Merge tag 'dt-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[deliverable/linux.git] / drivers / mtd / mtdcore.c
1 /*
2 * Core registration and callback routines for MTD
3 * drivers and users.
4 *
5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6 * Copyright © 2006 Red Hat UK Limited
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
21 *
22 */
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/ptrace.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/major.h>
31 #include <linux/fs.h>
32 #include <linux/err.h>
33 #include <linux/ioctl.h>
34 #include <linux/init.h>
35 #include <linux/proc_fs.h>
36 #include <linux/idr.h>
37 #include <linux/backing-dev.h>
38 #include <linux/gfp.h>
39 #include <linux/slab.h>
40
41 #include <linux/mtd/mtd.h>
42 #include <linux/mtd/partitions.h>
43
44 #include "mtdcore.h"
45
46 /*
47 * backing device capabilities for non-mappable devices (such as NAND flash)
48 * - permits private mappings, copies are taken of the data
49 */
50 static struct backing_dev_info mtd_bdi_unmappable = {
51 .capabilities = BDI_CAP_MAP_COPY,
52 };
53
54 /*
55 * backing device capabilities for R/O mappable devices (such as ROM)
56 * - permits private mappings, copies are taken of the data
57 * - permits non-writable shared mappings
58 */
59 static struct backing_dev_info mtd_bdi_ro_mappable = {
60 .capabilities = (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
61 BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP),
62 };
63
64 /*
65 * backing device capabilities for writable mappable devices (such as RAM)
66 * - permits private mappings, copies are taken of the data
67 * - permits non-writable shared mappings
68 */
69 static struct backing_dev_info mtd_bdi_rw_mappable = {
70 .capabilities = (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
71 BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP |
72 BDI_CAP_WRITE_MAP),
73 };
74
75 static int mtd_cls_suspend(struct device *dev, pm_message_t state);
76 static int mtd_cls_resume(struct device *dev);
77
78 static struct class mtd_class = {
79 .name = "mtd",
80 .owner = THIS_MODULE,
81 .suspend = mtd_cls_suspend,
82 .resume = mtd_cls_resume,
83 };
84
85 static DEFINE_IDR(mtd_idr);
86
87 /* These are exported solely for the purpose of mtd_blkdevs.c. You
88 should not use them for _anything_ else */
89 DEFINE_MUTEX(mtd_table_mutex);
90 EXPORT_SYMBOL_GPL(mtd_table_mutex);
91
92 struct mtd_info *__mtd_next_device(int i)
93 {
94 return idr_get_next(&mtd_idr, &i);
95 }
96 EXPORT_SYMBOL_GPL(__mtd_next_device);
97
98 static LIST_HEAD(mtd_notifiers);
99
100
101 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
102
103 /* REVISIT once MTD uses the driver model better, whoever allocates
104 * the mtd_info will probably want to use the release() hook...
105 */
106 static void mtd_release(struct device *dev)
107 {
108 struct mtd_info __maybe_unused *mtd = dev_get_drvdata(dev);
109 dev_t index = MTD_DEVT(mtd->index);
110
111 /* remove /dev/mtdXro node if needed */
112 if (index)
113 device_destroy(&mtd_class, index + 1);
114 }
115
116 static int mtd_cls_suspend(struct device *dev, pm_message_t state)
117 {
118 struct mtd_info *mtd = dev_get_drvdata(dev);
119
120 return mtd ? mtd_suspend(mtd) : 0;
121 }
122
123 static int mtd_cls_resume(struct device *dev)
124 {
125 struct mtd_info *mtd = dev_get_drvdata(dev);
126
127 if (mtd)
128 mtd_resume(mtd);
129 return 0;
130 }
131
132 static ssize_t mtd_type_show(struct device *dev,
133 struct device_attribute *attr, char *buf)
134 {
135 struct mtd_info *mtd = dev_get_drvdata(dev);
136 char *type;
137
138 switch (mtd->type) {
139 case MTD_ABSENT:
140 type = "absent";
141 break;
142 case MTD_RAM:
143 type = "ram";
144 break;
145 case MTD_ROM:
146 type = "rom";
147 break;
148 case MTD_NORFLASH:
149 type = "nor";
150 break;
151 case MTD_NANDFLASH:
152 type = "nand";
153 break;
154 case MTD_DATAFLASH:
155 type = "dataflash";
156 break;
157 case MTD_UBIVOLUME:
158 type = "ubi";
159 break;
160 default:
161 type = "unknown";
162 }
163
164 return snprintf(buf, PAGE_SIZE, "%s\n", type);
165 }
166 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
167
168 static ssize_t mtd_flags_show(struct device *dev,
169 struct device_attribute *attr, char *buf)
170 {
171 struct mtd_info *mtd = dev_get_drvdata(dev);
172
173 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
174
175 }
176 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
177
178 static ssize_t mtd_size_show(struct device *dev,
179 struct device_attribute *attr, char *buf)
180 {
181 struct mtd_info *mtd = dev_get_drvdata(dev);
182
183 return snprintf(buf, PAGE_SIZE, "%llu\n",
184 (unsigned long long)mtd->size);
185
186 }
187 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
188
189 static ssize_t mtd_erasesize_show(struct device *dev,
190 struct device_attribute *attr, char *buf)
191 {
192 struct mtd_info *mtd = dev_get_drvdata(dev);
193
194 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
195
196 }
197 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
198
199 static ssize_t mtd_writesize_show(struct device *dev,
200 struct device_attribute *attr, char *buf)
201 {
202 struct mtd_info *mtd = dev_get_drvdata(dev);
203
204 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
205
206 }
207 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
208
209 static ssize_t mtd_subpagesize_show(struct device *dev,
210 struct device_attribute *attr, char *buf)
211 {
212 struct mtd_info *mtd = dev_get_drvdata(dev);
213 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
214
215 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
216
217 }
218 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
219
220 static ssize_t mtd_oobsize_show(struct device *dev,
221 struct device_attribute *attr, char *buf)
222 {
223 struct mtd_info *mtd = dev_get_drvdata(dev);
224
225 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
226
227 }
228 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
229
230 static ssize_t mtd_numeraseregions_show(struct device *dev,
231 struct device_attribute *attr, char *buf)
232 {
233 struct mtd_info *mtd = dev_get_drvdata(dev);
234
235 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
236
237 }
238 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
239 NULL);
240
241 static ssize_t mtd_name_show(struct device *dev,
242 struct device_attribute *attr, char *buf)
243 {
244 struct mtd_info *mtd = dev_get_drvdata(dev);
245
246 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
247
248 }
249 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
250
251 static ssize_t mtd_ecc_strength_show(struct device *dev,
252 struct device_attribute *attr, char *buf)
253 {
254 struct mtd_info *mtd = dev_get_drvdata(dev);
255
256 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
257 }
258 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
259
260 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
261 struct device_attribute *attr,
262 char *buf)
263 {
264 struct mtd_info *mtd = dev_get_drvdata(dev);
265
266 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
267 }
268
269 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
270 struct device_attribute *attr,
271 const char *buf, size_t count)
272 {
273 struct mtd_info *mtd = dev_get_drvdata(dev);
274 unsigned int bitflip_threshold;
275 int retval;
276
277 retval = kstrtouint(buf, 0, &bitflip_threshold);
278 if (retval)
279 return retval;
280
281 mtd->bitflip_threshold = bitflip_threshold;
282 return count;
283 }
284 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
285 mtd_bitflip_threshold_show,
286 mtd_bitflip_threshold_store);
287
288 static ssize_t mtd_ecc_step_size_show(struct device *dev,
289 struct device_attribute *attr, char *buf)
290 {
291 struct mtd_info *mtd = dev_get_drvdata(dev);
292
293 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
294
295 }
296 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
297
298 static struct attribute *mtd_attrs[] = {
299 &dev_attr_type.attr,
300 &dev_attr_flags.attr,
301 &dev_attr_size.attr,
302 &dev_attr_erasesize.attr,
303 &dev_attr_writesize.attr,
304 &dev_attr_subpagesize.attr,
305 &dev_attr_oobsize.attr,
306 &dev_attr_numeraseregions.attr,
307 &dev_attr_name.attr,
308 &dev_attr_ecc_strength.attr,
309 &dev_attr_ecc_step_size.attr,
310 &dev_attr_bitflip_threshold.attr,
311 NULL,
312 };
313
314 static struct attribute_group mtd_group = {
315 .attrs = mtd_attrs,
316 };
317
318 static const struct attribute_group *mtd_groups[] = {
319 &mtd_group,
320 NULL,
321 };
322
323 static struct device_type mtd_devtype = {
324 .name = "mtd",
325 .groups = mtd_groups,
326 .release = mtd_release,
327 };
328
329 /**
330 * add_mtd_device - register an MTD device
331 * @mtd: pointer to new MTD device info structure
332 *
333 * Add a device to the list of MTD devices present in the system, and
334 * notify each currently active MTD 'user' of its arrival. Returns
335 * zero on success or 1 on failure, which currently will only happen
336 * if there is insufficient memory or a sysfs error.
337 */
338
339 int add_mtd_device(struct mtd_info *mtd)
340 {
341 struct mtd_notifier *not;
342 int i, error;
343
344 if (!mtd->backing_dev_info) {
345 switch (mtd->type) {
346 case MTD_RAM:
347 mtd->backing_dev_info = &mtd_bdi_rw_mappable;
348 break;
349 case MTD_ROM:
350 mtd->backing_dev_info = &mtd_bdi_ro_mappable;
351 break;
352 default:
353 mtd->backing_dev_info = &mtd_bdi_unmappable;
354 break;
355 }
356 }
357
358 BUG_ON(mtd->writesize == 0);
359 mutex_lock(&mtd_table_mutex);
360
361 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
362 if (i < 0)
363 goto fail_locked;
364
365 mtd->index = i;
366 mtd->usecount = 0;
367
368 /* default value if not set by driver */
369 if (mtd->bitflip_threshold == 0)
370 mtd->bitflip_threshold = mtd->ecc_strength;
371
372 if (is_power_of_2(mtd->erasesize))
373 mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
374 else
375 mtd->erasesize_shift = 0;
376
377 if (is_power_of_2(mtd->writesize))
378 mtd->writesize_shift = ffs(mtd->writesize) - 1;
379 else
380 mtd->writesize_shift = 0;
381
382 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
383 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
384
385 /* Some chips always power up locked. Unlock them now */
386 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
387 error = mtd_unlock(mtd, 0, mtd->size);
388 if (error && error != -EOPNOTSUPP)
389 printk(KERN_WARNING
390 "%s: unlock failed, writes may not work\n",
391 mtd->name);
392 }
393
394 /* Caller should have set dev.parent to match the
395 * physical device.
396 */
397 mtd->dev.type = &mtd_devtype;
398 mtd->dev.class = &mtd_class;
399 mtd->dev.devt = MTD_DEVT(i);
400 dev_set_name(&mtd->dev, "mtd%d", i);
401 dev_set_drvdata(&mtd->dev, mtd);
402 if (device_register(&mtd->dev) != 0)
403 goto fail_added;
404
405 if (MTD_DEVT(i))
406 device_create(&mtd_class, mtd->dev.parent,
407 MTD_DEVT(i) + 1,
408 NULL, "mtd%dro", i);
409
410 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
411 /* No need to get a refcount on the module containing
412 the notifier, since we hold the mtd_table_mutex */
413 list_for_each_entry(not, &mtd_notifiers, list)
414 not->add(mtd);
415
416 mutex_unlock(&mtd_table_mutex);
417 /* We _know_ we aren't being removed, because
418 our caller is still holding us here. So none
419 of this try_ nonsense, and no bitching about it
420 either. :) */
421 __module_get(THIS_MODULE);
422 return 0;
423
424 fail_added:
425 idr_remove(&mtd_idr, i);
426 fail_locked:
427 mutex_unlock(&mtd_table_mutex);
428 return 1;
429 }
430
431 /**
432 * del_mtd_device - unregister an MTD device
433 * @mtd: pointer to MTD device info structure
434 *
435 * Remove a device from the list of MTD devices present in the system,
436 * and notify each currently active MTD 'user' of its departure.
437 * Returns zero on success or 1 on failure, which currently will happen
438 * if the requested device does not appear to be present in the list.
439 */
440
441 int del_mtd_device(struct mtd_info *mtd)
442 {
443 int ret;
444 struct mtd_notifier *not;
445
446 mutex_lock(&mtd_table_mutex);
447
448 if (idr_find(&mtd_idr, mtd->index) != mtd) {
449 ret = -ENODEV;
450 goto out_error;
451 }
452
453 /* No need to get a refcount on the module containing
454 the notifier, since we hold the mtd_table_mutex */
455 list_for_each_entry(not, &mtd_notifiers, list)
456 not->remove(mtd);
457
458 if (mtd->usecount) {
459 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
460 mtd->index, mtd->name, mtd->usecount);
461 ret = -EBUSY;
462 } else {
463 device_unregister(&mtd->dev);
464
465 idr_remove(&mtd_idr, mtd->index);
466
467 module_put(THIS_MODULE);
468 ret = 0;
469 }
470
471 out_error:
472 mutex_unlock(&mtd_table_mutex);
473 return ret;
474 }
475
476 /**
477 * mtd_device_parse_register - parse partitions and register an MTD device.
478 *
479 * @mtd: the MTD device to register
480 * @types: the list of MTD partition probes to try, see
481 * 'parse_mtd_partitions()' for more information
482 * @parser_data: MTD partition parser-specific data
483 * @parts: fallback partition information to register, if parsing fails;
484 * only valid if %nr_parts > %0
485 * @nr_parts: the number of partitions in parts, if zero then the full
486 * MTD device is registered if no partition info is found
487 *
488 * This function aggregates MTD partitions parsing (done by
489 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
490 * basically follows the most common pattern found in many MTD drivers:
491 *
492 * * It first tries to probe partitions on MTD device @mtd using parsers
493 * specified in @types (if @types is %NULL, then the default list of parsers
494 * is used, see 'parse_mtd_partitions()' for more information). If none are
495 * found this functions tries to fallback to information specified in
496 * @parts/@nr_parts.
497 * * If any partitioning info was found, this function registers the found
498 * partitions.
499 * * If no partitions were found this function just registers the MTD device
500 * @mtd and exits.
501 *
502 * Returns zero in case of success and a negative error code in case of failure.
503 */
504 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
505 struct mtd_part_parser_data *parser_data,
506 const struct mtd_partition *parts,
507 int nr_parts)
508 {
509 int err;
510 struct mtd_partition *real_parts;
511
512 err = parse_mtd_partitions(mtd, types, &real_parts, parser_data);
513 if (err <= 0 && nr_parts && parts) {
514 real_parts = kmemdup(parts, sizeof(*parts) * nr_parts,
515 GFP_KERNEL);
516 if (!real_parts)
517 err = -ENOMEM;
518 else
519 err = nr_parts;
520 }
521
522 if (err > 0) {
523 err = add_mtd_partitions(mtd, real_parts, err);
524 kfree(real_parts);
525 } else if (err == 0) {
526 err = add_mtd_device(mtd);
527 if (err == 1)
528 err = -ENODEV;
529 }
530
531 return err;
532 }
533 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
534
535 /**
536 * mtd_device_unregister - unregister an existing MTD device.
537 *
538 * @master: the MTD device to unregister. This will unregister both the master
539 * and any partitions if registered.
540 */
541 int mtd_device_unregister(struct mtd_info *master)
542 {
543 int err;
544
545 err = del_mtd_partitions(master);
546 if (err)
547 return err;
548
549 if (!device_is_registered(&master->dev))
550 return 0;
551
552 return del_mtd_device(master);
553 }
554 EXPORT_SYMBOL_GPL(mtd_device_unregister);
555
556 /**
557 * register_mtd_user - register a 'user' of MTD devices.
558 * @new: pointer to notifier info structure
559 *
560 * Registers a pair of callbacks function to be called upon addition
561 * or removal of MTD devices. Causes the 'add' callback to be immediately
562 * invoked for each MTD device currently present in the system.
563 */
564 void register_mtd_user (struct mtd_notifier *new)
565 {
566 struct mtd_info *mtd;
567
568 mutex_lock(&mtd_table_mutex);
569
570 list_add(&new->list, &mtd_notifiers);
571
572 __module_get(THIS_MODULE);
573
574 mtd_for_each_device(mtd)
575 new->add(mtd);
576
577 mutex_unlock(&mtd_table_mutex);
578 }
579 EXPORT_SYMBOL_GPL(register_mtd_user);
580
581 /**
582 * unregister_mtd_user - unregister a 'user' of MTD devices.
583 * @old: pointer to notifier info structure
584 *
585 * Removes a callback function pair from the list of 'users' to be
586 * notified upon addition or removal of MTD devices. Causes the
587 * 'remove' callback to be immediately invoked for each MTD device
588 * currently present in the system.
589 */
590 int unregister_mtd_user (struct mtd_notifier *old)
591 {
592 struct mtd_info *mtd;
593
594 mutex_lock(&mtd_table_mutex);
595
596 module_put(THIS_MODULE);
597
598 mtd_for_each_device(mtd)
599 old->remove(mtd);
600
601 list_del(&old->list);
602 mutex_unlock(&mtd_table_mutex);
603 return 0;
604 }
605 EXPORT_SYMBOL_GPL(unregister_mtd_user);
606
607 /**
608 * get_mtd_device - obtain a validated handle for an MTD device
609 * @mtd: last known address of the required MTD device
610 * @num: internal device number of the required MTD device
611 *
612 * Given a number and NULL address, return the num'th entry in the device
613 * table, if any. Given an address and num == -1, search the device table
614 * for a device with that address and return if it's still present. Given
615 * both, return the num'th driver only if its address matches. Return
616 * error code if not.
617 */
618 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
619 {
620 struct mtd_info *ret = NULL, *other;
621 int err = -ENODEV;
622
623 mutex_lock(&mtd_table_mutex);
624
625 if (num == -1) {
626 mtd_for_each_device(other) {
627 if (other == mtd) {
628 ret = mtd;
629 break;
630 }
631 }
632 } else if (num >= 0) {
633 ret = idr_find(&mtd_idr, num);
634 if (mtd && mtd != ret)
635 ret = NULL;
636 }
637
638 if (!ret) {
639 ret = ERR_PTR(err);
640 goto out;
641 }
642
643 err = __get_mtd_device(ret);
644 if (err)
645 ret = ERR_PTR(err);
646 out:
647 mutex_unlock(&mtd_table_mutex);
648 return ret;
649 }
650 EXPORT_SYMBOL_GPL(get_mtd_device);
651
652
653 int __get_mtd_device(struct mtd_info *mtd)
654 {
655 int err;
656
657 if (!try_module_get(mtd->owner))
658 return -ENODEV;
659
660 if (mtd->_get_device) {
661 err = mtd->_get_device(mtd);
662
663 if (err) {
664 module_put(mtd->owner);
665 return err;
666 }
667 }
668 mtd->usecount++;
669 return 0;
670 }
671 EXPORT_SYMBOL_GPL(__get_mtd_device);
672
673 /**
674 * get_mtd_device_nm - obtain a validated handle for an MTD device by
675 * device name
676 * @name: MTD device name to open
677 *
678 * This function returns MTD device description structure in case of
679 * success and an error code in case of failure.
680 */
681 struct mtd_info *get_mtd_device_nm(const char *name)
682 {
683 int err = -ENODEV;
684 struct mtd_info *mtd = NULL, *other;
685
686 mutex_lock(&mtd_table_mutex);
687
688 mtd_for_each_device(other) {
689 if (!strcmp(name, other->name)) {
690 mtd = other;
691 break;
692 }
693 }
694
695 if (!mtd)
696 goto out_unlock;
697
698 err = __get_mtd_device(mtd);
699 if (err)
700 goto out_unlock;
701
702 mutex_unlock(&mtd_table_mutex);
703 return mtd;
704
705 out_unlock:
706 mutex_unlock(&mtd_table_mutex);
707 return ERR_PTR(err);
708 }
709 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
710
711 void put_mtd_device(struct mtd_info *mtd)
712 {
713 mutex_lock(&mtd_table_mutex);
714 __put_mtd_device(mtd);
715 mutex_unlock(&mtd_table_mutex);
716
717 }
718 EXPORT_SYMBOL_GPL(put_mtd_device);
719
720 void __put_mtd_device(struct mtd_info *mtd)
721 {
722 --mtd->usecount;
723 BUG_ON(mtd->usecount < 0);
724
725 if (mtd->_put_device)
726 mtd->_put_device(mtd);
727
728 module_put(mtd->owner);
729 }
730 EXPORT_SYMBOL_GPL(__put_mtd_device);
731
732 /*
733 * Erase is an asynchronous operation. Device drivers are supposed
734 * to call instr->callback() whenever the operation completes, even
735 * if it completes with a failure.
736 * Callers are supposed to pass a callback function and wait for it
737 * to be called before writing to the block.
738 */
739 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
740 {
741 if (instr->addr > mtd->size || instr->len > mtd->size - instr->addr)
742 return -EINVAL;
743 if (!(mtd->flags & MTD_WRITEABLE))
744 return -EROFS;
745 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
746 if (!instr->len) {
747 instr->state = MTD_ERASE_DONE;
748 mtd_erase_callback(instr);
749 return 0;
750 }
751 return mtd->_erase(mtd, instr);
752 }
753 EXPORT_SYMBOL_GPL(mtd_erase);
754
755 /*
756 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
757 */
758 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
759 void **virt, resource_size_t *phys)
760 {
761 *retlen = 0;
762 *virt = NULL;
763 if (phys)
764 *phys = 0;
765 if (!mtd->_point)
766 return -EOPNOTSUPP;
767 if (from < 0 || from > mtd->size || len > mtd->size - from)
768 return -EINVAL;
769 if (!len)
770 return 0;
771 return mtd->_point(mtd, from, len, retlen, virt, phys);
772 }
773 EXPORT_SYMBOL_GPL(mtd_point);
774
775 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
776 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
777 {
778 if (!mtd->_point)
779 return -EOPNOTSUPP;
780 if (from < 0 || from > mtd->size || len > mtd->size - from)
781 return -EINVAL;
782 if (!len)
783 return 0;
784 return mtd->_unpoint(mtd, from, len);
785 }
786 EXPORT_SYMBOL_GPL(mtd_unpoint);
787
788 /*
789 * Allow NOMMU mmap() to directly map the device (if not NULL)
790 * - return the address to which the offset maps
791 * - return -ENOSYS to indicate refusal to do the mapping
792 */
793 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
794 unsigned long offset, unsigned long flags)
795 {
796 if (!mtd->_get_unmapped_area)
797 return -EOPNOTSUPP;
798 if (offset > mtd->size || len > mtd->size - offset)
799 return -EINVAL;
800 return mtd->_get_unmapped_area(mtd, len, offset, flags);
801 }
802 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
803
804 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
805 u_char *buf)
806 {
807 int ret_code;
808 *retlen = 0;
809 if (from < 0 || from > mtd->size || len > mtd->size - from)
810 return -EINVAL;
811 if (!len)
812 return 0;
813
814 /*
815 * In the absence of an error, drivers return a non-negative integer
816 * representing the maximum number of bitflips that were corrected on
817 * any one ecc region (if applicable; zero otherwise).
818 */
819 ret_code = mtd->_read(mtd, from, len, retlen, buf);
820 if (unlikely(ret_code < 0))
821 return ret_code;
822 if (mtd->ecc_strength == 0)
823 return 0; /* device lacks ecc */
824 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
825 }
826 EXPORT_SYMBOL_GPL(mtd_read);
827
828 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
829 const u_char *buf)
830 {
831 *retlen = 0;
832 if (to < 0 || to > mtd->size || len > mtd->size - to)
833 return -EINVAL;
834 if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE))
835 return -EROFS;
836 if (!len)
837 return 0;
838 return mtd->_write(mtd, to, len, retlen, buf);
839 }
840 EXPORT_SYMBOL_GPL(mtd_write);
841
842 /*
843 * In blackbox flight recorder like scenarios we want to make successful writes
844 * in interrupt context. panic_write() is only intended to be called when its
845 * known the kernel is about to panic and we need the write to succeed. Since
846 * the kernel is not going to be running for much longer, this function can
847 * break locks and delay to ensure the write succeeds (but not sleep).
848 */
849 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
850 const u_char *buf)
851 {
852 *retlen = 0;
853 if (!mtd->_panic_write)
854 return -EOPNOTSUPP;
855 if (to < 0 || to > mtd->size || len > mtd->size - to)
856 return -EINVAL;
857 if (!(mtd->flags & MTD_WRITEABLE))
858 return -EROFS;
859 if (!len)
860 return 0;
861 return mtd->_panic_write(mtd, to, len, retlen, buf);
862 }
863 EXPORT_SYMBOL_GPL(mtd_panic_write);
864
865 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
866 {
867 int ret_code;
868 ops->retlen = ops->oobretlen = 0;
869 if (!mtd->_read_oob)
870 return -EOPNOTSUPP;
871 /*
872 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
873 * similar to mtd->_read(), returning a non-negative integer
874 * representing max bitflips. In other cases, mtd->_read_oob() may
875 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
876 */
877 ret_code = mtd->_read_oob(mtd, from, ops);
878 if (unlikely(ret_code < 0))
879 return ret_code;
880 if (mtd->ecc_strength == 0)
881 return 0; /* device lacks ecc */
882 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
883 }
884 EXPORT_SYMBOL_GPL(mtd_read_oob);
885
886 /*
887 * Method to access the protection register area, present in some flash
888 * devices. The user data is one time programmable but the factory data is read
889 * only.
890 */
891 int mtd_get_fact_prot_info(struct mtd_info *mtd, struct otp_info *buf,
892 size_t len)
893 {
894 if (!mtd->_get_fact_prot_info)
895 return -EOPNOTSUPP;
896 if (!len)
897 return 0;
898 return mtd->_get_fact_prot_info(mtd, buf, len);
899 }
900 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
901
902 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
903 size_t *retlen, u_char *buf)
904 {
905 *retlen = 0;
906 if (!mtd->_read_fact_prot_reg)
907 return -EOPNOTSUPP;
908 if (!len)
909 return 0;
910 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
911 }
912 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
913
914 int mtd_get_user_prot_info(struct mtd_info *mtd, struct otp_info *buf,
915 size_t len)
916 {
917 if (!mtd->_get_user_prot_info)
918 return -EOPNOTSUPP;
919 if (!len)
920 return 0;
921 return mtd->_get_user_prot_info(mtd, buf, len);
922 }
923 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
924
925 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
926 size_t *retlen, u_char *buf)
927 {
928 *retlen = 0;
929 if (!mtd->_read_user_prot_reg)
930 return -EOPNOTSUPP;
931 if (!len)
932 return 0;
933 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
934 }
935 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
936
937 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
938 size_t *retlen, u_char *buf)
939 {
940 *retlen = 0;
941 if (!mtd->_write_user_prot_reg)
942 return -EOPNOTSUPP;
943 if (!len)
944 return 0;
945 return mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
946 }
947 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
948
949 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
950 {
951 if (!mtd->_lock_user_prot_reg)
952 return -EOPNOTSUPP;
953 if (!len)
954 return 0;
955 return mtd->_lock_user_prot_reg(mtd, from, len);
956 }
957 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
958
959 /* Chip-supported device locking */
960 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
961 {
962 if (!mtd->_lock)
963 return -EOPNOTSUPP;
964 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
965 return -EINVAL;
966 if (!len)
967 return 0;
968 return mtd->_lock(mtd, ofs, len);
969 }
970 EXPORT_SYMBOL_GPL(mtd_lock);
971
972 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
973 {
974 if (!mtd->_unlock)
975 return -EOPNOTSUPP;
976 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
977 return -EINVAL;
978 if (!len)
979 return 0;
980 return mtd->_unlock(mtd, ofs, len);
981 }
982 EXPORT_SYMBOL_GPL(mtd_unlock);
983
984 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
985 {
986 if (!mtd->_is_locked)
987 return -EOPNOTSUPP;
988 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
989 return -EINVAL;
990 if (!len)
991 return 0;
992 return mtd->_is_locked(mtd, ofs, len);
993 }
994 EXPORT_SYMBOL_GPL(mtd_is_locked);
995
996 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
997 {
998 if (!mtd->_block_isbad)
999 return 0;
1000 if (ofs < 0 || ofs > mtd->size)
1001 return -EINVAL;
1002 return mtd->_block_isbad(mtd, ofs);
1003 }
1004 EXPORT_SYMBOL_GPL(mtd_block_isbad);
1005
1006 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1007 {
1008 if (!mtd->_block_markbad)
1009 return -EOPNOTSUPP;
1010 if (ofs < 0 || ofs > mtd->size)
1011 return -EINVAL;
1012 if (!(mtd->flags & MTD_WRITEABLE))
1013 return -EROFS;
1014 return mtd->_block_markbad(mtd, ofs);
1015 }
1016 EXPORT_SYMBOL_GPL(mtd_block_markbad);
1017
1018 /*
1019 * default_mtd_writev - the default writev method
1020 * @mtd: mtd device description object pointer
1021 * @vecs: the vectors to write
1022 * @count: count of vectors in @vecs
1023 * @to: the MTD device offset to write to
1024 * @retlen: on exit contains the count of bytes written to the MTD device.
1025 *
1026 * This function returns zero in case of success and a negative error code in
1027 * case of failure.
1028 */
1029 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1030 unsigned long count, loff_t to, size_t *retlen)
1031 {
1032 unsigned long i;
1033 size_t totlen = 0, thislen;
1034 int ret = 0;
1035
1036 for (i = 0; i < count; i++) {
1037 if (!vecs[i].iov_len)
1038 continue;
1039 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1040 vecs[i].iov_base);
1041 totlen += thislen;
1042 if (ret || thislen != vecs[i].iov_len)
1043 break;
1044 to += vecs[i].iov_len;
1045 }
1046 *retlen = totlen;
1047 return ret;
1048 }
1049
1050 /*
1051 * mtd_writev - the vector-based MTD write method
1052 * @mtd: mtd device description object pointer
1053 * @vecs: the vectors to write
1054 * @count: count of vectors in @vecs
1055 * @to: the MTD device offset to write to
1056 * @retlen: on exit contains the count of bytes written to the MTD device.
1057 *
1058 * This function returns zero in case of success and a negative error code in
1059 * case of failure.
1060 */
1061 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1062 unsigned long count, loff_t to, size_t *retlen)
1063 {
1064 *retlen = 0;
1065 if (!(mtd->flags & MTD_WRITEABLE))
1066 return -EROFS;
1067 if (!mtd->_writev)
1068 return default_mtd_writev(mtd, vecs, count, to, retlen);
1069 return mtd->_writev(mtd, vecs, count, to, retlen);
1070 }
1071 EXPORT_SYMBOL_GPL(mtd_writev);
1072
1073 /**
1074 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1075 * @mtd: mtd device description object pointer
1076 * @size: a pointer to the ideal or maximum size of the allocation, points
1077 * to the actual allocation size on success.
1078 *
1079 * This routine attempts to allocate a contiguous kernel buffer up to
1080 * the specified size, backing off the size of the request exponentially
1081 * until the request succeeds or until the allocation size falls below
1082 * the system page size. This attempts to make sure it does not adversely
1083 * impact system performance, so when allocating more than one page, we
1084 * ask the memory allocator to avoid re-trying, swapping, writing back
1085 * or performing I/O.
1086 *
1087 * Note, this function also makes sure that the allocated buffer is aligned to
1088 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1089 *
1090 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1091 * to handle smaller (i.e. degraded) buffer allocations under low- or
1092 * fragmented-memory situations where such reduced allocations, from a
1093 * requested ideal, are allowed.
1094 *
1095 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1096 */
1097 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1098 {
1099 gfp_t flags = __GFP_NOWARN | __GFP_WAIT |
1100 __GFP_NORETRY | __GFP_NO_KSWAPD;
1101 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1102 void *kbuf;
1103
1104 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1105
1106 while (*size > min_alloc) {
1107 kbuf = kmalloc(*size, flags);
1108 if (kbuf)
1109 return kbuf;
1110
1111 *size >>= 1;
1112 *size = ALIGN(*size, mtd->writesize);
1113 }
1114
1115 /*
1116 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1117 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1118 */
1119 return kmalloc(*size, GFP_KERNEL);
1120 }
1121 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1122
1123 #ifdef CONFIG_PROC_FS
1124
1125 /*====================================================================*/
1126 /* Support for /proc/mtd */
1127
1128 static int mtd_proc_show(struct seq_file *m, void *v)
1129 {
1130 struct mtd_info *mtd;
1131
1132 seq_puts(m, "dev: size erasesize name\n");
1133 mutex_lock(&mtd_table_mutex);
1134 mtd_for_each_device(mtd) {
1135 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1136 mtd->index, (unsigned long long)mtd->size,
1137 mtd->erasesize, mtd->name);
1138 }
1139 mutex_unlock(&mtd_table_mutex);
1140 return 0;
1141 }
1142
1143 static int mtd_proc_open(struct inode *inode, struct file *file)
1144 {
1145 return single_open(file, mtd_proc_show, NULL);
1146 }
1147
1148 static const struct file_operations mtd_proc_ops = {
1149 .open = mtd_proc_open,
1150 .read = seq_read,
1151 .llseek = seq_lseek,
1152 .release = single_release,
1153 };
1154 #endif /* CONFIG_PROC_FS */
1155
1156 /*====================================================================*/
1157 /* Init code */
1158
1159 static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name)
1160 {
1161 int ret;
1162
1163 ret = bdi_init(bdi);
1164 if (!ret)
1165 ret = bdi_register(bdi, NULL, "%s", name);
1166
1167 if (ret)
1168 bdi_destroy(bdi);
1169
1170 return ret;
1171 }
1172
1173 static struct proc_dir_entry *proc_mtd;
1174
1175 static int __init init_mtd(void)
1176 {
1177 int ret;
1178
1179 ret = class_register(&mtd_class);
1180 if (ret)
1181 goto err_reg;
1182
1183 ret = mtd_bdi_init(&mtd_bdi_unmappable, "mtd-unmap");
1184 if (ret)
1185 goto err_bdi1;
1186
1187 ret = mtd_bdi_init(&mtd_bdi_ro_mappable, "mtd-romap");
1188 if (ret)
1189 goto err_bdi2;
1190
1191 ret = mtd_bdi_init(&mtd_bdi_rw_mappable, "mtd-rwmap");
1192 if (ret)
1193 goto err_bdi3;
1194
1195 proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
1196
1197 ret = init_mtdchar();
1198 if (ret)
1199 goto out_procfs;
1200
1201 return 0;
1202
1203 out_procfs:
1204 if (proc_mtd)
1205 remove_proc_entry("mtd", NULL);
1206 err_bdi3:
1207 bdi_destroy(&mtd_bdi_ro_mappable);
1208 err_bdi2:
1209 bdi_destroy(&mtd_bdi_unmappable);
1210 err_bdi1:
1211 class_unregister(&mtd_class);
1212 err_reg:
1213 pr_err("Error registering mtd class or bdi: %d\n", ret);
1214 return ret;
1215 }
1216
1217 static void __exit cleanup_mtd(void)
1218 {
1219 cleanup_mtdchar();
1220 if (proc_mtd)
1221 remove_proc_entry("mtd", NULL);
1222 class_unregister(&mtd_class);
1223 bdi_destroy(&mtd_bdi_unmappable);
1224 bdi_destroy(&mtd_bdi_ro_mappable);
1225 bdi_destroy(&mtd_bdi_rw_mappable);
1226 }
1227
1228 module_init(init_mtd);
1229 module_exit(cleanup_mtd);
1230
1231 MODULE_LICENSE("GPL");
1232 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1233 MODULE_DESCRIPTION("Core MTD registration and access routines");
This page took 0.057182 seconds and 5 git commands to generate.