drm/nouveau: require reservations for nouveau_fence_sync and nouveau_bo_fence
[deliverable/linux.git] / drivers / mtd / mtdchar.c
1 /*
2 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 *
18 */
19
20 #include <linux/device.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/err.h>
24 #include <linux/init.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <linux/sched.h>
29 #include <linux/mutex.h>
30 #include <linux/backing-dev.h>
31 #include <linux/compat.h>
32 #include <linux/mount.h>
33 #include <linux/blkpg.h>
34 #include <linux/magic.h>
35 #include <linux/major.h>
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/partitions.h>
38 #include <linux/mtd/map.h>
39
40 #include <asm/uaccess.h>
41
42 #include "mtdcore.h"
43
44 static DEFINE_MUTEX(mtd_mutex);
45
46 /*
47 * Data structure to hold the pointer to the mtd device as well
48 * as mode information of various use cases.
49 */
50 struct mtd_file_info {
51 struct mtd_info *mtd;
52 struct inode *ino;
53 enum mtd_file_modes mode;
54 };
55
56 static loff_t mtdchar_lseek(struct file *file, loff_t offset, int orig)
57 {
58 struct mtd_file_info *mfi = file->private_data;
59 return fixed_size_llseek(file, offset, orig, mfi->mtd->size);
60 }
61
62 static int count;
63 static struct vfsmount *mnt;
64 static struct file_system_type mtd_inodefs_type;
65
66 static int mtdchar_open(struct inode *inode, struct file *file)
67 {
68 int minor = iminor(inode);
69 int devnum = minor >> 1;
70 int ret = 0;
71 struct mtd_info *mtd;
72 struct mtd_file_info *mfi;
73 struct inode *mtd_ino;
74
75 pr_debug("MTD_open\n");
76
77 /* You can't open the RO devices RW */
78 if ((file->f_mode & FMODE_WRITE) && (minor & 1))
79 return -EACCES;
80
81 ret = simple_pin_fs(&mtd_inodefs_type, &mnt, &count);
82 if (ret)
83 return ret;
84
85 mutex_lock(&mtd_mutex);
86 mtd = get_mtd_device(NULL, devnum);
87
88 if (IS_ERR(mtd)) {
89 ret = PTR_ERR(mtd);
90 goto out;
91 }
92
93 if (mtd->type == MTD_ABSENT) {
94 ret = -ENODEV;
95 goto out1;
96 }
97
98 mtd_ino = iget_locked(mnt->mnt_sb, devnum);
99 if (!mtd_ino) {
100 ret = -ENOMEM;
101 goto out1;
102 }
103 if (mtd_ino->i_state & I_NEW) {
104 mtd_ino->i_private = mtd;
105 mtd_ino->i_mode = S_IFCHR;
106 mtd_ino->i_data.backing_dev_info = mtd->backing_dev_info;
107 unlock_new_inode(mtd_ino);
108 }
109 file->f_mapping = mtd_ino->i_mapping;
110
111 /* You can't open it RW if it's not a writeable device */
112 if ((file->f_mode & FMODE_WRITE) && !(mtd->flags & MTD_WRITEABLE)) {
113 ret = -EACCES;
114 goto out2;
115 }
116
117 mfi = kzalloc(sizeof(*mfi), GFP_KERNEL);
118 if (!mfi) {
119 ret = -ENOMEM;
120 goto out2;
121 }
122 mfi->ino = mtd_ino;
123 mfi->mtd = mtd;
124 file->private_data = mfi;
125 mutex_unlock(&mtd_mutex);
126 return 0;
127
128 out2:
129 iput(mtd_ino);
130 out1:
131 put_mtd_device(mtd);
132 out:
133 mutex_unlock(&mtd_mutex);
134 simple_release_fs(&mnt, &count);
135 return ret;
136 } /* mtdchar_open */
137
138 /*====================================================================*/
139
140 static int mtdchar_close(struct inode *inode, struct file *file)
141 {
142 struct mtd_file_info *mfi = file->private_data;
143 struct mtd_info *mtd = mfi->mtd;
144
145 pr_debug("MTD_close\n");
146
147 /* Only sync if opened RW */
148 if ((file->f_mode & FMODE_WRITE))
149 mtd_sync(mtd);
150
151 iput(mfi->ino);
152
153 put_mtd_device(mtd);
154 file->private_data = NULL;
155 kfree(mfi);
156 simple_release_fs(&mnt, &count);
157
158 return 0;
159 } /* mtdchar_close */
160
161 /* Back in June 2001, dwmw2 wrote:
162 *
163 * FIXME: This _really_ needs to die. In 2.5, we should lock the
164 * userspace buffer down and use it directly with readv/writev.
165 *
166 * The implementation below, using mtd_kmalloc_up_to, mitigates
167 * allocation failures when the system is under low-memory situations
168 * or if memory is highly fragmented at the cost of reducing the
169 * performance of the requested transfer due to a smaller buffer size.
170 *
171 * A more complex but more memory-efficient implementation based on
172 * get_user_pages and iovecs to cover extents of those pages is a
173 * longer-term goal, as intimated by dwmw2 above. However, for the
174 * write case, this requires yet more complex head and tail transfer
175 * handling when those head and tail offsets and sizes are such that
176 * alignment requirements are not met in the NAND subdriver.
177 */
178
179 static ssize_t mtdchar_read(struct file *file, char __user *buf, size_t count,
180 loff_t *ppos)
181 {
182 struct mtd_file_info *mfi = file->private_data;
183 struct mtd_info *mtd = mfi->mtd;
184 size_t retlen;
185 size_t total_retlen=0;
186 int ret=0;
187 int len;
188 size_t size = count;
189 char *kbuf;
190
191 pr_debug("MTD_read\n");
192
193 if (*ppos + count > mtd->size)
194 count = mtd->size - *ppos;
195
196 if (!count)
197 return 0;
198
199 kbuf = mtd_kmalloc_up_to(mtd, &size);
200 if (!kbuf)
201 return -ENOMEM;
202
203 while (count) {
204 len = min_t(size_t, count, size);
205
206 switch (mfi->mode) {
207 case MTD_FILE_MODE_OTP_FACTORY:
208 ret = mtd_read_fact_prot_reg(mtd, *ppos, len,
209 &retlen, kbuf);
210 break;
211 case MTD_FILE_MODE_OTP_USER:
212 ret = mtd_read_user_prot_reg(mtd, *ppos, len,
213 &retlen, kbuf);
214 break;
215 case MTD_FILE_MODE_RAW:
216 {
217 struct mtd_oob_ops ops;
218
219 ops.mode = MTD_OPS_RAW;
220 ops.datbuf = kbuf;
221 ops.oobbuf = NULL;
222 ops.len = len;
223
224 ret = mtd_read_oob(mtd, *ppos, &ops);
225 retlen = ops.retlen;
226 break;
227 }
228 default:
229 ret = mtd_read(mtd, *ppos, len, &retlen, kbuf);
230 }
231 /* Nand returns -EBADMSG on ECC errors, but it returns
232 * the data. For our userspace tools it is important
233 * to dump areas with ECC errors!
234 * For kernel internal usage it also might return -EUCLEAN
235 * to signal the caller that a bitflip has occurred and has
236 * been corrected by the ECC algorithm.
237 * Userspace software which accesses NAND this way
238 * must be aware of the fact that it deals with NAND
239 */
240 if (!ret || mtd_is_bitflip_or_eccerr(ret)) {
241 *ppos += retlen;
242 if (copy_to_user(buf, kbuf, retlen)) {
243 kfree(kbuf);
244 return -EFAULT;
245 }
246 else
247 total_retlen += retlen;
248
249 count -= retlen;
250 buf += retlen;
251 if (retlen == 0)
252 count = 0;
253 }
254 else {
255 kfree(kbuf);
256 return ret;
257 }
258
259 }
260
261 kfree(kbuf);
262 return total_retlen;
263 } /* mtdchar_read */
264
265 static ssize_t mtdchar_write(struct file *file, const char __user *buf, size_t count,
266 loff_t *ppos)
267 {
268 struct mtd_file_info *mfi = file->private_data;
269 struct mtd_info *mtd = mfi->mtd;
270 size_t size = count;
271 char *kbuf;
272 size_t retlen;
273 size_t total_retlen=0;
274 int ret=0;
275 int len;
276
277 pr_debug("MTD_write\n");
278
279 if (*ppos == mtd->size)
280 return -ENOSPC;
281
282 if (*ppos + count > mtd->size)
283 count = mtd->size - *ppos;
284
285 if (!count)
286 return 0;
287
288 kbuf = mtd_kmalloc_up_to(mtd, &size);
289 if (!kbuf)
290 return -ENOMEM;
291
292 while (count) {
293 len = min_t(size_t, count, size);
294
295 if (copy_from_user(kbuf, buf, len)) {
296 kfree(kbuf);
297 return -EFAULT;
298 }
299
300 switch (mfi->mode) {
301 case MTD_FILE_MODE_OTP_FACTORY:
302 ret = -EROFS;
303 break;
304 case MTD_FILE_MODE_OTP_USER:
305 ret = mtd_write_user_prot_reg(mtd, *ppos, len,
306 &retlen, kbuf);
307 break;
308
309 case MTD_FILE_MODE_RAW:
310 {
311 struct mtd_oob_ops ops;
312
313 ops.mode = MTD_OPS_RAW;
314 ops.datbuf = kbuf;
315 ops.oobbuf = NULL;
316 ops.ooboffs = 0;
317 ops.len = len;
318
319 ret = mtd_write_oob(mtd, *ppos, &ops);
320 retlen = ops.retlen;
321 break;
322 }
323
324 default:
325 ret = mtd_write(mtd, *ppos, len, &retlen, kbuf);
326 }
327
328 /*
329 * Return -ENOSPC only if no data could be written at all.
330 * Otherwise just return the number of bytes that actually
331 * have been written.
332 */
333 if ((ret == -ENOSPC) && (total_retlen))
334 break;
335
336 if (!ret) {
337 *ppos += retlen;
338 total_retlen += retlen;
339 count -= retlen;
340 buf += retlen;
341 }
342 else {
343 kfree(kbuf);
344 return ret;
345 }
346 }
347
348 kfree(kbuf);
349 return total_retlen;
350 } /* mtdchar_write */
351
352 /*======================================================================
353
354 IOCTL calls for getting device parameters.
355
356 ======================================================================*/
357 static void mtdchar_erase_callback (struct erase_info *instr)
358 {
359 wake_up((wait_queue_head_t *)instr->priv);
360 }
361
362 static int otp_select_filemode(struct mtd_file_info *mfi, int mode)
363 {
364 struct mtd_info *mtd = mfi->mtd;
365 size_t retlen;
366
367 switch (mode) {
368 case MTD_OTP_FACTORY:
369 if (mtd_read_fact_prot_reg(mtd, -1, 0, &retlen, NULL) ==
370 -EOPNOTSUPP)
371 return -EOPNOTSUPP;
372
373 mfi->mode = MTD_FILE_MODE_OTP_FACTORY;
374 break;
375 case MTD_OTP_USER:
376 if (mtd_read_user_prot_reg(mtd, -1, 0, &retlen, NULL) ==
377 -EOPNOTSUPP)
378 return -EOPNOTSUPP;
379
380 mfi->mode = MTD_FILE_MODE_OTP_USER;
381 break;
382 case MTD_OTP_OFF:
383 mfi->mode = MTD_FILE_MODE_NORMAL;
384 break;
385 default:
386 return -EINVAL;
387 }
388
389 return 0;
390 }
391
392 static int mtdchar_writeoob(struct file *file, struct mtd_info *mtd,
393 uint64_t start, uint32_t length, void __user *ptr,
394 uint32_t __user *retp)
395 {
396 struct mtd_file_info *mfi = file->private_data;
397 struct mtd_oob_ops ops;
398 uint32_t retlen;
399 int ret = 0;
400
401 if (!(file->f_mode & FMODE_WRITE))
402 return -EPERM;
403
404 if (length > 4096)
405 return -EINVAL;
406
407 if (!mtd->_write_oob)
408 ret = -EOPNOTSUPP;
409 else
410 ret = access_ok(VERIFY_READ, ptr, length) ? 0 : -EFAULT;
411
412 if (ret)
413 return ret;
414
415 ops.ooblen = length;
416 ops.ooboffs = start & (mtd->writesize - 1);
417 ops.datbuf = NULL;
418 ops.mode = (mfi->mode == MTD_FILE_MODE_RAW) ? MTD_OPS_RAW :
419 MTD_OPS_PLACE_OOB;
420
421 if (ops.ooboffs && ops.ooblen > (mtd->oobsize - ops.ooboffs))
422 return -EINVAL;
423
424 ops.oobbuf = memdup_user(ptr, length);
425 if (IS_ERR(ops.oobbuf))
426 return PTR_ERR(ops.oobbuf);
427
428 start &= ~((uint64_t)mtd->writesize - 1);
429 ret = mtd_write_oob(mtd, start, &ops);
430
431 if (ops.oobretlen > 0xFFFFFFFFU)
432 ret = -EOVERFLOW;
433 retlen = ops.oobretlen;
434 if (copy_to_user(retp, &retlen, sizeof(length)))
435 ret = -EFAULT;
436
437 kfree(ops.oobbuf);
438 return ret;
439 }
440
441 static int mtdchar_readoob(struct file *file, struct mtd_info *mtd,
442 uint64_t start, uint32_t length, void __user *ptr,
443 uint32_t __user *retp)
444 {
445 struct mtd_file_info *mfi = file->private_data;
446 struct mtd_oob_ops ops;
447 int ret = 0;
448
449 if (length > 4096)
450 return -EINVAL;
451
452 if (!access_ok(VERIFY_WRITE, ptr, length))
453 return -EFAULT;
454
455 ops.ooblen = length;
456 ops.ooboffs = start & (mtd->writesize - 1);
457 ops.datbuf = NULL;
458 ops.mode = (mfi->mode == MTD_FILE_MODE_RAW) ? MTD_OPS_RAW :
459 MTD_OPS_PLACE_OOB;
460
461 if (ops.ooboffs && ops.ooblen > (mtd->oobsize - ops.ooboffs))
462 return -EINVAL;
463
464 ops.oobbuf = kmalloc(length, GFP_KERNEL);
465 if (!ops.oobbuf)
466 return -ENOMEM;
467
468 start &= ~((uint64_t)mtd->writesize - 1);
469 ret = mtd_read_oob(mtd, start, &ops);
470
471 if (put_user(ops.oobretlen, retp))
472 ret = -EFAULT;
473 else if (ops.oobretlen && copy_to_user(ptr, ops.oobbuf,
474 ops.oobretlen))
475 ret = -EFAULT;
476
477 kfree(ops.oobbuf);
478
479 /*
480 * NAND returns -EBADMSG on ECC errors, but it returns the OOB
481 * data. For our userspace tools it is important to dump areas
482 * with ECC errors!
483 * For kernel internal usage it also might return -EUCLEAN
484 * to signal the caller that a bitflip has occured and has
485 * been corrected by the ECC algorithm.
486 *
487 * Note: currently the standard NAND function, nand_read_oob_std,
488 * does not calculate ECC for the OOB area, so do not rely on
489 * this behavior unless you have replaced it with your own.
490 */
491 if (mtd_is_bitflip_or_eccerr(ret))
492 return 0;
493
494 return ret;
495 }
496
497 /*
498 * Copies (and truncates, if necessary) data from the larger struct,
499 * nand_ecclayout, to the smaller, deprecated layout struct,
500 * nand_ecclayout_user. This is necessary only to support the deprecated
501 * API ioctl ECCGETLAYOUT while allowing all new functionality to use
502 * nand_ecclayout flexibly (i.e. the struct may change size in new
503 * releases without requiring major rewrites).
504 */
505 static int shrink_ecclayout(const struct nand_ecclayout *from,
506 struct nand_ecclayout_user *to)
507 {
508 int i;
509
510 if (!from || !to)
511 return -EINVAL;
512
513 memset(to, 0, sizeof(*to));
514
515 to->eccbytes = min((int)from->eccbytes, MTD_MAX_ECCPOS_ENTRIES);
516 for (i = 0; i < to->eccbytes; i++)
517 to->eccpos[i] = from->eccpos[i];
518
519 for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES; i++) {
520 if (from->oobfree[i].length == 0 &&
521 from->oobfree[i].offset == 0)
522 break;
523 to->oobavail += from->oobfree[i].length;
524 to->oobfree[i] = from->oobfree[i];
525 }
526
527 return 0;
528 }
529
530 static int mtdchar_blkpg_ioctl(struct mtd_info *mtd,
531 struct blkpg_ioctl_arg __user *arg)
532 {
533 struct blkpg_ioctl_arg a;
534 struct blkpg_partition p;
535
536 if (!capable(CAP_SYS_ADMIN))
537 return -EPERM;
538
539 if (copy_from_user(&a, arg, sizeof(struct blkpg_ioctl_arg)))
540 return -EFAULT;
541
542 if (copy_from_user(&p, a.data, sizeof(struct blkpg_partition)))
543 return -EFAULT;
544
545 switch (a.op) {
546 case BLKPG_ADD_PARTITION:
547
548 /* Only master mtd device must be used to add partitions */
549 if (mtd_is_partition(mtd))
550 return -EINVAL;
551
552 return mtd_add_partition(mtd, p.devname, p.start, p.length);
553
554 case BLKPG_DEL_PARTITION:
555
556 if (p.pno < 0)
557 return -EINVAL;
558
559 return mtd_del_partition(mtd, p.pno);
560
561 default:
562 return -EINVAL;
563 }
564 }
565
566 static int mtdchar_write_ioctl(struct mtd_info *mtd,
567 struct mtd_write_req __user *argp)
568 {
569 struct mtd_write_req req;
570 struct mtd_oob_ops ops;
571 const void __user *usr_data, *usr_oob;
572 int ret;
573
574 if (copy_from_user(&req, argp, sizeof(req)))
575 return -EFAULT;
576
577 usr_data = (const void __user *)(uintptr_t)req.usr_data;
578 usr_oob = (const void __user *)(uintptr_t)req.usr_oob;
579 if (!access_ok(VERIFY_READ, usr_data, req.len) ||
580 !access_ok(VERIFY_READ, usr_oob, req.ooblen))
581 return -EFAULT;
582
583 if (!mtd->_write_oob)
584 return -EOPNOTSUPP;
585
586 ops.mode = req.mode;
587 ops.len = (size_t)req.len;
588 ops.ooblen = (size_t)req.ooblen;
589 ops.ooboffs = 0;
590
591 if (usr_data) {
592 ops.datbuf = memdup_user(usr_data, ops.len);
593 if (IS_ERR(ops.datbuf))
594 return PTR_ERR(ops.datbuf);
595 } else {
596 ops.datbuf = NULL;
597 }
598
599 if (usr_oob) {
600 ops.oobbuf = memdup_user(usr_oob, ops.ooblen);
601 if (IS_ERR(ops.oobbuf)) {
602 kfree(ops.datbuf);
603 return PTR_ERR(ops.oobbuf);
604 }
605 } else {
606 ops.oobbuf = NULL;
607 }
608
609 ret = mtd_write_oob(mtd, (loff_t)req.start, &ops);
610
611 kfree(ops.datbuf);
612 kfree(ops.oobbuf);
613
614 return ret;
615 }
616
617 static int mtdchar_ioctl(struct file *file, u_int cmd, u_long arg)
618 {
619 struct mtd_file_info *mfi = file->private_data;
620 struct mtd_info *mtd = mfi->mtd;
621 void __user *argp = (void __user *)arg;
622 int ret = 0;
623 u_long size;
624 struct mtd_info_user info;
625
626 pr_debug("MTD_ioctl\n");
627
628 size = (cmd & IOCSIZE_MASK) >> IOCSIZE_SHIFT;
629 if (cmd & IOC_IN) {
630 if (!access_ok(VERIFY_READ, argp, size))
631 return -EFAULT;
632 }
633 if (cmd & IOC_OUT) {
634 if (!access_ok(VERIFY_WRITE, argp, size))
635 return -EFAULT;
636 }
637
638 switch (cmd) {
639 case MEMGETREGIONCOUNT:
640 if (copy_to_user(argp, &(mtd->numeraseregions), sizeof(int)))
641 return -EFAULT;
642 break;
643
644 case MEMGETREGIONINFO:
645 {
646 uint32_t ur_idx;
647 struct mtd_erase_region_info *kr;
648 struct region_info_user __user *ur = argp;
649
650 if (get_user(ur_idx, &(ur->regionindex)))
651 return -EFAULT;
652
653 if (ur_idx >= mtd->numeraseregions)
654 return -EINVAL;
655
656 kr = &(mtd->eraseregions[ur_idx]);
657
658 if (put_user(kr->offset, &(ur->offset))
659 || put_user(kr->erasesize, &(ur->erasesize))
660 || put_user(kr->numblocks, &(ur->numblocks)))
661 return -EFAULT;
662
663 break;
664 }
665
666 case MEMGETINFO:
667 memset(&info, 0, sizeof(info));
668 info.type = mtd->type;
669 info.flags = mtd->flags;
670 info.size = mtd->size;
671 info.erasesize = mtd->erasesize;
672 info.writesize = mtd->writesize;
673 info.oobsize = mtd->oobsize;
674 /* The below field is obsolete */
675 info.padding = 0;
676 if (copy_to_user(argp, &info, sizeof(struct mtd_info_user)))
677 return -EFAULT;
678 break;
679
680 case MEMERASE:
681 case MEMERASE64:
682 {
683 struct erase_info *erase;
684
685 if(!(file->f_mode & FMODE_WRITE))
686 return -EPERM;
687
688 erase=kzalloc(sizeof(struct erase_info),GFP_KERNEL);
689 if (!erase)
690 ret = -ENOMEM;
691 else {
692 wait_queue_head_t waitq;
693 DECLARE_WAITQUEUE(wait, current);
694
695 init_waitqueue_head(&waitq);
696
697 if (cmd == MEMERASE64) {
698 struct erase_info_user64 einfo64;
699
700 if (copy_from_user(&einfo64, argp,
701 sizeof(struct erase_info_user64))) {
702 kfree(erase);
703 return -EFAULT;
704 }
705 erase->addr = einfo64.start;
706 erase->len = einfo64.length;
707 } else {
708 struct erase_info_user einfo32;
709
710 if (copy_from_user(&einfo32, argp,
711 sizeof(struct erase_info_user))) {
712 kfree(erase);
713 return -EFAULT;
714 }
715 erase->addr = einfo32.start;
716 erase->len = einfo32.length;
717 }
718 erase->mtd = mtd;
719 erase->callback = mtdchar_erase_callback;
720 erase->priv = (unsigned long)&waitq;
721
722 /*
723 FIXME: Allow INTERRUPTIBLE. Which means
724 not having the wait_queue head on the stack.
725
726 If the wq_head is on the stack, and we
727 leave because we got interrupted, then the
728 wq_head is no longer there when the
729 callback routine tries to wake us up.
730 */
731 ret = mtd_erase(mtd, erase);
732 if (!ret) {
733 set_current_state(TASK_UNINTERRUPTIBLE);
734 add_wait_queue(&waitq, &wait);
735 if (erase->state != MTD_ERASE_DONE &&
736 erase->state != MTD_ERASE_FAILED)
737 schedule();
738 remove_wait_queue(&waitq, &wait);
739 set_current_state(TASK_RUNNING);
740
741 ret = (erase->state == MTD_ERASE_FAILED)?-EIO:0;
742 }
743 kfree(erase);
744 }
745 break;
746 }
747
748 case MEMWRITEOOB:
749 {
750 struct mtd_oob_buf buf;
751 struct mtd_oob_buf __user *buf_user = argp;
752
753 /* NOTE: writes return length to buf_user->length */
754 if (copy_from_user(&buf, argp, sizeof(buf)))
755 ret = -EFAULT;
756 else
757 ret = mtdchar_writeoob(file, mtd, buf.start, buf.length,
758 buf.ptr, &buf_user->length);
759 break;
760 }
761
762 case MEMREADOOB:
763 {
764 struct mtd_oob_buf buf;
765 struct mtd_oob_buf __user *buf_user = argp;
766
767 /* NOTE: writes return length to buf_user->start */
768 if (copy_from_user(&buf, argp, sizeof(buf)))
769 ret = -EFAULT;
770 else
771 ret = mtdchar_readoob(file, mtd, buf.start, buf.length,
772 buf.ptr, &buf_user->start);
773 break;
774 }
775
776 case MEMWRITEOOB64:
777 {
778 struct mtd_oob_buf64 buf;
779 struct mtd_oob_buf64 __user *buf_user = argp;
780
781 if (copy_from_user(&buf, argp, sizeof(buf)))
782 ret = -EFAULT;
783 else
784 ret = mtdchar_writeoob(file, mtd, buf.start, buf.length,
785 (void __user *)(uintptr_t)buf.usr_ptr,
786 &buf_user->length);
787 break;
788 }
789
790 case MEMREADOOB64:
791 {
792 struct mtd_oob_buf64 buf;
793 struct mtd_oob_buf64 __user *buf_user = argp;
794
795 if (copy_from_user(&buf, argp, sizeof(buf)))
796 ret = -EFAULT;
797 else
798 ret = mtdchar_readoob(file, mtd, buf.start, buf.length,
799 (void __user *)(uintptr_t)buf.usr_ptr,
800 &buf_user->length);
801 break;
802 }
803
804 case MEMWRITE:
805 {
806 ret = mtdchar_write_ioctl(mtd,
807 (struct mtd_write_req __user *)arg);
808 break;
809 }
810
811 case MEMLOCK:
812 {
813 struct erase_info_user einfo;
814
815 if (copy_from_user(&einfo, argp, sizeof(einfo)))
816 return -EFAULT;
817
818 ret = mtd_lock(mtd, einfo.start, einfo.length);
819 break;
820 }
821
822 case MEMUNLOCK:
823 {
824 struct erase_info_user einfo;
825
826 if (copy_from_user(&einfo, argp, sizeof(einfo)))
827 return -EFAULT;
828
829 ret = mtd_unlock(mtd, einfo.start, einfo.length);
830 break;
831 }
832
833 case MEMISLOCKED:
834 {
835 struct erase_info_user einfo;
836
837 if (copy_from_user(&einfo, argp, sizeof(einfo)))
838 return -EFAULT;
839
840 ret = mtd_is_locked(mtd, einfo.start, einfo.length);
841 break;
842 }
843
844 /* Legacy interface */
845 case MEMGETOOBSEL:
846 {
847 struct nand_oobinfo oi;
848
849 if (!mtd->ecclayout)
850 return -EOPNOTSUPP;
851 if (mtd->ecclayout->eccbytes > ARRAY_SIZE(oi.eccpos))
852 return -EINVAL;
853
854 oi.useecc = MTD_NANDECC_AUTOPLACE;
855 memcpy(&oi.eccpos, mtd->ecclayout->eccpos, sizeof(oi.eccpos));
856 memcpy(&oi.oobfree, mtd->ecclayout->oobfree,
857 sizeof(oi.oobfree));
858 oi.eccbytes = mtd->ecclayout->eccbytes;
859
860 if (copy_to_user(argp, &oi, sizeof(struct nand_oobinfo)))
861 return -EFAULT;
862 break;
863 }
864
865 case MEMGETBADBLOCK:
866 {
867 loff_t offs;
868
869 if (copy_from_user(&offs, argp, sizeof(loff_t)))
870 return -EFAULT;
871 return mtd_block_isbad(mtd, offs);
872 break;
873 }
874
875 case MEMSETBADBLOCK:
876 {
877 loff_t offs;
878
879 if (copy_from_user(&offs, argp, sizeof(loff_t)))
880 return -EFAULT;
881 return mtd_block_markbad(mtd, offs);
882 break;
883 }
884
885 case OTPSELECT:
886 {
887 int mode;
888 if (copy_from_user(&mode, argp, sizeof(int)))
889 return -EFAULT;
890
891 mfi->mode = MTD_FILE_MODE_NORMAL;
892
893 ret = otp_select_filemode(mfi, mode);
894
895 file->f_pos = 0;
896 break;
897 }
898
899 case OTPGETREGIONCOUNT:
900 case OTPGETREGIONINFO:
901 {
902 struct otp_info *buf = kmalloc(4096, GFP_KERNEL);
903 size_t retlen;
904 if (!buf)
905 return -ENOMEM;
906 switch (mfi->mode) {
907 case MTD_FILE_MODE_OTP_FACTORY:
908 ret = mtd_get_fact_prot_info(mtd, 4096, &retlen, buf);
909 break;
910 case MTD_FILE_MODE_OTP_USER:
911 ret = mtd_get_user_prot_info(mtd, 4096, &retlen, buf);
912 break;
913 default:
914 ret = -EINVAL;
915 break;
916 }
917 if (!ret) {
918 if (cmd == OTPGETREGIONCOUNT) {
919 int nbr = retlen / sizeof(struct otp_info);
920 ret = copy_to_user(argp, &nbr, sizeof(int));
921 } else
922 ret = copy_to_user(argp, buf, retlen);
923 if (ret)
924 ret = -EFAULT;
925 }
926 kfree(buf);
927 break;
928 }
929
930 case OTPLOCK:
931 {
932 struct otp_info oinfo;
933
934 if (mfi->mode != MTD_FILE_MODE_OTP_USER)
935 return -EINVAL;
936 if (copy_from_user(&oinfo, argp, sizeof(oinfo)))
937 return -EFAULT;
938 ret = mtd_lock_user_prot_reg(mtd, oinfo.start, oinfo.length);
939 break;
940 }
941
942 /* This ioctl is being deprecated - it truncates the ECC layout */
943 case ECCGETLAYOUT:
944 {
945 struct nand_ecclayout_user *usrlay;
946
947 if (!mtd->ecclayout)
948 return -EOPNOTSUPP;
949
950 usrlay = kmalloc(sizeof(*usrlay), GFP_KERNEL);
951 if (!usrlay)
952 return -ENOMEM;
953
954 shrink_ecclayout(mtd->ecclayout, usrlay);
955
956 if (copy_to_user(argp, usrlay, sizeof(*usrlay)))
957 ret = -EFAULT;
958 kfree(usrlay);
959 break;
960 }
961
962 case ECCGETSTATS:
963 {
964 if (copy_to_user(argp, &mtd->ecc_stats,
965 sizeof(struct mtd_ecc_stats)))
966 return -EFAULT;
967 break;
968 }
969
970 case MTDFILEMODE:
971 {
972 mfi->mode = 0;
973
974 switch(arg) {
975 case MTD_FILE_MODE_OTP_FACTORY:
976 case MTD_FILE_MODE_OTP_USER:
977 ret = otp_select_filemode(mfi, arg);
978 break;
979
980 case MTD_FILE_MODE_RAW:
981 if (!mtd_has_oob(mtd))
982 return -EOPNOTSUPP;
983 mfi->mode = arg;
984
985 case MTD_FILE_MODE_NORMAL:
986 break;
987 default:
988 ret = -EINVAL;
989 }
990 file->f_pos = 0;
991 break;
992 }
993
994 case BLKPG:
995 {
996 ret = mtdchar_blkpg_ioctl(mtd,
997 (struct blkpg_ioctl_arg __user *)arg);
998 break;
999 }
1000
1001 case BLKRRPART:
1002 {
1003 /* No reread partition feature. Just return ok */
1004 ret = 0;
1005 break;
1006 }
1007
1008 default:
1009 ret = -ENOTTY;
1010 }
1011
1012 return ret;
1013 } /* memory_ioctl */
1014
1015 static long mtdchar_unlocked_ioctl(struct file *file, u_int cmd, u_long arg)
1016 {
1017 int ret;
1018
1019 mutex_lock(&mtd_mutex);
1020 ret = mtdchar_ioctl(file, cmd, arg);
1021 mutex_unlock(&mtd_mutex);
1022
1023 return ret;
1024 }
1025
1026 #ifdef CONFIG_COMPAT
1027
1028 struct mtd_oob_buf32 {
1029 u_int32_t start;
1030 u_int32_t length;
1031 compat_caddr_t ptr; /* unsigned char* */
1032 };
1033
1034 #define MEMWRITEOOB32 _IOWR('M', 3, struct mtd_oob_buf32)
1035 #define MEMREADOOB32 _IOWR('M', 4, struct mtd_oob_buf32)
1036
1037 static long mtdchar_compat_ioctl(struct file *file, unsigned int cmd,
1038 unsigned long arg)
1039 {
1040 struct mtd_file_info *mfi = file->private_data;
1041 struct mtd_info *mtd = mfi->mtd;
1042 void __user *argp = compat_ptr(arg);
1043 int ret = 0;
1044
1045 mutex_lock(&mtd_mutex);
1046
1047 switch (cmd) {
1048 case MEMWRITEOOB32:
1049 {
1050 struct mtd_oob_buf32 buf;
1051 struct mtd_oob_buf32 __user *buf_user = argp;
1052
1053 if (copy_from_user(&buf, argp, sizeof(buf)))
1054 ret = -EFAULT;
1055 else
1056 ret = mtdchar_writeoob(file, mtd, buf.start,
1057 buf.length, compat_ptr(buf.ptr),
1058 &buf_user->length);
1059 break;
1060 }
1061
1062 case MEMREADOOB32:
1063 {
1064 struct mtd_oob_buf32 buf;
1065 struct mtd_oob_buf32 __user *buf_user = argp;
1066
1067 /* NOTE: writes return length to buf->start */
1068 if (copy_from_user(&buf, argp, sizeof(buf)))
1069 ret = -EFAULT;
1070 else
1071 ret = mtdchar_readoob(file, mtd, buf.start,
1072 buf.length, compat_ptr(buf.ptr),
1073 &buf_user->start);
1074 break;
1075 }
1076 default:
1077 ret = mtdchar_ioctl(file, cmd, (unsigned long)argp);
1078 }
1079
1080 mutex_unlock(&mtd_mutex);
1081
1082 return ret;
1083 }
1084
1085 #endif /* CONFIG_COMPAT */
1086
1087 /*
1088 * try to determine where a shared mapping can be made
1089 * - only supported for NOMMU at the moment (MMU can't doesn't copy private
1090 * mappings)
1091 */
1092 #ifndef CONFIG_MMU
1093 static unsigned long mtdchar_get_unmapped_area(struct file *file,
1094 unsigned long addr,
1095 unsigned long len,
1096 unsigned long pgoff,
1097 unsigned long flags)
1098 {
1099 struct mtd_file_info *mfi = file->private_data;
1100 struct mtd_info *mtd = mfi->mtd;
1101 unsigned long offset;
1102 int ret;
1103
1104 if (addr != 0)
1105 return (unsigned long) -EINVAL;
1106
1107 if (len > mtd->size || pgoff >= (mtd->size >> PAGE_SHIFT))
1108 return (unsigned long) -EINVAL;
1109
1110 offset = pgoff << PAGE_SHIFT;
1111 if (offset > mtd->size - len)
1112 return (unsigned long) -EINVAL;
1113
1114 ret = mtd_get_unmapped_area(mtd, len, offset, flags);
1115 return ret == -EOPNOTSUPP ? -ENODEV : ret;
1116 }
1117 #endif
1118
1119 /*
1120 * set up a mapping for shared memory segments
1121 */
1122 static int mtdchar_mmap(struct file *file, struct vm_area_struct *vma)
1123 {
1124 #ifdef CONFIG_MMU
1125 struct mtd_file_info *mfi = file->private_data;
1126 struct mtd_info *mtd = mfi->mtd;
1127 struct map_info *map = mtd->priv;
1128
1129 /* This is broken because it assumes the MTD device is map-based
1130 and that mtd->priv is a valid struct map_info. It should be
1131 replaced with something that uses the mtd_get_unmapped_area()
1132 operation properly. */
1133 if (0 /*mtd->type == MTD_RAM || mtd->type == MTD_ROM*/) {
1134 #ifdef pgprot_noncached
1135 if (file->f_flags & O_DSYNC || map->phys >= __pa(high_memory))
1136 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1137 #endif
1138 return vm_iomap_memory(vma, map->phys, map->size);
1139 }
1140 return -ENODEV;
1141 #else
1142 return vma->vm_flags & VM_SHARED ? 0 : -EACCES;
1143 #endif
1144 }
1145
1146 static const struct file_operations mtd_fops = {
1147 .owner = THIS_MODULE,
1148 .llseek = mtdchar_lseek,
1149 .read = mtdchar_read,
1150 .write = mtdchar_write,
1151 .unlocked_ioctl = mtdchar_unlocked_ioctl,
1152 #ifdef CONFIG_COMPAT
1153 .compat_ioctl = mtdchar_compat_ioctl,
1154 #endif
1155 .open = mtdchar_open,
1156 .release = mtdchar_close,
1157 .mmap = mtdchar_mmap,
1158 #ifndef CONFIG_MMU
1159 .get_unmapped_area = mtdchar_get_unmapped_area,
1160 #endif
1161 };
1162
1163 static const struct super_operations mtd_ops = {
1164 .drop_inode = generic_delete_inode,
1165 .statfs = simple_statfs,
1166 };
1167
1168 static struct dentry *mtd_inodefs_mount(struct file_system_type *fs_type,
1169 int flags, const char *dev_name, void *data)
1170 {
1171 return mount_pseudo(fs_type, "mtd_inode:", &mtd_ops, NULL, MTD_INODE_FS_MAGIC);
1172 }
1173
1174 static struct file_system_type mtd_inodefs_type = {
1175 .name = "mtd_inodefs",
1176 .mount = mtd_inodefs_mount,
1177 .kill_sb = kill_anon_super,
1178 };
1179 MODULE_ALIAS_FS("mtd_inodefs");
1180
1181 int __init init_mtdchar(void)
1182 {
1183 int ret;
1184
1185 ret = __register_chrdev(MTD_CHAR_MAJOR, 0, 1 << MINORBITS,
1186 "mtd", &mtd_fops);
1187 if (ret < 0) {
1188 pr_err("Can't allocate major number %d for MTD\n",
1189 MTD_CHAR_MAJOR);
1190 return ret;
1191 }
1192
1193 ret = register_filesystem(&mtd_inodefs_type);
1194 if (ret) {
1195 pr_err("Can't register mtd_inodefs filesystem, error %d\n",
1196 ret);
1197 goto err_unregister_chdev;
1198 }
1199
1200 return ret;
1201
1202 err_unregister_chdev:
1203 __unregister_chrdev(MTD_CHAR_MAJOR, 0, 1 << MINORBITS, "mtd");
1204 return ret;
1205 }
1206
1207 void __exit cleanup_mtdchar(void)
1208 {
1209 unregister_filesystem(&mtd_inodefs_type);
1210 __unregister_chrdev(MTD_CHAR_MAJOR, 0, 1 << MINORBITS, "mtd");
1211 }
1212
1213 MODULE_ALIAS_CHARDEV_MAJOR(MTD_CHAR_MAJOR);
This page took 0.056262 seconds and 5 git commands to generate.