mtd: docg3: add OOB layout to mtdinfo
[deliverable/linux.git] / drivers / mtd / devices / docg3.c
1 /*
2 * Handles the M-Systems DiskOnChip G3 chip
3 *
4 * Copyright (C) 2011 Robert Jarzmik
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 *
20 */
21
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/platform_device.h>
26 #include <linux/string.h>
27 #include <linux/slab.h>
28 #include <linux/io.h>
29 #include <linux/delay.h>
30 #include <linux/mtd/mtd.h>
31 #include <linux/mtd/partitions.h>
32
33 #include <linux/debugfs.h>
34 #include <linux/seq_file.h>
35
36 #define CREATE_TRACE_POINTS
37 #include "docg3.h"
38
39 /*
40 * This driver handles the DiskOnChip G3 flash memory.
41 *
42 * As no specification is available from M-Systems/Sandisk, this drivers lacks
43 * several functions available on the chip, as :
44 * - block erase
45 * - page write
46 * - IPL write
47 * - ECC fixing (lack of BCH algorith understanding)
48 * - powerdown / powerup
49 *
50 * The bus data width (8bits versus 16bits) is not handled (if_cfg flag), and
51 * the driver assumes a 16bits data bus.
52 *
53 * DocG3 relies on 2 ECC algorithms, which are handled in hardware :
54 * - a 1 byte Hamming code stored in the OOB for each page
55 * - a 7 bytes BCH code stored in the OOB for each page
56 * The BCH part is only used for check purpose, no correction is available as
57 * some information is missing. What is known is that :
58 * - BCH is in GF(2^14)
59 * - BCH is over data of 520 bytes (512 page + 7 page_info bytes
60 * + 1 hamming byte)
61 * - BCH can correct up to 4 bits (t = 4)
62 * - BCH syndroms are calculated in hardware, and checked in hardware as well
63 *
64 */
65
66 /**
67 * struct docg3_oobinfo - DiskOnChip G3 OOB layout
68 * @eccbytes: 8 bytes are used (1 for Hamming ECC, 7 for BCH ECC)
69 * @eccpos: ecc positions (byte 7 is Hamming ECC, byte 8-14 are BCH ECC)
70 * @oobfree: free pageinfo bytes (byte 0 until byte 6, byte 15
71 * @oobavail: 8 available bytes remaining after ECC toll
72 */
73 static struct nand_ecclayout docg3_oobinfo = {
74 .eccbytes = 8,
75 .eccpos = {7, 8, 9, 10, 11, 12, 13, 14},
76 .oobfree = {{0, 7}, {15, 1} },
77 .oobavail = 8,
78 };
79
80 static inline u8 doc_readb(struct docg3 *docg3, u16 reg)
81 {
82 u8 val = readb(docg3->base + reg);
83
84 trace_docg3_io(0, 8, reg, (int)val);
85 return val;
86 }
87
88 static inline u16 doc_readw(struct docg3 *docg3, u16 reg)
89 {
90 u16 val = readw(docg3->base + reg);
91
92 trace_docg3_io(0, 16, reg, (int)val);
93 return val;
94 }
95
96 static inline void doc_writeb(struct docg3 *docg3, u8 val, u16 reg)
97 {
98 writeb(val, docg3->base + reg);
99 trace_docg3_io(1, 8, reg, val);
100 }
101
102 static inline void doc_writew(struct docg3 *docg3, u16 val, u16 reg)
103 {
104 writew(val, docg3->base + reg);
105 trace_docg3_io(1, 16, reg, val);
106 }
107
108 static inline void doc_flash_command(struct docg3 *docg3, u8 cmd)
109 {
110 doc_writeb(docg3, cmd, DOC_FLASHCOMMAND);
111 }
112
113 static inline void doc_flash_sequence(struct docg3 *docg3, u8 seq)
114 {
115 doc_writeb(docg3, seq, DOC_FLASHSEQUENCE);
116 }
117
118 static inline void doc_flash_address(struct docg3 *docg3, u8 addr)
119 {
120 doc_writeb(docg3, addr, DOC_FLASHADDRESS);
121 }
122
123 static char const *part_probes[] = { "cmdlinepart", "saftlpart", NULL };
124
125 static int doc_register_readb(struct docg3 *docg3, int reg)
126 {
127 u8 val;
128
129 doc_writew(docg3, reg, DOC_READADDRESS);
130 val = doc_readb(docg3, reg);
131 doc_vdbg("Read register %04x : %02x\n", reg, val);
132 return val;
133 }
134
135 static int doc_register_readw(struct docg3 *docg3, int reg)
136 {
137 u16 val;
138
139 doc_writew(docg3, reg, DOC_READADDRESS);
140 val = doc_readw(docg3, reg);
141 doc_vdbg("Read register %04x : %04x\n", reg, val);
142 return val;
143 }
144
145 /**
146 * doc_delay - delay docg3 operations
147 * @docg3: the device
148 * @nbNOPs: the number of NOPs to issue
149 *
150 * As no specification is available, the right timings between chip commands are
151 * unknown. The only available piece of information are the observed nops on a
152 * working docg3 chip.
153 * Therefore, doc_delay relies on a busy loop of NOPs, instead of scheduler
154 * friendlier msleep() functions or blocking mdelay().
155 */
156 static void doc_delay(struct docg3 *docg3, int nbNOPs)
157 {
158 int i;
159
160 doc_vdbg("NOP x %d\n", nbNOPs);
161 for (i = 0; i < nbNOPs; i++)
162 doc_writeb(docg3, 0, DOC_NOP);
163 }
164
165 static int is_prot_seq_error(struct docg3 *docg3)
166 {
167 int ctrl;
168
169 ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
170 return ctrl & (DOC_CTRL_PROTECTION_ERROR | DOC_CTRL_SEQUENCE_ERROR);
171 }
172
173 static int doc_is_ready(struct docg3 *docg3)
174 {
175 int ctrl;
176
177 ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
178 return ctrl & DOC_CTRL_FLASHREADY;
179 }
180
181 static int doc_wait_ready(struct docg3 *docg3)
182 {
183 int maxWaitCycles = 100;
184
185 do {
186 doc_delay(docg3, 4);
187 cpu_relax();
188 } while (!doc_is_ready(docg3) && maxWaitCycles--);
189 doc_delay(docg3, 2);
190 if (maxWaitCycles > 0)
191 return 0;
192 else
193 return -EIO;
194 }
195
196 static int doc_reset_seq(struct docg3 *docg3)
197 {
198 int ret;
199
200 doc_writeb(docg3, 0x10, DOC_FLASHCONTROL);
201 doc_flash_sequence(docg3, DOC_SEQ_RESET);
202 doc_flash_command(docg3, DOC_CMD_RESET);
203 doc_delay(docg3, 2);
204 ret = doc_wait_ready(docg3);
205
206 doc_dbg("doc_reset_seq() -> isReady=%s\n", ret ? "false" : "true");
207 return ret;
208 }
209
210 /**
211 * doc_read_data_area - Read data from data area
212 * @docg3: the device
213 * @buf: the buffer to fill in (might be NULL is dummy reads)
214 * @len: the length to read
215 * @first: first time read, DOC_READADDRESS should be set
216 *
217 * Reads bytes from flash data. Handles the single byte / even bytes reads.
218 */
219 static void doc_read_data_area(struct docg3 *docg3, void *buf, int len,
220 int first)
221 {
222 int i, cdr, len4;
223 u16 data16, *dst16;
224 u8 data8, *dst8;
225
226 doc_dbg("doc_read_data_area(buf=%p, len=%d)\n", buf, len);
227 cdr = len & 0x3;
228 len4 = len - cdr;
229
230 if (first)
231 doc_writew(docg3, DOC_IOSPACE_DATA, DOC_READADDRESS);
232 dst16 = buf;
233 for (i = 0; i < len4; i += 2) {
234 data16 = doc_readw(docg3, DOC_IOSPACE_DATA);
235 if (dst16) {
236 *dst16 = data16;
237 dst16++;
238 }
239 }
240
241 if (cdr) {
242 doc_writew(docg3, DOC_IOSPACE_DATA | DOC_READADDR_ONE_BYTE,
243 DOC_READADDRESS);
244 doc_delay(docg3, 1);
245 dst8 = (u8 *)dst16;
246 for (i = 0; i < cdr; i++) {
247 data8 = doc_readb(docg3, DOC_IOSPACE_DATA);
248 if (dst8) {
249 *dst8 = data8;
250 dst8++;
251 }
252 }
253 }
254 }
255
256 /**
257 * doc_set_data_mode - Sets the flash to reliable data mode
258 * @docg3: the device
259 *
260 * The reliable data mode is a bit slower than the fast mode, but less errors
261 * occur. Entering the reliable mode cannot be done without entering the fast
262 * mode first.
263 */
264 static void doc_set_reliable_mode(struct docg3 *docg3)
265 {
266 doc_dbg("doc_set_reliable_mode()\n");
267 doc_flash_sequence(docg3, DOC_SEQ_SET_MODE);
268 doc_flash_command(docg3, DOC_CMD_FAST_MODE);
269 doc_flash_command(docg3, DOC_CMD_RELIABLE_MODE);
270 doc_delay(docg3, 2);
271 }
272
273 /**
274 * doc_set_asic_mode - Set the ASIC mode
275 * @docg3: the device
276 * @mode: the mode
277 *
278 * The ASIC can work in 3 modes :
279 * - RESET: all registers are zeroed
280 * - NORMAL: receives and handles commands
281 * - POWERDOWN: minimal poweruse, flash parts shut off
282 */
283 static void doc_set_asic_mode(struct docg3 *docg3, u8 mode)
284 {
285 int i;
286
287 for (i = 0; i < 12; i++)
288 doc_readb(docg3, DOC_IOSPACE_IPL);
289
290 mode |= DOC_ASICMODE_MDWREN;
291 doc_dbg("doc_set_asic_mode(%02x)\n", mode);
292 doc_writeb(docg3, mode, DOC_ASICMODE);
293 doc_writeb(docg3, ~mode, DOC_ASICMODECONFIRM);
294 doc_delay(docg3, 1);
295 }
296
297 /**
298 * doc_set_device_id - Sets the devices id for cascaded G3 chips
299 * @docg3: the device
300 * @id: the chip to select (amongst 0, 1, 2, 3)
301 *
302 * There can be 4 cascaded G3 chips. This function selects the one which will
303 * should be the active one.
304 */
305 static void doc_set_device_id(struct docg3 *docg3, int id)
306 {
307 u8 ctrl;
308
309 doc_dbg("doc_set_device_id(%d)\n", id);
310 doc_writeb(docg3, id, DOC_DEVICESELECT);
311 ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
312
313 ctrl &= ~DOC_CTRL_VIOLATION;
314 ctrl |= DOC_CTRL_CE;
315 doc_writeb(docg3, ctrl, DOC_FLASHCONTROL);
316 }
317
318 /**
319 * doc_set_extra_page_mode - Change flash page layout
320 * @docg3: the device
321 *
322 * Normally, the flash page is split into the data (512 bytes) and the out of
323 * band data (16 bytes). For each, 4 more bytes can be accessed, where the wear
324 * leveling counters are stored. To access this last area of 4 bytes, a special
325 * mode must be input to the flash ASIC.
326 *
327 * Returns 0 if no error occured, -EIO else.
328 */
329 static int doc_set_extra_page_mode(struct docg3 *docg3)
330 {
331 int fctrl;
332
333 doc_dbg("doc_set_extra_page_mode()\n");
334 doc_flash_sequence(docg3, DOC_SEQ_PAGE_SIZE_532);
335 doc_flash_command(docg3, DOC_CMD_PAGE_SIZE_532);
336 doc_delay(docg3, 2);
337
338 fctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
339 if (fctrl & (DOC_CTRL_PROTECTION_ERROR | DOC_CTRL_SEQUENCE_ERROR))
340 return -EIO;
341 else
342 return 0;
343 }
344
345 /**
346 * doc_seek - Set both flash planes to the specified block, page for reading
347 * @docg3: the device
348 * @block0: the first plane block index
349 * @block1: the second plane block index
350 * @page: the page index within the block
351 * @wear: if true, read will occur on the 4 extra bytes of the wear area
352 * @ofs: offset in page to read
353 *
354 * Programs the flash even and odd planes to the specific block and page.
355 * Alternatively, programs the flash to the wear area of the specified page.
356 */
357 static int doc_read_seek(struct docg3 *docg3, int block0, int block1, int page,
358 int wear, int ofs)
359 {
360 int sector, ret = 0;
361
362 doc_dbg("doc_seek(blocks=(%d,%d), page=%d, ofs=%d, wear=%d)\n",
363 block0, block1, page, ofs, wear);
364
365 if (!wear && (ofs < 2 * DOC_LAYOUT_PAGE_SIZE)) {
366 doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE1);
367 doc_flash_command(docg3, DOC_CMD_READ_PLANE1);
368 doc_delay(docg3, 2);
369 } else {
370 doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE2);
371 doc_flash_command(docg3, DOC_CMD_READ_PLANE2);
372 doc_delay(docg3, 2);
373 }
374
375 doc_set_reliable_mode(docg3);
376 if (wear)
377 ret = doc_set_extra_page_mode(docg3);
378 if (ret)
379 goto out;
380
381 sector = (block0 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
382 doc_flash_sequence(docg3, DOC_SEQ_READ);
383 doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
384 doc_delay(docg3, 1);
385 doc_flash_address(docg3, sector & 0xff);
386 doc_flash_address(docg3, (sector >> 8) & 0xff);
387 doc_flash_address(docg3, (sector >> 16) & 0xff);
388 doc_delay(docg3, 1);
389
390 sector = (block1 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
391 doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
392 doc_delay(docg3, 1);
393 doc_flash_address(docg3, sector & 0xff);
394 doc_flash_address(docg3, (sector >> 8) & 0xff);
395 doc_flash_address(docg3, (sector >> 16) & 0xff);
396 doc_delay(docg3, 2);
397
398 out:
399 return ret;
400 }
401
402 /**
403 * doc_read_page_ecc_init - Initialize hardware ECC engine
404 * @docg3: the device
405 * @len: the number of bytes covered by the ECC (BCH covered)
406 *
407 * The function does initialize the hardware ECC engine to compute the Hamming
408 * ECC (on 1 byte) and the BCH Syndroms (on 7 bytes).
409 *
410 * Return 0 if succeeded, -EIO on error
411 */
412 static int doc_read_page_ecc_init(struct docg3 *docg3, int len)
413 {
414 doc_writew(docg3, DOC_ECCCONF0_READ_MODE
415 | DOC_ECCCONF0_BCH_ENABLE | DOC_ECCCONF0_HAMMING_ENABLE
416 | (len & DOC_ECCCONF0_DATA_BYTES_MASK),
417 DOC_ECCCONF0);
418 doc_delay(docg3, 4);
419 doc_register_readb(docg3, DOC_FLASHCONTROL);
420 return doc_wait_ready(docg3);
421 }
422
423 /**
424 * doc_read_page_prepare - Prepares reading data from a flash page
425 * @docg3: the device
426 * @block0: the first plane block index on flash memory
427 * @block1: the second plane block index on flash memory
428 * @page: the page index in the block
429 * @offset: the offset in the page (must be a multiple of 4)
430 *
431 * Prepares the page to be read in the flash memory :
432 * - tell ASIC to map the flash pages
433 * - tell ASIC to be in read mode
434 *
435 * After a call to this method, a call to doc_read_page_finish is mandatory,
436 * to end the read cycle of the flash.
437 *
438 * Read data from a flash page. The length to be read must be between 0 and
439 * (page_size + oob_size + wear_size), ie. 532, and a multiple of 4 (because
440 * the extra bytes reading is not implemented).
441 *
442 * As pages are grouped by 2 (in 2 planes), reading from a page must be done
443 * in two steps:
444 * - one read of 512 bytes at offset 0
445 * - one read of 512 bytes at offset 512 + 16
446 *
447 * Returns 0 if successful, -EIO if a read error occured.
448 */
449 static int doc_read_page_prepare(struct docg3 *docg3, int block0, int block1,
450 int page, int offset)
451 {
452 int wear_area = 0, ret = 0;
453
454 doc_dbg("doc_read_page_prepare(blocks=(%d,%d), page=%d, ofsInPage=%d)\n",
455 block0, block1, page, offset);
456 if (offset >= DOC_LAYOUT_WEAR_OFFSET)
457 wear_area = 1;
458 if (!wear_area && offset > (DOC_LAYOUT_PAGE_OOB_SIZE * 2))
459 return -EINVAL;
460
461 doc_set_device_id(docg3, docg3->device_id);
462 ret = doc_reset_seq(docg3);
463 if (ret)
464 goto err;
465
466 /* Program the flash address block and page */
467 ret = doc_read_seek(docg3, block0, block1, page, wear_area, offset);
468 if (ret)
469 goto err;
470
471 doc_flash_command(docg3, DOC_CMD_READ_ALL_PLANES);
472 doc_delay(docg3, 2);
473 doc_wait_ready(docg3);
474
475 doc_flash_command(docg3, DOC_CMD_SET_ADDR_READ);
476 doc_delay(docg3, 1);
477 if (offset >= DOC_LAYOUT_PAGE_SIZE * 2)
478 offset -= 2 * DOC_LAYOUT_PAGE_SIZE;
479 doc_flash_address(docg3, offset >> 2);
480 doc_delay(docg3, 1);
481 doc_wait_ready(docg3);
482
483 doc_flash_command(docg3, DOC_CMD_READ_FLASH);
484
485 return 0;
486 err:
487 doc_writeb(docg3, 0, DOC_DATAEND);
488 doc_delay(docg3, 2);
489 return -EIO;
490 }
491
492 /**
493 * doc_read_page_getbytes - Reads bytes from a prepared page
494 * @docg3: the device
495 * @len: the number of bytes to be read (must be a multiple of 4)
496 * @buf: the buffer to be filled in
497 * @first: 1 if first time read, DOC_READADDRESS should be set
498 *
499 */
500 static int doc_read_page_getbytes(struct docg3 *docg3, int len, u_char *buf,
501 int first)
502 {
503 doc_read_data_area(docg3, buf, len, first);
504 doc_delay(docg3, 2);
505 return len;
506 }
507
508 /**
509 * doc_get_hw_bch_syndroms - Get hardware calculated BCH syndroms
510 * @docg3: the device
511 * @syns: the array of 7 integers where the syndroms will be stored
512 */
513 static void doc_get_hw_bch_syndroms(struct docg3 *docg3, int *syns)
514 {
515 int i;
516
517 for (i = 0; i < DOC_ECC_BCH_SIZE; i++)
518 syns[i] = doc_register_readb(docg3, DOC_BCH_SYNDROM(i));
519 }
520
521 /**
522 * doc_read_page_finish - Ends reading of a flash page
523 * @docg3: the device
524 *
525 * As a side effect, resets the chip selector to 0. This ensures that after each
526 * read operation, the floor 0 is selected. Therefore, if the systems halts, the
527 * reboot will boot on floor 0, where the IPL is.
528 */
529 static void doc_read_page_finish(struct docg3 *docg3)
530 {
531 doc_writeb(docg3, 0, DOC_DATAEND);
532 doc_delay(docg3, 2);
533 doc_set_device_id(docg3, 0);
534 }
535
536 /**
537 * calc_block_sector - Calculate blocks, pages and ofs.
538
539 * @from: offset in flash
540 * @block0: first plane block index calculated
541 * @block1: second plane block index calculated
542 * @page: page calculated
543 * @ofs: offset in page
544 */
545 static void calc_block_sector(loff_t from, int *block0, int *block1, int *page,
546 int *ofs)
547 {
548 uint sector;
549
550 sector = from / DOC_LAYOUT_PAGE_SIZE;
551 *block0 = sector / (DOC_LAYOUT_PAGES_PER_BLOCK * DOC_LAYOUT_NBPLANES)
552 * DOC_LAYOUT_NBPLANES;
553 *block1 = *block0 + 1;
554 *page = sector % (DOC_LAYOUT_PAGES_PER_BLOCK * DOC_LAYOUT_NBPLANES);
555 *page /= DOC_LAYOUT_NBPLANES;
556 if (sector % 2)
557 *ofs = DOC_LAYOUT_PAGE_OOB_SIZE;
558 else
559 *ofs = 0;
560 }
561
562 /**
563 * doc_read_oob - Read out of band bytes from flash
564 * @mtd: the device
565 * @from: the offset from first block and first page, in bytes, aligned on page
566 * size
567 * @ops: the mtd oob structure
568 *
569 * Reads flash memory OOB area of pages.
570 *
571 * Returns 0 if read successfull, of -EIO, -EINVAL if an error occured
572 */
573 static int doc_read_oob(struct mtd_info *mtd, loff_t from,
574 struct mtd_oob_ops *ops)
575 {
576 struct docg3 *docg3 = mtd->priv;
577 int block0, block1, page, ret, ofs = 0;
578 u8 *oobbuf = ops->oobbuf;
579 u8 *buf = ops->datbuf;
580 size_t len, ooblen, nbdata, nboob;
581 u8 calc_ecc[DOC_ECC_BCH_SIZE], eccconf1;
582
583 if (buf)
584 len = ops->len;
585 else
586 len = 0;
587 if (oobbuf)
588 ooblen = ops->ooblen;
589 else
590 ooblen = 0;
591
592 if (oobbuf && ops->mode == MTD_OPS_PLACE_OOB)
593 oobbuf += ops->ooboffs;
594
595 doc_dbg("doc_read_oob(from=%lld, mode=%d, data=(%p:%zu), oob=(%p:%zu))\n",
596 from, ops->mode, buf, len, oobbuf, ooblen);
597 if ((len % DOC_LAYOUT_PAGE_SIZE) || (ooblen % DOC_LAYOUT_OOB_SIZE) ||
598 (from % DOC_LAYOUT_PAGE_SIZE))
599 return -EINVAL;
600
601 ret = -EINVAL;
602 calc_block_sector(from + len, &block0, &block1, &page, &ofs);
603 if (block1 > docg3->max_block)
604 goto err;
605
606 ops->oobretlen = 0;
607 ops->retlen = 0;
608 ret = 0;
609 while (!ret && (len > 0 || ooblen > 0)) {
610 calc_block_sector(from, &block0, &block1, &page, &ofs);
611 nbdata = min_t(size_t, len, (size_t)DOC_LAYOUT_PAGE_SIZE);
612 nboob = min_t(size_t, ooblen, (size_t)DOC_LAYOUT_OOB_SIZE);
613 ret = doc_read_page_prepare(docg3, block0, block1, page, ofs);
614 if (ret < 0)
615 goto err;
616 ret = doc_read_page_ecc_init(docg3, DOC_ECC_BCH_COVERED_BYTES);
617 if (ret < 0)
618 goto err_in_read;
619 ret = doc_read_page_getbytes(docg3, nbdata, buf, 1);
620 if (ret < nbdata)
621 goto err_in_read;
622 doc_read_page_getbytes(docg3, DOC_LAYOUT_PAGE_SIZE - nbdata,
623 NULL, 0);
624 ret = doc_read_page_getbytes(docg3, nboob, oobbuf, 0);
625 if (ret < nboob)
626 goto err_in_read;
627 doc_read_page_getbytes(docg3, DOC_LAYOUT_OOB_SIZE - nboob,
628 NULL, 0);
629
630 doc_get_hw_bch_syndroms(docg3, calc_ecc);
631 eccconf1 = doc_register_readb(docg3, DOC_ECCCONF1);
632
633 if (nboob >= DOC_LAYOUT_OOB_SIZE) {
634 doc_dbg("OOB - INFO: %02x:%02x:%02x:%02x:%02x:%02x:%02x\n",
635 oobbuf[0], oobbuf[1], oobbuf[2], oobbuf[3],
636 oobbuf[4], oobbuf[5], oobbuf[6]);
637 doc_dbg("OOB - HAMMING: %02x\n", oobbuf[7]);
638 doc_dbg("OOB - BCH_ECC: %02x:%02x:%02x:%02x:%02x:%02x:%02x\n",
639 oobbuf[8], oobbuf[9], oobbuf[10], oobbuf[11],
640 oobbuf[12], oobbuf[13], oobbuf[14]);
641 doc_dbg("OOB - UNUSED: %02x\n", oobbuf[15]);
642 }
643 doc_dbg("ECC checks: ECCConf1=%x\n", eccconf1);
644 doc_dbg("ECC CALC_ECC: %02x:%02x:%02x:%02x:%02x:%02x:%02x\n",
645 calc_ecc[0], calc_ecc[1], calc_ecc[2],
646 calc_ecc[3], calc_ecc[4], calc_ecc[5],
647 calc_ecc[6]);
648
649 ret = -EBADMSG;
650 if (block0 >= DOC_LAYOUT_BLOCK_FIRST_DATA) {
651 if ((eccconf1 & DOC_ECCCONF1_BCH_SYNDROM_ERR) &&
652 (eccconf1 & DOC_ECCCONF1_PAGE_IS_WRITTEN))
653 goto err_in_read;
654 if (is_prot_seq_error(docg3))
655 goto err_in_read;
656 }
657
658 doc_read_page_finish(docg3);
659 ops->retlen += nbdata;
660 ops->oobretlen += nboob;
661 buf += nbdata;
662 oobbuf += nboob;
663 len -= nbdata;
664 ooblen -= nboob;
665 from += DOC_LAYOUT_PAGE_SIZE;
666 }
667
668 return 0;
669 err_in_read:
670 doc_read_page_finish(docg3);
671 err:
672 return ret;
673 }
674
675 /**
676 * doc_read - Read bytes from flash
677 * @mtd: the device
678 * @from: the offset from first block and first page, in bytes, aligned on page
679 * size
680 * @len: the number of bytes to read (must be a multiple of 4)
681 * @retlen: the number of bytes actually read
682 * @buf: the filled in buffer
683 *
684 * Reads flash memory pages. This function does not read the OOB chunk, but only
685 * the page data.
686 *
687 * Returns 0 if read successfull, of -EIO, -EINVAL if an error occured
688 */
689 static int doc_read(struct mtd_info *mtd, loff_t from, size_t len,
690 size_t *retlen, u_char *buf)
691 {
692 struct mtd_oob_ops ops;
693 size_t ret;
694
695 memset(&ops, 0, sizeof(ops));
696 ops.datbuf = buf;
697 ops.len = len;
698 ops.mode = MTD_OPS_AUTO_OOB;
699
700 ret = doc_read_oob(mtd, from, &ops);
701 *retlen = ops.retlen;
702 return ret;
703 }
704
705 static int doc_reload_bbt(struct docg3 *docg3)
706 {
707 int block = DOC_LAYOUT_BLOCK_BBT;
708 int ret = 0, nbpages, page;
709 u_char *buf = docg3->bbt;
710
711 nbpages = DIV_ROUND_UP(docg3->max_block + 1, 8 * DOC_LAYOUT_PAGE_SIZE);
712 for (page = 0; !ret && (page < nbpages); page++) {
713 ret = doc_read_page_prepare(docg3, block, block + 1,
714 page + DOC_LAYOUT_PAGE_BBT, 0);
715 if (!ret)
716 ret = doc_read_page_ecc_init(docg3,
717 DOC_LAYOUT_PAGE_SIZE);
718 if (!ret)
719 doc_read_page_getbytes(docg3, DOC_LAYOUT_PAGE_SIZE,
720 buf, 1);
721 buf += DOC_LAYOUT_PAGE_SIZE;
722 }
723 doc_read_page_finish(docg3);
724 return ret;
725 }
726
727 /**
728 * doc_block_isbad - Checks whether a block is good or not
729 * @mtd: the device
730 * @from: the offset to find the correct block
731 *
732 * Returns 1 if block is bad, 0 if block is good
733 */
734 static int doc_block_isbad(struct mtd_info *mtd, loff_t from)
735 {
736 struct docg3 *docg3 = mtd->priv;
737 int block0, block1, page, ofs, is_good;
738
739 calc_block_sector(from, &block0, &block1, &page, &ofs);
740 doc_dbg("doc_block_isbad(from=%lld) => block=(%d,%d), page=%d, ofs=%d\n",
741 from, block0, block1, page, ofs);
742
743 if (block0 < DOC_LAYOUT_BLOCK_FIRST_DATA)
744 return 0;
745 if (block1 > docg3->max_block)
746 return -EINVAL;
747
748 is_good = docg3->bbt[block0 >> 3] & (1 << (block0 & 0x7));
749 return !is_good;
750 }
751
752 /**
753 * doc_get_erase_count - Get block erase count
754 * @docg3: the device
755 * @from: the offset in which the block is.
756 *
757 * Get the number of times a block was erased. The number is the maximum of
758 * erase times between first and second plane (which should be equal normally).
759 *
760 * Returns The number of erases, or -EINVAL or -EIO on error.
761 */
762 static int doc_get_erase_count(struct docg3 *docg3, loff_t from)
763 {
764 u8 buf[DOC_LAYOUT_WEAR_SIZE];
765 int ret, plane1_erase_count, plane2_erase_count;
766 int block0, block1, page, ofs;
767
768 doc_dbg("doc_get_erase_count(from=%lld, buf=%p)\n", from, buf);
769 if (from % DOC_LAYOUT_PAGE_SIZE)
770 return -EINVAL;
771 calc_block_sector(from, &block0, &block1, &page, &ofs);
772 if (block1 > docg3->max_block)
773 return -EINVAL;
774
775 ret = doc_reset_seq(docg3);
776 if (!ret)
777 ret = doc_read_page_prepare(docg3, block0, block1, page,
778 ofs + DOC_LAYOUT_WEAR_OFFSET);
779 if (!ret)
780 ret = doc_read_page_getbytes(docg3, DOC_LAYOUT_WEAR_SIZE,
781 buf, 1);
782 doc_read_page_finish(docg3);
783
784 if (ret || (buf[0] != DOC_ERASE_MARK) || (buf[2] != DOC_ERASE_MARK))
785 return -EIO;
786 plane1_erase_count = (u8)(~buf[1]) | ((u8)(~buf[4]) << 8)
787 | ((u8)(~buf[5]) << 16);
788 plane2_erase_count = (u8)(~buf[3]) | ((u8)(~buf[6]) << 8)
789 | ((u8)(~buf[7]) << 16);
790
791 return max(plane1_erase_count, plane2_erase_count);
792 }
793
794 /*
795 * Debug sysfs entries
796 */
797 static int dbg_flashctrl_show(struct seq_file *s, void *p)
798 {
799 struct docg3 *docg3 = (struct docg3 *)s->private;
800
801 int pos = 0;
802 u8 fctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
803
804 pos += seq_printf(s,
805 "FlashControl : 0x%02x (%s,CE# %s,%s,%s,flash %s)\n",
806 fctrl,
807 fctrl & DOC_CTRL_VIOLATION ? "protocol violation" : "-",
808 fctrl & DOC_CTRL_CE ? "active" : "inactive",
809 fctrl & DOC_CTRL_PROTECTION_ERROR ? "protection error" : "-",
810 fctrl & DOC_CTRL_SEQUENCE_ERROR ? "sequence error" : "-",
811 fctrl & DOC_CTRL_FLASHREADY ? "ready" : "not ready");
812 return pos;
813 }
814 DEBUGFS_RO_ATTR(flashcontrol, dbg_flashctrl_show);
815
816 static int dbg_asicmode_show(struct seq_file *s, void *p)
817 {
818 struct docg3 *docg3 = (struct docg3 *)s->private;
819
820 int pos = 0;
821 int pctrl = doc_register_readb(docg3, DOC_ASICMODE);
822 int mode = pctrl & 0x03;
823
824 pos += seq_printf(s,
825 "%04x : RAM_WE=%d,RSTIN_RESET=%d,BDETCT_RESET=%d,WRITE_ENABLE=%d,POWERDOWN=%d,MODE=%d%d (",
826 pctrl,
827 pctrl & DOC_ASICMODE_RAM_WE ? 1 : 0,
828 pctrl & DOC_ASICMODE_RSTIN_RESET ? 1 : 0,
829 pctrl & DOC_ASICMODE_BDETCT_RESET ? 1 : 0,
830 pctrl & DOC_ASICMODE_MDWREN ? 1 : 0,
831 pctrl & DOC_ASICMODE_POWERDOWN ? 1 : 0,
832 mode >> 1, mode & 0x1);
833
834 switch (mode) {
835 case DOC_ASICMODE_RESET:
836 pos += seq_printf(s, "reset");
837 break;
838 case DOC_ASICMODE_NORMAL:
839 pos += seq_printf(s, "normal");
840 break;
841 case DOC_ASICMODE_POWERDOWN:
842 pos += seq_printf(s, "powerdown");
843 break;
844 }
845 pos += seq_printf(s, ")\n");
846 return pos;
847 }
848 DEBUGFS_RO_ATTR(asic_mode, dbg_asicmode_show);
849
850 static int dbg_device_id_show(struct seq_file *s, void *p)
851 {
852 struct docg3 *docg3 = (struct docg3 *)s->private;
853 int pos = 0;
854 int id = doc_register_readb(docg3, DOC_DEVICESELECT);
855
856 pos += seq_printf(s, "DeviceId = %d\n", id);
857 return pos;
858 }
859 DEBUGFS_RO_ATTR(device_id, dbg_device_id_show);
860
861 static int dbg_protection_show(struct seq_file *s, void *p)
862 {
863 struct docg3 *docg3 = (struct docg3 *)s->private;
864 int pos = 0;
865 int protect, dps0, dps0_low, dps0_high, dps1, dps1_low, dps1_high;
866
867 protect = doc_register_readb(docg3, DOC_PROTECTION);
868 dps0 = doc_register_readb(docg3, DOC_DPS0_STATUS);
869 dps0_low = doc_register_readw(docg3, DOC_DPS0_ADDRLOW);
870 dps0_high = doc_register_readw(docg3, DOC_DPS0_ADDRHIGH);
871 dps1 = doc_register_readb(docg3, DOC_DPS1_STATUS);
872 dps1_low = doc_register_readw(docg3, DOC_DPS1_ADDRLOW);
873 dps1_high = doc_register_readw(docg3, DOC_DPS1_ADDRHIGH);
874
875 pos += seq_printf(s, "Protection = 0x%02x (",
876 protect);
877 if (protect & DOC_PROTECT_FOUNDRY_OTP_LOCK)
878 pos += seq_printf(s, "FOUNDRY_OTP_LOCK,");
879 if (protect & DOC_PROTECT_CUSTOMER_OTP_LOCK)
880 pos += seq_printf(s, "CUSTOMER_OTP_LOCK,");
881 if (protect & DOC_PROTECT_LOCK_INPUT)
882 pos += seq_printf(s, "LOCK_INPUT,");
883 if (protect & DOC_PROTECT_STICKY_LOCK)
884 pos += seq_printf(s, "STICKY_LOCK,");
885 if (protect & DOC_PROTECT_PROTECTION_ENABLED)
886 pos += seq_printf(s, "PROTECTION ON,");
887 if (protect & DOC_PROTECT_IPL_DOWNLOAD_LOCK)
888 pos += seq_printf(s, "IPL_DOWNLOAD_LOCK,");
889 if (protect & DOC_PROTECT_PROTECTION_ERROR)
890 pos += seq_printf(s, "PROTECT_ERR,");
891 else
892 pos += seq_printf(s, "NO_PROTECT_ERR");
893 pos += seq_printf(s, ")\n");
894
895 pos += seq_printf(s, "DPS0 = 0x%02x : "
896 "Protected area [0x%x - 0x%x] : OTP=%d, READ=%d, "
897 "WRITE=%d, HW_LOCK=%d, KEY_OK=%d\n",
898 dps0, dps0_low, dps0_high,
899 !!(dps0 & DOC_DPS_OTP_PROTECTED),
900 !!(dps0 & DOC_DPS_READ_PROTECTED),
901 !!(dps0 & DOC_DPS_WRITE_PROTECTED),
902 !!(dps0 & DOC_DPS_HW_LOCK_ENABLED),
903 !!(dps0 & DOC_DPS_KEY_OK));
904 pos += seq_printf(s, "DPS1 = 0x%02x : "
905 "Protected area [0x%x - 0x%x] : OTP=%d, READ=%d, "
906 "WRITE=%d, HW_LOCK=%d, KEY_OK=%d\n",
907 dps1, dps1_low, dps1_high,
908 !!(dps1 & DOC_DPS_OTP_PROTECTED),
909 !!(dps1 & DOC_DPS_READ_PROTECTED),
910 !!(dps1 & DOC_DPS_WRITE_PROTECTED),
911 !!(dps1 & DOC_DPS_HW_LOCK_ENABLED),
912 !!(dps1 & DOC_DPS_KEY_OK));
913 return pos;
914 }
915 DEBUGFS_RO_ATTR(protection, dbg_protection_show);
916
917 static int __init doc_dbg_register(struct docg3 *docg3)
918 {
919 struct dentry *root, *entry;
920
921 root = debugfs_create_dir("docg3", NULL);
922 if (!root)
923 return -ENOMEM;
924
925 entry = debugfs_create_file("flashcontrol", S_IRUSR, root, docg3,
926 &flashcontrol_fops);
927 if (entry)
928 entry = debugfs_create_file("asic_mode", S_IRUSR, root,
929 docg3, &asic_mode_fops);
930 if (entry)
931 entry = debugfs_create_file("device_id", S_IRUSR, root,
932 docg3, &device_id_fops);
933 if (entry)
934 entry = debugfs_create_file("protection", S_IRUSR, root,
935 docg3, &protection_fops);
936 if (entry) {
937 docg3->debugfs_root = root;
938 return 0;
939 } else {
940 debugfs_remove_recursive(root);
941 return -ENOMEM;
942 }
943 }
944
945 static void __exit doc_dbg_unregister(struct docg3 *docg3)
946 {
947 debugfs_remove_recursive(docg3->debugfs_root);
948 }
949
950 /**
951 * doc_set_driver_info - Fill the mtd_info structure and docg3 structure
952 * @chip_id: The chip ID of the supported chip
953 * @mtd: The structure to fill
954 */
955 static void __init doc_set_driver_info(int chip_id, struct mtd_info *mtd)
956 {
957 struct docg3 *docg3 = mtd->priv;
958 int cfg;
959
960 cfg = doc_register_readb(docg3, DOC_CONFIGURATION);
961 docg3->if_cfg = (cfg & DOC_CONF_IF_CFG ? 1 : 0);
962
963 switch (chip_id) {
964 case DOC_CHIPID_G3:
965 mtd->name = kasprintf(GFP_KERNEL, "DiskOnChip G3 floor %d",
966 docg3->device_id);
967 docg3->max_block = 2047;
968 break;
969 }
970 mtd->type = MTD_NANDFLASH;
971 /*
972 * Once write methods are added, the correct flags will be set.
973 * mtd->flags = MTD_CAP_NANDFLASH;
974 */
975 mtd->flags = MTD_CAP_ROM;
976 mtd->size = (docg3->max_block + 1) * DOC_LAYOUT_BLOCK_SIZE;
977 mtd->erasesize = DOC_LAYOUT_BLOCK_SIZE * DOC_LAYOUT_NBPLANES;
978 mtd->writesize = DOC_LAYOUT_PAGE_SIZE;
979 mtd->oobsize = DOC_LAYOUT_OOB_SIZE;
980 mtd->owner = THIS_MODULE;
981 mtd->erase = NULL;
982 mtd->point = NULL;
983 mtd->unpoint = NULL;
984 mtd->read = doc_read;
985 mtd->write = NULL;
986 mtd->read_oob = doc_read_oob;
987 mtd->write_oob = NULL;
988 mtd->sync = NULL;
989 mtd->block_isbad = doc_block_isbad;
990 mtd->ecclayout = &docg3_oobinfo;
991 }
992
993 /**
994 * doc_probe_device - Check if a device is available
995 * @base: the io space where the device is probed
996 * @floor: the floor of the probed device
997 * @dev: the device
998 *
999 * Checks whether a device at the specified IO range, and floor is available.
1000 *
1001 * Returns a mtd_info struct if there is a device, ENODEV if none found, ENOMEM
1002 * if a memory allocation failed. If floor 0 is checked, a reset of the ASIC is
1003 * launched.
1004 */
1005 static struct mtd_info *doc_probe_device(void __iomem *base, int floor,
1006 struct device *dev)
1007 {
1008 int ret, bbt_nbpages;
1009 u16 chip_id, chip_id_inv;
1010 struct docg3 *docg3;
1011 struct mtd_info *mtd;
1012
1013 ret = -ENOMEM;
1014 docg3 = kzalloc(sizeof(struct docg3), GFP_KERNEL);
1015 if (!docg3)
1016 goto nomem1;
1017 mtd = kzalloc(sizeof(struct mtd_info), GFP_KERNEL);
1018 if (!mtd)
1019 goto nomem2;
1020 mtd->priv = docg3;
1021 bbt_nbpages = DIV_ROUND_UP(docg3->max_block + 1,
1022 8 * DOC_LAYOUT_PAGE_SIZE);
1023 docg3->bbt = kzalloc(bbt_nbpages * DOC_LAYOUT_PAGE_SIZE, GFP_KERNEL);
1024 if (!docg3->bbt)
1025 goto nomem3;
1026
1027 docg3->dev = dev;
1028 docg3->device_id = floor;
1029 docg3->base = base;
1030 doc_set_device_id(docg3, docg3->device_id);
1031 if (!floor)
1032 doc_set_asic_mode(docg3, DOC_ASICMODE_RESET);
1033 doc_set_asic_mode(docg3, DOC_ASICMODE_NORMAL);
1034
1035 chip_id = doc_register_readw(docg3, DOC_CHIPID);
1036 chip_id_inv = doc_register_readw(docg3, DOC_CHIPID_INV);
1037
1038 ret = 0;
1039 if (chip_id != (u16)(~chip_id_inv)) {
1040 goto nomem3;
1041 }
1042
1043 switch (chip_id) {
1044 case DOC_CHIPID_G3:
1045 doc_info("Found a G3 DiskOnChip at addr %p, floor %d\n",
1046 base, floor);
1047 break;
1048 default:
1049 doc_err("Chip id %04x is not a DiskOnChip G3 chip\n", chip_id);
1050 goto nomem3;
1051 }
1052
1053 doc_set_driver_info(chip_id, mtd);
1054
1055 doc_reload_bbt(docg3);
1056 return mtd;
1057
1058 nomem3:
1059 kfree(mtd);
1060 nomem2:
1061 kfree(docg3);
1062 nomem1:
1063 return ERR_PTR(ret);
1064 }
1065
1066 /**
1067 * doc_release_device - Release a docg3 floor
1068 * @mtd: the device
1069 */
1070 static void doc_release_device(struct mtd_info *mtd)
1071 {
1072 struct docg3 *docg3 = mtd->priv;
1073
1074 mtd_device_unregister(mtd);
1075 kfree(docg3->bbt);
1076 kfree(docg3);
1077 kfree(mtd->name);
1078 kfree(mtd);
1079 }
1080
1081 /**
1082 * doc_probe - Probe the IO space for a DiskOnChip G3 chip
1083 * @pdev: platform device
1084 *
1085 * Probes for a G3 chip at the specified IO space in the platform data
1086 * ressources. The floor 0 must be available.
1087 *
1088 * Returns 0 on success, -ENOMEM, -ENXIO on error
1089 */
1090 static int __init docg3_probe(struct platform_device *pdev)
1091 {
1092 struct device *dev = &pdev->dev;
1093 struct mtd_info *mtd;
1094 struct resource *ress;
1095 void __iomem *base;
1096 int ret, floor, found = 0;
1097 struct mtd_info **docg3_floors;
1098
1099 ret = -ENXIO;
1100 ress = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1101 if (!ress) {
1102 dev_err(dev, "No I/O memory resource defined\n");
1103 goto noress;
1104 }
1105 base = ioremap(ress->start, DOC_IOSPACE_SIZE);
1106
1107 ret = -ENOMEM;
1108 docg3_floors = kzalloc(sizeof(*docg3_floors) * DOC_MAX_NBFLOORS,
1109 GFP_KERNEL);
1110 if (!docg3_floors)
1111 goto nomem;
1112
1113 ret = 0;
1114 for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) {
1115 mtd = doc_probe_device(base, floor, dev);
1116 if (floor == 0 && !mtd)
1117 goto notfound;
1118 if (!IS_ERR_OR_NULL(mtd))
1119 ret = mtd_device_parse_register(mtd, part_probes,
1120 NULL, NULL, 0);
1121 else
1122 ret = PTR_ERR(mtd);
1123 docg3_floors[floor] = mtd;
1124 if (ret)
1125 goto err_probe;
1126 if (mtd)
1127 found++;
1128 }
1129
1130 if (!found)
1131 goto notfound;
1132
1133 platform_set_drvdata(pdev, docg3_floors);
1134 doc_dbg_register(docg3_floors[0]->priv);
1135 return 0;
1136
1137 notfound:
1138 ret = -ENODEV;
1139 dev_info(dev, "No supported DiskOnChip found\n");
1140 err_probe:
1141 for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++)
1142 if (docg3_floors[floor])
1143 doc_release_device(docg3_floors[floor]);
1144 nomem:
1145 iounmap(base);
1146 noress:
1147 return ret;
1148 }
1149
1150 /**
1151 * docg3_release - Release the driver
1152 * @pdev: the platform device
1153 *
1154 * Returns 0
1155 */
1156 static int __exit docg3_release(struct platform_device *pdev)
1157 {
1158 struct mtd_info **docg3_floors = platform_get_drvdata(pdev);
1159 struct docg3 *docg3 = docg3_floors[0]->priv;
1160 void __iomem *base = docg3->base;
1161 int floor;
1162
1163 doc_dbg_unregister(docg3);
1164 for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++)
1165 if (docg3_floors[floor])
1166 doc_release_device(docg3_floors[floor]);
1167
1168 kfree(docg3_floors);
1169 iounmap(base);
1170 return 0;
1171 }
1172
1173 static struct platform_driver g3_driver = {
1174 .driver = {
1175 .name = "docg3",
1176 .owner = THIS_MODULE,
1177 },
1178 .remove = __exit_p(docg3_release),
1179 };
1180
1181 static int __init docg3_init(void)
1182 {
1183 return platform_driver_probe(&g3_driver, docg3_probe);
1184 }
1185 module_init(docg3_init);
1186
1187
1188 static void __exit docg3_exit(void)
1189 {
1190 platform_driver_unregister(&g3_driver);
1191 }
1192 module_exit(docg3_exit);
1193
1194 MODULE_LICENSE("GPL");
1195 MODULE_AUTHOR("Robert Jarzmik <robert.jarzmik@free.fr>");
1196 MODULE_DESCRIPTION("MTD driver for DiskOnChip G3");
This page took 0.055694 seconds and 5 git commands to generate.