jffs2: Update copyright notices
[deliverable/linux.git] / drivers / mtd / mtdconcat.c
1 /*
2 * MTD device concatenation layer
3 *
4 * (C) 2002 Robert Kaiser <rkaiser@sysgo.de>
5 *
6 * NAND support by Christian Gan <cgan@iders.ca>
7 *
8 * This code is GPL
9 */
10
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/sched.h>
15 #include <linux/types.h>
16 #include <linux/backing-dev.h>
17
18 #include <linux/mtd/mtd.h>
19 #include <linux/mtd/concat.h>
20
21 #include <asm/div64.h>
22
23 /*
24 * Our storage structure:
25 * Subdev points to an array of pointers to struct mtd_info objects
26 * which is allocated along with this structure
27 *
28 */
29 struct mtd_concat {
30 struct mtd_info mtd;
31 int num_subdev;
32 struct mtd_info **subdev;
33 };
34
35 /*
36 * how to calculate the size required for the above structure,
37 * including the pointer array subdev points to:
38 */
39 #define SIZEOF_STRUCT_MTD_CONCAT(num_subdev) \
40 ((sizeof(struct mtd_concat) + (num_subdev) * sizeof(struct mtd_info *)))
41
42 /*
43 * Given a pointer to the MTD object in the mtd_concat structure,
44 * we can retrieve the pointer to that structure with this macro.
45 */
46 #define CONCAT(x) ((struct mtd_concat *)(x))
47
48 /*
49 * MTD methods which look up the relevant subdevice, translate the
50 * effective address and pass through to the subdevice.
51 */
52
53 static int
54 concat_read(struct mtd_info *mtd, loff_t from, size_t len,
55 size_t * retlen, u_char * buf)
56 {
57 struct mtd_concat *concat = CONCAT(mtd);
58 int ret = 0, err;
59 int i;
60
61 *retlen = 0;
62
63 for (i = 0; i < concat->num_subdev; i++) {
64 struct mtd_info *subdev = concat->subdev[i];
65 size_t size, retsize;
66
67 if (from >= subdev->size) {
68 /* Not destined for this subdev */
69 size = 0;
70 from -= subdev->size;
71 continue;
72 }
73 if (from + len > subdev->size)
74 /* First part goes into this subdev */
75 size = subdev->size - from;
76 else
77 /* Entire transaction goes into this subdev */
78 size = len;
79
80 err = subdev->read(subdev, from, size, &retsize, buf);
81
82 /* Save information about bitflips! */
83 if (unlikely(err)) {
84 if (err == -EBADMSG) {
85 mtd->ecc_stats.failed++;
86 ret = err;
87 } else if (err == -EUCLEAN) {
88 mtd->ecc_stats.corrected++;
89 /* Do not overwrite -EBADMSG !! */
90 if (!ret)
91 ret = err;
92 } else
93 return err;
94 }
95
96 *retlen += retsize;
97 len -= size;
98 if (len == 0)
99 return ret;
100
101 buf += size;
102 from = 0;
103 }
104 return -EINVAL;
105 }
106
107 static int
108 concat_write(struct mtd_info *mtd, loff_t to, size_t len,
109 size_t * retlen, const u_char * buf)
110 {
111 struct mtd_concat *concat = CONCAT(mtd);
112 int err = -EINVAL;
113 int i;
114
115 if (!(mtd->flags & MTD_WRITEABLE))
116 return -EROFS;
117
118 *retlen = 0;
119
120 for (i = 0; i < concat->num_subdev; i++) {
121 struct mtd_info *subdev = concat->subdev[i];
122 size_t size, retsize;
123
124 if (to >= subdev->size) {
125 size = 0;
126 to -= subdev->size;
127 continue;
128 }
129 if (to + len > subdev->size)
130 size = subdev->size - to;
131 else
132 size = len;
133
134 if (!(subdev->flags & MTD_WRITEABLE))
135 err = -EROFS;
136 else
137 err = subdev->write(subdev, to, size, &retsize, buf);
138
139 if (err)
140 break;
141
142 *retlen += retsize;
143 len -= size;
144 if (len == 0)
145 break;
146
147 err = -EINVAL;
148 buf += size;
149 to = 0;
150 }
151 return err;
152 }
153
154 static int
155 concat_writev(struct mtd_info *mtd, const struct kvec *vecs,
156 unsigned long count, loff_t to, size_t * retlen)
157 {
158 struct mtd_concat *concat = CONCAT(mtd);
159 struct kvec *vecs_copy;
160 unsigned long entry_low, entry_high;
161 size_t total_len = 0;
162 int i;
163 int err = -EINVAL;
164
165 if (!(mtd->flags & MTD_WRITEABLE))
166 return -EROFS;
167
168 *retlen = 0;
169
170 /* Calculate total length of data */
171 for (i = 0; i < count; i++)
172 total_len += vecs[i].iov_len;
173
174 /* Do not allow write past end of device */
175 if ((to + total_len) > mtd->size)
176 return -EINVAL;
177
178 /* Check alignment */
179 if (mtd->writesize > 1) {
180 uint64_t __to = to;
181 if (do_div(__to, mtd->writesize) || (total_len % mtd->writesize))
182 return -EINVAL;
183 }
184
185 /* make a copy of vecs */
186 vecs_copy = kmemdup(vecs, sizeof(struct kvec) * count, GFP_KERNEL);
187 if (!vecs_copy)
188 return -ENOMEM;
189
190 entry_low = 0;
191 for (i = 0; i < concat->num_subdev; i++) {
192 struct mtd_info *subdev = concat->subdev[i];
193 size_t size, wsize, retsize, old_iov_len;
194
195 if (to >= subdev->size) {
196 to -= subdev->size;
197 continue;
198 }
199
200 size = min_t(uint64_t, total_len, subdev->size - to);
201 wsize = size; /* store for future use */
202
203 entry_high = entry_low;
204 while (entry_high < count) {
205 if (size <= vecs_copy[entry_high].iov_len)
206 break;
207 size -= vecs_copy[entry_high++].iov_len;
208 }
209
210 old_iov_len = vecs_copy[entry_high].iov_len;
211 vecs_copy[entry_high].iov_len = size;
212
213 if (!(subdev->flags & MTD_WRITEABLE))
214 err = -EROFS;
215 else
216 err = subdev->writev(subdev, &vecs_copy[entry_low],
217 entry_high - entry_low + 1, to, &retsize);
218
219 vecs_copy[entry_high].iov_len = old_iov_len - size;
220 vecs_copy[entry_high].iov_base += size;
221
222 entry_low = entry_high;
223
224 if (err)
225 break;
226
227 *retlen += retsize;
228 total_len -= wsize;
229
230 if (total_len == 0)
231 break;
232
233 err = -EINVAL;
234 to = 0;
235 }
236
237 kfree(vecs_copy);
238 return err;
239 }
240
241 static int
242 concat_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
243 {
244 struct mtd_concat *concat = CONCAT(mtd);
245 struct mtd_oob_ops devops = *ops;
246 int i, err, ret = 0;
247
248 ops->retlen = ops->oobretlen = 0;
249
250 for (i = 0; i < concat->num_subdev; i++) {
251 struct mtd_info *subdev = concat->subdev[i];
252
253 if (from >= subdev->size) {
254 from -= subdev->size;
255 continue;
256 }
257
258 /* partial read ? */
259 if (from + devops.len > subdev->size)
260 devops.len = subdev->size - from;
261
262 err = subdev->read_oob(subdev, from, &devops);
263 ops->retlen += devops.retlen;
264 ops->oobretlen += devops.oobretlen;
265
266 /* Save information about bitflips! */
267 if (unlikely(err)) {
268 if (err == -EBADMSG) {
269 mtd->ecc_stats.failed++;
270 ret = err;
271 } else if (err == -EUCLEAN) {
272 mtd->ecc_stats.corrected++;
273 /* Do not overwrite -EBADMSG !! */
274 if (!ret)
275 ret = err;
276 } else
277 return err;
278 }
279
280 if (devops.datbuf) {
281 devops.len = ops->len - ops->retlen;
282 if (!devops.len)
283 return ret;
284 devops.datbuf += devops.retlen;
285 }
286 if (devops.oobbuf) {
287 devops.ooblen = ops->ooblen - ops->oobretlen;
288 if (!devops.ooblen)
289 return ret;
290 devops.oobbuf += ops->oobretlen;
291 }
292
293 from = 0;
294 }
295 return -EINVAL;
296 }
297
298 static int
299 concat_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops)
300 {
301 struct mtd_concat *concat = CONCAT(mtd);
302 struct mtd_oob_ops devops = *ops;
303 int i, err;
304
305 if (!(mtd->flags & MTD_WRITEABLE))
306 return -EROFS;
307
308 ops->retlen = 0;
309
310 for (i = 0; i < concat->num_subdev; i++) {
311 struct mtd_info *subdev = concat->subdev[i];
312
313 if (to >= subdev->size) {
314 to -= subdev->size;
315 continue;
316 }
317
318 /* partial write ? */
319 if (to + devops.len > subdev->size)
320 devops.len = subdev->size - to;
321
322 err = subdev->write_oob(subdev, to, &devops);
323 ops->retlen += devops.retlen;
324 if (err)
325 return err;
326
327 if (devops.datbuf) {
328 devops.len = ops->len - ops->retlen;
329 if (!devops.len)
330 return 0;
331 devops.datbuf += devops.retlen;
332 }
333 if (devops.oobbuf) {
334 devops.ooblen = ops->ooblen - ops->oobretlen;
335 if (!devops.ooblen)
336 return 0;
337 devops.oobbuf += devops.oobretlen;
338 }
339 to = 0;
340 }
341 return -EINVAL;
342 }
343
344 static void concat_erase_callback(struct erase_info *instr)
345 {
346 wake_up((wait_queue_head_t *) instr->priv);
347 }
348
349 static int concat_dev_erase(struct mtd_info *mtd, struct erase_info *erase)
350 {
351 int err;
352 wait_queue_head_t waitq;
353 DECLARE_WAITQUEUE(wait, current);
354
355 /*
356 * This code was stol^H^H^H^Hinspired by mtdchar.c
357 */
358 init_waitqueue_head(&waitq);
359
360 erase->mtd = mtd;
361 erase->callback = concat_erase_callback;
362 erase->priv = (unsigned long) &waitq;
363
364 /*
365 * FIXME: Allow INTERRUPTIBLE. Which means
366 * not having the wait_queue head on the stack.
367 */
368 err = mtd->erase(mtd, erase);
369 if (!err) {
370 set_current_state(TASK_UNINTERRUPTIBLE);
371 add_wait_queue(&waitq, &wait);
372 if (erase->state != MTD_ERASE_DONE
373 && erase->state != MTD_ERASE_FAILED)
374 schedule();
375 remove_wait_queue(&waitq, &wait);
376 set_current_state(TASK_RUNNING);
377
378 err = (erase->state == MTD_ERASE_FAILED) ? -EIO : 0;
379 }
380 return err;
381 }
382
383 static int concat_erase(struct mtd_info *mtd, struct erase_info *instr)
384 {
385 struct mtd_concat *concat = CONCAT(mtd);
386 struct mtd_info *subdev;
387 int i, err;
388 uint64_t length, offset = 0;
389 struct erase_info *erase;
390
391 if (!(mtd->flags & MTD_WRITEABLE))
392 return -EROFS;
393
394 if (instr->addr > concat->mtd.size)
395 return -EINVAL;
396
397 if (instr->len + instr->addr > concat->mtd.size)
398 return -EINVAL;
399
400 /*
401 * Check for proper erase block alignment of the to-be-erased area.
402 * It is easier to do this based on the super device's erase
403 * region info rather than looking at each particular sub-device
404 * in turn.
405 */
406 if (!concat->mtd.numeraseregions) {
407 /* the easy case: device has uniform erase block size */
408 if (instr->addr & (concat->mtd.erasesize - 1))
409 return -EINVAL;
410 if (instr->len & (concat->mtd.erasesize - 1))
411 return -EINVAL;
412 } else {
413 /* device has variable erase size */
414 struct mtd_erase_region_info *erase_regions =
415 concat->mtd.eraseregions;
416
417 /*
418 * Find the erase region where the to-be-erased area begins:
419 */
420 for (i = 0; i < concat->mtd.numeraseregions &&
421 instr->addr >= erase_regions[i].offset; i++) ;
422 --i;
423
424 /*
425 * Now erase_regions[i] is the region in which the
426 * to-be-erased area begins. Verify that the starting
427 * offset is aligned to this region's erase size:
428 */
429 if (i < 0 || instr->addr & (erase_regions[i].erasesize - 1))
430 return -EINVAL;
431
432 /*
433 * now find the erase region where the to-be-erased area ends:
434 */
435 for (; i < concat->mtd.numeraseregions &&
436 (instr->addr + instr->len) >= erase_regions[i].offset;
437 ++i) ;
438 --i;
439 /*
440 * check if the ending offset is aligned to this region's erase size
441 */
442 if (i < 0 || ((instr->addr + instr->len) &
443 (erase_regions[i].erasesize - 1)))
444 return -EINVAL;
445 }
446
447 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
448
449 /* make a local copy of instr to avoid modifying the caller's struct */
450 erase = kmalloc(sizeof (struct erase_info), GFP_KERNEL);
451
452 if (!erase)
453 return -ENOMEM;
454
455 *erase = *instr;
456 length = instr->len;
457
458 /*
459 * find the subdevice where the to-be-erased area begins, adjust
460 * starting offset to be relative to the subdevice start
461 */
462 for (i = 0; i < concat->num_subdev; i++) {
463 subdev = concat->subdev[i];
464 if (subdev->size <= erase->addr) {
465 erase->addr -= subdev->size;
466 offset += subdev->size;
467 } else {
468 break;
469 }
470 }
471
472 /* must never happen since size limit has been verified above */
473 BUG_ON(i >= concat->num_subdev);
474
475 /* now do the erase: */
476 err = 0;
477 for (; length > 0; i++) {
478 /* loop for all subdevices affected by this request */
479 subdev = concat->subdev[i]; /* get current subdevice */
480
481 /* limit length to subdevice's size: */
482 if (erase->addr + length > subdev->size)
483 erase->len = subdev->size - erase->addr;
484 else
485 erase->len = length;
486
487 if (!(subdev->flags & MTD_WRITEABLE)) {
488 err = -EROFS;
489 break;
490 }
491 length -= erase->len;
492 if ((err = concat_dev_erase(subdev, erase))) {
493 /* sanity check: should never happen since
494 * block alignment has been checked above */
495 BUG_ON(err == -EINVAL);
496 if (erase->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
497 instr->fail_addr = erase->fail_addr + offset;
498 break;
499 }
500 /*
501 * erase->addr specifies the offset of the area to be
502 * erased *within the current subdevice*. It can be
503 * non-zero only the first time through this loop, i.e.
504 * for the first subdevice where blocks need to be erased.
505 * All the following erases must begin at the start of the
506 * current subdevice, i.e. at offset zero.
507 */
508 erase->addr = 0;
509 offset += subdev->size;
510 }
511 instr->state = erase->state;
512 kfree(erase);
513 if (err)
514 return err;
515
516 if (instr->callback)
517 instr->callback(instr);
518 return 0;
519 }
520
521 static int concat_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
522 {
523 struct mtd_concat *concat = CONCAT(mtd);
524 int i, err = -EINVAL;
525
526 if ((len + ofs) > mtd->size)
527 return -EINVAL;
528
529 for (i = 0; i < concat->num_subdev; i++) {
530 struct mtd_info *subdev = concat->subdev[i];
531 uint64_t size;
532
533 if (ofs >= subdev->size) {
534 size = 0;
535 ofs -= subdev->size;
536 continue;
537 }
538 if (ofs + len > subdev->size)
539 size = subdev->size - ofs;
540 else
541 size = len;
542
543 if (subdev->lock) {
544 err = subdev->lock(subdev, ofs, size);
545 if (err)
546 break;
547 } else
548 err = -EOPNOTSUPP;
549
550 len -= size;
551 if (len == 0)
552 break;
553
554 err = -EINVAL;
555 ofs = 0;
556 }
557
558 return err;
559 }
560
561 static int concat_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
562 {
563 struct mtd_concat *concat = CONCAT(mtd);
564 int i, err = 0;
565
566 if ((len + ofs) > mtd->size)
567 return -EINVAL;
568
569 for (i = 0; i < concat->num_subdev; i++) {
570 struct mtd_info *subdev = concat->subdev[i];
571 uint64_t size;
572
573 if (ofs >= subdev->size) {
574 size = 0;
575 ofs -= subdev->size;
576 continue;
577 }
578 if (ofs + len > subdev->size)
579 size = subdev->size - ofs;
580 else
581 size = len;
582
583 if (subdev->unlock) {
584 err = subdev->unlock(subdev, ofs, size);
585 if (err)
586 break;
587 } else
588 err = -EOPNOTSUPP;
589
590 len -= size;
591 if (len == 0)
592 break;
593
594 err = -EINVAL;
595 ofs = 0;
596 }
597
598 return err;
599 }
600
601 static void concat_sync(struct mtd_info *mtd)
602 {
603 struct mtd_concat *concat = CONCAT(mtd);
604 int i;
605
606 for (i = 0; i < concat->num_subdev; i++) {
607 struct mtd_info *subdev = concat->subdev[i];
608 subdev->sync(subdev);
609 }
610 }
611
612 static int concat_suspend(struct mtd_info *mtd)
613 {
614 struct mtd_concat *concat = CONCAT(mtd);
615 int i, rc = 0;
616
617 for (i = 0; i < concat->num_subdev; i++) {
618 struct mtd_info *subdev = concat->subdev[i];
619 if ((rc = subdev->suspend(subdev)) < 0)
620 return rc;
621 }
622 return rc;
623 }
624
625 static void concat_resume(struct mtd_info *mtd)
626 {
627 struct mtd_concat *concat = CONCAT(mtd);
628 int i;
629
630 for (i = 0; i < concat->num_subdev; i++) {
631 struct mtd_info *subdev = concat->subdev[i];
632 subdev->resume(subdev);
633 }
634 }
635
636 static int concat_block_isbad(struct mtd_info *mtd, loff_t ofs)
637 {
638 struct mtd_concat *concat = CONCAT(mtd);
639 int i, res = 0;
640
641 if (!concat->subdev[0]->block_isbad)
642 return res;
643
644 if (ofs > mtd->size)
645 return -EINVAL;
646
647 for (i = 0; i < concat->num_subdev; i++) {
648 struct mtd_info *subdev = concat->subdev[i];
649
650 if (ofs >= subdev->size) {
651 ofs -= subdev->size;
652 continue;
653 }
654
655 res = subdev->block_isbad(subdev, ofs);
656 break;
657 }
658
659 return res;
660 }
661
662 static int concat_block_markbad(struct mtd_info *mtd, loff_t ofs)
663 {
664 struct mtd_concat *concat = CONCAT(mtd);
665 int i, err = -EINVAL;
666
667 if (!concat->subdev[0]->block_markbad)
668 return 0;
669
670 if (ofs > mtd->size)
671 return -EINVAL;
672
673 for (i = 0; i < concat->num_subdev; i++) {
674 struct mtd_info *subdev = concat->subdev[i];
675
676 if (ofs >= subdev->size) {
677 ofs -= subdev->size;
678 continue;
679 }
680
681 err = subdev->block_markbad(subdev, ofs);
682 if (!err)
683 mtd->ecc_stats.badblocks++;
684 break;
685 }
686
687 return err;
688 }
689
690 /*
691 * try to support NOMMU mmaps on concatenated devices
692 * - we don't support subdev spanning as we can't guarantee it'll work
693 */
694 static unsigned long concat_get_unmapped_area(struct mtd_info *mtd,
695 unsigned long len,
696 unsigned long offset,
697 unsigned long flags)
698 {
699 struct mtd_concat *concat = CONCAT(mtd);
700 int i;
701
702 for (i = 0; i < concat->num_subdev; i++) {
703 struct mtd_info *subdev = concat->subdev[i];
704
705 if (offset >= subdev->size) {
706 offset -= subdev->size;
707 continue;
708 }
709
710 /* we've found the subdev over which the mapping will reside */
711 if (offset + len > subdev->size)
712 return (unsigned long) -EINVAL;
713
714 if (subdev->get_unmapped_area)
715 return subdev->get_unmapped_area(subdev, len, offset,
716 flags);
717
718 break;
719 }
720
721 return (unsigned long) -ENOSYS;
722 }
723
724 /*
725 * This function constructs a virtual MTD device by concatenating
726 * num_devs MTD devices. A pointer to the new device object is
727 * stored to *new_dev upon success. This function does _not_
728 * register any devices: this is the caller's responsibility.
729 */
730 struct mtd_info *mtd_concat_create(struct mtd_info *subdev[], /* subdevices to concatenate */
731 int num_devs, /* number of subdevices */
732 const char *name)
733 { /* name for the new device */
734 int i;
735 size_t size;
736 struct mtd_concat *concat;
737 uint32_t max_erasesize, curr_erasesize;
738 int num_erase_region;
739
740 printk(KERN_NOTICE "Concatenating MTD devices:\n");
741 for (i = 0; i < num_devs; i++)
742 printk(KERN_NOTICE "(%d): \"%s\"\n", i, subdev[i]->name);
743 printk(KERN_NOTICE "into device \"%s\"\n", name);
744
745 /* allocate the device structure */
746 size = SIZEOF_STRUCT_MTD_CONCAT(num_devs);
747 concat = kzalloc(size, GFP_KERNEL);
748 if (!concat) {
749 printk
750 ("memory allocation error while creating concatenated device \"%s\"\n",
751 name);
752 return NULL;
753 }
754 concat->subdev = (struct mtd_info **) (concat + 1);
755
756 /*
757 * Set up the new "super" device's MTD object structure, check for
758 * incompatibilites between the subdevices.
759 */
760 concat->mtd.type = subdev[0]->type;
761 concat->mtd.flags = subdev[0]->flags;
762 concat->mtd.size = subdev[0]->size;
763 concat->mtd.erasesize = subdev[0]->erasesize;
764 concat->mtd.writesize = subdev[0]->writesize;
765 concat->mtd.subpage_sft = subdev[0]->subpage_sft;
766 concat->mtd.oobsize = subdev[0]->oobsize;
767 concat->mtd.oobavail = subdev[0]->oobavail;
768 if (subdev[0]->writev)
769 concat->mtd.writev = concat_writev;
770 if (subdev[0]->read_oob)
771 concat->mtd.read_oob = concat_read_oob;
772 if (subdev[0]->write_oob)
773 concat->mtd.write_oob = concat_write_oob;
774 if (subdev[0]->block_isbad)
775 concat->mtd.block_isbad = concat_block_isbad;
776 if (subdev[0]->block_markbad)
777 concat->mtd.block_markbad = concat_block_markbad;
778
779 concat->mtd.ecc_stats.badblocks = subdev[0]->ecc_stats.badblocks;
780
781 concat->mtd.backing_dev_info = subdev[0]->backing_dev_info;
782
783 concat->subdev[0] = subdev[0];
784
785 for (i = 1; i < num_devs; i++) {
786 if (concat->mtd.type != subdev[i]->type) {
787 kfree(concat);
788 printk("Incompatible device type on \"%s\"\n",
789 subdev[i]->name);
790 return NULL;
791 }
792 if (concat->mtd.flags != subdev[i]->flags) {
793 /*
794 * Expect all flags except MTD_WRITEABLE to be
795 * equal on all subdevices.
796 */
797 if ((concat->mtd.flags ^ subdev[i]->
798 flags) & ~MTD_WRITEABLE) {
799 kfree(concat);
800 printk("Incompatible device flags on \"%s\"\n",
801 subdev[i]->name);
802 return NULL;
803 } else
804 /* if writeable attribute differs,
805 make super device writeable */
806 concat->mtd.flags |=
807 subdev[i]->flags & MTD_WRITEABLE;
808 }
809
810 /* only permit direct mapping if the BDIs are all the same
811 * - copy-mapping is still permitted
812 */
813 if (concat->mtd.backing_dev_info !=
814 subdev[i]->backing_dev_info)
815 concat->mtd.backing_dev_info =
816 &default_backing_dev_info;
817
818 concat->mtd.size += subdev[i]->size;
819 concat->mtd.ecc_stats.badblocks +=
820 subdev[i]->ecc_stats.badblocks;
821 if (concat->mtd.writesize != subdev[i]->writesize ||
822 concat->mtd.subpage_sft != subdev[i]->subpage_sft ||
823 concat->mtd.oobsize != subdev[i]->oobsize ||
824 !concat->mtd.read_oob != !subdev[i]->read_oob ||
825 !concat->mtd.write_oob != !subdev[i]->write_oob) {
826 kfree(concat);
827 printk("Incompatible OOB or ECC data on \"%s\"\n",
828 subdev[i]->name);
829 return NULL;
830 }
831 concat->subdev[i] = subdev[i];
832
833 }
834
835 concat->mtd.ecclayout = subdev[0]->ecclayout;
836
837 concat->num_subdev = num_devs;
838 concat->mtd.name = name;
839
840 concat->mtd.erase = concat_erase;
841 concat->mtd.read = concat_read;
842 concat->mtd.write = concat_write;
843 concat->mtd.sync = concat_sync;
844 concat->mtd.lock = concat_lock;
845 concat->mtd.unlock = concat_unlock;
846 concat->mtd.suspend = concat_suspend;
847 concat->mtd.resume = concat_resume;
848 concat->mtd.get_unmapped_area = concat_get_unmapped_area;
849
850 /*
851 * Combine the erase block size info of the subdevices:
852 *
853 * first, walk the map of the new device and see how
854 * many changes in erase size we have
855 */
856 max_erasesize = curr_erasesize = subdev[0]->erasesize;
857 num_erase_region = 1;
858 for (i = 0; i < num_devs; i++) {
859 if (subdev[i]->numeraseregions == 0) {
860 /* current subdevice has uniform erase size */
861 if (subdev[i]->erasesize != curr_erasesize) {
862 /* if it differs from the last subdevice's erase size, count it */
863 ++num_erase_region;
864 curr_erasesize = subdev[i]->erasesize;
865 if (curr_erasesize > max_erasesize)
866 max_erasesize = curr_erasesize;
867 }
868 } else {
869 /* current subdevice has variable erase size */
870 int j;
871 for (j = 0; j < subdev[i]->numeraseregions; j++) {
872
873 /* walk the list of erase regions, count any changes */
874 if (subdev[i]->eraseregions[j].erasesize !=
875 curr_erasesize) {
876 ++num_erase_region;
877 curr_erasesize =
878 subdev[i]->eraseregions[j].
879 erasesize;
880 if (curr_erasesize > max_erasesize)
881 max_erasesize = curr_erasesize;
882 }
883 }
884 }
885 }
886
887 if (num_erase_region == 1) {
888 /*
889 * All subdevices have the same uniform erase size.
890 * This is easy:
891 */
892 concat->mtd.erasesize = curr_erasesize;
893 concat->mtd.numeraseregions = 0;
894 } else {
895 uint64_t tmp64;
896
897 /*
898 * erase block size varies across the subdevices: allocate
899 * space to store the data describing the variable erase regions
900 */
901 struct mtd_erase_region_info *erase_region_p;
902 uint64_t begin, position;
903
904 concat->mtd.erasesize = max_erasesize;
905 concat->mtd.numeraseregions = num_erase_region;
906 concat->mtd.eraseregions = erase_region_p =
907 kmalloc(num_erase_region *
908 sizeof (struct mtd_erase_region_info), GFP_KERNEL);
909 if (!erase_region_p) {
910 kfree(concat);
911 printk
912 ("memory allocation error while creating erase region list"
913 " for device \"%s\"\n", name);
914 return NULL;
915 }
916
917 /*
918 * walk the map of the new device once more and fill in
919 * in erase region info:
920 */
921 curr_erasesize = subdev[0]->erasesize;
922 begin = position = 0;
923 for (i = 0; i < num_devs; i++) {
924 if (subdev[i]->numeraseregions == 0) {
925 /* current subdevice has uniform erase size */
926 if (subdev[i]->erasesize != curr_erasesize) {
927 /*
928 * fill in an mtd_erase_region_info structure for the area
929 * we have walked so far:
930 */
931 erase_region_p->offset = begin;
932 erase_region_p->erasesize =
933 curr_erasesize;
934 tmp64 = position - begin;
935 do_div(tmp64, curr_erasesize);
936 erase_region_p->numblocks = tmp64;
937 begin = position;
938
939 curr_erasesize = subdev[i]->erasesize;
940 ++erase_region_p;
941 }
942 position += subdev[i]->size;
943 } else {
944 /* current subdevice has variable erase size */
945 int j;
946 for (j = 0; j < subdev[i]->numeraseregions; j++) {
947 /* walk the list of erase regions, count any changes */
948 if (subdev[i]->eraseregions[j].
949 erasesize != curr_erasesize) {
950 erase_region_p->offset = begin;
951 erase_region_p->erasesize =
952 curr_erasesize;
953 tmp64 = position - begin;
954 do_div(tmp64, curr_erasesize);
955 erase_region_p->numblocks = tmp64;
956 begin = position;
957
958 curr_erasesize =
959 subdev[i]->eraseregions[j].
960 erasesize;
961 ++erase_region_p;
962 }
963 position +=
964 subdev[i]->eraseregions[j].
965 numblocks * (uint64_t)curr_erasesize;
966 }
967 }
968 }
969 /* Now write the final entry */
970 erase_region_p->offset = begin;
971 erase_region_p->erasesize = curr_erasesize;
972 tmp64 = position - begin;
973 do_div(tmp64, curr_erasesize);
974 erase_region_p->numblocks = tmp64;
975 }
976
977 return &concat->mtd;
978 }
979
980 /*
981 * This function destroys an MTD object obtained from concat_mtd_devs()
982 */
983
984 void mtd_concat_destroy(struct mtd_info *mtd)
985 {
986 struct mtd_concat *concat = CONCAT(mtd);
987 if (concat->mtd.numeraseregions)
988 kfree(concat->mtd.eraseregions);
989 kfree(concat);
990 }
991
992 EXPORT_SYMBOL(mtd_concat_create);
993 EXPORT_SYMBOL(mtd_concat_destroy);
994
995 MODULE_LICENSE("GPL");
996 MODULE_AUTHOR("Robert Kaiser <rkaiser@sysgo.de>");
997 MODULE_DESCRIPTION("Generic support for concatenating of MTD devices");
This page took 0.051991 seconds and 5 git commands to generate.