0)
119 printk(" Page mode: Not supported\n");
120 else
121 printk(" Page mode: %d word page\n", extp->PageMode << 2);
122
123 printk(" Vpp Supply Minimum Program/Erase Voltage: %d.%d V\n",
124 extp->VppMin >> 4, extp->VppMin & 0xf);
125 printk(" Vpp Supply Maximum Program/Erase Voltage: %d.%d V\n",
126 extp->VppMax >> 4, extp->VppMax & 0xf);
127
128 if (extp->TopBottom < ARRAY_SIZE(top_bottom))
129 printk(" Top/Bottom Boot Block: %s\n", top_bottom[extp->TopBottom]);
130 else
131 printk(" Top/Bottom Boot Block: Unknown value %d\n", extp->TopBottom);
132 }
133 #endif
134
135 #ifdef AMD_BOOTLOC_BUG
136 /* Wheee. Bring me the head of someone at AMD. */
137 static void fixup_amd_bootblock(struct mtd_info *mtd)
138 {
139 struct map_info *map = mtd->priv;
140 struct cfi_private *cfi = map->fldrv_priv;
141 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
142 __u8 major = extp->MajorVersion;
143 __u8 minor = extp->MinorVersion;
144
145 if (((major << 8) | minor) < 0x3131) {
146 /* CFI version 1.0 => don't trust bootloc */
147
148 DEBUG(MTD_DEBUG_LEVEL1,
149 "%s: JEDEC Vendor ID is 0x%02X Device ID is 0x%02X\n",
150 map->name, cfi->mfr, cfi->id);
151
152 /* AFAICS all 29LV400 with a bottom boot block have a device ID
153 * of 0x22BA in 16-bit mode and 0xBA in 8-bit mode.
154 * These were badly detected as they have the 0x80 bit set
155 * so treat them as a special case.
156 */
157 if (((cfi->id == 0xBA) || (cfi->id == 0x22BA)) &&
158
159 /* Macronix added CFI to their 2nd generation
160 * MX29LV400C B/T but AFAICS no other 29LV400 (AMD,
161 * Fujitsu, Spansion, EON, ESI and older Macronix)
162 * has CFI.
163 *
164 * Therefore also check the manufacturer.
165 * This reduces the risk of false detection due to
166 * the 8-bit device ID.
167 */
168 (cfi->mfr == CFI_MFR_MACRONIX)) {
169 DEBUG(MTD_DEBUG_LEVEL1,
170 "%s: Macronix MX29LV400C with bottom boot block"
171 " detected\n", map->name);
172 extp->TopBottom = 2; /* bottom boot */
173 } else
174 if (cfi->id & 0x80) {
175 printk(KERN_WARNING "%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map->name, cfi->id);
176 extp->TopBottom = 3; /* top boot */
177 } else {
178 extp->TopBottom = 2; /* bottom boot */
179 }
180
181 DEBUG(MTD_DEBUG_LEVEL1,
182 "%s: AMD CFI PRI V%c.%c has no boot block field;"
183 " deduced %s from Device ID\n", map->name, major, minor,
184 extp->TopBottom == 2 ? "bottom" : "top");
185 }
186 }
187 #endif
188
189 static void fixup_use_write_buffers(struct mtd_info *mtd)
190 {
191 struct map_info *map = mtd->priv;
192 struct cfi_private *cfi = map->fldrv_priv;
193 if (cfi->cfiq->BufWriteTimeoutTyp) {
194 DEBUG(MTD_DEBUG_LEVEL1, "Using buffer write method\n" );
195 mtd->write = cfi_amdstd_write_buffers;
196 }
197 }
198
199 /* Atmel chips don't use the same PRI format as AMD chips */
200 static void fixup_convert_atmel_pri(struct mtd_info *mtd)
201 {
202 struct map_info *map = mtd->priv;
203 struct cfi_private *cfi = map->fldrv_priv;
204 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
205 struct cfi_pri_atmel atmel_pri;
206
207 memcpy(&atmel_pri, extp, sizeof(atmel_pri));
208 memset((char *)extp + 5, 0, sizeof(*extp) - 5);
209
210 if (atmel_pri.Features & 0x02)
211 extp->EraseSuspend = 2;
212
213 /* Some chips got it backwards... */
214 if (cfi->id == AT49BV6416) {
215 if (atmel_pri.BottomBoot)
216 extp->TopBottom = 3;
217 else
218 extp->TopBottom = 2;
219 } else {
220 if (atmel_pri.BottomBoot)
221 extp->TopBottom = 2;
222 else
223 extp->TopBottom = 3;
224 }
225
226 /* burst write mode not supported */
227 cfi->cfiq->BufWriteTimeoutTyp = 0;
228 cfi->cfiq->BufWriteTimeoutMax = 0;
229 }
230
231 static void fixup_use_secsi(struct mtd_info *mtd)
232 {
233 /* Setup for chips with a secsi area */
234 mtd->read_user_prot_reg = cfi_amdstd_secsi_read;
235 mtd->read_fact_prot_reg = cfi_amdstd_secsi_read;
236 }
237
238 static void fixup_use_erase_chip(struct mtd_info *mtd)
239 {
240 struct map_info *map = mtd->priv;
241 struct cfi_private *cfi = map->fldrv_priv;
242 if ((cfi->cfiq->NumEraseRegions == 1) &&
243 ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0)) {
244 mtd->erase = cfi_amdstd_erase_chip;
245 }
246
247 }
248
249 /*
250 * Some Atmel chips (e.g. the AT49BV6416) power-up with all sectors
251 * locked by default.
252 */
253 static void fixup_use_atmel_lock(struct mtd_info *mtd)
254 {
255 mtd->lock = cfi_atmel_lock;
256 mtd->unlock = cfi_atmel_unlock;
257 mtd->flags |= MTD_POWERUP_LOCK;
258 }
259
260 static void fixup_old_sst_eraseregion(struct mtd_info *mtd)
261 {
262 struct map_info *map = mtd->priv;
263 struct cfi_private *cfi = map->fldrv_priv;
264
265 /*
266 * These flashes report two separate eraseblock regions based on the
267 * sector_erase-size and block_erase-size, although they both operate on the
268 * same memory. This is not allowed according to CFI, so we just pick the
269 * sector_erase-size.
270 */
271 cfi->cfiq->NumEraseRegions = 1;
272 }
273
274 static void fixup_sst39vf(struct mtd_info *mtd)
275 {
276 struct map_info *map = mtd->priv;
277 struct cfi_private *cfi = map->fldrv_priv;
278
279 fixup_old_sst_eraseregion(mtd);
280
281 cfi->addr_unlock1 = 0x5555;
282 cfi->addr_unlock2 = 0x2AAA;
283 }
284
285 static void fixup_sst39vf_rev_b(struct mtd_info *mtd)
286 {
287 struct map_info *map = mtd->priv;
288 struct cfi_private *cfi = map->fldrv_priv;
289
290 fixup_old_sst_eraseregion(mtd);
291
292 cfi->addr_unlock1 = 0x555;
293 cfi->addr_unlock2 = 0x2AA;
294
295 cfi->sector_erase_cmd = CMD(0x50);
296 }
297
298 static void fixup_sst38vf640x_sectorsize(struct mtd_info *mtd)
299 {
300 struct map_info *map = mtd->priv;
301 struct cfi_private *cfi = map->fldrv_priv;
302
303 fixup_sst39vf_rev_b(mtd);
304
305 /*
306 * CFI reports 1024 sectors (0x03ff+1) of 64KBytes (0x0100*256) where
307 * it should report a size of 8KBytes (0x0020*256).
308 */
309 cfi->cfiq->EraseRegionInfo[0] = 0x002003ff;
310 pr_warning("%s: Bad 38VF640x CFI data; adjusting sector size from 64 to 8KiB\n", mtd->name);
311 }
312
313 static void fixup_s29gl064n_sectors(struct mtd_info *mtd)
314 {
315 struct map_info *map = mtd->priv;
316 struct cfi_private *cfi = map->fldrv_priv;
317
318 if ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0x003f) {
319 cfi->cfiq->EraseRegionInfo[0] |= 0x0040;
320 pr_warning("%s: Bad S29GL064N CFI data, adjust from 64 to 128 sectors\n", mtd->name);
321 }
322 }
323
324 static void fixup_s29gl032n_sectors(struct mtd_info *mtd)
325 {
326 struct map_info *map = mtd->priv;
327 struct cfi_private *cfi = map->fldrv_priv;
328
329 if ((cfi->cfiq->EraseRegionInfo[1] & 0xffff) == 0x007e) {
330 cfi->cfiq->EraseRegionInfo[1] &= ~0x0040;
331 pr_warning("%s: Bad S29GL032N CFI data, adjust from 127 to 63 sectors\n", mtd->name);
332 }
333 }
334
335 /* Used to fix CFI-Tables of chips without Extended Query Tables */
336 static struct cfi_fixup cfi_nopri_fixup_table[] = {
337 { CFI_MFR_SST, 0x234a, fixup_sst39vf }, /* SST39VF1602 */
338 { CFI_MFR_SST, 0x234b, fixup_sst39vf }, /* SST39VF1601 */
339 { CFI_MFR_SST, 0x235a, fixup_sst39vf }, /* SST39VF3202 */
340 { CFI_MFR_SST, 0x235b, fixup_sst39vf }, /* SST39VF3201 */
341 { CFI_MFR_SST, 0x235c, fixup_sst39vf_rev_b }, /* SST39VF3202B */
342 { CFI_MFR_SST, 0x235d, fixup_sst39vf_rev_b }, /* SST39VF3201B */
343 { CFI_MFR_SST, 0x236c, fixup_sst39vf_rev_b }, /* SST39VF6402B */
344 { CFI_MFR_SST, 0x236d, fixup_sst39vf_rev_b }, /* SST39VF6401B */
345 { 0, 0, NULL }
346 };
347
348 static struct cfi_fixup cfi_fixup_table[] = {
349 { CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri },
350 #ifdef AMD_BOOTLOC_BUG
351 { CFI_MFR_AMD, CFI_ID_ANY, fixup_amd_bootblock },
352 { CFI_MFR_AMIC, CFI_ID_ANY, fixup_amd_bootblock },
353 { CFI_MFR_MACRONIX, CFI_ID_ANY, fixup_amd_bootblock },
354 #endif
355 { CFI_MFR_AMD, 0x0050, fixup_use_secsi },
356 { CFI_MFR_AMD, 0x0053, fixup_use_secsi },
357 { CFI_MFR_AMD, 0x0055, fixup_use_secsi },
358 { CFI_MFR_AMD, 0x0056, fixup_use_secsi },
359 { CFI_MFR_AMD, 0x005C, fixup_use_secsi },
360 { CFI_MFR_AMD, 0x005F, fixup_use_secsi },
361 { CFI_MFR_AMD, 0x0c01, fixup_s29gl064n_sectors },
362 { CFI_MFR_AMD, 0x1301, fixup_s29gl064n_sectors },
363 { CFI_MFR_AMD, 0x1a00, fixup_s29gl032n_sectors },
364 { CFI_MFR_AMD, 0x1a01, fixup_s29gl032n_sectors },
365 { CFI_MFR_SST, 0x536a, fixup_sst38vf640x_sectorsize }, /* SST38VF6402 */
366 { CFI_MFR_SST, 0x536b, fixup_sst38vf640x_sectorsize }, /* SST38VF6401 */
367 { CFI_MFR_SST, 0x536c, fixup_sst38vf640x_sectorsize }, /* SST38VF6404 */
368 { CFI_MFR_SST, 0x536d, fixup_sst38vf640x_sectorsize }, /* SST38VF6403 */
369 #if !FORCE_WORD_WRITE
370 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers },
371 #endif
372 { 0, 0, NULL }
373 };
374 static struct cfi_fixup jedec_fixup_table[] = {
375 { CFI_MFR_SST, SST49LF004B, fixup_use_fwh_lock },
376 { CFI_MFR_SST, SST49LF040B, fixup_use_fwh_lock },
377 { CFI_MFR_SST, SST49LF008A, fixup_use_fwh_lock },
378 { 0, 0, NULL }
379 };
380
381 static struct cfi_fixup fixup_table[] = {
382 /* The CFI vendor ids and the JEDEC vendor IDs appear
383 * to be common. It is like the devices id's are as
384 * well. This table is to pick all cases where
385 * we know that is the case.
386 */
387 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_erase_chip },
388 { CFI_MFR_ATMEL, AT49BV6416, fixup_use_atmel_lock },
389 { 0, 0, NULL }
390 };
391
392
393 static void cfi_fixup_major_minor(struct cfi_private *cfi,
394 struct cfi_pri_amdstd *extp)
395 {
396 if (cfi->mfr == CFI_MFR_SAMSUNG) {
397 if ((extp->MajorVersion == '0' && extp->MinorVersion == '0') ||
398 (extp->MajorVersion == '3' && extp->MinorVersion == '3')) {
399 /*
400 * Samsung K8P2815UQB and K8D6x16UxM chips
401 * report major=0 / minor=0.
402 * K8D3x16UxC chips report major=3 / minor=3.
403 */
404 printk(KERN_NOTICE " Fixing Samsung's Amd/Fujitsu"
405 " Extended Query version to 1.%c\n",
406 extp->MinorVersion);
407 extp->MajorVersion = '1';
408 }
409 }
410
411 /*
412 * SST 38VF640x chips report major=0xFF / minor=0xFF.
413 */
414 if (cfi->mfr == CFI_MFR_SST && (cfi->id >> 4) == 0x0536) {
415 extp->MajorVersion = '1';
416 extp->MinorVersion = '0';
417 }
418 }
419
420 struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary)
421 {
422 struct cfi_private *cfi = map->fldrv_priv;
423 struct mtd_info *mtd;
424 int i;
425
426 mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
427 if (!mtd) {
428 printk(KERN_WARNING "Failed to allocate memory for MTD device\n");
429 return NULL;
430 }
431 mtd->priv = map;
432 mtd->type = MTD_NORFLASH;
433
434 /* Fill in the default mtd operations */
435 mtd->erase = cfi_amdstd_erase_varsize;
436 mtd->write = cfi_amdstd_write_words;
437 mtd->read = cfi_amdstd_read;
438 mtd->sync = cfi_amdstd_sync;
439 mtd->suspend = cfi_amdstd_suspend;
440 mtd->resume = cfi_amdstd_resume;
441 mtd->flags = MTD_CAP_NORFLASH;
442 mtd->name = map->name;
443 mtd->writesize = 1;
444 mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
445
446 DEBUG(MTD_DEBUG_LEVEL3, "MTD %s(): write buffer size %d\n",
447 __func__, mtd->writebufsize);
448
449 mtd->reboot_notifier.notifier_call = cfi_amdstd_reboot;
450
451 if (cfi->cfi_mode==CFI_MODE_CFI){
452 unsigned char bootloc;
453 __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
454 struct cfi_pri_amdstd *extp;
455
456 extp = (struct cfi_pri_amdstd*)cfi_read_pri(map, adr, sizeof(*extp), "Amd/Fujitsu");
457 if (extp) {
458 /*
459 * It's a real CFI chip, not one for which the probe
460 * routine faked a CFI structure.
461 */
462 cfi_fixup_major_minor(cfi, extp);
463
464 /*
465 * Valid primary extension versions are: 1.0, 1.1, 1.2, 1.3, 1.4, 1.5
466 * see: http://cs.ozerki.net/zap/pub/axim-x5/docs/cfi_r20.pdf, page 19
467 * http://www.spansion.com/Support/AppNotes/cfi_100_20011201.pdf
468 * http://www.spansion.com/Support/Datasheets/s29ws-p_00_a12_e.pdf
469 * http://www.spansion.com/Support/Datasheets/S29GL_128S_01GS_00_02_e.pdf
470 */
471 if (extp->MajorVersion != '1' ||
472 (extp->MajorVersion == '1' && (extp->MinorVersion < '0' || extp->MinorVersion > '5'))) {
473 printk(KERN_ERR " Unknown Amd/Fujitsu Extended Query "
474 "version %c.%c (%#02x/%#02x).\n",
475 extp->MajorVersion, extp->MinorVersion,
476 extp->MajorVersion, extp->MinorVersion);
477 kfree(extp);
478 kfree(mtd);
479 return NULL;
480 }
481
482 printk(KERN_INFO " Amd/Fujitsu Extended Query version %c.%c.\n",
483 extp->MajorVersion, extp->MinorVersion);
484
485 /* Install our own private info structure */
486 cfi->cmdset_priv = extp;
487
488 /* Apply cfi device specific fixups */
489 cfi_fixup(mtd, cfi_fixup_table);
490
491 #ifdef DEBUG_CFI_FEATURES
492 /* Tell the user about it in lots of lovely detail */
493 cfi_tell_features(extp);
494 #endif
495
496 bootloc = extp->TopBottom;
497 if ((bootloc < 2) || (bootloc > 5)) {
498 printk(KERN_WARNING "%s: CFI contains unrecognised boot "
499 "bank location (%d). Assuming bottom.\n",
500 map->name, bootloc);
501 bootloc = 2;
502 }
503
504 if (bootloc == 3 && cfi->cfiq->NumEraseRegions > 1) {
505 printk(KERN_WARNING "%s: Swapping erase regions for top-boot CFI table.\n", map->name);
506
507 for (i=0; i<cfi->cfiq->NumEraseRegions / 2; i++) {
508 int j = (cfi->cfiq->NumEraseRegions-1)-i;
509 __u32 swap;
510
511 swap = cfi->cfiq->EraseRegionInfo[i];
512 cfi->cfiq->EraseRegionInfo[i] = cfi->cfiq->EraseRegionInfo[j];
513 cfi->cfiq->EraseRegionInfo[j] = swap;
514 }
515 }
516 /* Set the default CFI lock/unlock addresses */
517 cfi->addr_unlock1 = 0x555;
518 cfi->addr_unlock2 = 0x2aa;
519 }
520 cfi_fixup(mtd, cfi_nopri_fixup_table);
521
522 if (!cfi->addr_unlock1 || !cfi->addr_unlock2) {
523 kfree(mtd);
524 return NULL;
525 }
526
527 } /* CFI mode */
528 else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
529 /* Apply jedec specific fixups */
530 cfi_fixup(mtd, jedec_fixup_table);
531 }
532 /* Apply generic fixups */
533 cfi_fixup(mtd, fixup_table);
534
535 for (i=0; i< cfi->numchips; i++) {
536 cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp;
537 cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp;
538 cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp;
539 cfi->chips[i].ref_point_counter = 0;
540 init_waitqueue_head(&(cfi->chips[i].wq));
541 }
542
543 map->fldrv = &cfi_amdstd_chipdrv;
544
545 return cfi_amdstd_setup(mtd);
546 }
547 struct mtd_info *cfi_cmdset_0006(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
548 struct mtd_info *cfi_cmdset_0701(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
549 EXPORT_SYMBOL_GPL(cfi_cmdset_0002);
550 EXPORT_SYMBOL_GPL(cfi_cmdset_0006);
551 EXPORT_SYMBOL_GPL(cfi_cmdset_0701);
552
553 static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd)
554 {
555 struct map_info *map = mtd->priv;
556 struct cfi_private *cfi = map->fldrv_priv;
557 unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
558 unsigned long offset = 0;
559 int i,j;
560
561 printk(KERN_NOTICE "number of %s chips: %d\n",
562 (cfi->cfi_mode == CFI_MODE_CFI)?"CFI":"JEDEC",cfi->numchips);
563 /* Select the correct geometry setup */
564 mtd->size = devsize * cfi->numchips;
565
566 mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
567 mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info)
568 * mtd->numeraseregions, GFP_KERNEL);
569 if (!mtd->eraseregions) {
570 printk(KERN_WARNING "Failed to allocate memory for MTD erase region info\n");
571 goto setup_err;
572 }
573
574 for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
575 unsigned long ernum, ersize;
576 ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
577 ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
578
579 if (mtd->erasesize < ersize) {
580 mtd->erasesize = ersize;
581 }
582 for (j=0; j<cfi->numchips; j++) {
583 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
584 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
585 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
586 }
587 offset += (ersize * ernum);
588 }
589 if (offset != devsize) {
590 /* Argh */
591 printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
592 goto setup_err;
593 }
594
595 __module_get(THIS_MODULE);
596 register_reboot_notifier(&mtd->reboot_notifier);
597 return mtd;
598
599 setup_err:
600 kfree(mtd->eraseregions);
601 kfree(mtd);
602 kfree(cfi->cmdset_priv);
603 kfree(cfi->cfiq);
604 return NULL;
605 }
606
607 /*
608 * Return true if the chip is ready.
609 *
610 * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
611 * non-suspended sector) and is indicated by no toggle bits toggling.
612 *
613 * Note that anything more complicated than checking if no bits are toggling
614 * (including checking DQ5 for an error status) is tricky to get working
615 * correctly and is therefore not done (particularly with interleaved chips
616 * as each chip must be checked independently of the others).
617 */
618 static int __xipram chip_ready(struct map_info *map, unsigned long addr)
619 {
620 map_word d, t;
621
622 d = map_read(map, addr);
623 t = map_read(map, addr);
624
625 return map_word_equal(map, d, t);
626 }
627
628 /*
629 * Return true if the chip is ready and has the correct value.
630 *
631 * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
632 * non-suspended sector) and it is indicated by no bits toggling.
633 *
634 * Error are indicated by toggling bits or bits held with the wrong value,
635 * or with bits toggling.
636 *
637 * Note that anything more complicated than checking if no bits are toggling
638 * (including checking DQ5 for an error status) is tricky to get working
639 * correctly and is therefore not done (particularly with interleaved chips
640 * as each chip must be checked independently of the others).
641 *
642 */
643 static int __xipram chip_good(struct map_info *map, unsigned long addr, map_word expected)
644 {
645 map_word oldd, curd;
646
647 oldd = map_read(map, addr);
648 curd = map_read(map, addr);
649
650 return map_word_equal(map, oldd, curd) &&
651 map_word_equal(map, curd, expected);
652 }
653
654 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
655 {
656 DECLARE_WAITQUEUE(wait, current);
657 struct cfi_private *cfi = map->fldrv_priv;
658 unsigned long timeo;
659 struct cfi_pri_amdstd *cfip = (struct cfi_pri_amdstd *)cfi->cmdset_priv;
660
661 resettime:
662 timeo = jiffies + HZ;
663 retry:
664 switch (chip->state) {
665
666 case FL_STATUS:
667 for (;;) {
668 if (chip_ready(map, adr))
669 break;
670
671 if (time_after(jiffies, timeo)) {
672 printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
673 return -EIO;
674 }
675 mutex_unlock(&chip->mutex);
676 cfi_udelay(1);
677 mutex_lock(&chip->mutex);
678 /* Someone else might have been playing with it. */
679 goto retry;
680 }
681
682 case FL_READY:
683 case FL_CFI_QUERY:
684 case FL_JEDEC_QUERY:
685 return 0;
686
687 case FL_ERASING:
688 if (!cfip || !(cfip->EraseSuspend & (0x1|0x2)) ||
689 !(mode == FL_READY || mode == FL_POINT ||
690 (mode == FL_WRITING && (cfip->EraseSuspend & 0x2))))
691 goto sleep;
692
693 /* We could check to see if we're trying to access the sector
694 * that is currently being erased. However, no user will try
695 * anything like that so we just wait for the timeout. */
696
697 /* Erase suspend */
698 /* It's harmless to issue the Erase-Suspend and Erase-Resume
699 * commands when the erase algorithm isn't in progress. */
700 map_write(map, CMD(0xB0), chip->in_progress_block_addr);
701 chip->oldstate = FL_ERASING;
702 chip->state = FL_ERASE_SUSPENDING;
703 chip->erase_suspended = 1;
704 for (;;) {
705 if (chip_ready(map, adr))
706 break;
707
708 if (time_after(jiffies, timeo)) {
709 /* Should have suspended the erase by now.
710 * Send an Erase-Resume command as either
711 * there was an error (so leave the erase
712 * routine to recover from it) or we trying to
713 * use the erase-in-progress sector. */
714 put_chip(map, chip, adr);
715 printk(KERN_ERR "MTD %s(): chip not ready after erase suspend\n", __func__);
716 return -EIO;
717 }
718
719 mutex_unlock(&chip->mutex);
720 cfi_udelay(1);
721 mutex_lock(&chip->mutex);
722 /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
723 So we can just loop here. */
724 }
725 chip->state = FL_READY;
726 return 0;
727
728 case FL_XIP_WHILE_ERASING:
729 if (mode != FL_READY && mode != FL_POINT &&
730 (!cfip || !(cfip->EraseSuspend&2)))
731 goto sleep;
732 chip->oldstate = chip->state;
733 chip->state = FL_READY;
734 return 0;
735
736 case FL_SHUTDOWN:
737 /* The machine is rebooting */
738 return -EIO;
739
740 case FL_POINT:
741 /* Only if there's no operation suspended... */
742 if (mode == FL_READY && chip->oldstate == FL_READY)
743 return 0;
744
745 default:
746 sleep:
747 set_current_state(TASK_UNINTERRUPTIBLE);
748 add_wait_queue(&chip->wq, &wait);
749 mutex_unlock(&chip->mutex);
750 schedule();
751 remove_wait_queue(&chip->wq, &wait);
752 mutex_lock(&chip->mutex);
753 goto resettime;
754 }
755 }
756
757
758 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
759 {
760 struct cfi_private *cfi = map->fldrv_priv;
761
762 switch(chip->oldstate) {
763 case FL_ERASING:
764 map_write(map, cfi->sector_erase_cmd, chip->in_progress_block_addr);
765 chip->oldstate = FL_READY;
766 chip->state = FL_ERASING;
767 break;
768
769 case FL_XIP_WHILE_ERASING:
770 chip->state = chip->oldstate;
771 chip->oldstate = FL_READY;
772 break;
773
774 case FL_READY:
775 case FL_STATUS:
776 /* We should really make set_vpp() count, rather than doing this */
777 DISABLE_VPP(map);
778 break;
779 default:
780 printk(KERN_ERR "MTD: put_chip() called with oldstate %d!!\n", chip->oldstate);
781 }
782 wake_up(&chip->wq);
783 }
784
785 #ifdef CONFIG_MTD_XIP
786
787 /*
788 * No interrupt what so ever can be serviced while the flash isn't in array
789 * mode. This is ensured by the xip_disable() and xip_enable() functions
790 * enclosing any code path where the flash is known not to be in array mode.
791 * And within a XIP disabled code path, only functions marked with __xipram
792 * may be called and nothing else (it's a good thing to inspect generated
793 * assembly to make sure inline functions were actually inlined and that gcc
794 * didn't emit calls to its own support functions). Also configuring MTD CFI
795 * support to a single buswidth and a single interleave is also recommended.
796 */
797
798 static void xip_disable(struct map_info *map, struct flchip *chip,
799 unsigned long adr)
800 {
801 /* TODO: chips with no XIP use should ignore and return */
802 (void) map_read(map, adr); /* ensure mmu mapping is up to date */
803 local_irq_disable();
804 }
805
806 static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
807 unsigned long adr)
808 {
809 struct cfi_private *cfi = map->fldrv_priv;
810
811 if (chip->state != FL_POINT && chip->state != FL_READY) {
812 map_write(map, CMD(0xf0), adr);
813 chip->state = FL_READY;
814 }
815 (void) map_read(map, adr);
816 xip_iprefetch();
817 local_irq_enable();
818 }
819
820 /*
821 * When a delay is required for the flash operation to complete, the
822 * xip_udelay() function is polling for both the given timeout and pending
823 * (but still masked) hardware interrupts. Whenever there is an interrupt
824 * pending then the flash erase operation is suspended, array mode restored
825 * and interrupts unmasked. Task scheduling might also happen at that
826 * point. The CPU eventually returns from the interrupt or the call to
827 * schedule() and the suspended flash operation is resumed for the remaining
828 * of the delay period.
829 *
830 * Warning: this function _will_ fool interrupt latency tracing tools.
831 */
832
833 static void __xipram xip_udelay(struct map_info *map, struct flchip *chip,
834 unsigned long adr, int usec)
835 {
836 struct cfi_private *cfi = map->fldrv_priv;
837 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
838 map_word status, OK = CMD(0x80);
839 unsigned long suspended, start = xip_currtime();
840 flstate_t oldstate;
841
842 do {
843 cpu_relax();
844 if (xip_irqpending() && extp &&
845 ((chip->state == FL_ERASING && (extp->EraseSuspend & 2))) &&
846 (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
847 /*
848 * Let's suspend the erase operation when supported.
849 * Note that we currently don't try to suspend
850 * interleaved chips if there is already another
851 * operation suspended (imagine what happens
852 * when one chip was already done with the current
853 * operation while another chip suspended it, then
854 * we resume the whole thing at once). Yes, it
855 * can happen!
856 */
857 map_write(map, CMD(0xb0), adr);
858 usec -= xip_elapsed_since(start);
859 suspended = xip_currtime();
860 do {
861 if (xip_elapsed_since(suspended) > 100000) {
862 /*
863 * The chip doesn't want to suspend
864 * after waiting for 100 msecs.
865 * This is a critical error but there
866 * is not much we can do here.
867 */
868 return;
869 }
870 status = map_read(map, adr);
871 } while (!map_word_andequal(map, status, OK, OK));
872
873 /* Suspend succeeded */
874 oldstate = chip->state;
875 if (!map_word_bitsset(map, status, CMD(0x40)))
876 break;
877 chip->state = FL_XIP_WHILE_ERASING;
878 chip->erase_suspended = 1;
879 map_write(map, CMD(0xf0), adr);
880 (void) map_read(map, adr);
881 xip_iprefetch();
882 local_irq_enable();
883 mutex_unlock(&chip->mutex);
884 xip_iprefetch();
885 cond_resched();
886
887 /*
888 * We're back. However someone else might have
889 * decided to go write to the chip if we are in
890 * a suspended erase state. If so let's wait
891 * until it's done.
892 */
893 mutex_lock(&chip->mutex);
894 while (chip->state != FL_XIP_WHILE_ERASING) {
895 DECLARE_WAITQUEUE(wait, current);
896 set_current_state(TASK_UNINTERRUPTIBLE);
897 add_wait_queue(&chip->wq, &wait);
898 mutex_unlock(&chip->mutex);
899 schedule();
900 remove_wait_queue(&chip->wq, &wait);
901 mutex_lock(&chip->mutex);
902 }
903 /* Disallow XIP again */
904 local_irq_disable();
905
906 /* Resume the write or erase operation */
907 map_write(map, cfi->sector_erase_cmd, adr);
908 chip->state = oldstate;
909 start = xip_currtime();
910 } else if (usec >= 1000000/HZ) {
911 /*
912 * Try to save on CPU power when waiting delay
913 * is at least a system timer tick period.
914 * No need to be extremely accurate here.
915 */
916 xip_cpu_idle();
917 }
918 status = map_read(map, adr);
919 } while (!map_word_andequal(map, status, OK, OK)
920 && xip_elapsed_since(start) < usec);
921 }
922
923 #define UDELAY(map, chip, adr, usec) xip_udelay(map, chip, adr, usec)
924
925 /*
926 * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
927 * the flash is actively programming or erasing since we have to poll for
928 * the operation to complete anyway. We can't do that in a generic way with
929 * a XIP setup so do it before the actual flash operation in this case
930 * and stub it out from INVALIDATE_CACHE_UDELAY.
931 */
932 #define XIP_INVAL_CACHED_RANGE(map, from, size) \
933 INVALIDATE_CACHED_RANGE(map, from, size)
934
935 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
936 UDELAY(map, chip, adr, usec)
937
938 /*
939 * Extra notes:
940 *
941 * Activating this XIP support changes the way the code works a bit. For
942 * example the code to suspend the current process when concurrent access
943 * happens is never executed because xip_udelay() will always return with the
944 * same chip state as it was entered with. This is why there is no care for
945 * the presence of add_wait_queue() or schedule() calls from within a couple
946 * xip_disable()'d areas of code, like in do_erase_oneblock for example.
947 * The queueing and scheduling are always happening within xip_udelay().
948 *
949 * Similarly, get_chip() and put_chip() just happen to always be executed
950 * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state
951 * is in array mode, therefore never executing many cases therein and not
952 * causing any problem with XIP.
953 */
954
955 #else
956
957 #define xip_disable(map, chip, adr)
958 #define xip_enable(map, chip, adr)
959 #define XIP_INVAL_CACHED_RANGE(x...)
960
961 #define UDELAY(map, chip, adr, usec) \
962 do { \
963 mutex_unlock(&chip->mutex); \
964 cfi_udelay(usec); \
965 mutex_lock(&chip->mutex); \
966 } while (0)
967
968 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
969 do { \
970 mutex_unlock(&chip->mutex); \
971 INVALIDATE_CACHED_RANGE(map, adr, len); \
972 cfi_udelay(usec); \
973 mutex_lock(&chip->mutex); \
974 } while (0)
975
976 #endif
977
978 static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
979 {
980 unsigned long cmd_addr;
981 struct cfi_private *cfi = map->fldrv_priv;
982 int ret;
983
984 adr += chip->start;
985
986 /* Ensure cmd read/writes are aligned. */
987 cmd_addr = adr & ~(map_bankwidth(map)-1);
988
989 mutex_lock(&chip->mutex);
990 ret = get_chip(map, chip, cmd_addr, FL_READY);
991 if (ret) {
992 mutex_unlock(&chip->mutex);
993 return ret;
994 }
995
996 if (chip->state != FL_POINT && chip->state != FL_READY) {
997 map_write(map, CMD(0xf0), cmd_addr);
998 chip->state = FL_READY;
999 }
1000
1001 map_copy_from(map, buf, adr, len);
1002
1003 put_chip(map, chip, cmd_addr);
1004
1005 mutex_unlock(&chip->mutex);
1006 return 0;
1007 }
1008
1009
1010 static int cfi_amdstd_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1011 {
1012 struct map_info *map = mtd->priv;
1013 struct cfi_private *cfi = map->fldrv_priv;
1014 unsigned long ofs;
1015 int chipnum;
1016 int ret = 0;
1017
1018 /* ofs: offset within the first chip that the first read should start */
1019
1020 chipnum = (from >> cfi->chipshift);
1021 ofs = from - (chipnum << cfi->chipshift);
1022
1023
1024 *retlen = 0;
1025
1026 while (len) {
1027 unsigned long thislen;
1028
1029 if (chipnum >= cfi->numchips)
1030 break;
1031
1032 if ((len + ofs -1) >> cfi->chipshift)
1033 thislen = (1<<cfi->chipshift) - ofs;
1034 else
1035 thislen = len;
1036
1037 ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1038 if (ret)
1039 break;
1040
1041 *retlen += thislen;
1042 len -= thislen;
1043 buf += thislen;
1044
1045 ofs = 0;
1046 chipnum++;
1047 }
1048 return ret;
1049 }
1050
1051
1052 static inline int do_read_secsi_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
1053 {
1054 DECLARE_WAITQUEUE(wait, current);
1055 unsigned long timeo = jiffies + HZ;
1056 struct cfi_private *cfi = map->fldrv_priv;
1057
1058 retry:
1059 mutex_lock(&chip->mutex);
1060
1061 if (chip->state != FL_READY){
1062 set_current_state(TASK_UNINTERRUPTIBLE);
1063 add_wait_queue(&chip->wq, &wait);
1064
1065 mutex_unlock(&chip->mutex);
1066
1067 schedule();
1068 remove_wait_queue(&chip->wq, &wait);
1069 timeo = jiffies + HZ;
1070
1071 goto retry;
1072 }
1073
1074 adr += chip->start;
1075
1076 chip->state = FL_READY;
1077
1078 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1079 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1080 cfi_send_gen_cmd(0x88, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1081
1082 map_copy_from(map, buf, adr, len);
1083
1084 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1085 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1086 cfi_send_gen_cmd(0x90, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1087 cfi_send_gen_cmd(0x00, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1088
1089 wake_up(&chip->wq);
1090 mutex_unlock(&chip->mutex);
1091
1092 return 0;
1093 }
1094
1095 static int cfi_amdstd_secsi_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1096 {
1097 struct map_info *map = mtd->priv;
1098 struct cfi_private *cfi = map->fldrv_priv;
1099 unsigned long ofs;
1100 int chipnum;
1101 int ret = 0;
1102
1103
1104 /* ofs: offset within the first chip that the first read should start */
1105
1106 /* 8 secsi bytes per chip */
1107 chipnum=from>>3;
1108 ofs=from & 7;
1109
1110
1111 *retlen = 0;
1112
1113 while (len) {
1114 unsigned long thislen;
1115
1116 if (chipnum >= cfi->numchips)
1117 break;
1118
1119 if ((len + ofs -1) >> 3)
1120 thislen = (1<<3) - ofs;
1121 else
1122 thislen = len;
1123
1124 ret = do_read_secsi_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1125 if (ret)
1126 break;
1127
1128 *retlen += thislen;
1129 len -= thislen;
1130 buf += thislen;
1131
1132 ofs = 0;
1133 chipnum++;
1134 }
1135 return ret;
1136 }
1137
1138
1139 static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip, unsigned long adr, map_word datum)
1140 {
1141 struct cfi_private *cfi = map->fldrv_priv;
1142 unsigned long timeo = jiffies + HZ;
1143 /*
1144 * We use a 1ms + 1 jiffies generic timeout for writes (most devices
1145 * have a max write time of a few hundreds usec). However, we should
1146 * use the maximum timeout value given by the chip at probe time
1147 * instead. Unfortunately, struct flchip does have a field for
1148 * maximum timeout, only for typical which can be far too short
1149 * depending of the conditions. The ' + 1' is to avoid having a
1150 * timeout of 0 jiffies if HZ is smaller than 1000.
1151 */
1152 unsigned long uWriteTimeout = ( HZ / 1000 ) + 1;
1153 int ret = 0;
1154 map_word oldd;
1155 int retry_cnt = 0;
1156
1157 adr += chip->start;
1158
1159 mutex_lock(&chip->mutex);
1160 ret = get_chip(map, chip, adr, FL_WRITING);
1161 if (ret) {
1162 mutex_unlock(&chip->mutex);
1163 return ret;
1164 }
1165
1166 DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1167 __func__, adr, datum.x[0] );
1168
1169 /*
1170 * Check for a NOP for the case when the datum to write is already
1171 * present - it saves time and works around buggy chips that corrupt
1172 * data at other locations when 0xff is written to a location that
1173 * already contains 0xff.
1174 */
1175 oldd = map_read(map, adr);
1176 if (map_word_equal(map, oldd, datum)) {
1177 DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): NOP\n",
1178 __func__);
1179 goto op_done;
1180 }
1181
1182 XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
1183 ENABLE_VPP(map);
1184 xip_disable(map, chip, adr);
1185 retry:
1186 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1187 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1188 cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1189 map_write(map, datum, adr);
1190 chip->state = FL_WRITING;
1191
1192 INVALIDATE_CACHE_UDELAY(map, chip,
1193 adr, map_bankwidth(map),
1194 chip->word_write_time);
1195
1196 /* See comment above for timeout value. */
1197 timeo = jiffies + uWriteTimeout;
1198 for (;;) {
1199 if (chip->state != FL_WRITING) {
1200 /* Someone's suspended the write. Sleep */
1201 DECLARE_WAITQUEUE(wait, current);
1202
1203 set_current_state(TASK_UNINTERRUPTIBLE);
1204 add_wait_queue(&chip->wq, &wait);
1205 mutex_unlock(&chip->mutex);
1206 schedule();
1207 remove_wait_queue(&chip->wq, &wait);
1208 timeo = jiffies + (HZ / 2); /* FIXME */
1209 mutex_lock(&chip->mutex);
1210 continue;
1211 }
1212
1213 if (time_after(jiffies, timeo) && !chip_ready(map, adr)){
1214 xip_enable(map, chip, adr);
1215 printk(KERN_WARNING "MTD %s(): software timeout\n", __func__);
1216 xip_disable(map, chip, adr);
1217 break;
1218 }
1219
1220 if (chip_ready(map, adr))
1221 break;
1222
1223 /* Latency issues. Drop the lock, wait a while and retry */
1224 UDELAY(map, chip, adr, 1);
1225 }
1226 /* Did we succeed? */
1227 if (!chip_good(map, adr, datum)) {
1228 /* reset on all failures. */
1229 map_write( map, CMD(0xF0), chip->start );
1230 /* FIXME - should have reset delay before continuing */
1231
1232 if (++retry_cnt <= MAX_WORD_RETRIES)
1233 goto retry;
1234
1235 ret = -EIO;
1236 }
1237 xip_enable(map, chip, adr);
1238 op_done:
1239 chip->state = FL_READY;
1240 put_chip(map, chip, adr);
1241 mutex_unlock(&chip->mutex);
1242
1243 return ret;
1244 }
1245
1246
1247 static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len,
1248 size_t *retlen, const u_char *buf)
1249 {
1250 struct map_info *map = mtd->priv;
1251 struct cfi_private *cfi = map->fldrv_priv;
1252 int ret = 0;
1253 int chipnum;
1254 unsigned long ofs, chipstart;
1255 DECLARE_WAITQUEUE(wait, current);
1256
1257 *retlen = 0;
1258 if (!len)
1259 return 0;
1260
1261 chipnum = to >> cfi->chipshift;
1262 ofs = to - (chipnum << cfi->chipshift);
1263 chipstart = cfi->chips[chipnum].start;
1264
1265 /* If it's not bus-aligned, do the first byte write */
1266 if (ofs & (map_bankwidth(map)-1)) {
1267 unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
1268 int i = ofs - bus_ofs;
1269 int n = 0;
1270 map_word tmp_buf;
1271
1272 retry:
1273 mutex_lock(&cfi->chips[chipnum].mutex);
1274
1275 if (cfi->chips[chipnum].state != FL_READY) {
1276 set_current_state(TASK_UNINTERRUPTIBLE);
1277 add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1278
1279 mutex_unlock(&cfi->chips[chipnum].mutex);
1280
1281 schedule();
1282 remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1283 goto retry;
1284 }
1285
1286 /* Load 'tmp_buf' with old contents of flash */
1287 tmp_buf = map_read(map, bus_ofs+chipstart);
1288
1289 mutex_unlock(&cfi->chips[chipnum].mutex);
1290
1291 /* Number of bytes to copy from buffer */
1292 n = min_t(int, len, map_bankwidth(map)-i);
1293
1294 tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
1295
1296 ret = do_write_oneword(map, &cfi->chips[chipnum],
1297 bus_ofs, tmp_buf);
1298 if (ret)
1299 return ret;
1300
1301 ofs += n;
1302 buf += n;
1303 (*retlen) += n;
1304 len -= n;
1305
1306 if (ofs >> cfi->chipshift) {
1307 chipnum ++;
1308 ofs = 0;
1309 if (chipnum == cfi->numchips)
1310 return 0;
1311 }
1312 }
1313
1314 /* We are now aligned, write as much as possible */
1315 while(len >= map_bankwidth(map)) {
1316 map_word datum;
1317
1318 datum = map_word_load(map, buf);
1319
1320 ret = do_write_oneword(map, &cfi->chips[chipnum],
1321 ofs, datum);
1322 if (ret)
1323 return ret;
1324
1325 ofs += map_bankwidth(map);
1326 buf += map_bankwidth(map);
1327 (*retlen) += map_bankwidth(map);
1328 len -= map_bankwidth(map);
1329
1330 if (ofs >> cfi->chipshift) {
1331 chipnum ++;
1332 ofs = 0;
1333 if (chipnum == cfi->numchips)
1334 return 0;
1335 chipstart = cfi->chips[chipnum].start;
1336 }
1337 }
1338
1339 /* Write the trailing bytes if any */
1340 if (len & (map_bankwidth(map)-1)) {
1341 map_word tmp_buf;
1342
1343 retry1:
1344 mutex_lock(&cfi->chips[chipnum].mutex);
1345
1346 if (cfi->chips[chipnum].state != FL_READY) {
1347 set_current_state(TASK_UNINTERRUPTIBLE);
1348 add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1349
1350 mutex_unlock(&cfi->chips[chipnum].mutex);
1351
1352 schedule();
1353 remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1354 goto retry1;
1355 }
1356
1357 tmp_buf = map_read(map, ofs + chipstart);
1358
1359 mutex_unlock(&cfi->chips[chipnum].mutex);
1360
1361 tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
1362
1363 ret = do_write_oneword(map, &cfi->chips[chipnum],
1364 ofs, tmp_buf);
1365 if (ret)
1366 return ret;
1367
1368 (*retlen) += len;
1369 }
1370
1371 return 0;
1372 }
1373
1374
1375 /*
1376 * FIXME: interleaved mode not tested, and probably not supported!
1377 */
1378 static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
1379 unsigned long adr, const u_char *buf,
1380 int len)
1381 {
1382 struct cfi_private *cfi = map->fldrv_priv;
1383 unsigned long timeo = jiffies + HZ;
1384 /* see comments in do_write_oneword() regarding uWriteTimeo. */
1385 unsigned long uWriteTimeout = ( HZ / 1000 ) + 1;
1386 int ret = -EIO;
1387 unsigned long cmd_adr;
1388 int z, words;
1389 map_word datum;
1390
1391 adr += chip->start;
1392 cmd_adr = adr;
1393
1394 mutex_lock(&chip->mutex);
1395 ret = get_chip(map, chip, adr, FL_WRITING);
1396 if (ret) {
1397 mutex_unlock(&chip->mutex);
1398 return ret;
1399 }
1400
1401 datum = map_word_load(map, buf);
1402
1403 DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1404 __func__, adr, datum.x[0] );
1405
1406 XIP_INVAL_CACHED_RANGE(map, adr, len);
1407 ENABLE_VPP(map);
1408 xip_disable(map, chip, cmd_adr);
1409
1410 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1411 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1412
1413 /* Write Buffer Load */
1414 map_write(map, CMD(0x25), cmd_adr);
1415
1416 chip->state = FL_WRITING_TO_BUFFER;
1417
1418 /* Write length of data to come */
1419 words = len / map_bankwidth(map);
1420 map_write(map, CMD(words - 1), cmd_adr);
1421 /* Write data */
1422 z = 0;
1423 while(z < words * map_bankwidth(map)) {
1424 datum = map_word_load(map, buf);
1425 map_write(map, datum, adr + z);
1426
1427 z += map_bankwidth(map);
1428 buf += map_bankwidth(map);
1429 }
1430 z -= map_bankwidth(map);
1431
1432 adr += z;
1433
1434 /* Write Buffer Program Confirm: GO GO GO */
1435 map_write(map, CMD(0x29), cmd_adr);
1436 chip->state = FL_WRITING;
1437
1438 INVALIDATE_CACHE_UDELAY(map, chip,
1439 adr, map_bankwidth(map),
1440 chip->word_write_time);
1441
1442 timeo = jiffies + uWriteTimeout;
1443
1444 for (;;) {
1445 if (chip->state != FL_WRITING) {
1446 /* Someone's suspended the write. Sleep */
1447 DECLARE_WAITQUEUE(wait, current);
1448
1449 set_current_state(TASK_UNINTERRUPTIBLE);
1450 add_wait_queue(&chip->wq, &wait);
1451 mutex_unlock(&chip->mutex);
1452 schedule();
1453 remove_wait_queue(&chip->wq, &wait);
1454 timeo = jiffies + (HZ / 2); /* FIXME */
1455 mutex_lock(&chip->mutex);
1456 continue;
1457 }
1458
1459 if (time_after(jiffies, timeo) && !chip_ready(map, adr))
1460 break;
1461
1462 if (chip_ready(map, adr)) {
1463 xip_enable(map, chip, adr);
1464 goto op_done;
1465 }
1466
1467 /* Latency issues. Drop the lock, wait a while and retry */
1468 UDELAY(map, chip, adr, 1);
1469 }
1470
1471 /* reset on all failures. */
1472 map_write( map, CMD(0xF0), chip->start );
1473 xip_enable(map, chip, adr);
1474 /* FIXME - should have reset delay before continuing */
1475
1476 printk(KERN_WARNING "MTD %s(): software timeout\n",
1477 __func__ );
1478
1479 ret = -EIO;
1480 op_done:
1481 chip->state = FL_READY;
1482 put_chip(map, chip, adr);
1483 mutex_unlock(&chip->mutex);
1484
1485 return ret;
1486 }
1487
1488
1489 static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
1490 size_t *retlen, const u_char *buf)
1491 {
1492 struct map_info *map = mtd->priv;
1493 struct cfi_private *cfi = map->fldrv_priv;
1494 int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1495 int ret = 0;
1496 int chipnum;
1497 unsigned long ofs;
1498
1499 *retlen = 0;
1500 if (!len)
1501 return 0;
1502
1503 chipnum = to >> cfi->chipshift;
1504 ofs = to - (chipnum << cfi->chipshift);
1505
1506 /* If it's not bus-aligned, do the first word write */
1507 if (ofs & (map_bankwidth(map)-1)) {
1508 size_t local_len = (-ofs)&(map_bankwidth(map)-1);
1509 if (local_len > len)
1510 local_len = len;
1511 ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1512 local_len, retlen, buf);
1513 if (ret)
1514 return ret;
1515 ofs += local_len;
1516 buf += local_len;
1517 len -= local_len;
1518
1519 if (ofs >> cfi->chipshift) {
1520 chipnum ++;
1521 ofs = 0;
1522 if (chipnum == cfi->numchips)
1523 return 0;
1524 }
1525 }
1526
1527 /* Write buffer is worth it only if more than one word to write... */
1528 while (len >= map_bankwidth(map) * 2) {
1529 /* We must not cross write block boundaries */
1530 int size = wbufsize - (ofs & (wbufsize-1));
1531
1532 if (size > len)
1533 size = len;
1534 if (size % map_bankwidth(map))
1535 size -= size % map_bankwidth(map);
1536
1537 ret = do_write_buffer(map, &cfi->chips[chipnum],
1538 ofs, buf, size);
1539 if (ret)
1540 return ret;
1541
1542 ofs += size;
1543 buf += size;
1544 (*retlen) += size;
1545 len -= size;
1546
1547 if (ofs >> cfi->chipshift) {
1548 chipnum ++;
1549 ofs = 0;
1550 if (chipnum == cfi->numchips)
1551 return 0;
1552 }
1553 }
1554
1555 if (len) {
1556 size_t retlen_dregs = 0;
1557
1558 ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1559 len, &retlen_dregs, buf);
1560
1561 *retlen += retlen_dregs;
1562 return ret;
1563 }
1564
1565 return 0;
1566 }
1567
1568
1569 /*
1570 * Handle devices with one erase region, that only implement
1571 * the chip erase command.
1572 */
1573 static int __xipram do_erase_chip(struct map_info *map, struct flchip *chip)
1574 {
1575 struct cfi_private *cfi = map->fldrv_priv;
1576 unsigned long timeo = jiffies + HZ;
1577 unsigned long int adr;
1578 DECLARE_WAITQUEUE(wait, current);
1579 int ret = 0;
1580
1581 adr = cfi->addr_unlock1;
1582
1583 mutex_lock(&chip->mutex);
1584 ret = get_chip(map, chip, adr, FL_WRITING);
1585 if (ret) {
1586 mutex_unlock(&chip->mutex);
1587 return ret;
1588 }
1589
1590 DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): ERASE 0x%.8lx\n",
1591 __func__, chip->start );
1592
1593 XIP_INVAL_CACHED_RANGE(map, adr, map->size);
1594 ENABLE_VPP(map);
1595 xip_disable(map, chip, adr);
1596
1597 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1598 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1599 cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1600 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1601 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1602 cfi_send_gen_cmd(0x10, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1603
1604 chip->state = FL_ERASING;
1605 chip->erase_suspended = 0;
1606 chip->in_progress_block_addr = adr;
1607
1608 INVALIDATE_CACHE_UDELAY(map, chip,
1609 adr, map->size,
1610 chip->erase_time*500);
1611
1612 timeo = jiffies + (HZ*20);
1613
1614 for (;;) {
1615 if (chip->state != FL_ERASING) {
1616 /* Someone's suspended the erase. Sleep */
1617 set_current_state(TASK_UNINTERRUPTIBLE);
1618 add_wait_queue(&chip->wq, &wait);
1619 mutex_unlock(&chip->mutex);
1620 schedule();
1621 remove_wait_queue(&chip->wq, &wait);
1622 mutex_lock(&chip->mutex);
1623 continue;
1624 }
1625 if (chip->erase_suspended) {
1626 /* This erase was suspended and resumed.
1627 Adjust the timeout */
1628 timeo = jiffies + (HZ*20); /* FIXME */
1629 chip->erase_suspended = 0;
1630 }
1631
1632 if (chip_ready(map, adr))
1633 break;
1634
1635 if (time_after(jiffies, timeo)) {
1636 printk(KERN_WARNING "MTD %s(): software timeout\n",
1637 __func__ );
1638 break;
1639 }
1640
1641 /* Latency issues. Drop the lock, wait a while and retry */
1642 UDELAY(map, chip, adr, 1000000/HZ);
1643 }
1644 /* Did we succeed? */
1645 if (!chip_good(map, adr, map_word_ff(map))) {
1646 /* reset on all failures. */
1647 map_write( map, CMD(0xF0), chip->start );
1648 /* FIXME - should have reset delay before continuing */
1649
1650 ret = -EIO;
1651 }
1652
1653 chip->state = FL_READY;
1654 xip_enable(map, chip, adr);
1655 put_chip(map, chip, adr);
1656 mutex_unlock(&chip->mutex);
1657
1658 return ret;
1659 }
1660
1661
1662 static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr, int len, void *thunk)
1663 {
1664 struct cfi_private *cfi = map->fldrv_priv;
1665 unsigned long timeo = jiffies + HZ;
1666 DECLARE_WAITQUEUE(wait, current);
1667 int ret = 0;
1668
1669 adr += chip->start;
1670
1671 mutex_lock(&chip->mutex);
1672 ret = get_chip(map, chip, adr, FL_ERASING);
1673 if (ret) {
1674 mutex_unlock(&chip->mutex);
1675 return ret;
1676 }
1677
1678 DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): ERASE 0x%.8lx\n",
1679 __func__, adr );
1680
1681 XIP_INVAL_CACHED_RANGE(map, adr, len);
1682 ENABLE_VPP(map);
1683 xip_disable(map, chip, adr);
1684
1685 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1686 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1687 cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1688 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1689 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1690 map_write(map, cfi->sector_erase_cmd, adr);
1691
1692 chip->state = FL_ERASING;
1693 chip->erase_suspended = 0;
1694 chip->in_progress_block_addr = adr;
1695
1696 INVALIDATE_CACHE_UDELAY(map, chip,
1697 adr, len,
1698 chip->erase_time*500);
1699
1700 timeo = jiffies + (HZ*20);
1701
1702 for (;;) {
1703 if (chip->state != FL_ERASING) {
1704 /* Someone's suspended the erase. Sleep */
1705 set_current_state(TASK_UNINTERRUPTIBLE);
1706 add_wait_queue(&chip->wq, &wait);
1707 mutex_unlock(&chip->mutex);
1708 schedule();
1709 remove_wait_queue(&chip->wq, &wait);
1710 mutex_lock(&chip->mutex);
1711 continue;
1712 }
1713 if (chip->erase_suspended) {
1714 /* This erase was suspended and resumed.
1715 Adjust the timeout */
1716 timeo = jiffies + (HZ*20); /* FIXME */
1717 chip->erase_suspended = 0;
1718 }
1719
1720 if (chip_ready(map, adr)) {
1721 xip_enable(map, chip, adr);
1722 break;
1723 }
1724
1725 if (time_after(jiffies, timeo)) {
1726 xip_enable(map, chip, adr);
1727 printk(KERN_WARNING "MTD %s(): software timeout\n",
1728 __func__ );
1729 break;
1730 }
1731
1732 /* Latency issues. Drop the lock, wait a while and retry */
1733 UDELAY(map, chip, adr, 1000000/HZ);
1734 }
1735 /* Did we succeed? */
1736 if (!chip_good(map, adr, map_word_ff(map))) {
1737 /* reset on all failures. */
1738 map_write( map, CMD(0xF0), chip->start );
1739 /* FIXME - should have reset delay before continuing */
1740
1741 ret = -EIO;
1742 }
1743
1744 chip->state = FL_READY;
1745 put_chip(map, chip, adr);
1746 mutex_unlock(&chip->mutex);
1747 return ret;
1748 }
1749
1750
1751 static int cfi_amdstd_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
1752 {
1753 unsigned long ofs, len;
1754 int ret;
1755
1756 ofs = instr->addr;
1757 len = instr->len;
1758
1759 ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL);
1760 if (ret)
1761 return ret;
1762
1763 instr->state = MTD_ERASE_DONE;
1764 mtd_erase_callback(instr);
1765
1766 return 0;
1767 }
1768
1769
1770 static int cfi_amdstd_erase_chip(struct mtd_info *mtd, struct erase_info *instr)
1771 {
1772 struct map_info *map = mtd->priv;
1773 struct cfi_private *cfi = map->fldrv_priv;
1774 int ret = 0;
1775
1776 if (instr->addr != 0)
1777 return -EINVAL;
1778
1779 if (instr->len != mtd->size)
1780 return -EINVAL;
1781
1782 ret = do_erase_chip(map, &cfi->chips[0]);
1783 if (ret)
1784 return ret;
1785
1786 instr->state = MTD_ERASE_DONE;
1787 mtd_erase_callback(instr);
1788
1789 return 0;
1790 }
1791
1792 static int do_atmel_lock(struct map_info *map, struct flchip *chip,
1793 unsigned long adr, int len, void *thunk)
1794 {
1795 struct cfi_private *cfi = map->fldrv_priv;
1796 int ret;
1797
1798 mutex_lock(&chip->mutex);
1799 ret = get_chip(map, chip, adr + chip->start, FL_LOCKING);
1800 if (ret)
1801 goto out_unlock;
1802 chip->state = FL_LOCKING;
1803
1804 DEBUG(MTD_DEBUG_LEVEL3, "MTD %s(): LOCK 0x%08lx len %d\n",
1805 __func__, adr, len);
1806
1807 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1808 cfi->device_type, NULL);
1809 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1810 cfi->device_type, NULL);
1811 cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi,
1812 cfi->device_type, NULL);
1813 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1814 cfi->device_type, NULL);
1815 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1816 cfi->device_type, NULL);
1817 map_write(map, CMD(0x40), chip->start + adr);
1818
1819 chip->state = FL_READY;
1820 put_chip(map, chip, adr + chip->start);
1821 ret = 0;
1822
1823 out_unlock:
1824 mutex_unlock(&chip->mutex);
1825 return ret;
1826 }
1827
1828 static int do_atmel_unlock(struct map_info *map, struct flchip *chip,
1829 unsigned long adr, int len, void *thunk)
1830 {
1831 struct cfi_private *cfi = map->fldrv_priv;
1832 int ret;
1833
1834 mutex_lock(&chip->mutex);
1835 ret = get_chip(map, chip, adr + chip->start, FL_UNLOCKING);
1836 if (ret)
1837 goto out_unlock;
1838 chip->state = FL_UNLOCKING;
1839
1840 DEBUG(MTD_DEBUG_LEVEL3, "MTD %s(): LOCK 0x%08lx len %d\n",
1841 __func__, adr, len);
1842
1843 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1844 cfi->device_type, NULL);
1845 map_write(map, CMD(0x70), adr);
1846
1847 chip->state = FL_READY;
1848 put_chip(map, chip, adr + chip->start);
1849 ret = 0;
1850
1851 out_unlock:
1852 mutex_unlock(&chip->mutex);
1853 return ret;
1854 }
1855
1856 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1857 {
1858 return cfi_varsize_frob(mtd, do_atmel_lock, ofs, len, NULL);
1859 }
1860
1861 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1862 {
1863 return cfi_varsize_frob(mtd, do_atmel_unlock, ofs, len, NULL);
1864 }
1865
1866
1867 static void cfi_amdstd_sync (struct mtd_info *mtd)
1868 {
1869 struct map_info *map = mtd->priv;
1870 struct cfi_private *cfi = map->fldrv_priv;
1871 int i;
1872 struct flchip *chip;
1873 int ret = 0;
1874 DECLARE_WAITQUEUE(wait, current);
1875
1876 for (i=0; !ret && i<cfi->numchips; i++) {
1877 chip = &cfi->chips[i];
1878
1879 retry:
1880 mutex_lock(&chip->mutex);
1881
1882 switch(chip->state) {
1883 case FL_READY:
1884 case FL_STATUS:
1885 case FL_CFI_QUERY:
1886 case FL_JEDEC_QUERY:
1887 chip->oldstate = chip->state;
1888 chip->state = FL_SYNCING;
1889 /* No need to wake_up() on this state change -
1890 * as the whole point is that nobody can do anything
1891 * with the chip now anyway.
1892 */
1893 case FL_SYNCING:
1894 mutex_unlock(&chip->mutex);
1895 break;
1896
1897 default:
1898 /* Not an idle state */
1899 set_current_state(TASK_UNINTERRUPTIBLE);
1900 add_wait_queue(&chip->wq, &wait);
1901
1902 mutex_unlock(&chip->mutex);
1903
1904 schedule();
1905
1906 remove_wait_queue(&chip->wq, &wait);
1907
1908 goto retry;
1909 }
1910 }
1911
1912 /* Unlock the chips again */
1913
1914 for (i--; i >=0; i--) {
1915 chip = &cfi->chips[i];
1916
1917 mutex_lock(&chip->mutex);
1918
1919 if (chip->state == FL_SYNCING) {
1920 chip->state = chip->oldstate;
1921 wake_up(&chip->wq);
1922 }
1923 mutex_unlock(&chip->mutex);
1924 }
1925 }
1926
1927
1928 static int cfi_amdstd_suspend(struct mtd_info *mtd)
1929 {
1930 struct map_info *map = mtd->priv;
1931 struct cfi_private *cfi = map->fldrv_priv;
1932 int i;
1933 struct flchip *chip;
1934 int ret = 0;
1935
1936 for (i=0; !ret && i<cfi->numchips; i++) {
1937 chip = &cfi->chips[i];
1938
1939 mutex_lock(&chip->mutex);
1940
1941 switch(chip->state) {
1942 case FL_READY:
1943 case FL_STATUS:
1944 case FL_CFI_QUERY:
1945 case FL_JEDEC_QUERY:
1946 chip->oldstate = chip->state;
1947 chip->state = FL_PM_SUSPENDED;
1948 /* No need to wake_up() on this state change -
1949 * as the whole point is that nobody can do anything
1950 * with the chip now anyway.
1951 */
1952 case FL_PM_SUSPENDED:
1953 break;
1954
1955 default:
1956 ret = -EAGAIN;
1957 break;
1958 }
1959 mutex_unlock(&chip->mutex);
1960 }
1961
1962 /* Unlock the chips again */
1963
1964 if (ret) {
1965 for (i--; i >=0; i--) {
1966 chip = &cfi->chips[i];
1967
1968 mutex_lock(&chip->mutex);
1969
1970 if (chip->state == FL_PM_SUSPENDED) {
1971 chip->state = chip->oldstate;
1972 wake_up(&chip->wq);
1973 }
1974 mutex_unlock(&chip->mutex);
1975 }
1976 }
1977
1978 return ret;
1979 }
1980
1981
1982 static void cfi_amdstd_resume(struct mtd_info *mtd)
1983 {
1984 struct map_info *map = mtd->priv;
1985 struct cfi_private *cfi = map->fldrv_priv;
1986 int i;
1987 struct flchip *chip;
1988
1989 for (i=0; i<cfi->numchips; i++) {
1990
1991 chip = &cfi->chips[i];
1992
1993 mutex_lock(&chip->mutex);
1994
1995 if (chip->state == FL_PM_SUSPENDED) {
1996 chip->state = FL_READY;
1997 map_write(map, CMD(0xF0), chip->start);
1998 wake_up(&chip->wq);
1999 }
2000 else
2001 printk(KERN_ERR "Argh. Chip not in PM_SUSPENDED state upon resume()\n");
2002
2003 mutex_unlock(&chip->mutex);
2004 }
2005 }
2006
2007
2008 /*
2009 * Ensure that the flash device is put back into read array mode before
2010 * unloading the driver or rebooting. On some systems, rebooting while
2011 * the flash is in query/program/erase mode will prevent the CPU from
2012 * fetching the bootloader code, requiring a hard reset or power cycle.
2013 */
2014 static int cfi_amdstd_reset(struct mtd_info *mtd)
2015 {
2016 struct map_info *map = mtd->priv;
2017 struct cfi_private *cfi = map->fldrv_priv;
2018 int i, ret;
2019 struct flchip *chip;
2020
2021 for (i = 0; i < cfi->numchips; i++) {
2022
2023 chip = &cfi->chips[i];
2024
2025 mutex_lock(&chip->mutex);
2026
2027 ret = get_chip(map, chip, chip->start, FL_SHUTDOWN);
2028 if (!ret) {
2029 map_write(map, CMD(0xF0), chip->start);
2030 chip->state = FL_SHUTDOWN;
2031 put_chip(map, chip, chip->start);
2032 }
2033
2034 mutex_unlock(&chip->mutex);
2035 }
2036
2037 return 0;
2038 }
2039
2040
2041 static int cfi_amdstd_reboot(struct notifier_block *nb, unsigned long val,
2042 void *v)
2043 {
2044 struct mtd_info *mtd;
2045
2046 mtd = container_of(nb, struct mtd_info, reboot_notifier);
2047 cfi_amdstd_reset(mtd);
2048 return NOTIFY_DONE;
2049 }
2050
2051
2052 static void cfi_amdstd_destroy(struct mtd_info *mtd)
2053 {
2054 struct map_info *map = mtd->priv;
2055 struct cfi_private *cfi = map->fldrv_priv;
2056
2057 cfi_amdstd_reset(mtd);
2058 unregister_reboot_notifier(&mtd->reboot_notifier);
2059 kfree(cfi->cmdset_priv);
2060 kfree(cfi->cfiq);
2061 kfree(cfi);
2062 kfree(mtd->eraseregions);
2063 }
2064
2065 MODULE_LICENSE("GPL");
2066 MODULE_AUTHOR("Crossnet Co. <info@crossnet.co.jp> et al.");
2067 MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips");
2068 MODULE_ALIAS("cfi_cmdset_0006");
2069 MODULE_ALIAS("cfi_cmdset_0701");
This page took 0.117347 seconds and 5 git commands to generate.