mtd: flash drivers set ecc strength
[deliverable/linux.git] / drivers / mtd / devices / docg3.c
1 /*
2 * Handles the M-Systems DiskOnChip G3 chip
3 *
4 * Copyright (C) 2011 Robert Jarzmik
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 *
20 */
21
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/platform_device.h>
26 #include <linux/string.h>
27 #include <linux/slab.h>
28 #include <linux/io.h>
29 #include <linux/delay.h>
30 #include <linux/mtd/mtd.h>
31 #include <linux/mtd/partitions.h>
32 #include <linux/bitmap.h>
33 #include <linux/bitrev.h>
34 #include <linux/bch.h>
35
36 #include <linux/debugfs.h>
37 #include <linux/seq_file.h>
38
39 #define CREATE_TRACE_POINTS
40 #include "docg3.h"
41
42 /*
43 * This driver handles the DiskOnChip G3 flash memory.
44 *
45 * As no specification is available from M-Systems/Sandisk, this drivers lacks
46 * several functions available on the chip, as :
47 * - IPL write
48 *
49 * The bus data width (8bits versus 16bits) is not handled (if_cfg flag), and
50 * the driver assumes a 16bits data bus.
51 *
52 * DocG3 relies on 2 ECC algorithms, which are handled in hardware :
53 * - a 1 byte Hamming code stored in the OOB for each page
54 * - a 7 bytes BCH code stored in the OOB for each page
55 * The BCH ECC is :
56 * - BCH is in GF(2^14)
57 * - BCH is over data of 520 bytes (512 page + 7 page_info bytes
58 * + 1 hamming byte)
59 * - BCH can correct up to 4 bits (t = 4)
60 * - BCH syndroms are calculated in hardware, and checked in hardware as well
61 *
62 */
63
64 static unsigned int reliable_mode;
65 module_param(reliable_mode, uint, 0);
66 MODULE_PARM_DESC(reliable_mode, "Set the docg3 mode (0=normal MLC, 1=fast, "
67 "2=reliable) : MLC normal operations are in normal mode");
68
69 /**
70 * struct docg3_oobinfo - DiskOnChip G3 OOB layout
71 * @eccbytes: 8 bytes are used (1 for Hamming ECC, 7 for BCH ECC)
72 * @eccpos: ecc positions (byte 7 is Hamming ECC, byte 8-14 are BCH ECC)
73 * @oobfree: free pageinfo bytes (byte 0 until byte 6, byte 15
74 * @oobavail: 8 available bytes remaining after ECC toll
75 */
76 static struct nand_ecclayout docg3_oobinfo = {
77 .eccbytes = 8,
78 .eccpos = {7, 8, 9, 10, 11, 12, 13, 14},
79 .oobfree = {{0, 7}, {15, 1} },
80 .oobavail = 8,
81 };
82
83 /**
84 * struct docg3_bch - BCH engine
85 */
86 static struct bch_control *docg3_bch;
87
88 static inline u8 doc_readb(struct docg3 *docg3, u16 reg)
89 {
90 u8 val = readb(docg3->base + reg);
91
92 trace_docg3_io(0, 8, reg, (int)val);
93 return val;
94 }
95
96 static inline u16 doc_readw(struct docg3 *docg3, u16 reg)
97 {
98 u16 val = readw(docg3->base + reg);
99
100 trace_docg3_io(0, 16, reg, (int)val);
101 return val;
102 }
103
104 static inline void doc_writeb(struct docg3 *docg3, u8 val, u16 reg)
105 {
106 writeb(val, docg3->base + reg);
107 trace_docg3_io(1, 8, reg, val);
108 }
109
110 static inline void doc_writew(struct docg3 *docg3, u16 val, u16 reg)
111 {
112 writew(val, docg3->base + reg);
113 trace_docg3_io(1, 16, reg, val);
114 }
115
116 static inline void doc_flash_command(struct docg3 *docg3, u8 cmd)
117 {
118 doc_writeb(docg3, cmd, DOC_FLASHCOMMAND);
119 }
120
121 static inline void doc_flash_sequence(struct docg3 *docg3, u8 seq)
122 {
123 doc_writeb(docg3, seq, DOC_FLASHSEQUENCE);
124 }
125
126 static inline void doc_flash_address(struct docg3 *docg3, u8 addr)
127 {
128 doc_writeb(docg3, addr, DOC_FLASHADDRESS);
129 }
130
131 static char const *part_probes[] = { "cmdlinepart", "saftlpart", NULL };
132
133 static int doc_register_readb(struct docg3 *docg3, int reg)
134 {
135 u8 val;
136
137 doc_writew(docg3, reg, DOC_READADDRESS);
138 val = doc_readb(docg3, reg);
139 doc_vdbg("Read register %04x : %02x\n", reg, val);
140 return val;
141 }
142
143 static int doc_register_readw(struct docg3 *docg3, int reg)
144 {
145 u16 val;
146
147 doc_writew(docg3, reg, DOC_READADDRESS);
148 val = doc_readw(docg3, reg);
149 doc_vdbg("Read register %04x : %04x\n", reg, val);
150 return val;
151 }
152
153 /**
154 * doc_delay - delay docg3 operations
155 * @docg3: the device
156 * @nbNOPs: the number of NOPs to issue
157 *
158 * As no specification is available, the right timings between chip commands are
159 * unknown. The only available piece of information are the observed nops on a
160 * working docg3 chip.
161 * Therefore, doc_delay relies on a busy loop of NOPs, instead of scheduler
162 * friendlier msleep() functions or blocking mdelay().
163 */
164 static void doc_delay(struct docg3 *docg3, int nbNOPs)
165 {
166 int i;
167
168 doc_vdbg("NOP x %d\n", nbNOPs);
169 for (i = 0; i < nbNOPs; i++)
170 doc_writeb(docg3, 0, DOC_NOP);
171 }
172
173 static int is_prot_seq_error(struct docg3 *docg3)
174 {
175 int ctrl;
176
177 ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
178 return ctrl & (DOC_CTRL_PROTECTION_ERROR | DOC_CTRL_SEQUENCE_ERROR);
179 }
180
181 static int doc_is_ready(struct docg3 *docg3)
182 {
183 int ctrl;
184
185 ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
186 return ctrl & DOC_CTRL_FLASHREADY;
187 }
188
189 static int doc_wait_ready(struct docg3 *docg3)
190 {
191 int maxWaitCycles = 100;
192
193 do {
194 doc_delay(docg3, 4);
195 cpu_relax();
196 } while (!doc_is_ready(docg3) && maxWaitCycles--);
197 doc_delay(docg3, 2);
198 if (maxWaitCycles > 0)
199 return 0;
200 else
201 return -EIO;
202 }
203
204 static int doc_reset_seq(struct docg3 *docg3)
205 {
206 int ret;
207
208 doc_writeb(docg3, 0x10, DOC_FLASHCONTROL);
209 doc_flash_sequence(docg3, DOC_SEQ_RESET);
210 doc_flash_command(docg3, DOC_CMD_RESET);
211 doc_delay(docg3, 2);
212 ret = doc_wait_ready(docg3);
213
214 doc_dbg("doc_reset_seq() -> isReady=%s\n", ret ? "false" : "true");
215 return ret;
216 }
217
218 /**
219 * doc_read_data_area - Read data from data area
220 * @docg3: the device
221 * @buf: the buffer to fill in (might be NULL is dummy reads)
222 * @len: the length to read
223 * @first: first time read, DOC_READADDRESS should be set
224 *
225 * Reads bytes from flash data. Handles the single byte / even bytes reads.
226 */
227 static void doc_read_data_area(struct docg3 *docg3, void *buf, int len,
228 int first)
229 {
230 int i, cdr, len4;
231 u16 data16, *dst16;
232 u8 data8, *dst8;
233
234 doc_dbg("doc_read_data_area(buf=%p, len=%d)\n", buf, len);
235 cdr = len & 0x3;
236 len4 = len - cdr;
237
238 if (first)
239 doc_writew(docg3, DOC_IOSPACE_DATA, DOC_READADDRESS);
240 dst16 = buf;
241 for (i = 0; i < len4; i += 2) {
242 data16 = doc_readw(docg3, DOC_IOSPACE_DATA);
243 if (dst16) {
244 *dst16 = data16;
245 dst16++;
246 }
247 }
248
249 if (cdr) {
250 doc_writew(docg3, DOC_IOSPACE_DATA | DOC_READADDR_ONE_BYTE,
251 DOC_READADDRESS);
252 doc_delay(docg3, 1);
253 dst8 = (u8 *)dst16;
254 for (i = 0; i < cdr; i++) {
255 data8 = doc_readb(docg3, DOC_IOSPACE_DATA);
256 if (dst8) {
257 *dst8 = data8;
258 dst8++;
259 }
260 }
261 }
262 }
263
264 /**
265 * doc_write_data_area - Write data into data area
266 * @docg3: the device
267 * @buf: the buffer to get input bytes from
268 * @len: the length to write
269 *
270 * Writes bytes into flash data. Handles the single byte / even bytes writes.
271 */
272 static void doc_write_data_area(struct docg3 *docg3, const void *buf, int len)
273 {
274 int i, cdr, len4;
275 u16 *src16;
276 u8 *src8;
277
278 doc_dbg("doc_write_data_area(buf=%p, len=%d)\n", buf, len);
279 cdr = len & 0x3;
280 len4 = len - cdr;
281
282 doc_writew(docg3, DOC_IOSPACE_DATA, DOC_READADDRESS);
283 src16 = (u16 *)buf;
284 for (i = 0; i < len4; i += 2) {
285 doc_writew(docg3, *src16, DOC_IOSPACE_DATA);
286 src16++;
287 }
288
289 src8 = (u8 *)src16;
290 for (i = 0; i < cdr; i++) {
291 doc_writew(docg3, DOC_IOSPACE_DATA | DOC_READADDR_ONE_BYTE,
292 DOC_READADDRESS);
293 doc_writeb(docg3, *src8, DOC_IOSPACE_DATA);
294 src8++;
295 }
296 }
297
298 /**
299 * doc_set_data_mode - Sets the flash to normal or reliable data mode
300 * @docg3: the device
301 *
302 * The reliable data mode is a bit slower than the fast mode, but less errors
303 * occur. Entering the reliable mode cannot be done without entering the fast
304 * mode first.
305 *
306 * In reliable mode, pages 2*n and 2*n+1 are clones. Writing to page 0 of blocks
307 * (4,5) make the hardware write also to page 1 of blocks blocks(4,5). Reading
308 * from page 0 of blocks (4,5) or from page 1 of blocks (4,5) gives the same
309 * result, which is a logical and between bytes from page 0 and page 1 (which is
310 * consistent with the fact that writing to a page is _clearing_ bits of that
311 * page).
312 */
313 static void doc_set_reliable_mode(struct docg3 *docg3)
314 {
315 static char *strmode[] = { "normal", "fast", "reliable", "invalid" };
316
317 doc_dbg("doc_set_reliable_mode(%s)\n", strmode[docg3->reliable]);
318 switch (docg3->reliable) {
319 case 0:
320 break;
321 case 1:
322 doc_flash_sequence(docg3, DOC_SEQ_SET_FASTMODE);
323 doc_flash_command(docg3, DOC_CMD_FAST_MODE);
324 break;
325 case 2:
326 doc_flash_sequence(docg3, DOC_SEQ_SET_RELIABLEMODE);
327 doc_flash_command(docg3, DOC_CMD_FAST_MODE);
328 doc_flash_command(docg3, DOC_CMD_RELIABLE_MODE);
329 break;
330 default:
331 doc_err("doc_set_reliable_mode(): invalid mode\n");
332 break;
333 }
334 doc_delay(docg3, 2);
335 }
336
337 /**
338 * doc_set_asic_mode - Set the ASIC mode
339 * @docg3: the device
340 * @mode: the mode
341 *
342 * The ASIC can work in 3 modes :
343 * - RESET: all registers are zeroed
344 * - NORMAL: receives and handles commands
345 * - POWERDOWN: minimal poweruse, flash parts shut off
346 */
347 static void doc_set_asic_mode(struct docg3 *docg3, u8 mode)
348 {
349 int i;
350
351 for (i = 0; i < 12; i++)
352 doc_readb(docg3, DOC_IOSPACE_IPL);
353
354 mode |= DOC_ASICMODE_MDWREN;
355 doc_dbg("doc_set_asic_mode(%02x)\n", mode);
356 doc_writeb(docg3, mode, DOC_ASICMODE);
357 doc_writeb(docg3, ~mode, DOC_ASICMODECONFIRM);
358 doc_delay(docg3, 1);
359 }
360
361 /**
362 * doc_set_device_id - Sets the devices id for cascaded G3 chips
363 * @docg3: the device
364 * @id: the chip to select (amongst 0, 1, 2, 3)
365 *
366 * There can be 4 cascaded G3 chips. This function selects the one which will
367 * should be the active one.
368 */
369 static void doc_set_device_id(struct docg3 *docg3, int id)
370 {
371 u8 ctrl;
372
373 doc_dbg("doc_set_device_id(%d)\n", id);
374 doc_writeb(docg3, id, DOC_DEVICESELECT);
375 ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
376
377 ctrl &= ~DOC_CTRL_VIOLATION;
378 ctrl |= DOC_CTRL_CE;
379 doc_writeb(docg3, ctrl, DOC_FLASHCONTROL);
380 }
381
382 /**
383 * doc_set_extra_page_mode - Change flash page layout
384 * @docg3: the device
385 *
386 * Normally, the flash page is split into the data (512 bytes) and the out of
387 * band data (16 bytes). For each, 4 more bytes can be accessed, where the wear
388 * leveling counters are stored. To access this last area of 4 bytes, a special
389 * mode must be input to the flash ASIC.
390 *
391 * Returns 0 if no error occured, -EIO else.
392 */
393 static int doc_set_extra_page_mode(struct docg3 *docg3)
394 {
395 int fctrl;
396
397 doc_dbg("doc_set_extra_page_mode()\n");
398 doc_flash_sequence(docg3, DOC_SEQ_PAGE_SIZE_532);
399 doc_flash_command(docg3, DOC_CMD_PAGE_SIZE_532);
400 doc_delay(docg3, 2);
401
402 fctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
403 if (fctrl & (DOC_CTRL_PROTECTION_ERROR | DOC_CTRL_SEQUENCE_ERROR))
404 return -EIO;
405 else
406 return 0;
407 }
408
409 /**
410 * doc_setup_addr_sector - Setup blocks/page/ofs address for one plane
411 * @docg3: the device
412 * @sector: the sector
413 */
414 static void doc_setup_addr_sector(struct docg3 *docg3, int sector)
415 {
416 doc_delay(docg3, 1);
417 doc_flash_address(docg3, sector & 0xff);
418 doc_flash_address(docg3, (sector >> 8) & 0xff);
419 doc_flash_address(docg3, (sector >> 16) & 0xff);
420 doc_delay(docg3, 1);
421 }
422
423 /**
424 * doc_setup_writeaddr_sector - Setup blocks/page/ofs address for one plane
425 * @docg3: the device
426 * @sector: the sector
427 * @ofs: the offset in the page, between 0 and (512 + 16 + 512)
428 */
429 static void doc_setup_writeaddr_sector(struct docg3 *docg3, int sector, int ofs)
430 {
431 ofs = ofs >> 2;
432 doc_delay(docg3, 1);
433 doc_flash_address(docg3, ofs & 0xff);
434 doc_flash_address(docg3, sector & 0xff);
435 doc_flash_address(docg3, (sector >> 8) & 0xff);
436 doc_flash_address(docg3, (sector >> 16) & 0xff);
437 doc_delay(docg3, 1);
438 }
439
440 /**
441 * doc_seek - Set both flash planes to the specified block, page for reading
442 * @docg3: the device
443 * @block0: the first plane block index
444 * @block1: the second plane block index
445 * @page: the page index within the block
446 * @wear: if true, read will occur on the 4 extra bytes of the wear area
447 * @ofs: offset in page to read
448 *
449 * Programs the flash even and odd planes to the specific block and page.
450 * Alternatively, programs the flash to the wear area of the specified page.
451 */
452 static int doc_read_seek(struct docg3 *docg3, int block0, int block1, int page,
453 int wear, int ofs)
454 {
455 int sector, ret = 0;
456
457 doc_dbg("doc_seek(blocks=(%d,%d), page=%d, ofs=%d, wear=%d)\n",
458 block0, block1, page, ofs, wear);
459
460 if (!wear && (ofs < 2 * DOC_LAYOUT_PAGE_SIZE)) {
461 doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE1);
462 doc_flash_command(docg3, DOC_CMD_READ_PLANE1);
463 doc_delay(docg3, 2);
464 } else {
465 doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE2);
466 doc_flash_command(docg3, DOC_CMD_READ_PLANE2);
467 doc_delay(docg3, 2);
468 }
469
470 doc_set_reliable_mode(docg3);
471 if (wear)
472 ret = doc_set_extra_page_mode(docg3);
473 if (ret)
474 goto out;
475
476 doc_flash_sequence(docg3, DOC_SEQ_READ);
477 sector = (block0 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
478 doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
479 doc_setup_addr_sector(docg3, sector);
480
481 sector = (block1 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
482 doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
483 doc_setup_addr_sector(docg3, sector);
484 doc_delay(docg3, 1);
485
486 out:
487 return ret;
488 }
489
490 /**
491 * doc_write_seek - Set both flash planes to the specified block, page for writing
492 * @docg3: the device
493 * @block0: the first plane block index
494 * @block1: the second plane block index
495 * @page: the page index within the block
496 * @ofs: offset in page to write
497 *
498 * Programs the flash even and odd planes to the specific block and page.
499 * Alternatively, programs the flash to the wear area of the specified page.
500 */
501 static int doc_write_seek(struct docg3 *docg3, int block0, int block1, int page,
502 int ofs)
503 {
504 int ret = 0, sector;
505
506 doc_dbg("doc_write_seek(blocks=(%d,%d), page=%d, ofs=%d)\n",
507 block0, block1, page, ofs);
508
509 doc_set_reliable_mode(docg3);
510
511 if (ofs < 2 * DOC_LAYOUT_PAGE_SIZE) {
512 doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE1);
513 doc_flash_command(docg3, DOC_CMD_READ_PLANE1);
514 doc_delay(docg3, 2);
515 } else {
516 doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE2);
517 doc_flash_command(docg3, DOC_CMD_READ_PLANE2);
518 doc_delay(docg3, 2);
519 }
520
521 doc_flash_sequence(docg3, DOC_SEQ_PAGE_SETUP);
522 doc_flash_command(docg3, DOC_CMD_PROG_CYCLE1);
523
524 sector = (block0 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
525 doc_setup_writeaddr_sector(docg3, sector, ofs);
526
527 doc_flash_command(docg3, DOC_CMD_PROG_CYCLE3);
528 doc_delay(docg3, 2);
529 ret = doc_wait_ready(docg3);
530 if (ret)
531 goto out;
532
533 doc_flash_command(docg3, DOC_CMD_PROG_CYCLE1);
534 sector = (block1 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
535 doc_setup_writeaddr_sector(docg3, sector, ofs);
536 doc_delay(docg3, 1);
537
538 out:
539 return ret;
540 }
541
542
543 /**
544 * doc_read_page_ecc_init - Initialize hardware ECC engine
545 * @docg3: the device
546 * @len: the number of bytes covered by the ECC (BCH covered)
547 *
548 * The function does initialize the hardware ECC engine to compute the Hamming
549 * ECC (on 1 byte) and the BCH hardware ECC (on 7 bytes).
550 *
551 * Return 0 if succeeded, -EIO on error
552 */
553 static int doc_read_page_ecc_init(struct docg3 *docg3, int len)
554 {
555 doc_writew(docg3, DOC_ECCCONF0_READ_MODE
556 | DOC_ECCCONF0_BCH_ENABLE | DOC_ECCCONF0_HAMMING_ENABLE
557 | (len & DOC_ECCCONF0_DATA_BYTES_MASK),
558 DOC_ECCCONF0);
559 doc_delay(docg3, 4);
560 doc_register_readb(docg3, DOC_FLASHCONTROL);
561 return doc_wait_ready(docg3);
562 }
563
564 /**
565 * doc_write_page_ecc_init - Initialize hardware BCH ECC engine
566 * @docg3: the device
567 * @len: the number of bytes covered by the ECC (BCH covered)
568 *
569 * The function does initialize the hardware ECC engine to compute the Hamming
570 * ECC (on 1 byte) and the BCH hardware ECC (on 7 bytes).
571 *
572 * Return 0 if succeeded, -EIO on error
573 */
574 static int doc_write_page_ecc_init(struct docg3 *docg3, int len)
575 {
576 doc_writew(docg3, DOC_ECCCONF0_WRITE_MODE
577 | DOC_ECCCONF0_BCH_ENABLE | DOC_ECCCONF0_HAMMING_ENABLE
578 | (len & DOC_ECCCONF0_DATA_BYTES_MASK),
579 DOC_ECCCONF0);
580 doc_delay(docg3, 4);
581 doc_register_readb(docg3, DOC_FLASHCONTROL);
582 return doc_wait_ready(docg3);
583 }
584
585 /**
586 * doc_ecc_disable - Disable Hamming and BCH ECC hardware calculator
587 * @docg3: the device
588 *
589 * Disables the hardware ECC generator and checker, for unchecked reads (as when
590 * reading OOB only or write status byte).
591 */
592 static void doc_ecc_disable(struct docg3 *docg3)
593 {
594 doc_writew(docg3, DOC_ECCCONF0_READ_MODE, DOC_ECCCONF0);
595 doc_delay(docg3, 4);
596 }
597
598 /**
599 * doc_hamming_ecc_init - Initialize hardware Hamming ECC engine
600 * @docg3: the device
601 * @nb_bytes: the number of bytes covered by the ECC (Hamming covered)
602 *
603 * This function programs the ECC hardware to compute the hamming code on the
604 * last provided N bytes to the hardware generator.
605 */
606 static void doc_hamming_ecc_init(struct docg3 *docg3, int nb_bytes)
607 {
608 u8 ecc_conf1;
609
610 ecc_conf1 = doc_register_readb(docg3, DOC_ECCCONF1);
611 ecc_conf1 &= ~DOC_ECCCONF1_HAMMING_BITS_MASK;
612 ecc_conf1 |= (nb_bytes & DOC_ECCCONF1_HAMMING_BITS_MASK);
613 doc_writeb(docg3, ecc_conf1, DOC_ECCCONF1);
614 }
615
616 /**
617 * doc_ecc_bch_fix_data - Fix if need be read data from flash
618 * @docg3: the device
619 * @buf: the buffer of read data (512 + 7 + 1 bytes)
620 * @hwecc: the hardware calculated ECC.
621 * It's in fact recv_ecc ^ calc_ecc, where recv_ecc was read from OOB
622 * area data, and calc_ecc the ECC calculated by the hardware generator.
623 *
624 * Checks if the received data matches the ECC, and if an error is detected,
625 * tries to fix the bit flips (at most 4) in the buffer buf. As the docg3
626 * understands the (data, ecc, syndroms) in an inverted order in comparison to
627 * the BCH library, the function reverses the order of bits (ie. bit7 and bit0,
628 * bit6 and bit 1, ...) for all ECC data.
629 *
630 * The hardware ecc unit produces oob_ecc ^ calc_ecc. The kernel's bch
631 * algorithm is used to decode this. However the hw operates on page
632 * data in a bit order that is the reverse of that of the bch alg,
633 * requiring that the bits be reversed on the result. Thanks to Ivan
634 * Djelic for his analysis.
635 *
636 * Returns number of fixed bits (0, 1, 2, 3, 4) or -EBADMSG if too many bit
637 * errors were detected and cannot be fixed.
638 */
639 static int doc_ecc_bch_fix_data(struct docg3 *docg3, void *buf, u8 *hwecc)
640 {
641 u8 ecc[DOC_ECC_BCH_SIZE];
642 int errorpos[DOC_ECC_BCH_T], i, numerrs;
643
644 for (i = 0; i < DOC_ECC_BCH_SIZE; i++)
645 ecc[i] = bitrev8(hwecc[i]);
646 numerrs = decode_bch(docg3_bch, NULL, DOC_ECC_BCH_COVERED_BYTES,
647 NULL, ecc, NULL, errorpos);
648 BUG_ON(numerrs == -EINVAL);
649 if (numerrs < 0)
650 goto out;
651
652 for (i = 0; i < numerrs; i++)
653 errorpos[i] = (errorpos[i] & ~7) | (7 - (errorpos[i] & 7));
654 for (i = 0; i < numerrs; i++)
655 if (errorpos[i] < DOC_ECC_BCH_COVERED_BYTES*8)
656 /* error is located in data, correct it */
657 change_bit(errorpos[i], buf);
658 out:
659 doc_dbg("doc_ecc_bch_fix_data: flipped %d bits\n", numerrs);
660 return numerrs;
661 }
662
663
664 /**
665 * doc_read_page_prepare - Prepares reading data from a flash page
666 * @docg3: the device
667 * @block0: the first plane block index on flash memory
668 * @block1: the second plane block index on flash memory
669 * @page: the page index in the block
670 * @offset: the offset in the page (must be a multiple of 4)
671 *
672 * Prepares the page to be read in the flash memory :
673 * - tell ASIC to map the flash pages
674 * - tell ASIC to be in read mode
675 *
676 * After a call to this method, a call to doc_read_page_finish is mandatory,
677 * to end the read cycle of the flash.
678 *
679 * Read data from a flash page. The length to be read must be between 0 and
680 * (page_size + oob_size + wear_size), ie. 532, and a multiple of 4 (because
681 * the extra bytes reading is not implemented).
682 *
683 * As pages are grouped by 2 (in 2 planes), reading from a page must be done
684 * in two steps:
685 * - one read of 512 bytes at offset 0
686 * - one read of 512 bytes at offset 512 + 16
687 *
688 * Returns 0 if successful, -EIO if a read error occured.
689 */
690 static int doc_read_page_prepare(struct docg3 *docg3, int block0, int block1,
691 int page, int offset)
692 {
693 int wear_area = 0, ret = 0;
694
695 doc_dbg("doc_read_page_prepare(blocks=(%d,%d), page=%d, ofsInPage=%d)\n",
696 block0, block1, page, offset);
697 if (offset >= DOC_LAYOUT_WEAR_OFFSET)
698 wear_area = 1;
699 if (!wear_area && offset > (DOC_LAYOUT_PAGE_OOB_SIZE * 2))
700 return -EINVAL;
701
702 doc_set_device_id(docg3, docg3->device_id);
703 ret = doc_reset_seq(docg3);
704 if (ret)
705 goto err;
706
707 /* Program the flash address block and page */
708 ret = doc_read_seek(docg3, block0, block1, page, wear_area, offset);
709 if (ret)
710 goto err;
711
712 doc_flash_command(docg3, DOC_CMD_READ_ALL_PLANES);
713 doc_delay(docg3, 2);
714 doc_wait_ready(docg3);
715
716 doc_flash_command(docg3, DOC_CMD_SET_ADDR_READ);
717 doc_delay(docg3, 1);
718 if (offset >= DOC_LAYOUT_PAGE_SIZE * 2)
719 offset -= 2 * DOC_LAYOUT_PAGE_SIZE;
720 doc_flash_address(docg3, offset >> 2);
721 doc_delay(docg3, 1);
722 doc_wait_ready(docg3);
723
724 doc_flash_command(docg3, DOC_CMD_READ_FLASH);
725
726 return 0;
727 err:
728 doc_writeb(docg3, 0, DOC_DATAEND);
729 doc_delay(docg3, 2);
730 return -EIO;
731 }
732
733 /**
734 * doc_read_page_getbytes - Reads bytes from a prepared page
735 * @docg3: the device
736 * @len: the number of bytes to be read (must be a multiple of 4)
737 * @buf: the buffer to be filled in (or NULL is forget bytes)
738 * @first: 1 if first time read, DOC_READADDRESS should be set
739 *
740 */
741 static int doc_read_page_getbytes(struct docg3 *docg3, int len, u_char *buf,
742 int first)
743 {
744 doc_read_data_area(docg3, buf, len, first);
745 doc_delay(docg3, 2);
746 return len;
747 }
748
749 /**
750 * doc_write_page_putbytes - Writes bytes into a prepared page
751 * @docg3: the device
752 * @len: the number of bytes to be written
753 * @buf: the buffer of input bytes
754 *
755 */
756 static void doc_write_page_putbytes(struct docg3 *docg3, int len,
757 const u_char *buf)
758 {
759 doc_write_data_area(docg3, buf, len);
760 doc_delay(docg3, 2);
761 }
762
763 /**
764 * doc_get_bch_hw_ecc - Get hardware calculated BCH ECC
765 * @docg3: the device
766 * @hwecc: the array of 7 integers where the hardware ecc will be stored
767 */
768 static void doc_get_bch_hw_ecc(struct docg3 *docg3, u8 *hwecc)
769 {
770 int i;
771
772 for (i = 0; i < DOC_ECC_BCH_SIZE; i++)
773 hwecc[i] = doc_register_readb(docg3, DOC_BCH_HW_ECC(i));
774 }
775
776 /**
777 * doc_page_finish - Ends reading/writing of a flash page
778 * @docg3: the device
779 */
780 static void doc_page_finish(struct docg3 *docg3)
781 {
782 doc_writeb(docg3, 0, DOC_DATAEND);
783 doc_delay(docg3, 2);
784 }
785
786 /**
787 * doc_read_page_finish - Ends reading of a flash page
788 * @docg3: the device
789 *
790 * As a side effect, resets the chip selector to 0. This ensures that after each
791 * read operation, the floor 0 is selected. Therefore, if the systems halts, the
792 * reboot will boot on floor 0, where the IPL is.
793 */
794 static void doc_read_page_finish(struct docg3 *docg3)
795 {
796 doc_page_finish(docg3);
797 doc_set_device_id(docg3, 0);
798 }
799
800 /**
801 * calc_block_sector - Calculate blocks, pages and ofs.
802
803 * @from: offset in flash
804 * @block0: first plane block index calculated
805 * @block1: second plane block index calculated
806 * @page: page calculated
807 * @ofs: offset in page
808 * @reliable: 0 if docg3 in normal mode, 1 if docg3 in fast mode, 2 if docg3 in
809 * reliable mode.
810 *
811 * The calculation is based on the reliable/normal mode. In normal mode, the 64
812 * pages of a block are available. In reliable mode, as pages 2*n and 2*n+1 are
813 * clones, only 32 pages per block are available.
814 */
815 static void calc_block_sector(loff_t from, int *block0, int *block1, int *page,
816 int *ofs, int reliable)
817 {
818 uint sector, pages_biblock;
819
820 pages_biblock = DOC_LAYOUT_PAGES_PER_BLOCK * DOC_LAYOUT_NBPLANES;
821 if (reliable == 1 || reliable == 2)
822 pages_biblock /= 2;
823
824 sector = from / DOC_LAYOUT_PAGE_SIZE;
825 *block0 = sector / pages_biblock * DOC_LAYOUT_NBPLANES;
826 *block1 = *block0 + 1;
827 *page = sector % pages_biblock;
828 *page /= DOC_LAYOUT_NBPLANES;
829 if (reliable == 1 || reliable == 2)
830 *page *= 2;
831 if (sector % 2)
832 *ofs = DOC_LAYOUT_PAGE_OOB_SIZE;
833 else
834 *ofs = 0;
835 }
836
837 /**
838 * doc_read_oob - Read out of band bytes from flash
839 * @mtd: the device
840 * @from: the offset from first block and first page, in bytes, aligned on page
841 * size
842 * @ops: the mtd oob structure
843 *
844 * Reads flash memory OOB area of pages.
845 *
846 * Returns 0 if read successfull, of -EIO, -EINVAL if an error occured
847 */
848 static int doc_read_oob(struct mtd_info *mtd, loff_t from,
849 struct mtd_oob_ops *ops)
850 {
851 struct docg3 *docg3 = mtd->priv;
852 int block0, block1, page, ret, skip, ofs = 0;
853 u8 *oobbuf = ops->oobbuf;
854 u8 *buf = ops->datbuf;
855 size_t len, ooblen, nbdata, nboob;
856 u8 hwecc[DOC_ECC_BCH_SIZE], eccconf1;
857
858 if (buf)
859 len = ops->len;
860 else
861 len = 0;
862 if (oobbuf)
863 ooblen = ops->ooblen;
864 else
865 ooblen = 0;
866
867 if (oobbuf && ops->mode == MTD_OPS_PLACE_OOB)
868 oobbuf += ops->ooboffs;
869
870 doc_dbg("doc_read_oob(from=%lld, mode=%d, data=(%p:%zu), oob=(%p:%zu))\n",
871 from, ops->mode, buf, len, oobbuf, ooblen);
872 if (ooblen % DOC_LAYOUT_OOB_SIZE)
873 return -EINVAL;
874
875 ret = -EINVAL;
876 calc_block_sector(from + len, &block0, &block1, &page, &ofs,
877 docg3->reliable);
878 if (block1 > docg3->max_block)
879 goto err;
880
881 ops->oobretlen = 0;
882 ops->retlen = 0;
883 ret = 0;
884 skip = from % DOC_LAYOUT_PAGE_SIZE;
885 while (!ret && (len > 0 || ooblen > 0)) {
886 calc_block_sector(from - skip, &block0, &block1, &page, &ofs,
887 docg3->reliable);
888 nbdata = min_t(size_t, len, DOC_LAYOUT_PAGE_SIZE - skip);
889 nboob = min_t(size_t, ooblen, (size_t)DOC_LAYOUT_OOB_SIZE);
890 ret = doc_read_page_prepare(docg3, block0, block1, page, ofs);
891 if (ret < 0)
892 goto err;
893 ret = doc_read_page_ecc_init(docg3, DOC_ECC_BCH_TOTAL_BYTES);
894 if (ret < 0)
895 goto err_in_read;
896 ret = doc_read_page_getbytes(docg3, skip, NULL, 1);
897 if (ret < skip)
898 goto err_in_read;
899 ret = doc_read_page_getbytes(docg3, nbdata, buf, 0);
900 if (ret < nbdata)
901 goto err_in_read;
902 doc_read_page_getbytes(docg3,
903 DOC_LAYOUT_PAGE_SIZE - nbdata - skip,
904 NULL, 0);
905 ret = doc_read_page_getbytes(docg3, nboob, oobbuf, 0);
906 if (ret < nboob)
907 goto err_in_read;
908 doc_read_page_getbytes(docg3, DOC_LAYOUT_OOB_SIZE - nboob,
909 NULL, 0);
910
911 doc_get_bch_hw_ecc(docg3, hwecc);
912 eccconf1 = doc_register_readb(docg3, DOC_ECCCONF1);
913
914 if (nboob >= DOC_LAYOUT_OOB_SIZE) {
915 doc_dbg("OOB - INFO: %02x:%02x:%02x:%02x:%02x:%02x:%02x\n",
916 oobbuf[0], oobbuf[1], oobbuf[2], oobbuf[3],
917 oobbuf[4], oobbuf[5], oobbuf[6]);
918 doc_dbg("OOB - HAMMING: %02x\n", oobbuf[7]);
919 doc_dbg("OOB - BCH_ECC: %02x:%02x:%02x:%02x:%02x:%02x:%02x\n",
920 oobbuf[8], oobbuf[9], oobbuf[10], oobbuf[11],
921 oobbuf[12], oobbuf[13], oobbuf[14]);
922 doc_dbg("OOB - UNUSED: %02x\n", oobbuf[15]);
923 }
924 doc_dbg("ECC checks: ECCConf1=%x\n", eccconf1);
925 doc_dbg("ECC HW_ECC: %02x:%02x:%02x:%02x:%02x:%02x:%02x\n",
926 hwecc[0], hwecc[1], hwecc[2], hwecc[3], hwecc[4],
927 hwecc[5], hwecc[6]);
928
929 ret = -EIO;
930 if (is_prot_seq_error(docg3))
931 goto err_in_read;
932 ret = 0;
933 if ((block0 >= DOC_LAYOUT_BLOCK_FIRST_DATA) &&
934 (eccconf1 & DOC_ECCCONF1_BCH_SYNDROM_ERR) &&
935 (eccconf1 & DOC_ECCCONF1_PAGE_IS_WRITTEN) &&
936 (ops->mode != MTD_OPS_RAW) &&
937 (nbdata == DOC_LAYOUT_PAGE_SIZE)) {
938 ret = doc_ecc_bch_fix_data(docg3, buf, hwecc);
939 if (ret < 0) {
940 mtd->ecc_stats.failed++;
941 ret = -EBADMSG;
942 }
943 if (ret > 0) {
944 mtd->ecc_stats.corrected += ret;
945 ret = -EUCLEAN;
946 }
947 }
948
949 doc_read_page_finish(docg3);
950 ops->retlen += nbdata;
951 ops->oobretlen += nboob;
952 buf += nbdata;
953 oobbuf += nboob;
954 len -= nbdata;
955 ooblen -= nboob;
956 from += DOC_LAYOUT_PAGE_SIZE;
957 skip = 0;
958 }
959
960 return ret;
961 err_in_read:
962 doc_read_page_finish(docg3);
963 err:
964 return ret;
965 }
966
967 /**
968 * doc_read - Read bytes from flash
969 * @mtd: the device
970 * @from: the offset from first block and first page, in bytes, aligned on page
971 * size
972 * @len: the number of bytes to read (must be a multiple of 4)
973 * @retlen: the number of bytes actually read
974 * @buf: the filled in buffer
975 *
976 * Reads flash memory pages. This function does not read the OOB chunk, but only
977 * the page data.
978 *
979 * Returns 0 if read successfull, of -EIO, -EINVAL if an error occured
980 */
981 static int doc_read(struct mtd_info *mtd, loff_t from, size_t len,
982 size_t *retlen, u_char *buf)
983 {
984 struct mtd_oob_ops ops;
985 size_t ret;
986
987 memset(&ops, 0, sizeof(ops));
988 ops.datbuf = buf;
989 ops.len = len;
990 ops.mode = MTD_OPS_AUTO_OOB;
991
992 ret = doc_read_oob(mtd, from, &ops);
993 *retlen = ops.retlen;
994 return ret;
995 }
996
997 static int doc_reload_bbt(struct docg3 *docg3)
998 {
999 int block = DOC_LAYOUT_BLOCK_BBT;
1000 int ret = 0, nbpages, page;
1001 u_char *buf = docg3->bbt;
1002
1003 nbpages = DIV_ROUND_UP(docg3->max_block + 1, 8 * DOC_LAYOUT_PAGE_SIZE);
1004 for (page = 0; !ret && (page < nbpages); page++) {
1005 ret = doc_read_page_prepare(docg3, block, block + 1,
1006 page + DOC_LAYOUT_PAGE_BBT, 0);
1007 if (!ret)
1008 ret = doc_read_page_ecc_init(docg3,
1009 DOC_LAYOUT_PAGE_SIZE);
1010 if (!ret)
1011 doc_read_page_getbytes(docg3, DOC_LAYOUT_PAGE_SIZE,
1012 buf, 1);
1013 buf += DOC_LAYOUT_PAGE_SIZE;
1014 }
1015 doc_read_page_finish(docg3);
1016 return ret;
1017 }
1018
1019 /**
1020 * doc_block_isbad - Checks whether a block is good or not
1021 * @mtd: the device
1022 * @from: the offset to find the correct block
1023 *
1024 * Returns 1 if block is bad, 0 if block is good
1025 */
1026 static int doc_block_isbad(struct mtd_info *mtd, loff_t from)
1027 {
1028 struct docg3 *docg3 = mtd->priv;
1029 int block0, block1, page, ofs, is_good;
1030
1031 calc_block_sector(from, &block0, &block1, &page, &ofs,
1032 docg3->reliable);
1033 doc_dbg("doc_block_isbad(from=%lld) => block=(%d,%d), page=%d, ofs=%d\n",
1034 from, block0, block1, page, ofs);
1035
1036 if (block0 < DOC_LAYOUT_BLOCK_FIRST_DATA)
1037 return 0;
1038 if (block1 > docg3->max_block)
1039 return -EINVAL;
1040
1041 is_good = docg3->bbt[block0 >> 3] & (1 << (block0 & 0x7));
1042 return !is_good;
1043 }
1044
1045 #if 0
1046 /**
1047 * doc_get_erase_count - Get block erase count
1048 * @docg3: the device
1049 * @from: the offset in which the block is.
1050 *
1051 * Get the number of times a block was erased. The number is the maximum of
1052 * erase times between first and second plane (which should be equal normally).
1053 *
1054 * Returns The number of erases, or -EINVAL or -EIO on error.
1055 */
1056 static int doc_get_erase_count(struct docg3 *docg3, loff_t from)
1057 {
1058 u8 buf[DOC_LAYOUT_WEAR_SIZE];
1059 int ret, plane1_erase_count, plane2_erase_count;
1060 int block0, block1, page, ofs;
1061
1062 doc_dbg("doc_get_erase_count(from=%lld, buf=%p)\n", from, buf);
1063 if (from % DOC_LAYOUT_PAGE_SIZE)
1064 return -EINVAL;
1065 calc_block_sector(from, &block0, &block1, &page, &ofs, docg3->reliable);
1066 if (block1 > docg3->max_block)
1067 return -EINVAL;
1068
1069 ret = doc_reset_seq(docg3);
1070 if (!ret)
1071 ret = doc_read_page_prepare(docg3, block0, block1, page,
1072 ofs + DOC_LAYOUT_WEAR_OFFSET);
1073 if (!ret)
1074 ret = doc_read_page_getbytes(docg3, DOC_LAYOUT_WEAR_SIZE,
1075 buf, 1);
1076 doc_read_page_finish(docg3);
1077
1078 if (ret || (buf[0] != DOC_ERASE_MARK) || (buf[2] != DOC_ERASE_MARK))
1079 return -EIO;
1080 plane1_erase_count = (u8)(~buf[1]) | ((u8)(~buf[4]) << 8)
1081 | ((u8)(~buf[5]) << 16);
1082 plane2_erase_count = (u8)(~buf[3]) | ((u8)(~buf[6]) << 8)
1083 | ((u8)(~buf[7]) << 16);
1084
1085 return max(plane1_erase_count, plane2_erase_count);
1086 }
1087 #endif
1088
1089 /**
1090 * doc_get_op_status - get erase/write operation status
1091 * @docg3: the device
1092 *
1093 * Queries the status from the chip, and returns it
1094 *
1095 * Returns the status (bits DOC_PLANES_STATUS_*)
1096 */
1097 static int doc_get_op_status(struct docg3 *docg3)
1098 {
1099 u8 status;
1100
1101 doc_flash_sequence(docg3, DOC_SEQ_PLANES_STATUS);
1102 doc_flash_command(docg3, DOC_CMD_PLANES_STATUS);
1103 doc_delay(docg3, 5);
1104
1105 doc_ecc_disable(docg3);
1106 doc_read_data_area(docg3, &status, 1, 1);
1107 return status;
1108 }
1109
1110 /**
1111 * doc_write_erase_wait_status - wait for write or erase completion
1112 * @docg3: the device
1113 *
1114 * Wait for the chip to be ready again after erase or write operation, and check
1115 * erase/write status.
1116 *
1117 * Returns 0 if erase successfull, -EIO if erase/write issue, -ETIMEOUT if
1118 * timeout
1119 */
1120 static int doc_write_erase_wait_status(struct docg3 *docg3)
1121 {
1122 int status, ret = 0;
1123
1124 if (!doc_is_ready(docg3))
1125 usleep_range(3000, 3000);
1126 if (!doc_is_ready(docg3)) {
1127 doc_dbg("Timeout reached and the chip is still not ready\n");
1128 ret = -EAGAIN;
1129 goto out;
1130 }
1131
1132 status = doc_get_op_status(docg3);
1133 if (status & DOC_PLANES_STATUS_FAIL) {
1134 doc_dbg("Erase/Write failed on (a) plane(s), status = %x\n",
1135 status);
1136 ret = -EIO;
1137 }
1138
1139 out:
1140 doc_page_finish(docg3);
1141 return ret;
1142 }
1143
1144 /**
1145 * doc_erase_block - Erase a couple of blocks
1146 * @docg3: the device
1147 * @block0: the first block to erase (leftmost plane)
1148 * @block1: the second block to erase (rightmost plane)
1149 *
1150 * Erase both blocks, and return operation status
1151 *
1152 * Returns 0 if erase successful, -EIO if erase issue, -ETIMEOUT if chip not
1153 * ready for too long
1154 */
1155 static int doc_erase_block(struct docg3 *docg3, int block0, int block1)
1156 {
1157 int ret, sector;
1158
1159 doc_dbg("doc_erase_block(blocks=(%d,%d))\n", block0, block1);
1160 ret = doc_reset_seq(docg3);
1161 if (ret)
1162 return -EIO;
1163
1164 doc_set_reliable_mode(docg3);
1165 doc_flash_sequence(docg3, DOC_SEQ_ERASE);
1166
1167 sector = block0 << DOC_ADDR_BLOCK_SHIFT;
1168 doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
1169 doc_setup_addr_sector(docg3, sector);
1170 sector = block1 << DOC_ADDR_BLOCK_SHIFT;
1171 doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
1172 doc_setup_addr_sector(docg3, sector);
1173 doc_delay(docg3, 1);
1174
1175 doc_flash_command(docg3, DOC_CMD_ERASECYCLE2);
1176 doc_delay(docg3, 2);
1177
1178 if (is_prot_seq_error(docg3)) {
1179 doc_err("Erase blocks %d,%d error\n", block0, block1);
1180 return -EIO;
1181 }
1182
1183 return doc_write_erase_wait_status(docg3);
1184 }
1185
1186 /**
1187 * doc_erase - Erase a portion of the chip
1188 * @mtd: the device
1189 * @info: the erase info
1190 *
1191 * Erase a bunch of contiguous blocks, by pairs, as a "mtd" page of 1024 is
1192 * split into 2 pages of 512 bytes on 2 contiguous blocks.
1193 *
1194 * Returns 0 if erase successful, -EINVAL if adressing error, -EIO if erase
1195 * issue
1196 */
1197 static int doc_erase(struct mtd_info *mtd, struct erase_info *info)
1198 {
1199 struct docg3 *docg3 = mtd->priv;
1200 uint64_t len;
1201 int block0, block1, page, ret, ofs = 0;
1202
1203 doc_dbg("doc_erase(from=%lld, len=%lld\n", info->addr, info->len);
1204 doc_set_device_id(docg3, docg3->device_id);
1205
1206 info->state = MTD_ERASE_PENDING;
1207 calc_block_sector(info->addr + info->len, &block0, &block1, &page,
1208 &ofs, docg3->reliable);
1209 ret = -EINVAL;
1210 if (block1 > docg3->max_block || page || ofs)
1211 goto reset_err;
1212
1213 ret = 0;
1214 calc_block_sector(info->addr, &block0, &block1, &page, &ofs,
1215 docg3->reliable);
1216 doc_set_reliable_mode(docg3);
1217 for (len = info->len; !ret && len > 0; len -= mtd->erasesize) {
1218 info->state = MTD_ERASING;
1219 ret = doc_erase_block(docg3, block0, block1);
1220 block0 += 2;
1221 block1 += 2;
1222 }
1223
1224 if (ret)
1225 goto reset_err;
1226
1227 info->state = MTD_ERASE_DONE;
1228 return 0;
1229
1230 reset_err:
1231 info->state = MTD_ERASE_FAILED;
1232 return ret;
1233 }
1234
1235 /**
1236 * doc_write_page - Write a single page to the chip
1237 * @docg3: the device
1238 * @to: the offset from first block and first page, in bytes, aligned on page
1239 * size
1240 * @buf: buffer to get bytes from
1241 * @oob: buffer to get out of band bytes from (can be NULL if no OOB should be
1242 * written)
1243 * @autoecc: if 0, all 16 bytes from OOB are taken, regardless of HW Hamming or
1244 * BCH computations. If 1, only bytes 0-7 and byte 15 are taken,
1245 * remaining ones are filled with hardware Hamming and BCH
1246 * computations. Its value is not meaningfull is oob == NULL.
1247 *
1248 * Write one full page (ie. 1 page split on two planes), of 512 bytes, with the
1249 * OOB data. The OOB ECC is automatically computed by the hardware Hamming and
1250 * BCH generator if autoecc is not null.
1251 *
1252 * Returns 0 if write successful, -EIO if write error, -EAGAIN if timeout
1253 */
1254 static int doc_write_page(struct docg3 *docg3, loff_t to, const u_char *buf,
1255 const u_char *oob, int autoecc)
1256 {
1257 int block0, block1, page, ret, ofs = 0;
1258 u8 hwecc[DOC_ECC_BCH_SIZE], hamming;
1259
1260 doc_dbg("doc_write_page(to=%lld)\n", to);
1261 calc_block_sector(to, &block0, &block1, &page, &ofs, docg3->reliable);
1262
1263 doc_set_device_id(docg3, docg3->device_id);
1264 ret = doc_reset_seq(docg3);
1265 if (ret)
1266 goto err;
1267
1268 /* Program the flash address block and page */
1269 ret = doc_write_seek(docg3, block0, block1, page, ofs);
1270 if (ret)
1271 goto err;
1272
1273 doc_write_page_ecc_init(docg3, DOC_ECC_BCH_TOTAL_BYTES);
1274 doc_delay(docg3, 2);
1275 doc_write_page_putbytes(docg3, DOC_LAYOUT_PAGE_SIZE, buf);
1276
1277 if (oob && autoecc) {
1278 doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_PAGEINFO_SZ, oob);
1279 doc_delay(docg3, 2);
1280 oob += DOC_LAYOUT_OOB_UNUSED_OFS;
1281
1282 hamming = doc_register_readb(docg3, DOC_HAMMINGPARITY);
1283 doc_delay(docg3, 2);
1284 doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_HAMMING_SZ,
1285 &hamming);
1286 doc_delay(docg3, 2);
1287
1288 doc_get_bch_hw_ecc(docg3, hwecc);
1289 doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_BCH_SZ, hwecc);
1290 doc_delay(docg3, 2);
1291
1292 doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_UNUSED_SZ, oob);
1293 }
1294 if (oob && !autoecc)
1295 doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_SIZE, oob);
1296
1297 doc_delay(docg3, 2);
1298 doc_page_finish(docg3);
1299 doc_delay(docg3, 2);
1300 doc_flash_command(docg3, DOC_CMD_PROG_CYCLE2);
1301 doc_delay(docg3, 2);
1302
1303 /*
1304 * The wait status will perform another doc_page_finish() call, but that
1305 * seems to please the docg3, so leave it.
1306 */
1307 ret = doc_write_erase_wait_status(docg3);
1308 return ret;
1309 err:
1310 doc_read_page_finish(docg3);
1311 return ret;
1312 }
1313
1314 /**
1315 * doc_guess_autoecc - Guess autoecc mode from mbd_oob_ops
1316 * @ops: the oob operations
1317 *
1318 * Returns 0 or 1 if success, -EINVAL if invalid oob mode
1319 */
1320 static int doc_guess_autoecc(struct mtd_oob_ops *ops)
1321 {
1322 int autoecc;
1323
1324 switch (ops->mode) {
1325 case MTD_OPS_PLACE_OOB:
1326 case MTD_OPS_AUTO_OOB:
1327 autoecc = 1;
1328 break;
1329 case MTD_OPS_RAW:
1330 autoecc = 0;
1331 break;
1332 default:
1333 autoecc = -EINVAL;
1334 }
1335 return autoecc;
1336 }
1337
1338 /**
1339 * doc_fill_autooob - Fill a 16 bytes OOB from 8 non-ECC bytes
1340 * @dst: the target 16 bytes OOB buffer
1341 * @oobsrc: the source 8 bytes non-ECC OOB buffer
1342 *
1343 */
1344 static void doc_fill_autooob(u8 *dst, u8 *oobsrc)
1345 {
1346 memcpy(dst, oobsrc, DOC_LAYOUT_OOB_PAGEINFO_SZ);
1347 dst[DOC_LAYOUT_OOB_UNUSED_OFS] = oobsrc[DOC_LAYOUT_OOB_PAGEINFO_SZ];
1348 }
1349
1350 /**
1351 * doc_backup_oob - Backup OOB into docg3 structure
1352 * @docg3: the device
1353 * @to: the page offset in the chip
1354 * @ops: the OOB size and buffer
1355 *
1356 * As the docg3 should write a page with its OOB in one pass, and some userland
1357 * applications do write_oob() to setup the OOB and then write(), store the OOB
1358 * into a temporary storage. This is very dangerous, as 2 concurrent
1359 * applications could store an OOB, and then write their pages (which will
1360 * result into one having its OOB corrupted).
1361 *
1362 * The only reliable way would be for userland to call doc_write_oob() with both
1363 * the page data _and_ the OOB area.
1364 *
1365 * Returns 0 if success, -EINVAL if ops content invalid
1366 */
1367 static int doc_backup_oob(struct docg3 *docg3, loff_t to,
1368 struct mtd_oob_ops *ops)
1369 {
1370 int ooblen = ops->ooblen, autoecc;
1371
1372 if (ooblen != DOC_LAYOUT_OOB_SIZE)
1373 return -EINVAL;
1374 autoecc = doc_guess_autoecc(ops);
1375 if (autoecc < 0)
1376 return autoecc;
1377
1378 docg3->oob_write_ofs = to;
1379 docg3->oob_autoecc = autoecc;
1380 if (ops->mode == MTD_OPS_AUTO_OOB) {
1381 doc_fill_autooob(docg3->oob_write_buf, ops->oobbuf);
1382 ops->oobretlen = 8;
1383 } else {
1384 memcpy(docg3->oob_write_buf, ops->oobbuf, DOC_LAYOUT_OOB_SIZE);
1385 ops->oobretlen = DOC_LAYOUT_OOB_SIZE;
1386 }
1387 return 0;
1388 }
1389
1390 /**
1391 * doc_write_oob - Write out of band bytes to flash
1392 * @mtd: the device
1393 * @ofs: the offset from first block and first page, in bytes, aligned on page
1394 * size
1395 * @ops: the mtd oob structure
1396 *
1397 * Either write OOB data into a temporary buffer, for the subsequent write
1398 * page. The provided OOB should be 16 bytes long. If a data buffer is provided
1399 * as well, issue the page write.
1400 * Or provide data without OOB, and then a all zeroed OOB will be used (ECC will
1401 * still be filled in if asked for).
1402 *
1403 * Returns 0 is successfull, EINVAL if length is not 14 bytes
1404 */
1405 static int doc_write_oob(struct mtd_info *mtd, loff_t ofs,
1406 struct mtd_oob_ops *ops)
1407 {
1408 struct docg3 *docg3 = mtd->priv;
1409 int block0, block1, page, ret, pofs = 0, autoecc, oobdelta;
1410 u8 *oobbuf = ops->oobbuf;
1411 u8 *buf = ops->datbuf;
1412 size_t len, ooblen;
1413 u8 oob[DOC_LAYOUT_OOB_SIZE];
1414
1415 if (buf)
1416 len = ops->len;
1417 else
1418 len = 0;
1419 if (oobbuf)
1420 ooblen = ops->ooblen;
1421 else
1422 ooblen = 0;
1423
1424 if (oobbuf && ops->mode == MTD_OPS_PLACE_OOB)
1425 oobbuf += ops->ooboffs;
1426
1427 doc_dbg("doc_write_oob(from=%lld, mode=%d, data=(%p:%zu), oob=(%p:%zu))\n",
1428 ofs, ops->mode, buf, len, oobbuf, ooblen);
1429 switch (ops->mode) {
1430 case MTD_OPS_PLACE_OOB:
1431 case MTD_OPS_RAW:
1432 oobdelta = mtd->oobsize;
1433 break;
1434 case MTD_OPS_AUTO_OOB:
1435 oobdelta = mtd->ecclayout->oobavail;
1436 break;
1437 default:
1438 oobdelta = 0;
1439 }
1440 if ((len % DOC_LAYOUT_PAGE_SIZE) || (ooblen % oobdelta) ||
1441 (ofs % DOC_LAYOUT_PAGE_SIZE))
1442 return -EINVAL;
1443 if (len && ooblen &&
1444 (len / DOC_LAYOUT_PAGE_SIZE) != (ooblen / oobdelta))
1445 return -EINVAL;
1446
1447 ret = -EINVAL;
1448 calc_block_sector(ofs + len, &block0, &block1, &page, &pofs,
1449 docg3->reliable);
1450 if (block1 > docg3->max_block)
1451 goto err;
1452
1453 ops->oobretlen = 0;
1454 ops->retlen = 0;
1455 ret = 0;
1456 if (len == 0 && ooblen == 0)
1457 return -EINVAL;
1458 if (len == 0 && ooblen > 0)
1459 return doc_backup_oob(docg3, ofs, ops);
1460
1461 autoecc = doc_guess_autoecc(ops);
1462 if (autoecc < 0)
1463 return autoecc;
1464
1465 while (!ret && len > 0) {
1466 memset(oob, 0, sizeof(oob));
1467 if (ofs == docg3->oob_write_ofs)
1468 memcpy(oob, docg3->oob_write_buf, DOC_LAYOUT_OOB_SIZE);
1469 else if (ooblen > 0 && ops->mode == MTD_OPS_AUTO_OOB)
1470 doc_fill_autooob(oob, oobbuf);
1471 else if (ooblen > 0)
1472 memcpy(oob, oobbuf, DOC_LAYOUT_OOB_SIZE);
1473 ret = doc_write_page(docg3, ofs, buf, oob, autoecc);
1474
1475 ofs += DOC_LAYOUT_PAGE_SIZE;
1476 len -= DOC_LAYOUT_PAGE_SIZE;
1477 buf += DOC_LAYOUT_PAGE_SIZE;
1478 if (ooblen) {
1479 oobbuf += oobdelta;
1480 ooblen -= oobdelta;
1481 ops->oobretlen += oobdelta;
1482 }
1483 ops->retlen += DOC_LAYOUT_PAGE_SIZE;
1484 }
1485 err:
1486 doc_set_device_id(docg3, 0);
1487 return ret;
1488 }
1489
1490 /**
1491 * doc_write - Write a buffer to the chip
1492 * @mtd: the device
1493 * @to: the offset from first block and first page, in bytes, aligned on page
1494 * size
1495 * @len: the number of bytes to write (must be a full page size, ie. 512)
1496 * @retlen: the number of bytes actually written (0 or 512)
1497 * @buf: the buffer to get bytes from
1498 *
1499 * Writes data to the chip.
1500 *
1501 * Returns 0 if write successful, -EIO if write error
1502 */
1503 static int doc_write(struct mtd_info *mtd, loff_t to, size_t len,
1504 size_t *retlen, const u_char *buf)
1505 {
1506 struct docg3 *docg3 = mtd->priv;
1507 int ret;
1508 struct mtd_oob_ops ops;
1509
1510 doc_dbg("doc_write(to=%lld, len=%zu)\n", to, len);
1511 ops.datbuf = (char *)buf;
1512 ops.len = len;
1513 ops.mode = MTD_OPS_PLACE_OOB;
1514 ops.oobbuf = NULL;
1515 ops.ooblen = 0;
1516 ops.ooboffs = 0;
1517
1518 ret = doc_write_oob(mtd, to, &ops);
1519 *retlen = ops.retlen;
1520 return ret;
1521 }
1522
1523 static struct docg3 *sysfs_dev2docg3(struct device *dev,
1524 struct device_attribute *attr)
1525 {
1526 int floor;
1527 struct platform_device *pdev = to_platform_device(dev);
1528 struct mtd_info **docg3_floors = platform_get_drvdata(pdev);
1529
1530 floor = attr->attr.name[1] - '0';
1531 if (floor < 0 || floor >= DOC_MAX_NBFLOORS)
1532 return NULL;
1533 else
1534 return docg3_floors[floor]->priv;
1535 }
1536
1537 static ssize_t dps0_is_key_locked(struct device *dev,
1538 struct device_attribute *attr, char *buf)
1539 {
1540 struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1541 int dps0;
1542
1543 doc_set_device_id(docg3, docg3->device_id);
1544 dps0 = doc_register_readb(docg3, DOC_DPS0_STATUS);
1545 doc_set_device_id(docg3, 0);
1546
1547 return sprintf(buf, "%d\n", !(dps0 & DOC_DPS_KEY_OK));
1548 }
1549
1550 static ssize_t dps1_is_key_locked(struct device *dev,
1551 struct device_attribute *attr, char *buf)
1552 {
1553 struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1554 int dps1;
1555
1556 doc_set_device_id(docg3, docg3->device_id);
1557 dps1 = doc_register_readb(docg3, DOC_DPS1_STATUS);
1558 doc_set_device_id(docg3, 0);
1559
1560 return sprintf(buf, "%d\n", !(dps1 & DOC_DPS_KEY_OK));
1561 }
1562
1563 static ssize_t dps0_insert_key(struct device *dev,
1564 struct device_attribute *attr,
1565 const char *buf, size_t count)
1566 {
1567 struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1568 int i;
1569
1570 if (count != DOC_LAYOUT_DPS_KEY_LENGTH)
1571 return -EINVAL;
1572
1573 doc_set_device_id(docg3, docg3->device_id);
1574 for (i = 0; i < DOC_LAYOUT_DPS_KEY_LENGTH; i++)
1575 doc_writeb(docg3, buf[i], DOC_DPS0_KEY);
1576 doc_set_device_id(docg3, 0);
1577 return count;
1578 }
1579
1580 static ssize_t dps1_insert_key(struct device *dev,
1581 struct device_attribute *attr,
1582 const char *buf, size_t count)
1583 {
1584 struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1585 int i;
1586
1587 if (count != DOC_LAYOUT_DPS_KEY_LENGTH)
1588 return -EINVAL;
1589
1590 doc_set_device_id(docg3, docg3->device_id);
1591 for (i = 0; i < DOC_LAYOUT_DPS_KEY_LENGTH; i++)
1592 doc_writeb(docg3, buf[i], DOC_DPS1_KEY);
1593 doc_set_device_id(docg3, 0);
1594 return count;
1595 }
1596
1597 #define FLOOR_SYSFS(id) { \
1598 __ATTR(f##id##_dps0_is_keylocked, S_IRUGO, dps0_is_key_locked, NULL), \
1599 __ATTR(f##id##_dps1_is_keylocked, S_IRUGO, dps1_is_key_locked, NULL), \
1600 __ATTR(f##id##_dps0_protection_key, S_IWUGO, NULL, dps0_insert_key), \
1601 __ATTR(f##id##_dps1_protection_key, S_IWUGO, NULL, dps1_insert_key), \
1602 }
1603
1604 static struct device_attribute doc_sys_attrs[DOC_MAX_NBFLOORS][4] = {
1605 FLOOR_SYSFS(0), FLOOR_SYSFS(1), FLOOR_SYSFS(2), FLOOR_SYSFS(3)
1606 };
1607
1608 static int doc_register_sysfs(struct platform_device *pdev,
1609 struct mtd_info **floors)
1610 {
1611 int ret = 0, floor, i = 0;
1612 struct device *dev = &pdev->dev;
1613
1614 for (floor = 0; !ret && floor < DOC_MAX_NBFLOORS && floors[floor];
1615 floor++)
1616 for (i = 0; !ret && i < 4; i++)
1617 ret = device_create_file(dev, &doc_sys_attrs[floor][i]);
1618 if (!ret)
1619 return 0;
1620 do {
1621 while (--i >= 0)
1622 device_remove_file(dev, &doc_sys_attrs[floor][i]);
1623 i = 4;
1624 } while (--floor >= 0);
1625 return ret;
1626 }
1627
1628 static void doc_unregister_sysfs(struct platform_device *pdev,
1629 struct mtd_info **floors)
1630 {
1631 struct device *dev = &pdev->dev;
1632 int floor, i;
1633
1634 for (floor = 0; floor < DOC_MAX_NBFLOORS && floors[floor];
1635 floor++)
1636 for (i = 0; i < 4; i++)
1637 device_remove_file(dev, &doc_sys_attrs[floor][i]);
1638 }
1639
1640 /*
1641 * Debug sysfs entries
1642 */
1643 static int dbg_flashctrl_show(struct seq_file *s, void *p)
1644 {
1645 struct docg3 *docg3 = (struct docg3 *)s->private;
1646
1647 int pos = 0;
1648 u8 fctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
1649
1650 pos += seq_printf(s,
1651 "FlashControl : 0x%02x (%s,CE# %s,%s,%s,flash %s)\n",
1652 fctrl,
1653 fctrl & DOC_CTRL_VIOLATION ? "protocol violation" : "-",
1654 fctrl & DOC_CTRL_CE ? "active" : "inactive",
1655 fctrl & DOC_CTRL_PROTECTION_ERROR ? "protection error" : "-",
1656 fctrl & DOC_CTRL_SEQUENCE_ERROR ? "sequence error" : "-",
1657 fctrl & DOC_CTRL_FLASHREADY ? "ready" : "not ready");
1658 return pos;
1659 }
1660 DEBUGFS_RO_ATTR(flashcontrol, dbg_flashctrl_show);
1661
1662 static int dbg_asicmode_show(struct seq_file *s, void *p)
1663 {
1664 struct docg3 *docg3 = (struct docg3 *)s->private;
1665
1666 int pos = 0;
1667 int pctrl = doc_register_readb(docg3, DOC_ASICMODE);
1668 int mode = pctrl & 0x03;
1669
1670 pos += seq_printf(s,
1671 "%04x : RAM_WE=%d,RSTIN_RESET=%d,BDETCT_RESET=%d,WRITE_ENABLE=%d,POWERDOWN=%d,MODE=%d%d (",
1672 pctrl,
1673 pctrl & DOC_ASICMODE_RAM_WE ? 1 : 0,
1674 pctrl & DOC_ASICMODE_RSTIN_RESET ? 1 : 0,
1675 pctrl & DOC_ASICMODE_BDETCT_RESET ? 1 : 0,
1676 pctrl & DOC_ASICMODE_MDWREN ? 1 : 0,
1677 pctrl & DOC_ASICMODE_POWERDOWN ? 1 : 0,
1678 mode >> 1, mode & 0x1);
1679
1680 switch (mode) {
1681 case DOC_ASICMODE_RESET:
1682 pos += seq_printf(s, "reset");
1683 break;
1684 case DOC_ASICMODE_NORMAL:
1685 pos += seq_printf(s, "normal");
1686 break;
1687 case DOC_ASICMODE_POWERDOWN:
1688 pos += seq_printf(s, "powerdown");
1689 break;
1690 }
1691 pos += seq_printf(s, ")\n");
1692 return pos;
1693 }
1694 DEBUGFS_RO_ATTR(asic_mode, dbg_asicmode_show);
1695
1696 static int dbg_device_id_show(struct seq_file *s, void *p)
1697 {
1698 struct docg3 *docg3 = (struct docg3 *)s->private;
1699 int pos = 0;
1700 int id = doc_register_readb(docg3, DOC_DEVICESELECT);
1701
1702 pos += seq_printf(s, "DeviceId = %d\n", id);
1703 return pos;
1704 }
1705 DEBUGFS_RO_ATTR(device_id, dbg_device_id_show);
1706
1707 static int dbg_protection_show(struct seq_file *s, void *p)
1708 {
1709 struct docg3 *docg3 = (struct docg3 *)s->private;
1710 int pos = 0;
1711 int protect, dps0, dps0_low, dps0_high, dps1, dps1_low, dps1_high;
1712
1713 protect = doc_register_readb(docg3, DOC_PROTECTION);
1714 dps0 = doc_register_readb(docg3, DOC_DPS0_STATUS);
1715 dps0_low = doc_register_readw(docg3, DOC_DPS0_ADDRLOW);
1716 dps0_high = doc_register_readw(docg3, DOC_DPS0_ADDRHIGH);
1717 dps1 = doc_register_readb(docg3, DOC_DPS1_STATUS);
1718 dps1_low = doc_register_readw(docg3, DOC_DPS1_ADDRLOW);
1719 dps1_high = doc_register_readw(docg3, DOC_DPS1_ADDRHIGH);
1720
1721 pos += seq_printf(s, "Protection = 0x%02x (",
1722 protect);
1723 if (protect & DOC_PROTECT_FOUNDRY_OTP_LOCK)
1724 pos += seq_printf(s, "FOUNDRY_OTP_LOCK,");
1725 if (protect & DOC_PROTECT_CUSTOMER_OTP_LOCK)
1726 pos += seq_printf(s, "CUSTOMER_OTP_LOCK,");
1727 if (protect & DOC_PROTECT_LOCK_INPUT)
1728 pos += seq_printf(s, "LOCK_INPUT,");
1729 if (protect & DOC_PROTECT_STICKY_LOCK)
1730 pos += seq_printf(s, "STICKY_LOCK,");
1731 if (protect & DOC_PROTECT_PROTECTION_ENABLED)
1732 pos += seq_printf(s, "PROTECTION ON,");
1733 if (protect & DOC_PROTECT_IPL_DOWNLOAD_LOCK)
1734 pos += seq_printf(s, "IPL_DOWNLOAD_LOCK,");
1735 if (protect & DOC_PROTECT_PROTECTION_ERROR)
1736 pos += seq_printf(s, "PROTECT_ERR,");
1737 else
1738 pos += seq_printf(s, "NO_PROTECT_ERR");
1739 pos += seq_printf(s, ")\n");
1740
1741 pos += seq_printf(s, "DPS0 = 0x%02x : "
1742 "Protected area [0x%x - 0x%x] : OTP=%d, READ=%d, "
1743 "WRITE=%d, HW_LOCK=%d, KEY_OK=%d\n",
1744 dps0, dps0_low, dps0_high,
1745 !!(dps0 & DOC_DPS_OTP_PROTECTED),
1746 !!(dps0 & DOC_DPS_READ_PROTECTED),
1747 !!(dps0 & DOC_DPS_WRITE_PROTECTED),
1748 !!(dps0 & DOC_DPS_HW_LOCK_ENABLED),
1749 !!(dps0 & DOC_DPS_KEY_OK));
1750 pos += seq_printf(s, "DPS1 = 0x%02x : "
1751 "Protected area [0x%x - 0x%x] : OTP=%d, READ=%d, "
1752 "WRITE=%d, HW_LOCK=%d, KEY_OK=%d\n",
1753 dps1, dps1_low, dps1_high,
1754 !!(dps1 & DOC_DPS_OTP_PROTECTED),
1755 !!(dps1 & DOC_DPS_READ_PROTECTED),
1756 !!(dps1 & DOC_DPS_WRITE_PROTECTED),
1757 !!(dps1 & DOC_DPS_HW_LOCK_ENABLED),
1758 !!(dps1 & DOC_DPS_KEY_OK));
1759 return pos;
1760 }
1761 DEBUGFS_RO_ATTR(protection, dbg_protection_show);
1762
1763 static int __init doc_dbg_register(struct docg3 *docg3)
1764 {
1765 struct dentry *root, *entry;
1766
1767 root = debugfs_create_dir("docg3", NULL);
1768 if (!root)
1769 return -ENOMEM;
1770
1771 entry = debugfs_create_file("flashcontrol", S_IRUSR, root, docg3,
1772 &flashcontrol_fops);
1773 if (entry)
1774 entry = debugfs_create_file("asic_mode", S_IRUSR, root,
1775 docg3, &asic_mode_fops);
1776 if (entry)
1777 entry = debugfs_create_file("device_id", S_IRUSR, root,
1778 docg3, &device_id_fops);
1779 if (entry)
1780 entry = debugfs_create_file("protection", S_IRUSR, root,
1781 docg3, &protection_fops);
1782 if (entry) {
1783 docg3->debugfs_root = root;
1784 return 0;
1785 } else {
1786 debugfs_remove_recursive(root);
1787 return -ENOMEM;
1788 }
1789 }
1790
1791 static void __exit doc_dbg_unregister(struct docg3 *docg3)
1792 {
1793 debugfs_remove_recursive(docg3->debugfs_root);
1794 }
1795
1796 /**
1797 * doc_set_driver_info - Fill the mtd_info structure and docg3 structure
1798 * @chip_id: The chip ID of the supported chip
1799 * @mtd: The structure to fill
1800 */
1801 static void __init doc_set_driver_info(int chip_id, struct mtd_info *mtd)
1802 {
1803 struct docg3 *docg3 = mtd->priv;
1804 int cfg;
1805
1806 cfg = doc_register_readb(docg3, DOC_CONFIGURATION);
1807 docg3->if_cfg = (cfg & DOC_CONF_IF_CFG ? 1 : 0);
1808 docg3->reliable = reliable_mode;
1809
1810 switch (chip_id) {
1811 case DOC_CHIPID_G3:
1812 mtd->name = kasprintf(GFP_KERNEL, "docg3.%d",
1813 docg3->device_id);
1814 docg3->max_block = 2047;
1815 break;
1816 }
1817 mtd->type = MTD_NANDFLASH;
1818 mtd->flags = MTD_CAP_NANDFLASH;
1819 mtd->size = (docg3->max_block + 1) * DOC_LAYOUT_BLOCK_SIZE;
1820 if (docg3->reliable == 2)
1821 mtd->size /= 2;
1822 mtd->erasesize = DOC_LAYOUT_BLOCK_SIZE * DOC_LAYOUT_NBPLANES;
1823 if (docg3->reliable == 2)
1824 mtd->erasesize /= 2;
1825 mtd->writebufsize = mtd->writesize = DOC_LAYOUT_PAGE_SIZE;
1826 mtd->oobsize = DOC_LAYOUT_OOB_SIZE;
1827 mtd->owner = THIS_MODULE;
1828 mtd->_erase = doc_erase;
1829 mtd->_read = doc_read;
1830 mtd->_write = doc_write;
1831 mtd->_read_oob = doc_read_oob;
1832 mtd->_write_oob = doc_write_oob;
1833 mtd->_block_isbad = doc_block_isbad;
1834 mtd->ecclayout = &docg3_oobinfo;
1835 mtd->ecc_strength = DOC_ECC_BCH_T;
1836 }
1837
1838 /**
1839 * doc_probe_device - Check if a device is available
1840 * @base: the io space where the device is probed
1841 * @floor: the floor of the probed device
1842 * @dev: the device
1843 *
1844 * Checks whether a device at the specified IO range, and floor is available.
1845 *
1846 * Returns a mtd_info struct if there is a device, ENODEV if none found, ENOMEM
1847 * if a memory allocation failed. If floor 0 is checked, a reset of the ASIC is
1848 * launched.
1849 */
1850 static struct mtd_info *doc_probe_device(void __iomem *base, int floor,
1851 struct device *dev)
1852 {
1853 int ret, bbt_nbpages;
1854 u16 chip_id, chip_id_inv;
1855 struct docg3 *docg3;
1856 struct mtd_info *mtd;
1857
1858 ret = -ENOMEM;
1859 docg3 = kzalloc(sizeof(struct docg3), GFP_KERNEL);
1860 if (!docg3)
1861 goto nomem1;
1862 mtd = kzalloc(sizeof(struct mtd_info), GFP_KERNEL);
1863 if (!mtd)
1864 goto nomem2;
1865 mtd->priv = docg3;
1866 bbt_nbpages = DIV_ROUND_UP(docg3->max_block + 1,
1867 8 * DOC_LAYOUT_PAGE_SIZE);
1868 docg3->bbt = kzalloc(bbt_nbpages * DOC_LAYOUT_PAGE_SIZE, GFP_KERNEL);
1869 if (!docg3->bbt)
1870 goto nomem3;
1871
1872 docg3->dev = dev;
1873 docg3->device_id = floor;
1874 docg3->base = base;
1875 doc_set_device_id(docg3, docg3->device_id);
1876 if (!floor)
1877 doc_set_asic_mode(docg3, DOC_ASICMODE_RESET);
1878 doc_set_asic_mode(docg3, DOC_ASICMODE_NORMAL);
1879
1880 chip_id = doc_register_readw(docg3, DOC_CHIPID);
1881 chip_id_inv = doc_register_readw(docg3, DOC_CHIPID_INV);
1882
1883 ret = 0;
1884 if (chip_id != (u16)(~chip_id_inv)) {
1885 goto nomem3;
1886 }
1887
1888 switch (chip_id) {
1889 case DOC_CHIPID_G3:
1890 doc_info("Found a G3 DiskOnChip at addr %p, floor %d\n",
1891 base, floor);
1892 break;
1893 default:
1894 doc_err("Chip id %04x is not a DiskOnChip G3 chip\n", chip_id);
1895 goto nomem3;
1896 }
1897
1898 doc_set_driver_info(chip_id, mtd);
1899
1900 doc_hamming_ecc_init(docg3, DOC_LAYOUT_OOB_PAGEINFO_SZ);
1901 doc_reload_bbt(docg3);
1902 return mtd;
1903
1904 nomem3:
1905 kfree(mtd);
1906 nomem2:
1907 kfree(docg3);
1908 nomem1:
1909 return ERR_PTR(ret);
1910 }
1911
1912 /**
1913 * doc_release_device - Release a docg3 floor
1914 * @mtd: the device
1915 */
1916 static void doc_release_device(struct mtd_info *mtd)
1917 {
1918 struct docg3 *docg3 = mtd->priv;
1919
1920 mtd_device_unregister(mtd);
1921 kfree(docg3->bbt);
1922 kfree(docg3);
1923 kfree(mtd->name);
1924 kfree(mtd);
1925 }
1926
1927 /**
1928 * docg3_resume - Awakens docg3 floor
1929 * @pdev: platfrom device
1930 *
1931 * Returns 0 (always successfull)
1932 */
1933 static int docg3_resume(struct platform_device *pdev)
1934 {
1935 int i;
1936 struct mtd_info **docg3_floors, *mtd;
1937 struct docg3 *docg3;
1938
1939 docg3_floors = platform_get_drvdata(pdev);
1940 mtd = docg3_floors[0];
1941 docg3 = mtd->priv;
1942
1943 doc_dbg("docg3_resume()\n");
1944 for (i = 0; i < 12; i++)
1945 doc_readb(docg3, DOC_IOSPACE_IPL);
1946 return 0;
1947 }
1948
1949 /**
1950 * docg3_suspend - Put in low power mode the docg3 floor
1951 * @pdev: platform device
1952 * @state: power state
1953 *
1954 * Shuts off most of docg3 circuitery to lower power consumption.
1955 *
1956 * Returns 0 if suspend succeeded, -EIO if chip refused suspend
1957 */
1958 static int docg3_suspend(struct platform_device *pdev, pm_message_t state)
1959 {
1960 int floor, i;
1961 struct mtd_info **docg3_floors, *mtd;
1962 struct docg3 *docg3;
1963 u8 ctrl, pwr_down;
1964
1965 docg3_floors = platform_get_drvdata(pdev);
1966 for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) {
1967 mtd = docg3_floors[floor];
1968 if (!mtd)
1969 continue;
1970 docg3 = mtd->priv;
1971
1972 doc_writeb(docg3, floor, DOC_DEVICESELECT);
1973 ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
1974 ctrl &= ~DOC_CTRL_VIOLATION & ~DOC_CTRL_CE;
1975 doc_writeb(docg3, ctrl, DOC_FLASHCONTROL);
1976
1977 for (i = 0; i < 10; i++) {
1978 usleep_range(3000, 4000);
1979 pwr_down = doc_register_readb(docg3, DOC_POWERMODE);
1980 if (pwr_down & DOC_POWERDOWN_READY)
1981 break;
1982 }
1983 if (pwr_down & DOC_POWERDOWN_READY) {
1984 doc_dbg("docg3_suspend(): floor %d powerdown ok\n",
1985 floor);
1986 } else {
1987 doc_err("docg3_suspend(): floor %d powerdown failed\n",
1988 floor);
1989 return -EIO;
1990 }
1991 }
1992
1993 mtd = docg3_floors[0];
1994 docg3 = mtd->priv;
1995 doc_set_asic_mode(docg3, DOC_ASICMODE_POWERDOWN);
1996 return 0;
1997 }
1998
1999 /**
2000 * doc_probe - Probe the IO space for a DiskOnChip G3 chip
2001 * @pdev: platform device
2002 *
2003 * Probes for a G3 chip at the specified IO space in the platform data
2004 * ressources. The floor 0 must be available.
2005 *
2006 * Returns 0 on success, -ENOMEM, -ENXIO on error
2007 */
2008 static int __init docg3_probe(struct platform_device *pdev)
2009 {
2010 struct device *dev = &pdev->dev;
2011 struct mtd_info *mtd;
2012 struct resource *ress;
2013 void __iomem *base;
2014 int ret, floor, found = 0;
2015 struct mtd_info **docg3_floors;
2016
2017 ret = -ENXIO;
2018 ress = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2019 if (!ress) {
2020 dev_err(dev, "No I/O memory resource defined\n");
2021 goto noress;
2022 }
2023 base = ioremap(ress->start, DOC_IOSPACE_SIZE);
2024
2025 ret = -ENOMEM;
2026 docg3_floors = kzalloc(sizeof(*docg3_floors) * DOC_MAX_NBFLOORS,
2027 GFP_KERNEL);
2028 if (!docg3_floors)
2029 goto nomem1;
2030 docg3_bch = init_bch(DOC_ECC_BCH_M, DOC_ECC_BCH_T,
2031 DOC_ECC_BCH_PRIMPOLY);
2032 if (!docg3_bch)
2033 goto nomem2;
2034
2035 for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) {
2036 mtd = doc_probe_device(base, floor, dev);
2037 if (IS_ERR(mtd)) {
2038 ret = PTR_ERR(mtd);
2039 goto err_probe;
2040 }
2041 if (!mtd) {
2042 if (floor == 0)
2043 goto notfound;
2044 else
2045 continue;
2046 }
2047 docg3_floors[floor] = mtd;
2048 ret = mtd_device_parse_register(mtd, part_probes, NULL, NULL,
2049 0);
2050 if (ret)
2051 goto err_probe;
2052 found++;
2053 }
2054
2055 ret = doc_register_sysfs(pdev, docg3_floors);
2056 if (ret)
2057 goto err_probe;
2058 if (!found)
2059 goto notfound;
2060
2061 platform_set_drvdata(pdev, docg3_floors);
2062 doc_dbg_register(docg3_floors[0]->priv);
2063 return 0;
2064
2065 notfound:
2066 ret = -ENODEV;
2067 dev_info(dev, "No supported DiskOnChip found\n");
2068 err_probe:
2069 free_bch(docg3_bch);
2070 for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++)
2071 if (docg3_floors[floor])
2072 doc_release_device(docg3_floors[floor]);
2073 nomem2:
2074 kfree(docg3_floors);
2075 nomem1:
2076 iounmap(base);
2077 noress:
2078 return ret;
2079 }
2080
2081 /**
2082 * docg3_release - Release the driver
2083 * @pdev: the platform device
2084 *
2085 * Returns 0
2086 */
2087 static int __exit docg3_release(struct platform_device *pdev)
2088 {
2089 struct mtd_info **docg3_floors = platform_get_drvdata(pdev);
2090 struct docg3 *docg3 = docg3_floors[0]->priv;
2091 void __iomem *base = docg3->base;
2092 int floor;
2093
2094 doc_unregister_sysfs(pdev, docg3_floors);
2095 doc_dbg_unregister(docg3);
2096 for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++)
2097 if (docg3_floors[floor])
2098 doc_release_device(docg3_floors[floor]);
2099
2100 kfree(docg3_floors);
2101 free_bch(docg3_bch);
2102 iounmap(base);
2103 return 0;
2104 }
2105
2106 static struct platform_driver g3_driver = {
2107 .driver = {
2108 .name = "docg3",
2109 .owner = THIS_MODULE,
2110 },
2111 .suspend = docg3_suspend,
2112 .resume = docg3_resume,
2113 .remove = __exit_p(docg3_release),
2114 };
2115
2116 static int __init docg3_init(void)
2117 {
2118 return platform_driver_probe(&g3_driver, docg3_probe);
2119 }
2120 module_init(docg3_init);
2121
2122
2123 static void __exit docg3_exit(void)
2124 {
2125 platform_driver_unregister(&g3_driver);
2126 }
2127 module_exit(docg3_exit);
2128
2129 MODULE_LICENSE("GPL");
2130 MODULE_AUTHOR("Robert Jarzmik <robert.jarzmik@free.fr>");
2131 MODULE_DESCRIPTION("MTD driver for DiskOnChip G3");
This page took 0.075529 seconds and 5 git commands to generate.