/spare/repo/libata-dev branch 'v2.6.13'
[deliverable/linux.git] / drivers / mtd / chips / cfi_cmdset_0002.c
1 /*
2 * Common Flash Interface support:
3 * AMD & Fujitsu Standard Vendor Command Set (ID 0x0002)
4 *
5 * Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp>
6 * Copyright (C) 2004 Arcom Control Systems Ltd <linux@arcom.com>
7 * Copyright (C) 2005 MontaVista Software Inc. <source@mvista.com>
8 *
9 * 2_by_8 routines added by Simon Munton
10 *
11 * 4_by_16 work by Carolyn J. Smith
12 *
13 * XIP support hooks by Vitaly Wool (based on code for Intel flash
14 * by Nicolas Pitre)
15 *
16 * Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com
17 *
18 * This code is GPL
19 *
20 * $Id: cfi_cmdset_0002.c,v 1.118 2005/07/04 22:34:29 gleixner Exp $
21 *
22 */
23
24 #include <linux/config.h>
25 #include <linux/module.h>
26 #include <linux/types.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/init.h>
30 #include <asm/io.h>
31 #include <asm/byteorder.h>
32
33 #include <linux/errno.h>
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/interrupt.h>
37 #include <linux/mtd/compatmac.h>
38 #include <linux/mtd/map.h>
39 #include <linux/mtd/mtd.h>
40 #include <linux/mtd/cfi.h>
41 #include <linux/mtd/xip.h>
42
43 #define AMD_BOOTLOC_BUG
44 #define FORCE_WORD_WRITE 0
45
46 #define MAX_WORD_RETRIES 3
47
48 #define MANUFACTURER_AMD 0x0001
49 #define MANUFACTURER_SST 0x00BF
50 #define SST49LF004B 0x0060
51 #define SST49LF008A 0x005a
52
53 static int cfi_amdstd_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
54 static int cfi_amdstd_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
55 static int cfi_amdstd_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
56 static int cfi_amdstd_erase_chip(struct mtd_info *, struct erase_info *);
57 static int cfi_amdstd_erase_varsize(struct mtd_info *, struct erase_info *);
58 static void cfi_amdstd_sync (struct mtd_info *);
59 static int cfi_amdstd_suspend (struct mtd_info *);
60 static void cfi_amdstd_resume (struct mtd_info *);
61 static int cfi_amdstd_secsi_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
62
63 static void cfi_amdstd_destroy(struct mtd_info *);
64
65 struct mtd_info *cfi_cmdset_0002(struct map_info *, int);
66 static struct mtd_info *cfi_amdstd_setup (struct mtd_info *);
67
68 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
69 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
70 #include "fwh_lock.h"
71
72 static struct mtd_chip_driver cfi_amdstd_chipdrv = {
73 .probe = NULL, /* Not usable directly */
74 .destroy = cfi_amdstd_destroy,
75 .name = "cfi_cmdset_0002",
76 .module = THIS_MODULE
77 };
78
79
80 /* #define DEBUG_CFI_FEATURES */
81
82
83 #ifdef DEBUG_CFI_FEATURES
84 static void cfi_tell_features(struct cfi_pri_amdstd *extp)
85 {
86 const char* erase_suspend[3] = {
87 "Not supported", "Read only", "Read/write"
88 };
89 const char* top_bottom[6] = {
90 "No WP", "8x8KiB sectors at top & bottom, no WP",
91 "Bottom boot", "Top boot",
92 "Uniform, Bottom WP", "Uniform, Top WP"
93 };
94
95 printk(" Silicon revision: %d\n", extp->SiliconRevision >> 1);
96 printk(" Address sensitive unlock: %s\n",
97 (extp->SiliconRevision & 1) ? "Not required" : "Required");
98
99 if (extp->EraseSuspend < ARRAY_SIZE(erase_suspend))
100 printk(" Erase Suspend: %s\n", erase_suspend[extp->EraseSuspend]);
101 else
102 printk(" Erase Suspend: Unknown value %d\n", extp->EraseSuspend);
103
104 if (extp->BlkProt == 0)
105 printk(" Block protection: Not supported\n");
106 else
107 printk(" Block protection: %d sectors per group\n", extp->BlkProt);
108
109
110 printk(" Temporary block unprotect: %s\n",
111 extp->TmpBlkUnprotect ? "Supported" : "Not supported");
112 printk(" Block protect/unprotect scheme: %d\n", extp->BlkProtUnprot);
113 printk(" Number of simultaneous operations: %d\n", extp->SimultaneousOps);
114 printk(" Burst mode: %s\n",
115 extp->BurstMode ? "Supported" : "Not supported");
116 if (extp->PageMode == 0)
117 printk(" Page mode: Not supported\n");
118 else
119 printk(" Page mode: %d word page\n", extp->PageMode << 2);
120
121 printk(" Vpp Supply Minimum Program/Erase Voltage: %d.%d V\n",
122 extp->VppMin >> 4, extp->VppMin & 0xf);
123 printk(" Vpp Supply Maximum Program/Erase Voltage: %d.%d V\n",
124 extp->VppMax >> 4, extp->VppMax & 0xf);
125
126 if (extp->TopBottom < ARRAY_SIZE(top_bottom))
127 printk(" Top/Bottom Boot Block: %s\n", top_bottom[extp->TopBottom]);
128 else
129 printk(" Top/Bottom Boot Block: Unknown value %d\n", extp->TopBottom);
130 }
131 #endif
132
133 #ifdef AMD_BOOTLOC_BUG
134 /* Wheee. Bring me the head of someone at AMD. */
135 static void fixup_amd_bootblock(struct mtd_info *mtd, void* param)
136 {
137 struct map_info *map = mtd->priv;
138 struct cfi_private *cfi = map->fldrv_priv;
139 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
140 __u8 major = extp->MajorVersion;
141 __u8 minor = extp->MinorVersion;
142
143 if (((major << 8) | minor) < 0x3131) {
144 /* CFI version 1.0 => don't trust bootloc */
145 if (cfi->id & 0x80) {
146 printk(KERN_WARNING "%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map->name, cfi->id);
147 extp->TopBottom = 3; /* top boot */
148 } else {
149 extp->TopBottom = 2; /* bottom boot */
150 }
151 }
152 }
153 #endif
154
155 static void fixup_use_write_buffers(struct mtd_info *mtd, void *param)
156 {
157 struct map_info *map = mtd->priv;
158 struct cfi_private *cfi = map->fldrv_priv;
159 if (cfi->cfiq->BufWriteTimeoutTyp) {
160 DEBUG(MTD_DEBUG_LEVEL1, "Using buffer write method\n" );
161 mtd->write = cfi_amdstd_write_buffers;
162 }
163 }
164
165 static void fixup_use_secsi(struct mtd_info *mtd, void *param)
166 {
167 /* Setup for chips with a secsi area */
168 mtd->read_user_prot_reg = cfi_amdstd_secsi_read;
169 mtd->read_fact_prot_reg = cfi_amdstd_secsi_read;
170 }
171
172 static void fixup_use_erase_chip(struct mtd_info *mtd, void *param)
173 {
174 struct map_info *map = mtd->priv;
175 struct cfi_private *cfi = map->fldrv_priv;
176 if ((cfi->cfiq->NumEraseRegions == 1) &&
177 ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0)) {
178 mtd->erase = cfi_amdstd_erase_chip;
179 }
180
181 }
182
183 static struct cfi_fixup cfi_fixup_table[] = {
184 #ifdef AMD_BOOTLOC_BUG
185 { CFI_MFR_AMD, CFI_ID_ANY, fixup_amd_bootblock, NULL },
186 #endif
187 { CFI_MFR_AMD, 0x0050, fixup_use_secsi, NULL, },
188 { CFI_MFR_AMD, 0x0053, fixup_use_secsi, NULL, },
189 { CFI_MFR_AMD, 0x0055, fixup_use_secsi, NULL, },
190 { CFI_MFR_AMD, 0x0056, fixup_use_secsi, NULL, },
191 { CFI_MFR_AMD, 0x005C, fixup_use_secsi, NULL, },
192 { CFI_MFR_AMD, 0x005F, fixup_use_secsi, NULL, },
193 #if !FORCE_WORD_WRITE
194 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers, NULL, },
195 #endif
196 { 0, 0, NULL, NULL }
197 };
198 static struct cfi_fixup jedec_fixup_table[] = {
199 { MANUFACTURER_SST, SST49LF004B, fixup_use_fwh_lock, NULL, },
200 { MANUFACTURER_SST, SST49LF008A, fixup_use_fwh_lock, NULL, },
201 { 0, 0, NULL, NULL }
202 };
203
204 static struct cfi_fixup fixup_table[] = {
205 /* The CFI vendor ids and the JEDEC vendor IDs appear
206 * to be common. It is like the devices id's are as
207 * well. This table is to pick all cases where
208 * we know that is the case.
209 */
210 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_erase_chip, NULL },
211 { 0, 0, NULL, NULL }
212 };
213
214
215 struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary)
216 {
217 struct cfi_private *cfi = map->fldrv_priv;
218 struct mtd_info *mtd;
219 int i;
220
221 mtd = kmalloc(sizeof(*mtd), GFP_KERNEL);
222 if (!mtd) {
223 printk(KERN_WARNING "Failed to allocate memory for MTD device\n");
224 return NULL;
225 }
226 memset(mtd, 0, sizeof(*mtd));
227 mtd->priv = map;
228 mtd->type = MTD_NORFLASH;
229
230 /* Fill in the default mtd operations */
231 mtd->erase = cfi_amdstd_erase_varsize;
232 mtd->write = cfi_amdstd_write_words;
233 mtd->read = cfi_amdstd_read;
234 mtd->sync = cfi_amdstd_sync;
235 mtd->suspend = cfi_amdstd_suspend;
236 mtd->resume = cfi_amdstd_resume;
237 mtd->flags = MTD_CAP_NORFLASH;
238 mtd->name = map->name;
239
240 if (cfi->cfi_mode==CFI_MODE_CFI){
241 unsigned char bootloc;
242 /*
243 * It's a real CFI chip, not one for which the probe
244 * routine faked a CFI structure. So we read the feature
245 * table from it.
246 */
247 __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
248 struct cfi_pri_amdstd *extp;
249
250 extp = (struct cfi_pri_amdstd*)cfi_read_pri(map, adr, sizeof(*extp), "Amd/Fujitsu");
251 if (!extp) {
252 kfree(mtd);
253 return NULL;
254 }
255
256 /* Install our own private info structure */
257 cfi->cmdset_priv = extp;
258
259 /* Apply cfi device specific fixups */
260 cfi_fixup(mtd, cfi_fixup_table);
261
262 #ifdef DEBUG_CFI_FEATURES
263 /* Tell the user about it in lots of lovely detail */
264 cfi_tell_features(extp);
265 #endif
266
267 bootloc = extp->TopBottom;
268 if ((bootloc != 2) && (bootloc != 3)) {
269 printk(KERN_WARNING "%s: CFI does not contain boot "
270 "bank location. Assuming top.\n", map->name);
271 bootloc = 2;
272 }
273
274 if (bootloc == 3 && cfi->cfiq->NumEraseRegions > 1) {
275 printk(KERN_WARNING "%s: Swapping erase regions for broken CFI table.\n", map->name);
276
277 for (i=0; i<cfi->cfiq->NumEraseRegions / 2; i++) {
278 int j = (cfi->cfiq->NumEraseRegions-1)-i;
279 __u32 swap;
280
281 swap = cfi->cfiq->EraseRegionInfo[i];
282 cfi->cfiq->EraseRegionInfo[i] = cfi->cfiq->EraseRegionInfo[j];
283 cfi->cfiq->EraseRegionInfo[j] = swap;
284 }
285 }
286 /* Set the default CFI lock/unlock addresses */
287 cfi->addr_unlock1 = 0x555;
288 cfi->addr_unlock2 = 0x2aa;
289 /* Modify the unlock address if we are in compatibility mode */
290 if ( /* x16 in x8 mode */
291 ((cfi->device_type == CFI_DEVICETYPE_X8) &&
292 (cfi->cfiq->InterfaceDesc == 2)) ||
293 /* x32 in x16 mode */
294 ((cfi->device_type == CFI_DEVICETYPE_X16) &&
295 (cfi->cfiq->InterfaceDesc == 4)))
296 {
297 cfi->addr_unlock1 = 0xaaa;
298 cfi->addr_unlock2 = 0x555;
299 }
300
301 } /* CFI mode */
302 else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
303 /* Apply jedec specific fixups */
304 cfi_fixup(mtd, jedec_fixup_table);
305 }
306 /* Apply generic fixups */
307 cfi_fixup(mtd, fixup_table);
308
309 for (i=0; i< cfi->numchips; i++) {
310 cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp;
311 cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp;
312 cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp;
313 }
314
315 map->fldrv = &cfi_amdstd_chipdrv;
316
317 return cfi_amdstd_setup(mtd);
318 }
319
320
321 static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd)
322 {
323 struct map_info *map = mtd->priv;
324 struct cfi_private *cfi = map->fldrv_priv;
325 unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
326 unsigned long offset = 0;
327 int i,j;
328
329 printk(KERN_NOTICE "number of %s chips: %d\n",
330 (cfi->cfi_mode == CFI_MODE_CFI)?"CFI":"JEDEC",cfi->numchips);
331 /* Select the correct geometry setup */
332 mtd->size = devsize * cfi->numchips;
333
334 mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
335 mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info)
336 * mtd->numeraseregions, GFP_KERNEL);
337 if (!mtd->eraseregions) {
338 printk(KERN_WARNING "Failed to allocate memory for MTD erase region info\n");
339 goto setup_err;
340 }
341
342 for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
343 unsigned long ernum, ersize;
344 ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
345 ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
346
347 if (mtd->erasesize < ersize) {
348 mtd->erasesize = ersize;
349 }
350 for (j=0; j<cfi->numchips; j++) {
351 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
352 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
353 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
354 }
355 offset += (ersize * ernum);
356 }
357 if (offset != devsize) {
358 /* Argh */
359 printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
360 goto setup_err;
361 }
362 #if 0
363 // debug
364 for (i=0; i<mtd->numeraseregions;i++){
365 printk("%d: offset=0x%x,size=0x%x,blocks=%d\n",
366 i,mtd->eraseregions[i].offset,
367 mtd->eraseregions[i].erasesize,
368 mtd->eraseregions[i].numblocks);
369 }
370 #endif
371
372 /* FIXME: erase-suspend-program is broken. See
373 http://lists.infradead.org/pipermail/linux-mtd/2003-December/009001.html */
374 printk(KERN_NOTICE "cfi_cmdset_0002: Disabling erase-suspend-program due to code brokenness.\n");
375
376 __module_get(THIS_MODULE);
377 return mtd;
378
379 setup_err:
380 if(mtd) {
381 if(mtd->eraseregions)
382 kfree(mtd->eraseregions);
383 kfree(mtd);
384 }
385 kfree(cfi->cmdset_priv);
386 kfree(cfi->cfiq);
387 return NULL;
388 }
389
390 /*
391 * Return true if the chip is ready.
392 *
393 * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
394 * non-suspended sector) and is indicated by no toggle bits toggling.
395 *
396 * Note that anything more complicated than checking if no bits are toggling
397 * (including checking DQ5 for an error status) is tricky to get working
398 * correctly and is therefore not done (particulary with interleaved chips
399 * as each chip must be checked independantly of the others).
400 */
401 static int __xipram chip_ready(struct map_info *map, unsigned long addr)
402 {
403 map_word d, t;
404
405 d = map_read(map, addr);
406 t = map_read(map, addr);
407
408 return map_word_equal(map, d, t);
409 }
410
411 /*
412 * Return true if the chip is ready and has the correct value.
413 *
414 * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
415 * non-suspended sector) and it is indicated by no bits toggling.
416 *
417 * Error are indicated by toggling bits or bits held with the wrong value,
418 * or with bits toggling.
419 *
420 * Note that anything more complicated than checking if no bits are toggling
421 * (including checking DQ5 for an error status) is tricky to get working
422 * correctly and is therefore not done (particulary with interleaved chips
423 * as each chip must be checked independantly of the others).
424 *
425 */
426 static int __xipram chip_good(struct map_info *map, unsigned long addr, map_word expected)
427 {
428 map_word oldd, curd;
429
430 oldd = map_read(map, addr);
431 curd = map_read(map, addr);
432
433 return map_word_equal(map, oldd, curd) &&
434 map_word_equal(map, curd, expected);
435 }
436
437 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
438 {
439 DECLARE_WAITQUEUE(wait, current);
440 struct cfi_private *cfi = map->fldrv_priv;
441 unsigned long timeo;
442 struct cfi_pri_amdstd *cfip = (struct cfi_pri_amdstd *)cfi->cmdset_priv;
443
444 resettime:
445 timeo = jiffies + HZ;
446 retry:
447 switch (chip->state) {
448
449 case FL_STATUS:
450 for (;;) {
451 if (chip_ready(map, adr))
452 break;
453
454 if (time_after(jiffies, timeo)) {
455 printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
456 spin_unlock(chip->mutex);
457 return -EIO;
458 }
459 spin_unlock(chip->mutex);
460 cfi_udelay(1);
461 spin_lock(chip->mutex);
462 /* Someone else might have been playing with it. */
463 goto retry;
464 }
465
466 case FL_READY:
467 case FL_CFI_QUERY:
468 case FL_JEDEC_QUERY:
469 return 0;
470
471 case FL_ERASING:
472 if (mode == FL_WRITING) /* FIXME: Erase-suspend-program appears broken. */
473 goto sleep;
474
475 if (!(mode == FL_READY || mode == FL_POINT
476 || !cfip
477 || (mode == FL_WRITING && (cfip->EraseSuspend & 0x2))
478 || (mode == FL_WRITING && (cfip->EraseSuspend & 0x1))))
479 goto sleep;
480
481 /* We could check to see if we're trying to access the sector
482 * that is currently being erased. However, no user will try
483 * anything like that so we just wait for the timeout. */
484
485 /* Erase suspend */
486 /* It's harmless to issue the Erase-Suspend and Erase-Resume
487 * commands when the erase algorithm isn't in progress. */
488 map_write(map, CMD(0xB0), chip->in_progress_block_addr);
489 chip->oldstate = FL_ERASING;
490 chip->state = FL_ERASE_SUSPENDING;
491 chip->erase_suspended = 1;
492 for (;;) {
493 if (chip_ready(map, adr))
494 break;
495
496 if (time_after(jiffies, timeo)) {
497 /* Should have suspended the erase by now.
498 * Send an Erase-Resume command as either
499 * there was an error (so leave the erase
500 * routine to recover from it) or we trying to
501 * use the erase-in-progress sector. */
502 map_write(map, CMD(0x30), chip->in_progress_block_addr);
503 chip->state = FL_ERASING;
504 chip->oldstate = FL_READY;
505 printk(KERN_ERR "MTD %s(): chip not ready after erase suspend\n", __func__);
506 return -EIO;
507 }
508
509 spin_unlock(chip->mutex);
510 cfi_udelay(1);
511 spin_lock(chip->mutex);
512 /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
513 So we can just loop here. */
514 }
515 chip->state = FL_READY;
516 return 0;
517
518 case FL_XIP_WHILE_ERASING:
519 if (mode != FL_READY && mode != FL_POINT &&
520 (!cfip || !(cfip->EraseSuspend&2)))
521 goto sleep;
522 chip->oldstate = chip->state;
523 chip->state = FL_READY;
524 return 0;
525
526 case FL_POINT:
527 /* Only if there's no operation suspended... */
528 if (mode == FL_READY && chip->oldstate == FL_READY)
529 return 0;
530
531 default:
532 sleep:
533 set_current_state(TASK_UNINTERRUPTIBLE);
534 add_wait_queue(&chip->wq, &wait);
535 spin_unlock(chip->mutex);
536 schedule();
537 remove_wait_queue(&chip->wq, &wait);
538 spin_lock(chip->mutex);
539 goto resettime;
540 }
541 }
542
543
544 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
545 {
546 struct cfi_private *cfi = map->fldrv_priv;
547
548 switch(chip->oldstate) {
549 case FL_ERASING:
550 chip->state = chip->oldstate;
551 map_write(map, CMD(0x30), chip->in_progress_block_addr);
552 chip->oldstate = FL_READY;
553 chip->state = FL_ERASING;
554 break;
555
556 case FL_XIP_WHILE_ERASING:
557 chip->state = chip->oldstate;
558 chip->oldstate = FL_READY;
559 break;
560
561 case FL_READY:
562 case FL_STATUS:
563 /* We should really make set_vpp() count, rather than doing this */
564 DISABLE_VPP(map);
565 break;
566 default:
567 printk(KERN_ERR "MTD: put_chip() called with oldstate %d!!\n", chip->oldstate);
568 }
569 wake_up(&chip->wq);
570 }
571
572 #ifdef CONFIG_MTD_XIP
573
574 /*
575 * No interrupt what so ever can be serviced while the flash isn't in array
576 * mode. This is ensured by the xip_disable() and xip_enable() functions
577 * enclosing any code path where the flash is known not to be in array mode.
578 * And within a XIP disabled code path, only functions marked with __xipram
579 * may be called and nothing else (it's a good thing to inspect generated
580 * assembly to make sure inline functions were actually inlined and that gcc
581 * didn't emit calls to its own support functions). Also configuring MTD CFI
582 * support to a single buswidth and a single interleave is also recommended.
583 */
584
585 static void xip_disable(struct map_info *map, struct flchip *chip,
586 unsigned long adr)
587 {
588 /* TODO: chips with no XIP use should ignore and return */
589 (void) map_read(map, adr); /* ensure mmu mapping is up to date */
590 local_irq_disable();
591 }
592
593 static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
594 unsigned long adr)
595 {
596 struct cfi_private *cfi = map->fldrv_priv;
597
598 if (chip->state != FL_POINT && chip->state != FL_READY) {
599 map_write(map, CMD(0xf0), adr);
600 chip->state = FL_READY;
601 }
602 (void) map_read(map, adr);
603 xip_iprefetch();
604 local_irq_enable();
605 }
606
607 /*
608 * When a delay is required for the flash operation to complete, the
609 * xip_udelay() function is polling for both the given timeout and pending
610 * (but still masked) hardware interrupts. Whenever there is an interrupt
611 * pending then the flash erase operation is suspended, array mode restored
612 * and interrupts unmasked. Task scheduling might also happen at that
613 * point. The CPU eventually returns from the interrupt or the call to
614 * schedule() and the suspended flash operation is resumed for the remaining
615 * of the delay period.
616 *
617 * Warning: this function _will_ fool interrupt latency tracing tools.
618 */
619
620 static void __xipram xip_udelay(struct map_info *map, struct flchip *chip,
621 unsigned long adr, int usec)
622 {
623 struct cfi_private *cfi = map->fldrv_priv;
624 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
625 map_word status, OK = CMD(0x80);
626 unsigned long suspended, start = xip_currtime();
627 flstate_t oldstate;
628
629 do {
630 cpu_relax();
631 if (xip_irqpending() && extp &&
632 ((chip->state == FL_ERASING && (extp->EraseSuspend & 2))) &&
633 (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
634 /*
635 * Let's suspend the erase operation when supported.
636 * Note that we currently don't try to suspend
637 * interleaved chips if there is already another
638 * operation suspended (imagine what happens
639 * when one chip was already done with the current
640 * operation while another chip suspended it, then
641 * we resume the whole thing at once). Yes, it
642 * can happen!
643 */
644 map_write(map, CMD(0xb0), adr);
645 usec -= xip_elapsed_since(start);
646 suspended = xip_currtime();
647 do {
648 if (xip_elapsed_since(suspended) > 100000) {
649 /*
650 * The chip doesn't want to suspend
651 * after waiting for 100 msecs.
652 * This is a critical error but there
653 * is not much we can do here.
654 */
655 return;
656 }
657 status = map_read(map, adr);
658 } while (!map_word_andequal(map, status, OK, OK));
659
660 /* Suspend succeeded */
661 oldstate = chip->state;
662 if (!map_word_bitsset(map, status, CMD(0x40)))
663 break;
664 chip->state = FL_XIP_WHILE_ERASING;
665 chip->erase_suspended = 1;
666 map_write(map, CMD(0xf0), adr);
667 (void) map_read(map, adr);
668 asm volatile (".rep 8; nop; .endr");
669 local_irq_enable();
670 spin_unlock(chip->mutex);
671 asm volatile (".rep 8; nop; .endr");
672 cond_resched();
673
674 /*
675 * We're back. However someone else might have
676 * decided to go write to the chip if we are in
677 * a suspended erase state. If so let's wait
678 * until it's done.
679 */
680 spin_lock(chip->mutex);
681 while (chip->state != FL_XIP_WHILE_ERASING) {
682 DECLARE_WAITQUEUE(wait, current);
683 set_current_state(TASK_UNINTERRUPTIBLE);
684 add_wait_queue(&chip->wq, &wait);
685 spin_unlock(chip->mutex);
686 schedule();
687 remove_wait_queue(&chip->wq, &wait);
688 spin_lock(chip->mutex);
689 }
690 /* Disallow XIP again */
691 local_irq_disable();
692
693 /* Resume the write or erase operation */
694 map_write(map, CMD(0x30), adr);
695 chip->state = oldstate;
696 start = xip_currtime();
697 } else if (usec >= 1000000/HZ) {
698 /*
699 * Try to save on CPU power when waiting delay
700 * is at least a system timer tick period.
701 * No need to be extremely accurate here.
702 */
703 xip_cpu_idle();
704 }
705 status = map_read(map, adr);
706 } while (!map_word_andequal(map, status, OK, OK)
707 && xip_elapsed_since(start) < usec);
708 }
709
710 #define UDELAY(map, chip, adr, usec) xip_udelay(map, chip, adr, usec)
711
712 /*
713 * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
714 * the flash is actively programming or erasing since we have to poll for
715 * the operation to complete anyway. We can't do that in a generic way with
716 * a XIP setup so do it before the actual flash operation in this case
717 * and stub it out from INVALIDATE_CACHE_UDELAY.
718 */
719 #define XIP_INVAL_CACHED_RANGE(map, from, size) \
720 INVALIDATE_CACHED_RANGE(map, from, size)
721
722 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
723 UDELAY(map, chip, adr, usec)
724
725 /*
726 * Extra notes:
727 *
728 * Activating this XIP support changes the way the code works a bit. For
729 * example the code to suspend the current process when concurrent access
730 * happens is never executed because xip_udelay() will always return with the
731 * same chip state as it was entered with. This is why there is no care for
732 * the presence of add_wait_queue() or schedule() calls from within a couple
733 * xip_disable()'d areas of code, like in do_erase_oneblock for example.
734 * The queueing and scheduling are always happening within xip_udelay().
735 *
736 * Similarly, get_chip() and put_chip() just happen to always be executed
737 * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state
738 * is in array mode, therefore never executing many cases therein and not
739 * causing any problem with XIP.
740 */
741
742 #else
743
744 #define xip_disable(map, chip, adr)
745 #define xip_enable(map, chip, adr)
746 #define XIP_INVAL_CACHED_RANGE(x...)
747
748 #define UDELAY(map, chip, adr, usec) \
749 do { \
750 spin_unlock(chip->mutex); \
751 cfi_udelay(usec); \
752 spin_lock(chip->mutex); \
753 } while (0)
754
755 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
756 do { \
757 spin_unlock(chip->mutex); \
758 INVALIDATE_CACHED_RANGE(map, adr, len); \
759 cfi_udelay(usec); \
760 spin_lock(chip->mutex); \
761 } while (0)
762
763 #endif
764
765 static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
766 {
767 unsigned long cmd_addr;
768 struct cfi_private *cfi = map->fldrv_priv;
769 int ret;
770
771 adr += chip->start;
772
773 /* Ensure cmd read/writes are aligned. */
774 cmd_addr = adr & ~(map_bankwidth(map)-1);
775
776 spin_lock(chip->mutex);
777 ret = get_chip(map, chip, cmd_addr, FL_READY);
778 if (ret) {
779 spin_unlock(chip->mutex);
780 return ret;
781 }
782
783 if (chip->state != FL_POINT && chip->state != FL_READY) {
784 map_write(map, CMD(0xf0), cmd_addr);
785 chip->state = FL_READY;
786 }
787
788 map_copy_from(map, buf, adr, len);
789
790 put_chip(map, chip, cmd_addr);
791
792 spin_unlock(chip->mutex);
793 return 0;
794 }
795
796
797 static int cfi_amdstd_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
798 {
799 struct map_info *map = mtd->priv;
800 struct cfi_private *cfi = map->fldrv_priv;
801 unsigned long ofs;
802 int chipnum;
803 int ret = 0;
804
805 /* ofs: offset within the first chip that the first read should start */
806
807 chipnum = (from >> cfi->chipshift);
808 ofs = from - (chipnum << cfi->chipshift);
809
810
811 *retlen = 0;
812
813 while (len) {
814 unsigned long thislen;
815
816 if (chipnum >= cfi->numchips)
817 break;
818
819 if ((len + ofs -1) >> cfi->chipshift)
820 thislen = (1<<cfi->chipshift) - ofs;
821 else
822 thislen = len;
823
824 ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
825 if (ret)
826 break;
827
828 *retlen += thislen;
829 len -= thislen;
830 buf += thislen;
831
832 ofs = 0;
833 chipnum++;
834 }
835 return ret;
836 }
837
838
839 static inline int do_read_secsi_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
840 {
841 DECLARE_WAITQUEUE(wait, current);
842 unsigned long timeo = jiffies + HZ;
843 struct cfi_private *cfi = map->fldrv_priv;
844
845 retry:
846 spin_lock(chip->mutex);
847
848 if (chip->state != FL_READY){
849 #if 0
850 printk(KERN_DEBUG "Waiting for chip to read, status = %d\n", chip->state);
851 #endif
852 set_current_state(TASK_UNINTERRUPTIBLE);
853 add_wait_queue(&chip->wq, &wait);
854
855 spin_unlock(chip->mutex);
856
857 schedule();
858 remove_wait_queue(&chip->wq, &wait);
859 #if 0
860 if(signal_pending(current))
861 return -EINTR;
862 #endif
863 timeo = jiffies + HZ;
864
865 goto retry;
866 }
867
868 adr += chip->start;
869
870 chip->state = FL_READY;
871
872 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
873 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
874 cfi_send_gen_cmd(0x88, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
875
876 map_copy_from(map, buf, adr, len);
877
878 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
879 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
880 cfi_send_gen_cmd(0x90, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
881 cfi_send_gen_cmd(0x00, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
882
883 wake_up(&chip->wq);
884 spin_unlock(chip->mutex);
885
886 return 0;
887 }
888
889 static int cfi_amdstd_secsi_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
890 {
891 struct map_info *map = mtd->priv;
892 struct cfi_private *cfi = map->fldrv_priv;
893 unsigned long ofs;
894 int chipnum;
895 int ret = 0;
896
897
898 /* ofs: offset within the first chip that the first read should start */
899
900 /* 8 secsi bytes per chip */
901 chipnum=from>>3;
902 ofs=from & 7;
903
904
905 *retlen = 0;
906
907 while (len) {
908 unsigned long thislen;
909
910 if (chipnum >= cfi->numchips)
911 break;
912
913 if ((len + ofs -1) >> 3)
914 thislen = (1<<3) - ofs;
915 else
916 thislen = len;
917
918 ret = do_read_secsi_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
919 if (ret)
920 break;
921
922 *retlen += thislen;
923 len -= thislen;
924 buf += thislen;
925
926 ofs = 0;
927 chipnum++;
928 }
929 return ret;
930 }
931
932
933 static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip, unsigned long adr, map_word datum)
934 {
935 struct cfi_private *cfi = map->fldrv_priv;
936 unsigned long timeo = jiffies + HZ;
937 /*
938 * We use a 1ms + 1 jiffies generic timeout for writes (most devices
939 * have a max write time of a few hundreds usec). However, we should
940 * use the maximum timeout value given by the chip at probe time
941 * instead. Unfortunately, struct flchip does have a field for
942 * maximum timeout, only for typical which can be far too short
943 * depending of the conditions. The ' + 1' is to avoid having a
944 * timeout of 0 jiffies if HZ is smaller than 1000.
945 */
946 unsigned long uWriteTimeout = ( HZ / 1000 ) + 1;
947 int ret = 0;
948 map_word oldd;
949 int retry_cnt = 0;
950
951 adr += chip->start;
952
953 spin_lock(chip->mutex);
954 ret = get_chip(map, chip, adr, FL_WRITING);
955 if (ret) {
956 spin_unlock(chip->mutex);
957 return ret;
958 }
959
960 DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
961 __func__, adr, datum.x[0] );
962
963 /*
964 * Check for a NOP for the case when the datum to write is already
965 * present - it saves time and works around buggy chips that corrupt
966 * data at other locations when 0xff is written to a location that
967 * already contains 0xff.
968 */
969 oldd = map_read(map, adr);
970 if (map_word_equal(map, oldd, datum)) {
971 DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): NOP\n",
972 __func__);
973 goto op_done;
974 }
975
976 XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
977 ENABLE_VPP(map);
978 xip_disable(map, chip, adr);
979 retry:
980 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
981 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
982 cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
983 map_write(map, datum, adr);
984 chip->state = FL_WRITING;
985
986 INVALIDATE_CACHE_UDELAY(map, chip,
987 adr, map_bankwidth(map),
988 chip->word_write_time);
989
990 /* See comment above for timeout value. */
991 timeo = jiffies + uWriteTimeout;
992 for (;;) {
993 if (chip->state != FL_WRITING) {
994 /* Someone's suspended the write. Sleep */
995 DECLARE_WAITQUEUE(wait, current);
996
997 set_current_state(TASK_UNINTERRUPTIBLE);
998 add_wait_queue(&chip->wq, &wait);
999 spin_unlock(chip->mutex);
1000 schedule();
1001 remove_wait_queue(&chip->wq, &wait);
1002 timeo = jiffies + (HZ / 2); /* FIXME */
1003 spin_lock(chip->mutex);
1004 continue;
1005 }
1006
1007 if (chip_ready(map, adr))
1008 break;
1009
1010 if (time_after(jiffies, timeo)) {
1011 xip_enable(map, chip, adr);
1012 printk(KERN_WARNING "MTD %s(): software timeout\n", __func__);
1013 xip_disable(map, chip, adr);
1014 break;
1015 }
1016
1017 /* Latency issues. Drop the lock, wait a while and retry */
1018 UDELAY(map, chip, adr, 1);
1019 }
1020 /* Did we succeed? */
1021 if (!chip_good(map, adr, datum)) {
1022 /* reset on all failures. */
1023 map_write( map, CMD(0xF0), chip->start );
1024 /* FIXME - should have reset delay before continuing */
1025
1026 if (++retry_cnt <= MAX_WORD_RETRIES)
1027 goto retry;
1028
1029 ret = -EIO;
1030 }
1031 xip_enable(map, chip, adr);
1032 op_done:
1033 chip->state = FL_READY;
1034 put_chip(map, chip, adr);
1035 spin_unlock(chip->mutex);
1036
1037 return ret;
1038 }
1039
1040
1041 static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len,
1042 size_t *retlen, const u_char *buf)
1043 {
1044 struct map_info *map = mtd->priv;
1045 struct cfi_private *cfi = map->fldrv_priv;
1046 int ret = 0;
1047 int chipnum;
1048 unsigned long ofs, chipstart;
1049 DECLARE_WAITQUEUE(wait, current);
1050
1051 *retlen = 0;
1052 if (!len)
1053 return 0;
1054
1055 chipnum = to >> cfi->chipshift;
1056 ofs = to - (chipnum << cfi->chipshift);
1057 chipstart = cfi->chips[chipnum].start;
1058
1059 /* If it's not bus-aligned, do the first byte write */
1060 if (ofs & (map_bankwidth(map)-1)) {
1061 unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
1062 int i = ofs - bus_ofs;
1063 int n = 0;
1064 map_word tmp_buf;
1065
1066 retry:
1067 spin_lock(cfi->chips[chipnum].mutex);
1068
1069 if (cfi->chips[chipnum].state != FL_READY) {
1070 #if 0
1071 printk(KERN_DEBUG "Waiting for chip to write, status = %d\n", cfi->chips[chipnum].state);
1072 #endif
1073 set_current_state(TASK_UNINTERRUPTIBLE);
1074 add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1075
1076 spin_unlock(cfi->chips[chipnum].mutex);
1077
1078 schedule();
1079 remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1080 #if 0
1081 if(signal_pending(current))
1082 return -EINTR;
1083 #endif
1084 goto retry;
1085 }
1086
1087 /* Load 'tmp_buf' with old contents of flash */
1088 tmp_buf = map_read(map, bus_ofs+chipstart);
1089
1090 spin_unlock(cfi->chips[chipnum].mutex);
1091
1092 /* Number of bytes to copy from buffer */
1093 n = min_t(int, len, map_bankwidth(map)-i);
1094
1095 tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
1096
1097 ret = do_write_oneword(map, &cfi->chips[chipnum],
1098 bus_ofs, tmp_buf);
1099 if (ret)
1100 return ret;
1101
1102 ofs += n;
1103 buf += n;
1104 (*retlen) += n;
1105 len -= n;
1106
1107 if (ofs >> cfi->chipshift) {
1108 chipnum ++;
1109 ofs = 0;
1110 if (chipnum == cfi->numchips)
1111 return 0;
1112 }
1113 }
1114
1115 /* We are now aligned, write as much as possible */
1116 while(len >= map_bankwidth(map)) {
1117 map_word datum;
1118
1119 datum = map_word_load(map, buf);
1120
1121 ret = do_write_oneword(map, &cfi->chips[chipnum],
1122 ofs, datum);
1123 if (ret)
1124 return ret;
1125
1126 ofs += map_bankwidth(map);
1127 buf += map_bankwidth(map);
1128 (*retlen) += map_bankwidth(map);
1129 len -= map_bankwidth(map);
1130
1131 if (ofs >> cfi->chipshift) {
1132 chipnum ++;
1133 ofs = 0;
1134 if (chipnum == cfi->numchips)
1135 return 0;
1136 chipstart = cfi->chips[chipnum].start;
1137 }
1138 }
1139
1140 /* Write the trailing bytes if any */
1141 if (len & (map_bankwidth(map)-1)) {
1142 map_word tmp_buf;
1143
1144 retry1:
1145 spin_lock(cfi->chips[chipnum].mutex);
1146
1147 if (cfi->chips[chipnum].state != FL_READY) {
1148 #if 0
1149 printk(KERN_DEBUG "Waiting for chip to write, status = %d\n", cfi->chips[chipnum].state);
1150 #endif
1151 set_current_state(TASK_UNINTERRUPTIBLE);
1152 add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1153
1154 spin_unlock(cfi->chips[chipnum].mutex);
1155
1156 schedule();
1157 remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1158 #if 0
1159 if(signal_pending(current))
1160 return -EINTR;
1161 #endif
1162 goto retry1;
1163 }
1164
1165 tmp_buf = map_read(map, ofs + chipstart);
1166
1167 spin_unlock(cfi->chips[chipnum].mutex);
1168
1169 tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
1170
1171 ret = do_write_oneword(map, &cfi->chips[chipnum],
1172 ofs, tmp_buf);
1173 if (ret)
1174 return ret;
1175
1176 (*retlen) += len;
1177 }
1178
1179 return 0;
1180 }
1181
1182
1183 /*
1184 * FIXME: interleaved mode not tested, and probably not supported!
1185 */
1186 static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
1187 unsigned long adr, const u_char *buf,
1188 int len)
1189 {
1190 struct cfi_private *cfi = map->fldrv_priv;
1191 unsigned long timeo = jiffies + HZ;
1192 /* see comments in do_write_oneword() regarding uWriteTimeo. */
1193 unsigned long uWriteTimeout = ( HZ / 1000 ) + 1;
1194 int ret = -EIO;
1195 unsigned long cmd_adr;
1196 int z, words;
1197 map_word datum;
1198
1199 adr += chip->start;
1200 cmd_adr = adr;
1201
1202 spin_lock(chip->mutex);
1203 ret = get_chip(map, chip, adr, FL_WRITING);
1204 if (ret) {
1205 spin_unlock(chip->mutex);
1206 return ret;
1207 }
1208
1209 datum = map_word_load(map, buf);
1210
1211 DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1212 __func__, adr, datum.x[0] );
1213
1214 XIP_INVAL_CACHED_RANGE(map, adr, len);
1215 ENABLE_VPP(map);
1216 xip_disable(map, chip, cmd_adr);
1217
1218 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1219 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1220 //cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1221
1222 /* Write Buffer Load */
1223 map_write(map, CMD(0x25), cmd_adr);
1224
1225 chip->state = FL_WRITING_TO_BUFFER;
1226
1227 /* Write length of data to come */
1228 words = len / map_bankwidth(map);
1229 map_write(map, CMD(words - 1), cmd_adr);
1230 /* Write data */
1231 z = 0;
1232 while(z < words * map_bankwidth(map)) {
1233 datum = map_word_load(map, buf);
1234 map_write(map, datum, adr + z);
1235
1236 z += map_bankwidth(map);
1237 buf += map_bankwidth(map);
1238 }
1239 z -= map_bankwidth(map);
1240
1241 adr += z;
1242
1243 /* Write Buffer Program Confirm: GO GO GO */
1244 map_write(map, CMD(0x29), cmd_adr);
1245 chip->state = FL_WRITING;
1246
1247 INVALIDATE_CACHE_UDELAY(map, chip,
1248 adr, map_bankwidth(map),
1249 chip->word_write_time);
1250
1251 timeo = jiffies + uWriteTimeout;
1252
1253 for (;;) {
1254 if (chip->state != FL_WRITING) {
1255 /* Someone's suspended the write. Sleep */
1256 DECLARE_WAITQUEUE(wait, current);
1257
1258 set_current_state(TASK_UNINTERRUPTIBLE);
1259 add_wait_queue(&chip->wq, &wait);
1260 spin_unlock(chip->mutex);
1261 schedule();
1262 remove_wait_queue(&chip->wq, &wait);
1263 timeo = jiffies + (HZ / 2); /* FIXME */
1264 spin_lock(chip->mutex);
1265 continue;
1266 }
1267
1268 if (chip_ready(map, adr)) {
1269 xip_enable(map, chip, adr);
1270 goto op_done;
1271 }
1272
1273 if( time_after(jiffies, timeo))
1274 break;
1275
1276 /* Latency issues. Drop the lock, wait a while and retry */
1277 UDELAY(map, chip, adr, 1);
1278 }
1279
1280 /* reset on all failures. */
1281 map_write( map, CMD(0xF0), chip->start );
1282 xip_enable(map, chip, adr);
1283 /* FIXME - should have reset delay before continuing */
1284
1285 printk(KERN_WARNING "MTD %s(): software timeout\n",
1286 __func__ );
1287
1288 ret = -EIO;
1289 op_done:
1290 chip->state = FL_READY;
1291 put_chip(map, chip, adr);
1292 spin_unlock(chip->mutex);
1293
1294 return ret;
1295 }
1296
1297
1298 static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
1299 size_t *retlen, const u_char *buf)
1300 {
1301 struct map_info *map = mtd->priv;
1302 struct cfi_private *cfi = map->fldrv_priv;
1303 int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1304 int ret = 0;
1305 int chipnum;
1306 unsigned long ofs;
1307
1308 *retlen = 0;
1309 if (!len)
1310 return 0;
1311
1312 chipnum = to >> cfi->chipshift;
1313 ofs = to - (chipnum << cfi->chipshift);
1314
1315 /* If it's not bus-aligned, do the first word write */
1316 if (ofs & (map_bankwidth(map)-1)) {
1317 size_t local_len = (-ofs)&(map_bankwidth(map)-1);
1318 if (local_len > len)
1319 local_len = len;
1320 ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1321 local_len, retlen, buf);
1322 if (ret)
1323 return ret;
1324 ofs += local_len;
1325 buf += local_len;
1326 len -= local_len;
1327
1328 if (ofs >> cfi->chipshift) {
1329 chipnum ++;
1330 ofs = 0;
1331 if (chipnum == cfi->numchips)
1332 return 0;
1333 }
1334 }
1335
1336 /* Write buffer is worth it only if more than one word to write... */
1337 while (len >= map_bankwidth(map) * 2) {
1338 /* We must not cross write block boundaries */
1339 int size = wbufsize - (ofs & (wbufsize-1));
1340
1341 if (size > len)
1342 size = len;
1343 if (size % map_bankwidth(map))
1344 size -= size % map_bankwidth(map);
1345
1346 ret = do_write_buffer(map, &cfi->chips[chipnum],
1347 ofs, buf, size);
1348 if (ret)
1349 return ret;
1350
1351 ofs += size;
1352 buf += size;
1353 (*retlen) += size;
1354 len -= size;
1355
1356 if (ofs >> cfi->chipshift) {
1357 chipnum ++;
1358 ofs = 0;
1359 if (chipnum == cfi->numchips)
1360 return 0;
1361 }
1362 }
1363
1364 if (len) {
1365 size_t retlen_dregs = 0;
1366
1367 ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1368 len, &retlen_dregs, buf);
1369
1370 *retlen += retlen_dregs;
1371 return ret;
1372 }
1373
1374 return 0;
1375 }
1376
1377
1378 /*
1379 * Handle devices with one erase region, that only implement
1380 * the chip erase command.
1381 */
1382 static int __xipram do_erase_chip(struct map_info *map, struct flchip *chip)
1383 {
1384 struct cfi_private *cfi = map->fldrv_priv;
1385 unsigned long timeo = jiffies + HZ;
1386 unsigned long int adr;
1387 DECLARE_WAITQUEUE(wait, current);
1388 int ret = 0;
1389
1390 adr = cfi->addr_unlock1;
1391
1392 spin_lock(chip->mutex);
1393 ret = get_chip(map, chip, adr, FL_WRITING);
1394 if (ret) {
1395 spin_unlock(chip->mutex);
1396 return ret;
1397 }
1398
1399 DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): ERASE 0x%.8lx\n",
1400 __func__, chip->start );
1401
1402 XIP_INVAL_CACHED_RANGE(map, adr, map->size);
1403 ENABLE_VPP(map);
1404 xip_disable(map, chip, adr);
1405
1406 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1407 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1408 cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1409 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1410 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1411 cfi_send_gen_cmd(0x10, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1412
1413 chip->state = FL_ERASING;
1414 chip->erase_suspended = 0;
1415 chip->in_progress_block_addr = adr;
1416
1417 INVALIDATE_CACHE_UDELAY(map, chip,
1418 adr, map->size,
1419 chip->erase_time*500);
1420
1421 timeo = jiffies + (HZ*20);
1422
1423 for (;;) {
1424 if (chip->state != FL_ERASING) {
1425 /* Someone's suspended the erase. Sleep */
1426 set_current_state(TASK_UNINTERRUPTIBLE);
1427 add_wait_queue(&chip->wq, &wait);
1428 spin_unlock(chip->mutex);
1429 schedule();
1430 remove_wait_queue(&chip->wq, &wait);
1431 spin_lock(chip->mutex);
1432 continue;
1433 }
1434 if (chip->erase_suspended) {
1435 /* This erase was suspended and resumed.
1436 Adjust the timeout */
1437 timeo = jiffies + (HZ*20); /* FIXME */
1438 chip->erase_suspended = 0;
1439 }
1440
1441 if (chip_ready(map, adr))
1442 break;
1443
1444 if (time_after(jiffies, timeo)) {
1445 printk(KERN_WARNING "MTD %s(): software timeout\n",
1446 __func__ );
1447 break;
1448 }
1449
1450 /* Latency issues. Drop the lock, wait a while and retry */
1451 UDELAY(map, chip, adr, 1000000/HZ);
1452 }
1453 /* Did we succeed? */
1454 if (!chip_good(map, adr, map_word_ff(map))) {
1455 /* reset on all failures. */
1456 map_write( map, CMD(0xF0), chip->start );
1457 /* FIXME - should have reset delay before continuing */
1458
1459 ret = -EIO;
1460 }
1461
1462 chip->state = FL_READY;
1463 xip_enable(map, chip, adr);
1464 put_chip(map, chip, adr);
1465 spin_unlock(chip->mutex);
1466
1467 return ret;
1468 }
1469
1470
1471 static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr, int len, void *thunk)
1472 {
1473 struct cfi_private *cfi = map->fldrv_priv;
1474 unsigned long timeo = jiffies + HZ;
1475 DECLARE_WAITQUEUE(wait, current);
1476 int ret = 0;
1477
1478 adr += chip->start;
1479
1480 spin_lock(chip->mutex);
1481 ret = get_chip(map, chip, adr, FL_ERASING);
1482 if (ret) {
1483 spin_unlock(chip->mutex);
1484 return ret;
1485 }
1486
1487 DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): ERASE 0x%.8lx\n",
1488 __func__, adr );
1489
1490 XIP_INVAL_CACHED_RANGE(map, adr, len);
1491 ENABLE_VPP(map);
1492 xip_disable(map, chip, adr);
1493
1494 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1495 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1496 cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1497 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1498 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1499 map_write(map, CMD(0x30), adr);
1500
1501 chip->state = FL_ERASING;
1502 chip->erase_suspended = 0;
1503 chip->in_progress_block_addr = adr;
1504
1505 INVALIDATE_CACHE_UDELAY(map, chip,
1506 adr, len,
1507 chip->erase_time*500);
1508
1509 timeo = jiffies + (HZ*20);
1510
1511 for (;;) {
1512 if (chip->state != FL_ERASING) {
1513 /* Someone's suspended the erase. Sleep */
1514 set_current_state(TASK_UNINTERRUPTIBLE);
1515 add_wait_queue(&chip->wq, &wait);
1516 spin_unlock(chip->mutex);
1517 schedule();
1518 remove_wait_queue(&chip->wq, &wait);
1519 spin_lock(chip->mutex);
1520 continue;
1521 }
1522 if (chip->erase_suspended) {
1523 /* This erase was suspended and resumed.
1524 Adjust the timeout */
1525 timeo = jiffies + (HZ*20); /* FIXME */
1526 chip->erase_suspended = 0;
1527 }
1528
1529 if (chip_ready(map, adr)) {
1530 xip_enable(map, chip, adr);
1531 break;
1532 }
1533
1534 if (time_after(jiffies, timeo)) {
1535 xip_enable(map, chip, adr);
1536 printk(KERN_WARNING "MTD %s(): software timeout\n",
1537 __func__ );
1538 break;
1539 }
1540
1541 /* Latency issues. Drop the lock, wait a while and retry */
1542 UDELAY(map, chip, adr, 1000000/HZ);
1543 }
1544 /* Did we succeed? */
1545 if (!chip_good(map, adr, map_word_ff(map))) {
1546 /* reset on all failures. */
1547 map_write( map, CMD(0xF0), chip->start );
1548 /* FIXME - should have reset delay before continuing */
1549
1550 ret = -EIO;
1551 }
1552
1553 chip->state = FL_READY;
1554 put_chip(map, chip, adr);
1555 spin_unlock(chip->mutex);
1556 return ret;
1557 }
1558
1559
1560 int cfi_amdstd_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
1561 {
1562 unsigned long ofs, len;
1563 int ret;
1564
1565 ofs = instr->addr;
1566 len = instr->len;
1567
1568 ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL);
1569 if (ret)
1570 return ret;
1571
1572 instr->state = MTD_ERASE_DONE;
1573 mtd_erase_callback(instr);
1574
1575 return 0;
1576 }
1577
1578
1579 static int cfi_amdstd_erase_chip(struct mtd_info *mtd, struct erase_info *instr)
1580 {
1581 struct map_info *map = mtd->priv;
1582 struct cfi_private *cfi = map->fldrv_priv;
1583 int ret = 0;
1584
1585 if (instr->addr != 0)
1586 return -EINVAL;
1587
1588 if (instr->len != mtd->size)
1589 return -EINVAL;
1590
1591 ret = do_erase_chip(map, &cfi->chips[0]);
1592 if (ret)
1593 return ret;
1594
1595 instr->state = MTD_ERASE_DONE;
1596 mtd_erase_callback(instr);
1597
1598 return 0;
1599 }
1600
1601
1602 static void cfi_amdstd_sync (struct mtd_info *mtd)
1603 {
1604 struct map_info *map = mtd->priv;
1605 struct cfi_private *cfi = map->fldrv_priv;
1606 int i;
1607 struct flchip *chip;
1608 int ret = 0;
1609 DECLARE_WAITQUEUE(wait, current);
1610
1611 for (i=0; !ret && i<cfi->numchips; i++) {
1612 chip = &cfi->chips[i];
1613
1614 retry:
1615 spin_lock(chip->mutex);
1616
1617 switch(chip->state) {
1618 case FL_READY:
1619 case FL_STATUS:
1620 case FL_CFI_QUERY:
1621 case FL_JEDEC_QUERY:
1622 chip->oldstate = chip->state;
1623 chip->state = FL_SYNCING;
1624 /* No need to wake_up() on this state change -
1625 * as the whole point is that nobody can do anything
1626 * with the chip now anyway.
1627 */
1628 case FL_SYNCING:
1629 spin_unlock(chip->mutex);
1630 break;
1631
1632 default:
1633 /* Not an idle state */
1634 add_wait_queue(&chip->wq, &wait);
1635
1636 spin_unlock(chip->mutex);
1637
1638 schedule();
1639
1640 remove_wait_queue(&chip->wq, &wait);
1641
1642 goto retry;
1643 }
1644 }
1645
1646 /* Unlock the chips again */
1647
1648 for (i--; i >=0; i--) {
1649 chip = &cfi->chips[i];
1650
1651 spin_lock(chip->mutex);
1652
1653 if (chip->state == FL_SYNCING) {
1654 chip->state = chip->oldstate;
1655 wake_up(&chip->wq);
1656 }
1657 spin_unlock(chip->mutex);
1658 }
1659 }
1660
1661
1662 static int cfi_amdstd_suspend(struct mtd_info *mtd)
1663 {
1664 struct map_info *map = mtd->priv;
1665 struct cfi_private *cfi = map->fldrv_priv;
1666 int i;
1667 struct flchip *chip;
1668 int ret = 0;
1669
1670 for (i=0; !ret && i<cfi->numchips; i++) {
1671 chip = &cfi->chips[i];
1672
1673 spin_lock(chip->mutex);
1674
1675 switch(chip->state) {
1676 case FL_READY:
1677 case FL_STATUS:
1678 case FL_CFI_QUERY:
1679 case FL_JEDEC_QUERY:
1680 chip->oldstate = chip->state;
1681 chip->state = FL_PM_SUSPENDED;
1682 /* No need to wake_up() on this state change -
1683 * as the whole point is that nobody can do anything
1684 * with the chip now anyway.
1685 */
1686 case FL_PM_SUSPENDED:
1687 break;
1688
1689 default:
1690 ret = -EAGAIN;
1691 break;
1692 }
1693 spin_unlock(chip->mutex);
1694 }
1695
1696 /* Unlock the chips again */
1697
1698 if (ret) {
1699 for (i--; i >=0; i--) {
1700 chip = &cfi->chips[i];
1701
1702 spin_lock(chip->mutex);
1703
1704 if (chip->state == FL_PM_SUSPENDED) {
1705 chip->state = chip->oldstate;
1706 wake_up(&chip->wq);
1707 }
1708 spin_unlock(chip->mutex);
1709 }
1710 }
1711
1712 return ret;
1713 }
1714
1715
1716 static void cfi_amdstd_resume(struct mtd_info *mtd)
1717 {
1718 struct map_info *map = mtd->priv;
1719 struct cfi_private *cfi = map->fldrv_priv;
1720 int i;
1721 struct flchip *chip;
1722
1723 for (i=0; i<cfi->numchips; i++) {
1724
1725 chip = &cfi->chips[i];
1726
1727 spin_lock(chip->mutex);
1728
1729 if (chip->state == FL_PM_SUSPENDED) {
1730 chip->state = FL_READY;
1731 map_write(map, CMD(0xF0), chip->start);
1732 wake_up(&chip->wq);
1733 }
1734 else
1735 printk(KERN_ERR "Argh. Chip not in PM_SUSPENDED state upon resume()\n");
1736
1737 spin_unlock(chip->mutex);
1738 }
1739 }
1740
1741 static void cfi_amdstd_destroy(struct mtd_info *mtd)
1742 {
1743 struct map_info *map = mtd->priv;
1744 struct cfi_private *cfi = map->fldrv_priv;
1745 kfree(cfi->cmdset_priv);
1746 kfree(cfi->cfiq);
1747 kfree(cfi);
1748 kfree(mtd->eraseregions);
1749 }
1750
1751 static char im_name[]="cfi_cmdset_0002";
1752
1753
1754 static int __init cfi_amdstd_init(void)
1755 {
1756 inter_module_register(im_name, THIS_MODULE, &cfi_cmdset_0002);
1757 return 0;
1758 }
1759
1760
1761 static void __exit cfi_amdstd_exit(void)
1762 {
1763 inter_module_unregister(im_name);
1764 }
1765
1766
1767 module_init(cfi_amdstd_init);
1768 module_exit(cfi_amdstd_exit);
1769
1770 MODULE_LICENSE("GPL");
1771 MODULE_AUTHOR("Crossnet Co. <info@crossnet.co.jp> et al.");
1772 MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips");
This page took 0.067675 seconds and 6 git commands to generate.