mtd: cfi: fix writebufsize initialization
[deliverable/linux.git] / drivers / mtd / chips / cfi_cmdset_0002.c
1 /*
2 * Common Flash Interface support:
3 * AMD & Fujitsu Standard Vendor Command Set (ID 0x0002)
4 *
5 * Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp>
6 * Copyright (C) 2004 Arcom Control Systems Ltd <linux@arcom.com>
7 * Copyright (C) 2005 MontaVista Software Inc. <source@mvista.com>
8 *
9 * 2_by_8 routines added by Simon Munton
10 *
11 * 4_by_16 work by Carolyn J. Smith
12 *
13 * XIP support hooks by Vitaly Wool (based on code for Intel flash
14 * by Nicolas Pitre)
15 *
16 * 25/09/2008 Christopher Moore: TopBottom fixup for many Macronix with CFI V1.0
17 *
18 * Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com
19 *
20 * This code is GPL
21 */
22
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/kernel.h>
26 #include <linux/sched.h>
27 #include <linux/init.h>
28 #include <asm/io.h>
29 #include <asm/byteorder.h>
30
31 #include <linux/errno.h>
32 #include <linux/slab.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/reboot.h>
36 #include <linux/mtd/map.h>
37 #include <linux/mtd/mtd.h>
38 #include <linux/mtd/cfi.h>
39 #include <linux/mtd/xip.h>
40
41 #define AMD_BOOTLOC_BUG
42 #define FORCE_WORD_WRITE 0
43
44 #define MAX_WORD_RETRIES 3
45
46 #define SST49LF004B 0x0060
47 #define SST49LF040B 0x0050
48 #define SST49LF008A 0x005a
49 #define AT49BV6416 0x00d6
50
51 static int cfi_amdstd_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
52 static int cfi_amdstd_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
53 static int cfi_amdstd_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
54 static int cfi_amdstd_erase_chip(struct mtd_info *, struct erase_info *);
55 static int cfi_amdstd_erase_varsize(struct mtd_info *, struct erase_info *);
56 static void cfi_amdstd_sync (struct mtd_info *);
57 static int cfi_amdstd_suspend (struct mtd_info *);
58 static void cfi_amdstd_resume (struct mtd_info *);
59 static int cfi_amdstd_reboot(struct notifier_block *, unsigned long, void *);
60 static int cfi_amdstd_secsi_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
61
62 static void cfi_amdstd_destroy(struct mtd_info *);
63
64 struct mtd_info *cfi_cmdset_0002(struct map_info *, int);
65 static struct mtd_info *cfi_amdstd_setup (struct mtd_info *);
66
67 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
68 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
69 #include "fwh_lock.h"
70
71 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
72 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
73
74 static struct mtd_chip_driver cfi_amdstd_chipdrv = {
75 .probe = NULL, /* Not usable directly */
76 .destroy = cfi_amdstd_destroy,
77 .name = "cfi_cmdset_0002",
78 .module = THIS_MODULE
79 };
80
81
82 /* #define DEBUG_CFI_FEATURES */
83
84
85 #ifdef DEBUG_CFI_FEATURES
86 static void cfi_tell_features(struct cfi_pri_amdstd *extp)
87 {
88 const char* erase_suspend[3] = {
89 "Not supported", "Read only", "Read/write"
90 };
91 const char* top_bottom[6] = {
92 "No WP", "8x8KiB sectors at top & bottom, no WP",
93 "Bottom boot", "Top boot",
94 "Uniform, Bottom WP", "Uniform, Top WP"
95 };
96
97 printk(" Silicon revision: %d\n", extp->SiliconRevision >> 1);
98 printk(" Address sensitive unlock: %s\n",
99 (extp->SiliconRevision & 1) ? "Not required" : "Required");
100
101 if (extp->EraseSuspend < ARRAY_SIZE(erase_suspend))
102 printk(" Erase Suspend: %s\n", erase_suspend[extp->EraseSuspend]);
103 else
104 printk(" Erase Suspend: Unknown value %d\n", extp->EraseSuspend);
105
106 if (extp->BlkProt == 0)
107 printk(" Block protection: Not supported\n");
108 else
109 printk(" Block protection: %d sectors per group\n", extp->BlkProt);
110
111
112 printk(" Temporary block unprotect: %s\n",
113 extp->TmpBlkUnprotect ? "Supported" : "Not supported");
114 printk(" Block protect/unprotect scheme: %d\n", extp->BlkProtUnprot);
115 printk(" Number of simultaneous operations: %d\n", extp->SimultaneousOps);
116 printk(" Burst mode: %s\n",
117 extp->BurstMode ? "Supported" : "Not supported");
118 if (extp->PageMode == 0)
119 printk(" Page mode: Not supported\n");
120 else
121 printk(" Page mode: %d word page\n", extp->PageMode << 2);
122
123 printk(" Vpp Supply Minimum Program/Erase Voltage: %d.%d V\n",
124 extp->VppMin >> 4, extp->VppMin & 0xf);
125 printk(" Vpp Supply Maximum Program/Erase Voltage: %d.%d V\n",
126 extp->VppMax >> 4, extp->VppMax & 0xf);
127
128 if (extp->TopBottom < ARRAY_SIZE(top_bottom))
129 printk(" Top/Bottom Boot Block: %s\n", top_bottom[extp->TopBottom]);
130 else
131 printk(" Top/Bottom Boot Block: Unknown value %d\n", extp->TopBottom);
132 }
133 #endif
134
135 #ifdef AMD_BOOTLOC_BUG
136 /* Wheee. Bring me the head of someone at AMD. */
137 static void fixup_amd_bootblock(struct mtd_info *mtd)
138 {
139 struct map_info *map = mtd->priv;
140 struct cfi_private *cfi = map->fldrv_priv;
141 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
142 __u8 major = extp->MajorVersion;
143 __u8 minor = extp->MinorVersion;
144
145 if (((major << 8) | minor) < 0x3131) {
146 /* CFI version 1.0 => don't trust bootloc */
147
148 DEBUG(MTD_DEBUG_LEVEL1,
149 "%s: JEDEC Vendor ID is 0x%02X Device ID is 0x%02X\n",
150 map->name, cfi->mfr, cfi->id);
151
152 /* AFAICS all 29LV400 with a bottom boot block have a device ID
153 * of 0x22BA in 16-bit mode and 0xBA in 8-bit mode.
154 * These were badly detected as they have the 0x80 bit set
155 * so treat them as a special case.
156 */
157 if (((cfi->id == 0xBA) || (cfi->id == 0x22BA)) &&
158
159 /* Macronix added CFI to their 2nd generation
160 * MX29LV400C B/T but AFAICS no other 29LV400 (AMD,
161 * Fujitsu, Spansion, EON, ESI and older Macronix)
162 * has CFI.
163 *
164 * Therefore also check the manufacturer.
165 * This reduces the risk of false detection due to
166 * the 8-bit device ID.
167 */
168 (cfi->mfr == CFI_MFR_MACRONIX)) {
169 DEBUG(MTD_DEBUG_LEVEL1,
170 "%s: Macronix MX29LV400C with bottom boot block"
171 " detected\n", map->name);
172 extp->TopBottom = 2; /* bottom boot */
173 } else
174 if (cfi->id & 0x80) {
175 printk(KERN_WARNING "%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map->name, cfi->id);
176 extp->TopBottom = 3; /* top boot */
177 } else {
178 extp->TopBottom = 2; /* bottom boot */
179 }
180
181 DEBUG(MTD_DEBUG_LEVEL1,
182 "%s: AMD CFI PRI V%c.%c has no boot block field;"
183 " deduced %s from Device ID\n", map->name, major, minor,
184 extp->TopBottom == 2 ? "bottom" : "top");
185 }
186 }
187 #endif
188
189 static void fixup_use_write_buffers(struct mtd_info *mtd)
190 {
191 struct map_info *map = mtd->priv;
192 struct cfi_private *cfi = map->fldrv_priv;
193 if (cfi->cfiq->BufWriteTimeoutTyp) {
194 DEBUG(MTD_DEBUG_LEVEL1, "Using buffer write method\n" );
195 mtd->write = cfi_amdstd_write_buffers;
196 }
197 }
198
199 /* Atmel chips don't use the same PRI format as AMD chips */
200 static void fixup_convert_atmel_pri(struct mtd_info *mtd)
201 {
202 struct map_info *map = mtd->priv;
203 struct cfi_private *cfi = map->fldrv_priv;
204 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
205 struct cfi_pri_atmel atmel_pri;
206
207 memcpy(&atmel_pri, extp, sizeof(atmel_pri));
208 memset((char *)extp + 5, 0, sizeof(*extp) - 5);
209
210 if (atmel_pri.Features & 0x02)
211 extp->EraseSuspend = 2;
212
213 /* Some chips got it backwards... */
214 if (cfi->id == AT49BV6416) {
215 if (atmel_pri.BottomBoot)
216 extp->TopBottom = 3;
217 else
218 extp->TopBottom = 2;
219 } else {
220 if (atmel_pri.BottomBoot)
221 extp->TopBottom = 2;
222 else
223 extp->TopBottom = 3;
224 }
225
226 /* burst write mode not supported */
227 cfi->cfiq->BufWriteTimeoutTyp = 0;
228 cfi->cfiq->BufWriteTimeoutMax = 0;
229 }
230
231 static void fixup_use_secsi(struct mtd_info *mtd)
232 {
233 /* Setup for chips with a secsi area */
234 mtd->read_user_prot_reg = cfi_amdstd_secsi_read;
235 mtd->read_fact_prot_reg = cfi_amdstd_secsi_read;
236 }
237
238 static void fixup_use_erase_chip(struct mtd_info *mtd)
239 {
240 struct map_info *map = mtd->priv;
241 struct cfi_private *cfi = map->fldrv_priv;
242 if ((cfi->cfiq->NumEraseRegions == 1) &&
243 ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0)) {
244 mtd->erase = cfi_amdstd_erase_chip;
245 }
246
247 }
248
249 /*
250 * Some Atmel chips (e.g. the AT49BV6416) power-up with all sectors
251 * locked by default.
252 */
253 static void fixup_use_atmel_lock(struct mtd_info *mtd)
254 {
255 mtd->lock = cfi_atmel_lock;
256 mtd->unlock = cfi_atmel_unlock;
257 mtd->flags |= MTD_POWERUP_LOCK;
258 }
259
260 static void fixup_old_sst_eraseregion(struct mtd_info *mtd)
261 {
262 struct map_info *map = mtd->priv;
263 struct cfi_private *cfi = map->fldrv_priv;
264
265 /*
266 * These flashes report two seperate eraseblock regions based on the
267 * sector_erase-size and block_erase-size, although they both operate on the
268 * same memory. This is not allowed according to CFI, so we just pick the
269 * sector_erase-size.
270 */
271 cfi->cfiq->NumEraseRegions = 1;
272 }
273
274 static void fixup_sst39vf(struct mtd_info *mtd)
275 {
276 struct map_info *map = mtd->priv;
277 struct cfi_private *cfi = map->fldrv_priv;
278
279 fixup_old_sst_eraseregion(mtd);
280
281 cfi->addr_unlock1 = 0x5555;
282 cfi->addr_unlock2 = 0x2AAA;
283 }
284
285 static void fixup_sst39vf_rev_b(struct mtd_info *mtd)
286 {
287 struct map_info *map = mtd->priv;
288 struct cfi_private *cfi = map->fldrv_priv;
289
290 fixup_old_sst_eraseregion(mtd);
291
292 cfi->addr_unlock1 = 0x555;
293 cfi->addr_unlock2 = 0x2AA;
294
295 cfi->sector_erase_cmd = CMD(0x50);
296 }
297
298 static void fixup_sst38vf640x_sectorsize(struct mtd_info *mtd)
299 {
300 struct map_info *map = mtd->priv;
301 struct cfi_private *cfi = map->fldrv_priv;
302
303 fixup_sst39vf_rev_b(mtd);
304
305 /*
306 * CFI reports 1024 sectors (0x03ff+1) of 64KBytes (0x0100*256) where
307 * it should report a size of 8KBytes (0x0020*256).
308 */
309 cfi->cfiq->EraseRegionInfo[0] = 0x002003ff;
310 pr_warning("%s: Bad 38VF640x CFI data; adjusting sector size from 64 to 8KiB\n", mtd->name);
311 }
312
313 static void fixup_s29gl064n_sectors(struct mtd_info *mtd)
314 {
315 struct map_info *map = mtd->priv;
316 struct cfi_private *cfi = map->fldrv_priv;
317
318 if ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0x003f) {
319 cfi->cfiq->EraseRegionInfo[0] |= 0x0040;
320 pr_warning("%s: Bad S29GL064N CFI data, adjust from 64 to 128 sectors\n", mtd->name);
321 }
322 }
323
324 static void fixup_s29gl032n_sectors(struct mtd_info *mtd)
325 {
326 struct map_info *map = mtd->priv;
327 struct cfi_private *cfi = map->fldrv_priv;
328
329 if ((cfi->cfiq->EraseRegionInfo[1] & 0xffff) == 0x007e) {
330 cfi->cfiq->EraseRegionInfo[1] &= ~0x0040;
331 pr_warning("%s: Bad S29GL032N CFI data, adjust from 127 to 63 sectors\n", mtd->name);
332 }
333 }
334
335 /* Used to fix CFI-Tables of chips without Extended Query Tables */
336 static struct cfi_fixup cfi_nopri_fixup_table[] = {
337 { CFI_MFR_SST, 0x234a, fixup_sst39vf }, /* SST39VF1602 */
338 { CFI_MFR_SST, 0x234b, fixup_sst39vf }, /* SST39VF1601 */
339 { CFI_MFR_SST, 0x235a, fixup_sst39vf }, /* SST39VF3202 */
340 { CFI_MFR_SST, 0x235b, fixup_sst39vf }, /* SST39VF3201 */
341 { CFI_MFR_SST, 0x235c, fixup_sst39vf_rev_b }, /* SST39VF3202B */
342 { CFI_MFR_SST, 0x235d, fixup_sst39vf_rev_b }, /* SST39VF3201B */
343 { CFI_MFR_SST, 0x236c, fixup_sst39vf_rev_b }, /* SST39VF6402B */
344 { CFI_MFR_SST, 0x236d, fixup_sst39vf_rev_b }, /* SST39VF6401B */
345 { 0, 0, NULL }
346 };
347
348 static struct cfi_fixup cfi_fixup_table[] = {
349 { CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri },
350 #ifdef AMD_BOOTLOC_BUG
351 { CFI_MFR_AMD, CFI_ID_ANY, fixup_amd_bootblock },
352 { CFI_MFR_MACRONIX, CFI_ID_ANY, fixup_amd_bootblock },
353 #endif
354 { CFI_MFR_AMD, 0x0050, fixup_use_secsi },
355 { CFI_MFR_AMD, 0x0053, fixup_use_secsi },
356 { CFI_MFR_AMD, 0x0055, fixup_use_secsi },
357 { CFI_MFR_AMD, 0x0056, fixup_use_secsi },
358 { CFI_MFR_AMD, 0x005C, fixup_use_secsi },
359 { CFI_MFR_AMD, 0x005F, fixup_use_secsi },
360 { CFI_MFR_AMD, 0x0c01, fixup_s29gl064n_sectors },
361 { CFI_MFR_AMD, 0x1301, fixup_s29gl064n_sectors },
362 { CFI_MFR_AMD, 0x1a00, fixup_s29gl032n_sectors },
363 { CFI_MFR_AMD, 0x1a01, fixup_s29gl032n_sectors },
364 { CFI_MFR_SST, 0x536a, fixup_sst38vf640x_sectorsize }, /* SST38VF6402 */
365 { CFI_MFR_SST, 0x536b, fixup_sst38vf640x_sectorsize }, /* SST38VF6401 */
366 { CFI_MFR_SST, 0x536c, fixup_sst38vf640x_sectorsize }, /* SST38VF6404 */
367 { CFI_MFR_SST, 0x536d, fixup_sst38vf640x_sectorsize }, /* SST38VF6403 */
368 #if !FORCE_WORD_WRITE
369 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers },
370 #endif
371 { 0, 0, NULL }
372 };
373 static struct cfi_fixup jedec_fixup_table[] = {
374 { CFI_MFR_SST, SST49LF004B, fixup_use_fwh_lock },
375 { CFI_MFR_SST, SST49LF040B, fixup_use_fwh_lock },
376 { CFI_MFR_SST, SST49LF008A, fixup_use_fwh_lock },
377 { 0, 0, NULL }
378 };
379
380 static struct cfi_fixup fixup_table[] = {
381 /* The CFI vendor ids and the JEDEC vendor IDs appear
382 * to be common. It is like the devices id's are as
383 * well. This table is to pick all cases where
384 * we know that is the case.
385 */
386 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_erase_chip },
387 { CFI_MFR_ATMEL, AT49BV6416, fixup_use_atmel_lock },
388 { 0, 0, NULL }
389 };
390
391
392 static void cfi_fixup_major_minor(struct cfi_private *cfi,
393 struct cfi_pri_amdstd *extp)
394 {
395 if (cfi->mfr == CFI_MFR_SAMSUNG) {
396 if ((extp->MajorVersion == '0' && extp->MinorVersion == '0') ||
397 (extp->MajorVersion == '3' && extp->MinorVersion == '3')) {
398 /*
399 * Samsung K8P2815UQB and K8D6x16UxM chips
400 * report major=0 / minor=0.
401 * K8D3x16UxC chips report major=3 / minor=3.
402 */
403 printk(KERN_NOTICE " Fixing Samsung's Amd/Fujitsu"
404 " Extended Query version to 1.%c\n",
405 extp->MinorVersion);
406 extp->MajorVersion = '1';
407 }
408 }
409
410 /*
411 * SST 38VF640x chips report major=0xFF / minor=0xFF.
412 */
413 if (cfi->mfr == CFI_MFR_SST && (cfi->id >> 4) == 0x0536) {
414 extp->MajorVersion = '1';
415 extp->MinorVersion = '0';
416 }
417 }
418
419 struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary)
420 {
421 struct cfi_private *cfi = map->fldrv_priv;
422 struct mtd_info *mtd;
423 int i;
424
425 mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
426 if (!mtd) {
427 printk(KERN_WARNING "Failed to allocate memory for MTD device\n");
428 return NULL;
429 }
430 mtd->priv = map;
431 mtd->type = MTD_NORFLASH;
432
433 /* Fill in the default mtd operations */
434 mtd->erase = cfi_amdstd_erase_varsize;
435 mtd->write = cfi_amdstd_write_words;
436 mtd->read = cfi_amdstd_read;
437 mtd->sync = cfi_amdstd_sync;
438 mtd->suspend = cfi_amdstd_suspend;
439 mtd->resume = cfi_amdstd_resume;
440 mtd->flags = MTD_CAP_NORFLASH;
441 mtd->name = map->name;
442 mtd->writesize = 1;
443 mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
444
445 DEBUG(MTD_DEBUG_LEVEL3, "MTD %s(): write buffer size %d\n",
446 __func__, mtd->writebufsize);
447
448 mtd->reboot_notifier.notifier_call = cfi_amdstd_reboot;
449
450 if (cfi->cfi_mode==CFI_MODE_CFI){
451 unsigned char bootloc;
452 __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
453 struct cfi_pri_amdstd *extp;
454
455 extp = (struct cfi_pri_amdstd*)cfi_read_pri(map, adr, sizeof(*extp), "Amd/Fujitsu");
456 if (extp) {
457 /*
458 * It's a real CFI chip, not one for which the probe
459 * routine faked a CFI structure.
460 */
461 cfi_fixup_major_minor(cfi, extp);
462
463 /*
464 * Valid primary extension versions are: 1.0, 1.1, 1.2, 1.3, 1.4
465 * see: http://cs.ozerki.net/zap/pub/axim-x5/docs/cfi_r20.pdf, page 19
466 * http://www.spansion.com/Support/AppNotes/cfi_100_20011201.pdf
467 * http://www.spansion.com/Support/Datasheets/s29ws-p_00_a12_e.pdf
468 */
469 if (extp->MajorVersion != '1' ||
470 (extp->MajorVersion == '1' && (extp->MinorVersion < '0' || extp->MinorVersion > '4'))) {
471 printk(KERN_ERR " Unknown Amd/Fujitsu Extended Query "
472 "version %c.%c (%#02x/%#02x).\n",
473 extp->MajorVersion, extp->MinorVersion,
474 extp->MajorVersion, extp->MinorVersion);
475 kfree(extp);
476 kfree(mtd);
477 return NULL;
478 }
479
480 printk(KERN_INFO " Amd/Fujitsu Extended Query version %c.%c.\n",
481 extp->MajorVersion, extp->MinorVersion);
482
483 /* Install our own private info structure */
484 cfi->cmdset_priv = extp;
485
486 /* Apply cfi device specific fixups */
487 cfi_fixup(mtd, cfi_fixup_table);
488
489 #ifdef DEBUG_CFI_FEATURES
490 /* Tell the user about it in lots of lovely detail */
491 cfi_tell_features(extp);
492 #endif
493
494 bootloc = extp->TopBottom;
495 if ((bootloc < 2) || (bootloc > 5)) {
496 printk(KERN_WARNING "%s: CFI contains unrecognised boot "
497 "bank location (%d). Assuming bottom.\n",
498 map->name, bootloc);
499 bootloc = 2;
500 }
501
502 if (bootloc == 3 && cfi->cfiq->NumEraseRegions > 1) {
503 printk(KERN_WARNING "%s: Swapping erase regions for top-boot CFI table.\n", map->name);
504
505 for (i=0; i<cfi->cfiq->NumEraseRegions / 2; i++) {
506 int j = (cfi->cfiq->NumEraseRegions-1)-i;
507 __u32 swap;
508
509 swap = cfi->cfiq->EraseRegionInfo[i];
510 cfi->cfiq->EraseRegionInfo[i] = cfi->cfiq->EraseRegionInfo[j];
511 cfi->cfiq->EraseRegionInfo[j] = swap;
512 }
513 }
514 /* Set the default CFI lock/unlock addresses */
515 cfi->addr_unlock1 = 0x555;
516 cfi->addr_unlock2 = 0x2aa;
517 }
518 cfi_fixup(mtd, cfi_nopri_fixup_table);
519
520 if (!cfi->addr_unlock1 || !cfi->addr_unlock2) {
521 kfree(mtd);
522 return NULL;
523 }
524
525 } /* CFI mode */
526 else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
527 /* Apply jedec specific fixups */
528 cfi_fixup(mtd, jedec_fixup_table);
529 }
530 /* Apply generic fixups */
531 cfi_fixup(mtd, fixup_table);
532
533 for (i=0; i< cfi->numchips; i++) {
534 cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp;
535 cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp;
536 cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp;
537 cfi->chips[i].ref_point_counter = 0;
538 init_waitqueue_head(&(cfi->chips[i].wq));
539 }
540
541 map->fldrv = &cfi_amdstd_chipdrv;
542
543 return cfi_amdstd_setup(mtd);
544 }
545 struct mtd_info *cfi_cmdset_0006(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
546 struct mtd_info *cfi_cmdset_0701(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
547 EXPORT_SYMBOL_GPL(cfi_cmdset_0002);
548 EXPORT_SYMBOL_GPL(cfi_cmdset_0006);
549 EXPORT_SYMBOL_GPL(cfi_cmdset_0701);
550
551 static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd)
552 {
553 struct map_info *map = mtd->priv;
554 struct cfi_private *cfi = map->fldrv_priv;
555 unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
556 unsigned long offset = 0;
557 int i,j;
558
559 printk(KERN_NOTICE "number of %s chips: %d\n",
560 (cfi->cfi_mode == CFI_MODE_CFI)?"CFI":"JEDEC",cfi->numchips);
561 /* Select the correct geometry setup */
562 mtd->size = devsize * cfi->numchips;
563
564 mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
565 mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info)
566 * mtd->numeraseregions, GFP_KERNEL);
567 if (!mtd->eraseregions) {
568 printk(KERN_WARNING "Failed to allocate memory for MTD erase region info\n");
569 goto setup_err;
570 }
571
572 for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
573 unsigned long ernum, ersize;
574 ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
575 ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
576
577 if (mtd->erasesize < ersize) {
578 mtd->erasesize = ersize;
579 }
580 for (j=0; j<cfi->numchips; j++) {
581 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
582 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
583 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
584 }
585 offset += (ersize * ernum);
586 }
587 if (offset != devsize) {
588 /* Argh */
589 printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
590 goto setup_err;
591 }
592
593 __module_get(THIS_MODULE);
594 register_reboot_notifier(&mtd->reboot_notifier);
595 return mtd;
596
597 setup_err:
598 kfree(mtd->eraseregions);
599 kfree(mtd);
600 kfree(cfi->cmdset_priv);
601 kfree(cfi->cfiq);
602 return NULL;
603 }
604
605 /*
606 * Return true if the chip is ready.
607 *
608 * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
609 * non-suspended sector) and is indicated by no toggle bits toggling.
610 *
611 * Note that anything more complicated than checking if no bits are toggling
612 * (including checking DQ5 for an error status) is tricky to get working
613 * correctly and is therefore not done (particulary with interleaved chips
614 * as each chip must be checked independantly of the others).
615 */
616 static int __xipram chip_ready(struct map_info *map, unsigned long addr)
617 {
618 map_word d, t;
619
620 d = map_read(map, addr);
621 t = map_read(map, addr);
622
623 return map_word_equal(map, d, t);
624 }
625
626 /*
627 * Return true if the chip is ready and has the correct value.
628 *
629 * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
630 * non-suspended sector) and it is indicated by no bits toggling.
631 *
632 * Error are indicated by toggling bits or bits held with the wrong value,
633 * or with bits toggling.
634 *
635 * Note that anything more complicated than checking if no bits are toggling
636 * (including checking DQ5 for an error status) is tricky to get working
637 * correctly and is therefore not done (particulary with interleaved chips
638 * as each chip must be checked independantly of the others).
639 *
640 */
641 static int __xipram chip_good(struct map_info *map, unsigned long addr, map_word expected)
642 {
643 map_word oldd, curd;
644
645 oldd = map_read(map, addr);
646 curd = map_read(map, addr);
647
648 return map_word_equal(map, oldd, curd) &&
649 map_word_equal(map, curd, expected);
650 }
651
652 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
653 {
654 DECLARE_WAITQUEUE(wait, current);
655 struct cfi_private *cfi = map->fldrv_priv;
656 unsigned long timeo;
657 struct cfi_pri_amdstd *cfip = (struct cfi_pri_amdstd *)cfi->cmdset_priv;
658
659 resettime:
660 timeo = jiffies + HZ;
661 retry:
662 switch (chip->state) {
663
664 case FL_STATUS:
665 for (;;) {
666 if (chip_ready(map, adr))
667 break;
668
669 if (time_after(jiffies, timeo)) {
670 printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
671 return -EIO;
672 }
673 mutex_unlock(&chip->mutex);
674 cfi_udelay(1);
675 mutex_lock(&chip->mutex);
676 /* Someone else might have been playing with it. */
677 goto retry;
678 }
679
680 case FL_READY:
681 case FL_CFI_QUERY:
682 case FL_JEDEC_QUERY:
683 return 0;
684
685 case FL_ERASING:
686 if (!cfip || !(cfip->EraseSuspend & (0x1|0x2)) ||
687 !(mode == FL_READY || mode == FL_POINT ||
688 (mode == FL_WRITING && (cfip->EraseSuspend & 0x2))))
689 goto sleep;
690
691 /* We could check to see if we're trying to access the sector
692 * that is currently being erased. However, no user will try
693 * anything like that so we just wait for the timeout. */
694
695 /* Erase suspend */
696 /* It's harmless to issue the Erase-Suspend and Erase-Resume
697 * commands when the erase algorithm isn't in progress. */
698 map_write(map, CMD(0xB0), chip->in_progress_block_addr);
699 chip->oldstate = FL_ERASING;
700 chip->state = FL_ERASE_SUSPENDING;
701 chip->erase_suspended = 1;
702 for (;;) {
703 if (chip_ready(map, adr))
704 break;
705
706 if (time_after(jiffies, timeo)) {
707 /* Should have suspended the erase by now.
708 * Send an Erase-Resume command as either
709 * there was an error (so leave the erase
710 * routine to recover from it) or we trying to
711 * use the erase-in-progress sector. */
712 map_write(map, cfi->sector_erase_cmd, chip->in_progress_block_addr);
713 chip->state = FL_ERASING;
714 chip->oldstate = FL_READY;
715 printk(KERN_ERR "MTD %s(): chip not ready after erase suspend\n", __func__);
716 return -EIO;
717 }
718
719 mutex_unlock(&chip->mutex);
720 cfi_udelay(1);
721 mutex_lock(&chip->mutex);
722 /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
723 So we can just loop here. */
724 }
725 chip->state = FL_READY;
726 return 0;
727
728 case FL_XIP_WHILE_ERASING:
729 if (mode != FL_READY && mode != FL_POINT &&
730 (!cfip || !(cfip->EraseSuspend&2)))
731 goto sleep;
732 chip->oldstate = chip->state;
733 chip->state = FL_READY;
734 return 0;
735
736 case FL_SHUTDOWN:
737 /* The machine is rebooting */
738 return -EIO;
739
740 case FL_POINT:
741 /* Only if there's no operation suspended... */
742 if (mode == FL_READY && chip->oldstate == FL_READY)
743 return 0;
744
745 default:
746 sleep:
747 set_current_state(TASK_UNINTERRUPTIBLE);
748 add_wait_queue(&chip->wq, &wait);
749 mutex_unlock(&chip->mutex);
750 schedule();
751 remove_wait_queue(&chip->wq, &wait);
752 mutex_lock(&chip->mutex);
753 goto resettime;
754 }
755 }
756
757
758 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
759 {
760 struct cfi_private *cfi = map->fldrv_priv;
761
762 switch(chip->oldstate) {
763 case FL_ERASING:
764 chip->state = chip->oldstate;
765 map_write(map, cfi->sector_erase_cmd, chip->in_progress_block_addr);
766 chip->oldstate = FL_READY;
767 chip->state = FL_ERASING;
768 break;
769
770 case FL_XIP_WHILE_ERASING:
771 chip->state = chip->oldstate;
772 chip->oldstate = FL_READY;
773 break;
774
775 case FL_READY:
776 case FL_STATUS:
777 /* We should really make set_vpp() count, rather than doing this */
778 DISABLE_VPP(map);
779 break;
780 default:
781 printk(KERN_ERR "MTD: put_chip() called with oldstate %d!!\n", chip->oldstate);
782 }
783 wake_up(&chip->wq);
784 }
785
786 #ifdef CONFIG_MTD_XIP
787
788 /*
789 * No interrupt what so ever can be serviced while the flash isn't in array
790 * mode. This is ensured by the xip_disable() and xip_enable() functions
791 * enclosing any code path where the flash is known not to be in array mode.
792 * And within a XIP disabled code path, only functions marked with __xipram
793 * may be called and nothing else (it's a good thing to inspect generated
794 * assembly to make sure inline functions were actually inlined and that gcc
795 * didn't emit calls to its own support functions). Also configuring MTD CFI
796 * support to a single buswidth and a single interleave is also recommended.
797 */
798
799 static void xip_disable(struct map_info *map, struct flchip *chip,
800 unsigned long adr)
801 {
802 /* TODO: chips with no XIP use should ignore and return */
803 (void) map_read(map, adr); /* ensure mmu mapping is up to date */
804 local_irq_disable();
805 }
806
807 static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
808 unsigned long adr)
809 {
810 struct cfi_private *cfi = map->fldrv_priv;
811
812 if (chip->state != FL_POINT && chip->state != FL_READY) {
813 map_write(map, CMD(0xf0), adr);
814 chip->state = FL_READY;
815 }
816 (void) map_read(map, adr);
817 xip_iprefetch();
818 local_irq_enable();
819 }
820
821 /*
822 * When a delay is required for the flash operation to complete, the
823 * xip_udelay() function is polling for both the given timeout and pending
824 * (but still masked) hardware interrupts. Whenever there is an interrupt
825 * pending then the flash erase operation is suspended, array mode restored
826 * and interrupts unmasked. Task scheduling might also happen at that
827 * point. The CPU eventually returns from the interrupt or the call to
828 * schedule() and the suspended flash operation is resumed for the remaining
829 * of the delay period.
830 *
831 * Warning: this function _will_ fool interrupt latency tracing tools.
832 */
833
834 static void __xipram xip_udelay(struct map_info *map, struct flchip *chip,
835 unsigned long adr, int usec)
836 {
837 struct cfi_private *cfi = map->fldrv_priv;
838 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
839 map_word status, OK = CMD(0x80);
840 unsigned long suspended, start = xip_currtime();
841 flstate_t oldstate;
842
843 do {
844 cpu_relax();
845 if (xip_irqpending() && extp &&
846 ((chip->state == FL_ERASING && (extp->EraseSuspend & 2))) &&
847 (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
848 /*
849 * Let's suspend the erase operation when supported.
850 * Note that we currently don't try to suspend
851 * interleaved chips if there is already another
852 * operation suspended (imagine what happens
853 * when one chip was already done with the current
854 * operation while another chip suspended it, then
855 * we resume the whole thing at once). Yes, it
856 * can happen!
857 */
858 map_write(map, CMD(0xb0), adr);
859 usec -= xip_elapsed_since(start);
860 suspended = xip_currtime();
861 do {
862 if (xip_elapsed_since(suspended) > 100000) {
863 /*
864 * The chip doesn't want to suspend
865 * after waiting for 100 msecs.
866 * This is a critical error but there
867 * is not much we can do here.
868 */
869 return;
870 }
871 status = map_read(map, adr);
872 } while (!map_word_andequal(map, status, OK, OK));
873
874 /* Suspend succeeded */
875 oldstate = chip->state;
876 if (!map_word_bitsset(map, status, CMD(0x40)))
877 break;
878 chip->state = FL_XIP_WHILE_ERASING;
879 chip->erase_suspended = 1;
880 map_write(map, CMD(0xf0), adr);
881 (void) map_read(map, adr);
882 xip_iprefetch();
883 local_irq_enable();
884 mutex_unlock(&chip->mutex);
885 xip_iprefetch();
886 cond_resched();
887
888 /*
889 * We're back. However someone else might have
890 * decided to go write to the chip if we are in
891 * a suspended erase state. If so let's wait
892 * until it's done.
893 */
894 mutex_lock(&chip->mutex);
895 while (chip->state != FL_XIP_WHILE_ERASING) {
896 DECLARE_WAITQUEUE(wait, current);
897 set_current_state(TASK_UNINTERRUPTIBLE);
898 add_wait_queue(&chip->wq, &wait);
899 mutex_unlock(&chip->mutex);
900 schedule();
901 remove_wait_queue(&chip->wq, &wait);
902 mutex_lock(&chip->mutex);
903 }
904 /* Disallow XIP again */
905 local_irq_disable();
906
907 /* Resume the write or erase operation */
908 map_write(map, cfi->sector_erase_cmd, adr);
909 chip->state = oldstate;
910 start = xip_currtime();
911 } else if (usec >= 1000000/HZ) {
912 /*
913 * Try to save on CPU power when waiting delay
914 * is at least a system timer tick period.
915 * No need to be extremely accurate here.
916 */
917 xip_cpu_idle();
918 }
919 status = map_read(map, adr);
920 } while (!map_word_andequal(map, status, OK, OK)
921 && xip_elapsed_since(start) < usec);
922 }
923
924 #define UDELAY(map, chip, adr, usec) xip_udelay(map, chip, adr, usec)
925
926 /*
927 * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
928 * the flash is actively programming or erasing since we have to poll for
929 * the operation to complete anyway. We can't do that in a generic way with
930 * a XIP setup so do it before the actual flash operation in this case
931 * and stub it out from INVALIDATE_CACHE_UDELAY.
932 */
933 #define XIP_INVAL_CACHED_RANGE(map, from, size) \
934 INVALIDATE_CACHED_RANGE(map, from, size)
935
936 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
937 UDELAY(map, chip, adr, usec)
938
939 /*
940 * Extra notes:
941 *
942 * Activating this XIP support changes the way the code works a bit. For
943 * example the code to suspend the current process when concurrent access
944 * happens is never executed because xip_udelay() will always return with the
945 * same chip state as it was entered with. This is why there is no care for
946 * the presence of add_wait_queue() or schedule() calls from within a couple
947 * xip_disable()'d areas of code, like in do_erase_oneblock for example.
948 * The queueing and scheduling are always happening within xip_udelay().
949 *
950 * Similarly, get_chip() and put_chip() just happen to always be executed
951 * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state
952 * is in array mode, therefore never executing many cases therein and not
953 * causing any problem with XIP.
954 */
955
956 #else
957
958 #define xip_disable(map, chip, adr)
959 #define xip_enable(map, chip, adr)
960 #define XIP_INVAL_CACHED_RANGE(x...)
961
962 #define UDELAY(map, chip, adr, usec) \
963 do { \
964 mutex_unlock(&chip->mutex); \
965 cfi_udelay(usec); \
966 mutex_lock(&chip->mutex); \
967 } while (0)
968
969 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
970 do { \
971 mutex_unlock(&chip->mutex); \
972 INVALIDATE_CACHED_RANGE(map, adr, len); \
973 cfi_udelay(usec); \
974 mutex_lock(&chip->mutex); \
975 } while (0)
976
977 #endif
978
979 static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
980 {
981 unsigned long cmd_addr;
982 struct cfi_private *cfi = map->fldrv_priv;
983 int ret;
984
985 adr += chip->start;
986
987 /* Ensure cmd read/writes are aligned. */
988 cmd_addr = adr & ~(map_bankwidth(map)-1);
989
990 mutex_lock(&chip->mutex);
991 ret = get_chip(map, chip, cmd_addr, FL_READY);
992 if (ret) {
993 mutex_unlock(&chip->mutex);
994 return ret;
995 }
996
997 if (chip->state != FL_POINT && chip->state != FL_READY) {
998 map_write(map, CMD(0xf0), cmd_addr);
999 chip->state = FL_READY;
1000 }
1001
1002 map_copy_from(map, buf, adr, len);
1003
1004 put_chip(map, chip, cmd_addr);
1005
1006 mutex_unlock(&chip->mutex);
1007 return 0;
1008 }
1009
1010
1011 static int cfi_amdstd_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1012 {
1013 struct map_info *map = mtd->priv;
1014 struct cfi_private *cfi = map->fldrv_priv;
1015 unsigned long ofs;
1016 int chipnum;
1017 int ret = 0;
1018
1019 /* ofs: offset within the first chip that the first read should start */
1020
1021 chipnum = (from >> cfi->chipshift);
1022 ofs = from - (chipnum << cfi->chipshift);
1023
1024
1025 *retlen = 0;
1026
1027 while (len) {
1028 unsigned long thislen;
1029
1030 if (chipnum >= cfi->numchips)
1031 break;
1032
1033 if ((len + ofs -1) >> cfi->chipshift)
1034 thislen = (1<<cfi->chipshift) - ofs;
1035 else
1036 thislen = len;
1037
1038 ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1039 if (ret)
1040 break;
1041
1042 *retlen += thislen;
1043 len -= thislen;
1044 buf += thislen;
1045
1046 ofs = 0;
1047 chipnum++;
1048 }
1049 return ret;
1050 }
1051
1052
1053 static inline int do_read_secsi_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
1054 {
1055 DECLARE_WAITQUEUE(wait, current);
1056 unsigned long timeo = jiffies + HZ;
1057 struct cfi_private *cfi = map->fldrv_priv;
1058
1059 retry:
1060 mutex_lock(&chip->mutex);
1061
1062 if (chip->state != FL_READY){
1063 set_current_state(TASK_UNINTERRUPTIBLE);
1064 add_wait_queue(&chip->wq, &wait);
1065
1066 mutex_unlock(&chip->mutex);
1067
1068 schedule();
1069 remove_wait_queue(&chip->wq, &wait);
1070 timeo = jiffies + HZ;
1071
1072 goto retry;
1073 }
1074
1075 adr += chip->start;
1076
1077 chip->state = FL_READY;
1078
1079 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1080 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1081 cfi_send_gen_cmd(0x88, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1082
1083 map_copy_from(map, buf, adr, len);
1084
1085 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1086 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1087 cfi_send_gen_cmd(0x90, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1088 cfi_send_gen_cmd(0x00, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1089
1090 wake_up(&chip->wq);
1091 mutex_unlock(&chip->mutex);
1092
1093 return 0;
1094 }
1095
1096 static int cfi_amdstd_secsi_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1097 {
1098 struct map_info *map = mtd->priv;
1099 struct cfi_private *cfi = map->fldrv_priv;
1100 unsigned long ofs;
1101 int chipnum;
1102 int ret = 0;
1103
1104
1105 /* ofs: offset within the first chip that the first read should start */
1106
1107 /* 8 secsi bytes per chip */
1108 chipnum=from>>3;
1109 ofs=from & 7;
1110
1111
1112 *retlen = 0;
1113
1114 while (len) {
1115 unsigned long thislen;
1116
1117 if (chipnum >= cfi->numchips)
1118 break;
1119
1120 if ((len + ofs -1) >> 3)
1121 thislen = (1<<3) - ofs;
1122 else
1123 thislen = len;
1124
1125 ret = do_read_secsi_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1126 if (ret)
1127 break;
1128
1129 *retlen += thislen;
1130 len -= thislen;
1131 buf += thislen;
1132
1133 ofs = 0;
1134 chipnum++;
1135 }
1136 return ret;
1137 }
1138
1139
1140 static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip, unsigned long adr, map_word datum)
1141 {
1142 struct cfi_private *cfi = map->fldrv_priv;
1143 unsigned long timeo = jiffies + HZ;
1144 /*
1145 * We use a 1ms + 1 jiffies generic timeout for writes (most devices
1146 * have a max write time of a few hundreds usec). However, we should
1147 * use the maximum timeout value given by the chip at probe time
1148 * instead. Unfortunately, struct flchip does have a field for
1149 * maximum timeout, only for typical which can be far too short
1150 * depending of the conditions. The ' + 1' is to avoid having a
1151 * timeout of 0 jiffies if HZ is smaller than 1000.
1152 */
1153 unsigned long uWriteTimeout = ( HZ / 1000 ) + 1;
1154 int ret = 0;
1155 map_word oldd;
1156 int retry_cnt = 0;
1157
1158 adr += chip->start;
1159
1160 mutex_lock(&chip->mutex);
1161 ret = get_chip(map, chip, adr, FL_WRITING);
1162 if (ret) {
1163 mutex_unlock(&chip->mutex);
1164 return ret;
1165 }
1166
1167 DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1168 __func__, adr, datum.x[0] );
1169
1170 /*
1171 * Check for a NOP for the case when the datum to write is already
1172 * present - it saves time and works around buggy chips that corrupt
1173 * data at other locations when 0xff is written to a location that
1174 * already contains 0xff.
1175 */
1176 oldd = map_read(map, adr);
1177 if (map_word_equal(map, oldd, datum)) {
1178 DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): NOP\n",
1179 __func__);
1180 goto op_done;
1181 }
1182
1183 XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
1184 ENABLE_VPP(map);
1185 xip_disable(map, chip, adr);
1186 retry:
1187 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1188 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1189 cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1190 map_write(map, datum, adr);
1191 chip->state = FL_WRITING;
1192
1193 INVALIDATE_CACHE_UDELAY(map, chip,
1194 adr, map_bankwidth(map),
1195 chip->word_write_time);
1196
1197 /* See comment above for timeout value. */
1198 timeo = jiffies + uWriteTimeout;
1199 for (;;) {
1200 if (chip->state != FL_WRITING) {
1201 /* Someone's suspended the write. Sleep */
1202 DECLARE_WAITQUEUE(wait, current);
1203
1204 set_current_state(TASK_UNINTERRUPTIBLE);
1205 add_wait_queue(&chip->wq, &wait);
1206 mutex_unlock(&chip->mutex);
1207 schedule();
1208 remove_wait_queue(&chip->wq, &wait);
1209 timeo = jiffies + (HZ / 2); /* FIXME */
1210 mutex_lock(&chip->mutex);
1211 continue;
1212 }
1213
1214 if (time_after(jiffies, timeo) && !chip_ready(map, adr)){
1215 xip_enable(map, chip, adr);
1216 printk(KERN_WARNING "MTD %s(): software timeout\n", __func__);
1217 xip_disable(map, chip, adr);
1218 break;
1219 }
1220
1221 if (chip_ready(map, adr))
1222 break;
1223
1224 /* Latency issues. Drop the lock, wait a while and retry */
1225 UDELAY(map, chip, adr, 1);
1226 }
1227 /* Did we succeed? */
1228 if (!chip_good(map, adr, datum)) {
1229 /* reset on all failures. */
1230 map_write( map, CMD(0xF0), chip->start );
1231 /* FIXME - should have reset delay before continuing */
1232
1233 if (++retry_cnt <= MAX_WORD_RETRIES)
1234 goto retry;
1235
1236 ret = -EIO;
1237 }
1238 xip_enable(map, chip, adr);
1239 op_done:
1240 chip->state = FL_READY;
1241 put_chip(map, chip, adr);
1242 mutex_unlock(&chip->mutex);
1243
1244 return ret;
1245 }
1246
1247
1248 static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len,
1249 size_t *retlen, const u_char *buf)
1250 {
1251 struct map_info *map = mtd->priv;
1252 struct cfi_private *cfi = map->fldrv_priv;
1253 int ret = 0;
1254 int chipnum;
1255 unsigned long ofs, chipstart;
1256 DECLARE_WAITQUEUE(wait, current);
1257
1258 *retlen = 0;
1259 if (!len)
1260 return 0;
1261
1262 chipnum = to >> cfi->chipshift;
1263 ofs = to - (chipnum << cfi->chipshift);
1264 chipstart = cfi->chips[chipnum].start;
1265
1266 /* If it's not bus-aligned, do the first byte write */
1267 if (ofs & (map_bankwidth(map)-1)) {
1268 unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
1269 int i = ofs - bus_ofs;
1270 int n = 0;
1271 map_word tmp_buf;
1272
1273 retry:
1274 mutex_lock(&cfi->chips[chipnum].mutex);
1275
1276 if (cfi->chips[chipnum].state != FL_READY) {
1277 set_current_state(TASK_UNINTERRUPTIBLE);
1278 add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1279
1280 mutex_unlock(&cfi->chips[chipnum].mutex);
1281
1282 schedule();
1283 remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1284 goto retry;
1285 }
1286
1287 /* Load 'tmp_buf' with old contents of flash */
1288 tmp_buf = map_read(map, bus_ofs+chipstart);
1289
1290 mutex_unlock(&cfi->chips[chipnum].mutex);
1291
1292 /* Number of bytes to copy from buffer */
1293 n = min_t(int, len, map_bankwidth(map)-i);
1294
1295 tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
1296
1297 ret = do_write_oneword(map, &cfi->chips[chipnum],
1298 bus_ofs, tmp_buf);
1299 if (ret)
1300 return ret;
1301
1302 ofs += n;
1303 buf += n;
1304 (*retlen) += n;
1305 len -= n;
1306
1307 if (ofs >> cfi->chipshift) {
1308 chipnum ++;
1309 ofs = 0;
1310 if (chipnum == cfi->numchips)
1311 return 0;
1312 }
1313 }
1314
1315 /* We are now aligned, write as much as possible */
1316 while(len >= map_bankwidth(map)) {
1317 map_word datum;
1318
1319 datum = map_word_load(map, buf);
1320
1321 ret = do_write_oneword(map, &cfi->chips[chipnum],
1322 ofs, datum);
1323 if (ret)
1324 return ret;
1325
1326 ofs += map_bankwidth(map);
1327 buf += map_bankwidth(map);
1328 (*retlen) += map_bankwidth(map);
1329 len -= map_bankwidth(map);
1330
1331 if (ofs >> cfi->chipshift) {
1332 chipnum ++;
1333 ofs = 0;
1334 if (chipnum == cfi->numchips)
1335 return 0;
1336 chipstart = cfi->chips[chipnum].start;
1337 }
1338 }
1339
1340 /* Write the trailing bytes if any */
1341 if (len & (map_bankwidth(map)-1)) {
1342 map_word tmp_buf;
1343
1344 retry1:
1345 mutex_lock(&cfi->chips[chipnum].mutex);
1346
1347 if (cfi->chips[chipnum].state != FL_READY) {
1348 set_current_state(TASK_UNINTERRUPTIBLE);
1349 add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1350
1351 mutex_unlock(&cfi->chips[chipnum].mutex);
1352
1353 schedule();
1354 remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1355 goto retry1;
1356 }
1357
1358 tmp_buf = map_read(map, ofs + chipstart);
1359
1360 mutex_unlock(&cfi->chips[chipnum].mutex);
1361
1362 tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
1363
1364 ret = do_write_oneword(map, &cfi->chips[chipnum],
1365 ofs, tmp_buf);
1366 if (ret)
1367 return ret;
1368
1369 (*retlen) += len;
1370 }
1371
1372 return 0;
1373 }
1374
1375
1376 /*
1377 * FIXME: interleaved mode not tested, and probably not supported!
1378 */
1379 static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
1380 unsigned long adr, const u_char *buf,
1381 int len)
1382 {
1383 struct cfi_private *cfi = map->fldrv_priv;
1384 unsigned long timeo = jiffies + HZ;
1385 /* see comments in do_write_oneword() regarding uWriteTimeo. */
1386 unsigned long uWriteTimeout = ( HZ / 1000 ) + 1;
1387 int ret = -EIO;
1388 unsigned long cmd_adr;
1389 int z, words;
1390 map_word datum;
1391
1392 adr += chip->start;
1393 cmd_adr = adr;
1394
1395 mutex_lock(&chip->mutex);
1396 ret = get_chip(map, chip, adr, FL_WRITING);
1397 if (ret) {
1398 mutex_unlock(&chip->mutex);
1399 return ret;
1400 }
1401
1402 datum = map_word_load(map, buf);
1403
1404 DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1405 __func__, adr, datum.x[0] );
1406
1407 XIP_INVAL_CACHED_RANGE(map, adr, len);
1408 ENABLE_VPP(map);
1409 xip_disable(map, chip, cmd_adr);
1410
1411 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1412 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1413
1414 /* Write Buffer Load */
1415 map_write(map, CMD(0x25), cmd_adr);
1416
1417 chip->state = FL_WRITING_TO_BUFFER;
1418
1419 /* Write length of data to come */
1420 words = len / map_bankwidth(map);
1421 map_write(map, CMD(words - 1), cmd_adr);
1422 /* Write data */
1423 z = 0;
1424 while(z < words * map_bankwidth(map)) {
1425 datum = map_word_load(map, buf);
1426 map_write(map, datum, adr + z);
1427
1428 z += map_bankwidth(map);
1429 buf += map_bankwidth(map);
1430 }
1431 z -= map_bankwidth(map);
1432
1433 adr += z;
1434
1435 /* Write Buffer Program Confirm: GO GO GO */
1436 map_write(map, CMD(0x29), cmd_adr);
1437 chip->state = FL_WRITING;
1438
1439 INVALIDATE_CACHE_UDELAY(map, chip,
1440 adr, map_bankwidth(map),
1441 chip->word_write_time);
1442
1443 timeo = jiffies + uWriteTimeout;
1444
1445 for (;;) {
1446 if (chip->state != FL_WRITING) {
1447 /* Someone's suspended the write. Sleep */
1448 DECLARE_WAITQUEUE(wait, current);
1449
1450 set_current_state(TASK_UNINTERRUPTIBLE);
1451 add_wait_queue(&chip->wq, &wait);
1452 mutex_unlock(&chip->mutex);
1453 schedule();
1454 remove_wait_queue(&chip->wq, &wait);
1455 timeo = jiffies + (HZ / 2); /* FIXME */
1456 mutex_lock(&chip->mutex);
1457 continue;
1458 }
1459
1460 if (time_after(jiffies, timeo) && !chip_ready(map, adr))
1461 break;
1462
1463 if (chip_ready(map, adr)) {
1464 xip_enable(map, chip, adr);
1465 goto op_done;
1466 }
1467
1468 /* Latency issues. Drop the lock, wait a while and retry */
1469 UDELAY(map, chip, adr, 1);
1470 }
1471
1472 /* reset on all failures. */
1473 map_write( map, CMD(0xF0), chip->start );
1474 xip_enable(map, chip, adr);
1475 /* FIXME - should have reset delay before continuing */
1476
1477 printk(KERN_WARNING "MTD %s(): software timeout\n",
1478 __func__ );
1479
1480 ret = -EIO;
1481 op_done:
1482 chip->state = FL_READY;
1483 put_chip(map, chip, adr);
1484 mutex_unlock(&chip->mutex);
1485
1486 return ret;
1487 }
1488
1489
1490 static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
1491 size_t *retlen, const u_char *buf)
1492 {
1493 struct map_info *map = mtd->priv;
1494 struct cfi_private *cfi = map->fldrv_priv;
1495 int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1496 int ret = 0;
1497 int chipnum;
1498 unsigned long ofs;
1499
1500 *retlen = 0;
1501 if (!len)
1502 return 0;
1503
1504 chipnum = to >> cfi->chipshift;
1505 ofs = to - (chipnum << cfi->chipshift);
1506
1507 /* If it's not bus-aligned, do the first word write */
1508 if (ofs & (map_bankwidth(map)-1)) {
1509 size_t local_len = (-ofs)&(map_bankwidth(map)-1);
1510 if (local_len > len)
1511 local_len = len;
1512 ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1513 local_len, retlen, buf);
1514 if (ret)
1515 return ret;
1516 ofs += local_len;
1517 buf += local_len;
1518 len -= local_len;
1519
1520 if (ofs >> cfi->chipshift) {
1521 chipnum ++;
1522 ofs = 0;
1523 if (chipnum == cfi->numchips)
1524 return 0;
1525 }
1526 }
1527
1528 /* Write buffer is worth it only if more than one word to write... */
1529 while (len >= map_bankwidth(map) * 2) {
1530 /* We must not cross write block boundaries */
1531 int size = wbufsize - (ofs & (wbufsize-1));
1532
1533 if (size > len)
1534 size = len;
1535 if (size % map_bankwidth(map))
1536 size -= size % map_bankwidth(map);
1537
1538 ret = do_write_buffer(map, &cfi->chips[chipnum],
1539 ofs, buf, size);
1540 if (ret)
1541 return ret;
1542
1543 ofs += size;
1544 buf += size;
1545 (*retlen) += size;
1546 len -= size;
1547
1548 if (ofs >> cfi->chipshift) {
1549 chipnum ++;
1550 ofs = 0;
1551 if (chipnum == cfi->numchips)
1552 return 0;
1553 }
1554 }
1555
1556 if (len) {
1557 size_t retlen_dregs = 0;
1558
1559 ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1560 len, &retlen_dregs, buf);
1561
1562 *retlen += retlen_dregs;
1563 return ret;
1564 }
1565
1566 return 0;
1567 }
1568
1569
1570 /*
1571 * Handle devices with one erase region, that only implement
1572 * the chip erase command.
1573 */
1574 static int __xipram do_erase_chip(struct map_info *map, struct flchip *chip)
1575 {
1576 struct cfi_private *cfi = map->fldrv_priv;
1577 unsigned long timeo = jiffies + HZ;
1578 unsigned long int adr;
1579 DECLARE_WAITQUEUE(wait, current);
1580 int ret = 0;
1581
1582 adr = cfi->addr_unlock1;
1583
1584 mutex_lock(&chip->mutex);
1585 ret = get_chip(map, chip, adr, FL_WRITING);
1586 if (ret) {
1587 mutex_unlock(&chip->mutex);
1588 return ret;
1589 }
1590
1591 DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): ERASE 0x%.8lx\n",
1592 __func__, chip->start );
1593
1594 XIP_INVAL_CACHED_RANGE(map, adr, map->size);
1595 ENABLE_VPP(map);
1596 xip_disable(map, chip, adr);
1597
1598 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1599 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1600 cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1601 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1602 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1603 cfi_send_gen_cmd(0x10, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1604
1605 chip->state = FL_ERASING;
1606 chip->erase_suspended = 0;
1607 chip->in_progress_block_addr = adr;
1608
1609 INVALIDATE_CACHE_UDELAY(map, chip,
1610 adr, map->size,
1611 chip->erase_time*500);
1612
1613 timeo = jiffies + (HZ*20);
1614
1615 for (;;) {
1616 if (chip->state != FL_ERASING) {
1617 /* Someone's suspended the erase. Sleep */
1618 set_current_state(TASK_UNINTERRUPTIBLE);
1619 add_wait_queue(&chip->wq, &wait);
1620 mutex_unlock(&chip->mutex);
1621 schedule();
1622 remove_wait_queue(&chip->wq, &wait);
1623 mutex_lock(&chip->mutex);
1624 continue;
1625 }
1626 if (chip->erase_suspended) {
1627 /* This erase was suspended and resumed.
1628 Adjust the timeout */
1629 timeo = jiffies + (HZ*20); /* FIXME */
1630 chip->erase_suspended = 0;
1631 }
1632
1633 if (chip_ready(map, adr))
1634 break;
1635
1636 if (time_after(jiffies, timeo)) {
1637 printk(KERN_WARNING "MTD %s(): software timeout\n",
1638 __func__ );
1639 break;
1640 }
1641
1642 /* Latency issues. Drop the lock, wait a while and retry */
1643 UDELAY(map, chip, adr, 1000000/HZ);
1644 }
1645 /* Did we succeed? */
1646 if (!chip_good(map, adr, map_word_ff(map))) {
1647 /* reset on all failures. */
1648 map_write( map, CMD(0xF0), chip->start );
1649 /* FIXME - should have reset delay before continuing */
1650
1651 ret = -EIO;
1652 }
1653
1654 chip->state = FL_READY;
1655 xip_enable(map, chip, adr);
1656 put_chip(map, chip, adr);
1657 mutex_unlock(&chip->mutex);
1658
1659 return ret;
1660 }
1661
1662
1663 static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr, int len, void *thunk)
1664 {
1665 struct cfi_private *cfi = map->fldrv_priv;
1666 unsigned long timeo = jiffies + HZ;
1667 DECLARE_WAITQUEUE(wait, current);
1668 int ret = 0;
1669
1670 adr += chip->start;
1671
1672 mutex_lock(&chip->mutex);
1673 ret = get_chip(map, chip, adr, FL_ERASING);
1674 if (ret) {
1675 mutex_unlock(&chip->mutex);
1676 return ret;
1677 }
1678
1679 DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): ERASE 0x%.8lx\n",
1680 __func__, adr );
1681
1682 XIP_INVAL_CACHED_RANGE(map, adr, len);
1683 ENABLE_VPP(map);
1684 xip_disable(map, chip, adr);
1685
1686 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1687 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1688 cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1689 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1690 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1691 map_write(map, cfi->sector_erase_cmd, adr);
1692
1693 chip->state = FL_ERASING;
1694 chip->erase_suspended = 0;
1695 chip->in_progress_block_addr = adr;
1696
1697 INVALIDATE_CACHE_UDELAY(map, chip,
1698 adr, len,
1699 chip->erase_time*500);
1700
1701 timeo = jiffies + (HZ*20);
1702
1703 for (;;) {
1704 if (chip->state != FL_ERASING) {
1705 /* Someone's suspended the erase. Sleep */
1706 set_current_state(TASK_UNINTERRUPTIBLE);
1707 add_wait_queue(&chip->wq, &wait);
1708 mutex_unlock(&chip->mutex);
1709 schedule();
1710 remove_wait_queue(&chip->wq, &wait);
1711 mutex_lock(&chip->mutex);
1712 continue;
1713 }
1714 if (chip->erase_suspended) {
1715 /* This erase was suspended and resumed.
1716 Adjust the timeout */
1717 timeo = jiffies + (HZ*20); /* FIXME */
1718 chip->erase_suspended = 0;
1719 }
1720
1721 if (chip_ready(map, adr)) {
1722 xip_enable(map, chip, adr);
1723 break;
1724 }
1725
1726 if (time_after(jiffies, timeo)) {
1727 xip_enable(map, chip, adr);
1728 printk(KERN_WARNING "MTD %s(): software timeout\n",
1729 __func__ );
1730 break;
1731 }
1732
1733 /* Latency issues. Drop the lock, wait a while and retry */
1734 UDELAY(map, chip, adr, 1000000/HZ);
1735 }
1736 /* Did we succeed? */
1737 if (!chip_good(map, adr, map_word_ff(map))) {
1738 /* reset on all failures. */
1739 map_write( map, CMD(0xF0), chip->start );
1740 /* FIXME - should have reset delay before continuing */
1741
1742 ret = -EIO;
1743 }
1744
1745 chip->state = FL_READY;
1746 put_chip(map, chip, adr);
1747 mutex_unlock(&chip->mutex);
1748 return ret;
1749 }
1750
1751
1752 static int cfi_amdstd_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
1753 {
1754 unsigned long ofs, len;
1755 int ret;
1756
1757 ofs = instr->addr;
1758 len = instr->len;
1759
1760 ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL);
1761 if (ret)
1762 return ret;
1763
1764 instr->state = MTD_ERASE_DONE;
1765 mtd_erase_callback(instr);
1766
1767 return 0;
1768 }
1769
1770
1771 static int cfi_amdstd_erase_chip(struct mtd_info *mtd, struct erase_info *instr)
1772 {
1773 struct map_info *map = mtd->priv;
1774 struct cfi_private *cfi = map->fldrv_priv;
1775 int ret = 0;
1776
1777 if (instr->addr != 0)
1778 return -EINVAL;
1779
1780 if (instr->len != mtd->size)
1781 return -EINVAL;
1782
1783 ret = do_erase_chip(map, &cfi->chips[0]);
1784 if (ret)
1785 return ret;
1786
1787 instr->state = MTD_ERASE_DONE;
1788 mtd_erase_callback(instr);
1789
1790 return 0;
1791 }
1792
1793 static int do_atmel_lock(struct map_info *map, struct flchip *chip,
1794 unsigned long adr, int len, void *thunk)
1795 {
1796 struct cfi_private *cfi = map->fldrv_priv;
1797 int ret;
1798
1799 mutex_lock(&chip->mutex);
1800 ret = get_chip(map, chip, adr + chip->start, FL_LOCKING);
1801 if (ret)
1802 goto out_unlock;
1803 chip->state = FL_LOCKING;
1804
1805 DEBUG(MTD_DEBUG_LEVEL3, "MTD %s(): LOCK 0x%08lx len %d\n",
1806 __func__, adr, len);
1807
1808 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1809 cfi->device_type, NULL);
1810 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1811 cfi->device_type, NULL);
1812 cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi,
1813 cfi->device_type, NULL);
1814 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1815 cfi->device_type, NULL);
1816 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1817 cfi->device_type, NULL);
1818 map_write(map, CMD(0x40), chip->start + adr);
1819
1820 chip->state = FL_READY;
1821 put_chip(map, chip, adr + chip->start);
1822 ret = 0;
1823
1824 out_unlock:
1825 mutex_unlock(&chip->mutex);
1826 return ret;
1827 }
1828
1829 static int do_atmel_unlock(struct map_info *map, struct flchip *chip,
1830 unsigned long adr, int len, void *thunk)
1831 {
1832 struct cfi_private *cfi = map->fldrv_priv;
1833 int ret;
1834
1835 mutex_lock(&chip->mutex);
1836 ret = get_chip(map, chip, adr + chip->start, FL_UNLOCKING);
1837 if (ret)
1838 goto out_unlock;
1839 chip->state = FL_UNLOCKING;
1840
1841 DEBUG(MTD_DEBUG_LEVEL3, "MTD %s(): LOCK 0x%08lx len %d\n",
1842 __func__, adr, len);
1843
1844 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1845 cfi->device_type, NULL);
1846 map_write(map, CMD(0x70), adr);
1847
1848 chip->state = FL_READY;
1849 put_chip(map, chip, adr + chip->start);
1850 ret = 0;
1851
1852 out_unlock:
1853 mutex_unlock(&chip->mutex);
1854 return ret;
1855 }
1856
1857 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1858 {
1859 return cfi_varsize_frob(mtd, do_atmel_lock, ofs, len, NULL);
1860 }
1861
1862 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1863 {
1864 return cfi_varsize_frob(mtd, do_atmel_unlock, ofs, len, NULL);
1865 }
1866
1867
1868 static void cfi_amdstd_sync (struct mtd_info *mtd)
1869 {
1870 struct map_info *map = mtd->priv;
1871 struct cfi_private *cfi = map->fldrv_priv;
1872 int i;
1873 struct flchip *chip;
1874 int ret = 0;
1875 DECLARE_WAITQUEUE(wait, current);
1876
1877 for (i=0; !ret && i<cfi->numchips; i++) {
1878 chip = &cfi->chips[i];
1879
1880 retry:
1881 mutex_lock(&chip->mutex);
1882
1883 switch(chip->state) {
1884 case FL_READY:
1885 case FL_STATUS:
1886 case FL_CFI_QUERY:
1887 case FL_JEDEC_QUERY:
1888 chip->oldstate = chip->state;
1889 chip->state = FL_SYNCING;
1890 /* No need to wake_up() on this state change -
1891 * as the whole point is that nobody can do anything
1892 * with the chip now anyway.
1893 */
1894 case FL_SYNCING:
1895 mutex_unlock(&chip->mutex);
1896 break;
1897
1898 default:
1899 /* Not an idle state */
1900 set_current_state(TASK_UNINTERRUPTIBLE);
1901 add_wait_queue(&chip->wq, &wait);
1902
1903 mutex_unlock(&chip->mutex);
1904
1905 schedule();
1906
1907 remove_wait_queue(&chip->wq, &wait);
1908
1909 goto retry;
1910 }
1911 }
1912
1913 /* Unlock the chips again */
1914
1915 for (i--; i >=0; i--) {
1916 chip = &cfi->chips[i];
1917
1918 mutex_lock(&chip->mutex);
1919
1920 if (chip->state == FL_SYNCING) {
1921 chip->state = chip->oldstate;
1922 wake_up(&chip->wq);
1923 }
1924 mutex_unlock(&chip->mutex);
1925 }
1926 }
1927
1928
1929 static int cfi_amdstd_suspend(struct mtd_info *mtd)
1930 {
1931 struct map_info *map = mtd->priv;
1932 struct cfi_private *cfi = map->fldrv_priv;
1933 int i;
1934 struct flchip *chip;
1935 int ret = 0;
1936
1937 for (i=0; !ret && i<cfi->numchips; i++) {
1938 chip = &cfi->chips[i];
1939
1940 mutex_lock(&chip->mutex);
1941
1942 switch(chip->state) {
1943 case FL_READY:
1944 case FL_STATUS:
1945 case FL_CFI_QUERY:
1946 case FL_JEDEC_QUERY:
1947 chip->oldstate = chip->state;
1948 chip->state = FL_PM_SUSPENDED;
1949 /* No need to wake_up() on this state change -
1950 * as the whole point is that nobody can do anything
1951 * with the chip now anyway.
1952 */
1953 case FL_PM_SUSPENDED:
1954 break;
1955
1956 default:
1957 ret = -EAGAIN;
1958 break;
1959 }
1960 mutex_unlock(&chip->mutex);
1961 }
1962
1963 /* Unlock the chips again */
1964
1965 if (ret) {
1966 for (i--; i >=0; i--) {
1967 chip = &cfi->chips[i];
1968
1969 mutex_lock(&chip->mutex);
1970
1971 if (chip->state == FL_PM_SUSPENDED) {
1972 chip->state = chip->oldstate;
1973 wake_up(&chip->wq);
1974 }
1975 mutex_unlock(&chip->mutex);
1976 }
1977 }
1978
1979 return ret;
1980 }
1981
1982
1983 static void cfi_amdstd_resume(struct mtd_info *mtd)
1984 {
1985 struct map_info *map = mtd->priv;
1986 struct cfi_private *cfi = map->fldrv_priv;
1987 int i;
1988 struct flchip *chip;
1989
1990 for (i=0; i<cfi->numchips; i++) {
1991
1992 chip = &cfi->chips[i];
1993
1994 mutex_lock(&chip->mutex);
1995
1996 if (chip->state == FL_PM_SUSPENDED) {
1997 chip->state = FL_READY;
1998 map_write(map, CMD(0xF0), chip->start);
1999 wake_up(&chip->wq);
2000 }
2001 else
2002 printk(KERN_ERR "Argh. Chip not in PM_SUSPENDED state upon resume()\n");
2003
2004 mutex_unlock(&chip->mutex);
2005 }
2006 }
2007
2008
2009 /*
2010 * Ensure that the flash device is put back into read array mode before
2011 * unloading the driver or rebooting. On some systems, rebooting while
2012 * the flash is in query/program/erase mode will prevent the CPU from
2013 * fetching the bootloader code, requiring a hard reset or power cycle.
2014 */
2015 static int cfi_amdstd_reset(struct mtd_info *mtd)
2016 {
2017 struct map_info *map = mtd->priv;
2018 struct cfi_private *cfi = map->fldrv_priv;
2019 int i, ret;
2020 struct flchip *chip;
2021
2022 for (i = 0; i < cfi->numchips; i++) {
2023
2024 chip = &cfi->chips[i];
2025
2026 mutex_lock(&chip->mutex);
2027
2028 ret = get_chip(map, chip, chip->start, FL_SHUTDOWN);
2029 if (!ret) {
2030 map_write(map, CMD(0xF0), chip->start);
2031 chip->state = FL_SHUTDOWN;
2032 put_chip(map, chip, chip->start);
2033 }
2034
2035 mutex_unlock(&chip->mutex);
2036 }
2037
2038 return 0;
2039 }
2040
2041
2042 static int cfi_amdstd_reboot(struct notifier_block *nb, unsigned long val,
2043 void *v)
2044 {
2045 struct mtd_info *mtd;
2046
2047 mtd = container_of(nb, struct mtd_info, reboot_notifier);
2048 cfi_amdstd_reset(mtd);
2049 return NOTIFY_DONE;
2050 }
2051
2052
2053 static void cfi_amdstd_destroy(struct mtd_info *mtd)
2054 {
2055 struct map_info *map = mtd->priv;
2056 struct cfi_private *cfi = map->fldrv_priv;
2057
2058 cfi_amdstd_reset(mtd);
2059 unregister_reboot_notifier(&mtd->reboot_notifier);
2060 kfree(cfi->cmdset_priv);
2061 kfree(cfi->cfiq);
2062 kfree(cfi);
2063 kfree(mtd->eraseregions);
2064 }
2065
2066 MODULE_LICENSE("GPL");
2067 MODULE_AUTHOR("Crossnet Co. <info@crossnet.co.jp> et al.");
2068 MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips");
2069 MODULE_ALIAS("cfi_cmdset_0006");
2070 MODULE_ALIAS("cfi_cmdset_0701");
This page took 0.111344 seconds and 5 git commands to generate.