Merge tag 'for-linus-v3.9-rc4' of git://oss.sgi.com/xfs/xfs
[deliverable/linux.git] / drivers / mtd / mtdcore.c
1 /*
2 * Core registration and callback routines for MTD
3 * drivers and users.
4 *
5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6 * Copyright © 2006 Red Hat UK Limited
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
21 *
22 */
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/ptrace.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/major.h>
31 #include <linux/fs.h>
32 #include <linux/err.h>
33 #include <linux/ioctl.h>
34 #include <linux/init.h>
35 #include <linux/proc_fs.h>
36 #include <linux/idr.h>
37 #include <linux/backing-dev.h>
38 #include <linux/gfp.h>
39
40 #include <linux/mtd/mtd.h>
41 #include <linux/mtd/partitions.h>
42
43 #include "mtdcore.h"
44 /*
45 * backing device capabilities for non-mappable devices (such as NAND flash)
46 * - permits private mappings, copies are taken of the data
47 */
48 static struct backing_dev_info mtd_bdi_unmappable = {
49 .capabilities = BDI_CAP_MAP_COPY,
50 };
51
52 /*
53 * backing device capabilities for R/O mappable devices (such as ROM)
54 * - permits private mappings, copies are taken of the data
55 * - permits non-writable shared mappings
56 */
57 static struct backing_dev_info mtd_bdi_ro_mappable = {
58 .capabilities = (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
59 BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP),
60 };
61
62 /*
63 * backing device capabilities for writable mappable devices (such as RAM)
64 * - permits private mappings, copies are taken of the data
65 * - permits non-writable shared mappings
66 */
67 static struct backing_dev_info mtd_bdi_rw_mappable = {
68 .capabilities = (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
69 BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP |
70 BDI_CAP_WRITE_MAP),
71 };
72
73 static int mtd_cls_suspend(struct device *dev, pm_message_t state);
74 static int mtd_cls_resume(struct device *dev);
75
76 static struct class mtd_class = {
77 .name = "mtd",
78 .owner = THIS_MODULE,
79 .suspend = mtd_cls_suspend,
80 .resume = mtd_cls_resume,
81 };
82
83 static DEFINE_IDR(mtd_idr);
84
85 /* These are exported solely for the purpose of mtd_blkdevs.c. You
86 should not use them for _anything_ else */
87 DEFINE_MUTEX(mtd_table_mutex);
88 EXPORT_SYMBOL_GPL(mtd_table_mutex);
89
90 struct mtd_info *__mtd_next_device(int i)
91 {
92 return idr_get_next(&mtd_idr, &i);
93 }
94 EXPORT_SYMBOL_GPL(__mtd_next_device);
95
96 static LIST_HEAD(mtd_notifiers);
97
98
99 #if defined(CONFIG_MTD_CHAR) || defined(CONFIG_MTD_CHAR_MODULE)
100 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
101 #else
102 #define MTD_DEVT(index) 0
103 #endif
104
105 /* REVISIT once MTD uses the driver model better, whoever allocates
106 * the mtd_info will probably want to use the release() hook...
107 */
108 static void mtd_release(struct device *dev)
109 {
110 struct mtd_info __maybe_unused *mtd = dev_get_drvdata(dev);
111 dev_t index = MTD_DEVT(mtd->index);
112
113 /* remove /dev/mtdXro node if needed */
114 if (index)
115 device_destroy(&mtd_class, index + 1);
116 }
117
118 static int mtd_cls_suspend(struct device *dev, pm_message_t state)
119 {
120 struct mtd_info *mtd = dev_get_drvdata(dev);
121
122 return mtd ? mtd_suspend(mtd) : 0;
123 }
124
125 static int mtd_cls_resume(struct device *dev)
126 {
127 struct mtd_info *mtd = dev_get_drvdata(dev);
128
129 if (mtd)
130 mtd_resume(mtd);
131 return 0;
132 }
133
134 static ssize_t mtd_type_show(struct device *dev,
135 struct device_attribute *attr, char *buf)
136 {
137 struct mtd_info *mtd = dev_get_drvdata(dev);
138 char *type;
139
140 switch (mtd->type) {
141 case MTD_ABSENT:
142 type = "absent";
143 break;
144 case MTD_RAM:
145 type = "ram";
146 break;
147 case MTD_ROM:
148 type = "rom";
149 break;
150 case MTD_NORFLASH:
151 type = "nor";
152 break;
153 case MTD_NANDFLASH:
154 type = "nand";
155 break;
156 case MTD_DATAFLASH:
157 type = "dataflash";
158 break;
159 case MTD_UBIVOLUME:
160 type = "ubi";
161 break;
162 default:
163 type = "unknown";
164 }
165
166 return snprintf(buf, PAGE_SIZE, "%s\n", type);
167 }
168 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
169
170 static ssize_t mtd_flags_show(struct device *dev,
171 struct device_attribute *attr, char *buf)
172 {
173 struct mtd_info *mtd = dev_get_drvdata(dev);
174
175 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
176
177 }
178 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
179
180 static ssize_t mtd_size_show(struct device *dev,
181 struct device_attribute *attr, char *buf)
182 {
183 struct mtd_info *mtd = dev_get_drvdata(dev);
184
185 return snprintf(buf, PAGE_SIZE, "%llu\n",
186 (unsigned long long)mtd->size);
187
188 }
189 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
190
191 static ssize_t mtd_erasesize_show(struct device *dev,
192 struct device_attribute *attr, char *buf)
193 {
194 struct mtd_info *mtd = dev_get_drvdata(dev);
195
196 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
197
198 }
199 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
200
201 static ssize_t mtd_writesize_show(struct device *dev,
202 struct device_attribute *attr, char *buf)
203 {
204 struct mtd_info *mtd = dev_get_drvdata(dev);
205
206 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
207
208 }
209 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
210
211 static ssize_t mtd_subpagesize_show(struct device *dev,
212 struct device_attribute *attr, char *buf)
213 {
214 struct mtd_info *mtd = dev_get_drvdata(dev);
215 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
216
217 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
218
219 }
220 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
221
222 static ssize_t mtd_oobsize_show(struct device *dev,
223 struct device_attribute *attr, char *buf)
224 {
225 struct mtd_info *mtd = dev_get_drvdata(dev);
226
227 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
228
229 }
230 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
231
232 static ssize_t mtd_numeraseregions_show(struct device *dev,
233 struct device_attribute *attr, char *buf)
234 {
235 struct mtd_info *mtd = dev_get_drvdata(dev);
236
237 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
238
239 }
240 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
241 NULL);
242
243 static ssize_t mtd_name_show(struct device *dev,
244 struct device_attribute *attr, char *buf)
245 {
246 struct mtd_info *mtd = dev_get_drvdata(dev);
247
248 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
249
250 }
251 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
252
253 static ssize_t mtd_ecc_strength_show(struct device *dev,
254 struct device_attribute *attr, char *buf)
255 {
256 struct mtd_info *mtd = dev_get_drvdata(dev);
257
258 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
259 }
260 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
261
262 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
263 struct device_attribute *attr,
264 char *buf)
265 {
266 struct mtd_info *mtd = dev_get_drvdata(dev);
267
268 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
269 }
270
271 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
272 struct device_attribute *attr,
273 const char *buf, size_t count)
274 {
275 struct mtd_info *mtd = dev_get_drvdata(dev);
276 unsigned int bitflip_threshold;
277 int retval;
278
279 retval = kstrtouint(buf, 0, &bitflip_threshold);
280 if (retval)
281 return retval;
282
283 mtd->bitflip_threshold = bitflip_threshold;
284 return count;
285 }
286 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
287 mtd_bitflip_threshold_show,
288 mtd_bitflip_threshold_store);
289
290 static struct attribute *mtd_attrs[] = {
291 &dev_attr_type.attr,
292 &dev_attr_flags.attr,
293 &dev_attr_size.attr,
294 &dev_attr_erasesize.attr,
295 &dev_attr_writesize.attr,
296 &dev_attr_subpagesize.attr,
297 &dev_attr_oobsize.attr,
298 &dev_attr_numeraseregions.attr,
299 &dev_attr_name.attr,
300 &dev_attr_ecc_strength.attr,
301 &dev_attr_bitflip_threshold.attr,
302 NULL,
303 };
304
305 static struct attribute_group mtd_group = {
306 .attrs = mtd_attrs,
307 };
308
309 static const struct attribute_group *mtd_groups[] = {
310 &mtd_group,
311 NULL,
312 };
313
314 static struct device_type mtd_devtype = {
315 .name = "mtd",
316 .groups = mtd_groups,
317 .release = mtd_release,
318 };
319
320 /**
321 * add_mtd_device - register an MTD device
322 * @mtd: pointer to new MTD device info structure
323 *
324 * Add a device to the list of MTD devices present in the system, and
325 * notify each currently active MTD 'user' of its arrival. Returns
326 * zero on success or 1 on failure, which currently will only happen
327 * if there is insufficient memory or a sysfs error.
328 */
329
330 int add_mtd_device(struct mtd_info *mtd)
331 {
332 struct mtd_notifier *not;
333 int i, error;
334
335 if (!mtd->backing_dev_info) {
336 switch (mtd->type) {
337 case MTD_RAM:
338 mtd->backing_dev_info = &mtd_bdi_rw_mappable;
339 break;
340 case MTD_ROM:
341 mtd->backing_dev_info = &mtd_bdi_ro_mappable;
342 break;
343 default:
344 mtd->backing_dev_info = &mtd_bdi_unmappable;
345 break;
346 }
347 }
348
349 BUG_ON(mtd->writesize == 0);
350 mutex_lock(&mtd_table_mutex);
351
352 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
353 if (i < 0)
354 goto fail_locked;
355
356 mtd->index = i;
357 mtd->usecount = 0;
358
359 /* default value if not set by driver */
360 if (mtd->bitflip_threshold == 0)
361 mtd->bitflip_threshold = mtd->ecc_strength;
362
363 if (is_power_of_2(mtd->erasesize))
364 mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
365 else
366 mtd->erasesize_shift = 0;
367
368 if (is_power_of_2(mtd->writesize))
369 mtd->writesize_shift = ffs(mtd->writesize) - 1;
370 else
371 mtd->writesize_shift = 0;
372
373 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
374 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
375
376 /* Some chips always power up locked. Unlock them now */
377 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
378 error = mtd_unlock(mtd, 0, mtd->size);
379 if (error && error != -EOPNOTSUPP)
380 printk(KERN_WARNING
381 "%s: unlock failed, writes may not work\n",
382 mtd->name);
383 }
384
385 /* Caller should have set dev.parent to match the
386 * physical device.
387 */
388 mtd->dev.type = &mtd_devtype;
389 mtd->dev.class = &mtd_class;
390 mtd->dev.devt = MTD_DEVT(i);
391 dev_set_name(&mtd->dev, "mtd%d", i);
392 dev_set_drvdata(&mtd->dev, mtd);
393 if (device_register(&mtd->dev) != 0)
394 goto fail_added;
395
396 if (MTD_DEVT(i))
397 device_create(&mtd_class, mtd->dev.parent,
398 MTD_DEVT(i) + 1,
399 NULL, "mtd%dro", i);
400
401 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
402 /* No need to get a refcount on the module containing
403 the notifier, since we hold the mtd_table_mutex */
404 list_for_each_entry(not, &mtd_notifiers, list)
405 not->add(mtd);
406
407 mutex_unlock(&mtd_table_mutex);
408 /* We _know_ we aren't being removed, because
409 our caller is still holding us here. So none
410 of this try_ nonsense, and no bitching about it
411 either. :) */
412 __module_get(THIS_MODULE);
413 return 0;
414
415 fail_added:
416 idr_remove(&mtd_idr, i);
417 fail_locked:
418 mutex_unlock(&mtd_table_mutex);
419 return 1;
420 }
421
422 /**
423 * del_mtd_device - unregister an MTD device
424 * @mtd: pointer to MTD device info structure
425 *
426 * Remove a device from the list of MTD devices present in the system,
427 * and notify each currently active MTD 'user' of its departure.
428 * Returns zero on success or 1 on failure, which currently will happen
429 * if the requested device does not appear to be present in the list.
430 */
431
432 int del_mtd_device(struct mtd_info *mtd)
433 {
434 int ret;
435 struct mtd_notifier *not;
436
437 mutex_lock(&mtd_table_mutex);
438
439 if (idr_find(&mtd_idr, mtd->index) != mtd) {
440 ret = -ENODEV;
441 goto out_error;
442 }
443
444 /* No need to get a refcount on the module containing
445 the notifier, since we hold the mtd_table_mutex */
446 list_for_each_entry(not, &mtd_notifiers, list)
447 not->remove(mtd);
448
449 if (mtd->usecount) {
450 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
451 mtd->index, mtd->name, mtd->usecount);
452 ret = -EBUSY;
453 } else {
454 device_unregister(&mtd->dev);
455
456 idr_remove(&mtd_idr, mtd->index);
457
458 module_put(THIS_MODULE);
459 ret = 0;
460 }
461
462 out_error:
463 mutex_unlock(&mtd_table_mutex);
464 return ret;
465 }
466
467 /**
468 * mtd_device_parse_register - parse partitions and register an MTD device.
469 *
470 * @mtd: the MTD device to register
471 * @types: the list of MTD partition probes to try, see
472 * 'parse_mtd_partitions()' for more information
473 * @parser_data: MTD partition parser-specific data
474 * @parts: fallback partition information to register, if parsing fails;
475 * only valid if %nr_parts > %0
476 * @nr_parts: the number of partitions in parts, if zero then the full
477 * MTD device is registered if no partition info is found
478 *
479 * This function aggregates MTD partitions parsing (done by
480 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
481 * basically follows the most common pattern found in many MTD drivers:
482 *
483 * * It first tries to probe partitions on MTD device @mtd using parsers
484 * specified in @types (if @types is %NULL, then the default list of parsers
485 * is used, see 'parse_mtd_partitions()' for more information). If none are
486 * found this functions tries to fallback to information specified in
487 * @parts/@nr_parts.
488 * * If any partitioning info was found, this function registers the found
489 * partitions.
490 * * If no partitions were found this function just registers the MTD device
491 * @mtd and exits.
492 *
493 * Returns zero in case of success and a negative error code in case of failure.
494 */
495 int mtd_device_parse_register(struct mtd_info *mtd, const char **types,
496 struct mtd_part_parser_data *parser_data,
497 const struct mtd_partition *parts,
498 int nr_parts)
499 {
500 int err;
501 struct mtd_partition *real_parts;
502
503 err = parse_mtd_partitions(mtd, types, &real_parts, parser_data);
504 if (err <= 0 && nr_parts && parts) {
505 real_parts = kmemdup(parts, sizeof(*parts) * nr_parts,
506 GFP_KERNEL);
507 if (!real_parts)
508 err = -ENOMEM;
509 else
510 err = nr_parts;
511 }
512
513 if (err > 0) {
514 err = add_mtd_partitions(mtd, real_parts, err);
515 kfree(real_parts);
516 } else if (err == 0) {
517 err = add_mtd_device(mtd);
518 if (err == 1)
519 err = -ENODEV;
520 }
521
522 return err;
523 }
524 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
525
526 /**
527 * mtd_device_unregister - unregister an existing MTD device.
528 *
529 * @master: the MTD device to unregister. This will unregister both the master
530 * and any partitions if registered.
531 */
532 int mtd_device_unregister(struct mtd_info *master)
533 {
534 int err;
535
536 err = del_mtd_partitions(master);
537 if (err)
538 return err;
539
540 if (!device_is_registered(&master->dev))
541 return 0;
542
543 return del_mtd_device(master);
544 }
545 EXPORT_SYMBOL_GPL(mtd_device_unregister);
546
547 /**
548 * register_mtd_user - register a 'user' of MTD devices.
549 * @new: pointer to notifier info structure
550 *
551 * Registers a pair of callbacks function to be called upon addition
552 * or removal of MTD devices. Causes the 'add' callback to be immediately
553 * invoked for each MTD device currently present in the system.
554 */
555 void register_mtd_user (struct mtd_notifier *new)
556 {
557 struct mtd_info *mtd;
558
559 mutex_lock(&mtd_table_mutex);
560
561 list_add(&new->list, &mtd_notifiers);
562
563 __module_get(THIS_MODULE);
564
565 mtd_for_each_device(mtd)
566 new->add(mtd);
567
568 mutex_unlock(&mtd_table_mutex);
569 }
570 EXPORT_SYMBOL_GPL(register_mtd_user);
571
572 /**
573 * unregister_mtd_user - unregister a 'user' of MTD devices.
574 * @old: pointer to notifier info structure
575 *
576 * Removes a callback function pair from the list of 'users' to be
577 * notified upon addition or removal of MTD devices. Causes the
578 * 'remove' callback to be immediately invoked for each MTD device
579 * currently present in the system.
580 */
581 int unregister_mtd_user (struct mtd_notifier *old)
582 {
583 struct mtd_info *mtd;
584
585 mutex_lock(&mtd_table_mutex);
586
587 module_put(THIS_MODULE);
588
589 mtd_for_each_device(mtd)
590 old->remove(mtd);
591
592 list_del(&old->list);
593 mutex_unlock(&mtd_table_mutex);
594 return 0;
595 }
596 EXPORT_SYMBOL_GPL(unregister_mtd_user);
597
598 /**
599 * get_mtd_device - obtain a validated handle for an MTD device
600 * @mtd: last known address of the required MTD device
601 * @num: internal device number of the required MTD device
602 *
603 * Given a number and NULL address, return the num'th entry in the device
604 * table, if any. Given an address and num == -1, search the device table
605 * for a device with that address and return if it's still present. Given
606 * both, return the num'th driver only if its address matches. Return
607 * error code if not.
608 */
609 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
610 {
611 struct mtd_info *ret = NULL, *other;
612 int err = -ENODEV;
613
614 mutex_lock(&mtd_table_mutex);
615
616 if (num == -1) {
617 mtd_for_each_device(other) {
618 if (other == mtd) {
619 ret = mtd;
620 break;
621 }
622 }
623 } else if (num >= 0) {
624 ret = idr_find(&mtd_idr, num);
625 if (mtd && mtd != ret)
626 ret = NULL;
627 }
628
629 if (!ret) {
630 ret = ERR_PTR(err);
631 goto out;
632 }
633
634 err = __get_mtd_device(ret);
635 if (err)
636 ret = ERR_PTR(err);
637 out:
638 mutex_unlock(&mtd_table_mutex);
639 return ret;
640 }
641 EXPORT_SYMBOL_GPL(get_mtd_device);
642
643
644 int __get_mtd_device(struct mtd_info *mtd)
645 {
646 int err;
647
648 if (!try_module_get(mtd->owner))
649 return -ENODEV;
650
651 if (mtd->_get_device) {
652 err = mtd->_get_device(mtd);
653
654 if (err) {
655 module_put(mtd->owner);
656 return err;
657 }
658 }
659 mtd->usecount++;
660 return 0;
661 }
662 EXPORT_SYMBOL_GPL(__get_mtd_device);
663
664 /**
665 * get_mtd_device_nm - obtain a validated handle for an MTD device by
666 * device name
667 * @name: MTD device name to open
668 *
669 * This function returns MTD device description structure in case of
670 * success and an error code in case of failure.
671 */
672 struct mtd_info *get_mtd_device_nm(const char *name)
673 {
674 int err = -ENODEV;
675 struct mtd_info *mtd = NULL, *other;
676
677 mutex_lock(&mtd_table_mutex);
678
679 mtd_for_each_device(other) {
680 if (!strcmp(name, other->name)) {
681 mtd = other;
682 break;
683 }
684 }
685
686 if (!mtd)
687 goto out_unlock;
688
689 err = __get_mtd_device(mtd);
690 if (err)
691 goto out_unlock;
692
693 mutex_unlock(&mtd_table_mutex);
694 return mtd;
695
696 out_unlock:
697 mutex_unlock(&mtd_table_mutex);
698 return ERR_PTR(err);
699 }
700 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
701
702 void put_mtd_device(struct mtd_info *mtd)
703 {
704 mutex_lock(&mtd_table_mutex);
705 __put_mtd_device(mtd);
706 mutex_unlock(&mtd_table_mutex);
707
708 }
709 EXPORT_SYMBOL_GPL(put_mtd_device);
710
711 void __put_mtd_device(struct mtd_info *mtd)
712 {
713 --mtd->usecount;
714 BUG_ON(mtd->usecount < 0);
715
716 if (mtd->_put_device)
717 mtd->_put_device(mtd);
718
719 module_put(mtd->owner);
720 }
721 EXPORT_SYMBOL_GPL(__put_mtd_device);
722
723 /*
724 * Erase is an asynchronous operation. Device drivers are supposed
725 * to call instr->callback() whenever the operation completes, even
726 * if it completes with a failure.
727 * Callers are supposed to pass a callback function and wait for it
728 * to be called before writing to the block.
729 */
730 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
731 {
732 if (instr->addr > mtd->size || instr->len > mtd->size - instr->addr)
733 return -EINVAL;
734 if (!(mtd->flags & MTD_WRITEABLE))
735 return -EROFS;
736 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
737 if (!instr->len) {
738 instr->state = MTD_ERASE_DONE;
739 mtd_erase_callback(instr);
740 return 0;
741 }
742 return mtd->_erase(mtd, instr);
743 }
744 EXPORT_SYMBOL_GPL(mtd_erase);
745
746 /*
747 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
748 */
749 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
750 void **virt, resource_size_t *phys)
751 {
752 *retlen = 0;
753 *virt = NULL;
754 if (phys)
755 *phys = 0;
756 if (!mtd->_point)
757 return -EOPNOTSUPP;
758 if (from < 0 || from > mtd->size || len > mtd->size - from)
759 return -EINVAL;
760 if (!len)
761 return 0;
762 return mtd->_point(mtd, from, len, retlen, virt, phys);
763 }
764 EXPORT_SYMBOL_GPL(mtd_point);
765
766 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
767 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
768 {
769 if (!mtd->_point)
770 return -EOPNOTSUPP;
771 if (from < 0 || from > mtd->size || len > mtd->size - from)
772 return -EINVAL;
773 if (!len)
774 return 0;
775 return mtd->_unpoint(mtd, from, len);
776 }
777 EXPORT_SYMBOL_GPL(mtd_unpoint);
778
779 /*
780 * Allow NOMMU mmap() to directly map the device (if not NULL)
781 * - return the address to which the offset maps
782 * - return -ENOSYS to indicate refusal to do the mapping
783 */
784 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
785 unsigned long offset, unsigned long flags)
786 {
787 if (!mtd->_get_unmapped_area)
788 return -EOPNOTSUPP;
789 if (offset > mtd->size || len > mtd->size - offset)
790 return -EINVAL;
791 return mtd->_get_unmapped_area(mtd, len, offset, flags);
792 }
793 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
794
795 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
796 u_char *buf)
797 {
798 int ret_code;
799 *retlen = 0;
800 if (from < 0 || from > mtd->size || len > mtd->size - from)
801 return -EINVAL;
802 if (!len)
803 return 0;
804
805 /*
806 * In the absence of an error, drivers return a non-negative integer
807 * representing the maximum number of bitflips that were corrected on
808 * any one ecc region (if applicable; zero otherwise).
809 */
810 ret_code = mtd->_read(mtd, from, len, retlen, buf);
811 if (unlikely(ret_code < 0))
812 return ret_code;
813 if (mtd->ecc_strength == 0)
814 return 0; /* device lacks ecc */
815 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
816 }
817 EXPORT_SYMBOL_GPL(mtd_read);
818
819 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
820 const u_char *buf)
821 {
822 *retlen = 0;
823 if (to < 0 || to > mtd->size || len > mtd->size - to)
824 return -EINVAL;
825 if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE))
826 return -EROFS;
827 if (!len)
828 return 0;
829 return mtd->_write(mtd, to, len, retlen, buf);
830 }
831 EXPORT_SYMBOL_GPL(mtd_write);
832
833 /*
834 * In blackbox flight recorder like scenarios we want to make successful writes
835 * in interrupt context. panic_write() is only intended to be called when its
836 * known the kernel is about to panic and we need the write to succeed. Since
837 * the kernel is not going to be running for much longer, this function can
838 * break locks and delay to ensure the write succeeds (but not sleep).
839 */
840 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
841 const u_char *buf)
842 {
843 *retlen = 0;
844 if (!mtd->_panic_write)
845 return -EOPNOTSUPP;
846 if (to < 0 || to > mtd->size || len > mtd->size - to)
847 return -EINVAL;
848 if (!(mtd->flags & MTD_WRITEABLE))
849 return -EROFS;
850 if (!len)
851 return 0;
852 return mtd->_panic_write(mtd, to, len, retlen, buf);
853 }
854 EXPORT_SYMBOL_GPL(mtd_panic_write);
855
856 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
857 {
858 int ret_code;
859 ops->retlen = ops->oobretlen = 0;
860 if (!mtd->_read_oob)
861 return -EOPNOTSUPP;
862 /*
863 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
864 * similar to mtd->_read(), returning a non-negative integer
865 * representing max bitflips. In other cases, mtd->_read_oob() may
866 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
867 */
868 ret_code = mtd->_read_oob(mtd, from, ops);
869 if (unlikely(ret_code < 0))
870 return ret_code;
871 if (mtd->ecc_strength == 0)
872 return 0; /* device lacks ecc */
873 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
874 }
875 EXPORT_SYMBOL_GPL(mtd_read_oob);
876
877 /*
878 * Method to access the protection register area, present in some flash
879 * devices. The user data is one time programmable but the factory data is read
880 * only.
881 */
882 int mtd_get_fact_prot_info(struct mtd_info *mtd, struct otp_info *buf,
883 size_t len)
884 {
885 if (!mtd->_get_fact_prot_info)
886 return -EOPNOTSUPP;
887 if (!len)
888 return 0;
889 return mtd->_get_fact_prot_info(mtd, buf, len);
890 }
891 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
892
893 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
894 size_t *retlen, u_char *buf)
895 {
896 *retlen = 0;
897 if (!mtd->_read_fact_prot_reg)
898 return -EOPNOTSUPP;
899 if (!len)
900 return 0;
901 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
902 }
903 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
904
905 int mtd_get_user_prot_info(struct mtd_info *mtd, struct otp_info *buf,
906 size_t len)
907 {
908 if (!mtd->_get_user_prot_info)
909 return -EOPNOTSUPP;
910 if (!len)
911 return 0;
912 return mtd->_get_user_prot_info(mtd, buf, len);
913 }
914 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
915
916 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
917 size_t *retlen, u_char *buf)
918 {
919 *retlen = 0;
920 if (!mtd->_read_user_prot_reg)
921 return -EOPNOTSUPP;
922 if (!len)
923 return 0;
924 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
925 }
926 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
927
928 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
929 size_t *retlen, u_char *buf)
930 {
931 *retlen = 0;
932 if (!mtd->_write_user_prot_reg)
933 return -EOPNOTSUPP;
934 if (!len)
935 return 0;
936 return mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
937 }
938 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
939
940 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
941 {
942 if (!mtd->_lock_user_prot_reg)
943 return -EOPNOTSUPP;
944 if (!len)
945 return 0;
946 return mtd->_lock_user_prot_reg(mtd, from, len);
947 }
948 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
949
950 /* Chip-supported device locking */
951 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
952 {
953 if (!mtd->_lock)
954 return -EOPNOTSUPP;
955 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
956 return -EINVAL;
957 if (!len)
958 return 0;
959 return mtd->_lock(mtd, ofs, len);
960 }
961 EXPORT_SYMBOL_GPL(mtd_lock);
962
963 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
964 {
965 if (!mtd->_unlock)
966 return -EOPNOTSUPP;
967 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
968 return -EINVAL;
969 if (!len)
970 return 0;
971 return mtd->_unlock(mtd, ofs, len);
972 }
973 EXPORT_SYMBOL_GPL(mtd_unlock);
974
975 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
976 {
977 if (!mtd->_is_locked)
978 return -EOPNOTSUPP;
979 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
980 return -EINVAL;
981 if (!len)
982 return 0;
983 return mtd->_is_locked(mtd, ofs, len);
984 }
985 EXPORT_SYMBOL_GPL(mtd_is_locked);
986
987 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
988 {
989 if (!mtd->_block_isbad)
990 return 0;
991 if (ofs < 0 || ofs > mtd->size)
992 return -EINVAL;
993 return mtd->_block_isbad(mtd, ofs);
994 }
995 EXPORT_SYMBOL_GPL(mtd_block_isbad);
996
997 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
998 {
999 if (!mtd->_block_markbad)
1000 return -EOPNOTSUPP;
1001 if (ofs < 0 || ofs > mtd->size)
1002 return -EINVAL;
1003 if (!(mtd->flags & MTD_WRITEABLE))
1004 return -EROFS;
1005 return mtd->_block_markbad(mtd, ofs);
1006 }
1007 EXPORT_SYMBOL_GPL(mtd_block_markbad);
1008
1009 /*
1010 * default_mtd_writev - the default writev method
1011 * @mtd: mtd device description object pointer
1012 * @vecs: the vectors to write
1013 * @count: count of vectors in @vecs
1014 * @to: the MTD device offset to write to
1015 * @retlen: on exit contains the count of bytes written to the MTD device.
1016 *
1017 * This function returns zero in case of success and a negative error code in
1018 * case of failure.
1019 */
1020 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1021 unsigned long count, loff_t to, size_t *retlen)
1022 {
1023 unsigned long i;
1024 size_t totlen = 0, thislen;
1025 int ret = 0;
1026
1027 for (i = 0; i < count; i++) {
1028 if (!vecs[i].iov_len)
1029 continue;
1030 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1031 vecs[i].iov_base);
1032 totlen += thislen;
1033 if (ret || thislen != vecs[i].iov_len)
1034 break;
1035 to += vecs[i].iov_len;
1036 }
1037 *retlen = totlen;
1038 return ret;
1039 }
1040
1041 /*
1042 * mtd_writev - the vector-based MTD write method
1043 * @mtd: mtd device description object pointer
1044 * @vecs: the vectors to write
1045 * @count: count of vectors in @vecs
1046 * @to: the MTD device offset to write to
1047 * @retlen: on exit contains the count of bytes written to the MTD device.
1048 *
1049 * This function returns zero in case of success and a negative error code in
1050 * case of failure.
1051 */
1052 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1053 unsigned long count, loff_t to, size_t *retlen)
1054 {
1055 *retlen = 0;
1056 if (!(mtd->flags & MTD_WRITEABLE))
1057 return -EROFS;
1058 if (!mtd->_writev)
1059 return default_mtd_writev(mtd, vecs, count, to, retlen);
1060 return mtd->_writev(mtd, vecs, count, to, retlen);
1061 }
1062 EXPORT_SYMBOL_GPL(mtd_writev);
1063
1064 /**
1065 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1066 * @mtd: mtd device description object pointer
1067 * @size: a pointer to the ideal or maximum size of the allocation, points
1068 * to the actual allocation size on success.
1069 *
1070 * This routine attempts to allocate a contiguous kernel buffer up to
1071 * the specified size, backing off the size of the request exponentially
1072 * until the request succeeds or until the allocation size falls below
1073 * the system page size. This attempts to make sure it does not adversely
1074 * impact system performance, so when allocating more than one page, we
1075 * ask the memory allocator to avoid re-trying, swapping, writing back
1076 * or performing I/O.
1077 *
1078 * Note, this function also makes sure that the allocated buffer is aligned to
1079 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1080 *
1081 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1082 * to handle smaller (i.e. degraded) buffer allocations under low- or
1083 * fragmented-memory situations where such reduced allocations, from a
1084 * requested ideal, are allowed.
1085 *
1086 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1087 */
1088 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1089 {
1090 gfp_t flags = __GFP_NOWARN | __GFP_WAIT |
1091 __GFP_NORETRY | __GFP_NO_KSWAPD;
1092 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1093 void *kbuf;
1094
1095 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1096
1097 while (*size > min_alloc) {
1098 kbuf = kmalloc(*size, flags);
1099 if (kbuf)
1100 return kbuf;
1101
1102 *size >>= 1;
1103 *size = ALIGN(*size, mtd->writesize);
1104 }
1105
1106 /*
1107 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1108 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1109 */
1110 return kmalloc(*size, GFP_KERNEL);
1111 }
1112 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1113
1114 #ifdef CONFIG_PROC_FS
1115
1116 /*====================================================================*/
1117 /* Support for /proc/mtd */
1118
1119 static struct proc_dir_entry *proc_mtd;
1120
1121 static int mtd_proc_show(struct seq_file *m, void *v)
1122 {
1123 struct mtd_info *mtd;
1124
1125 seq_puts(m, "dev: size erasesize name\n");
1126 mutex_lock(&mtd_table_mutex);
1127 mtd_for_each_device(mtd) {
1128 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1129 mtd->index, (unsigned long long)mtd->size,
1130 mtd->erasesize, mtd->name);
1131 }
1132 mutex_unlock(&mtd_table_mutex);
1133 return 0;
1134 }
1135
1136 static int mtd_proc_open(struct inode *inode, struct file *file)
1137 {
1138 return single_open(file, mtd_proc_show, NULL);
1139 }
1140
1141 static const struct file_operations mtd_proc_ops = {
1142 .open = mtd_proc_open,
1143 .read = seq_read,
1144 .llseek = seq_lseek,
1145 .release = single_release,
1146 };
1147 #endif /* CONFIG_PROC_FS */
1148
1149 /*====================================================================*/
1150 /* Init code */
1151
1152 static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name)
1153 {
1154 int ret;
1155
1156 ret = bdi_init(bdi);
1157 if (!ret)
1158 ret = bdi_register(bdi, NULL, name);
1159
1160 if (ret)
1161 bdi_destroy(bdi);
1162
1163 return ret;
1164 }
1165
1166 static int __init init_mtd(void)
1167 {
1168 int ret;
1169
1170 ret = class_register(&mtd_class);
1171 if (ret)
1172 goto err_reg;
1173
1174 ret = mtd_bdi_init(&mtd_bdi_unmappable, "mtd-unmap");
1175 if (ret)
1176 goto err_bdi1;
1177
1178 ret = mtd_bdi_init(&mtd_bdi_ro_mappable, "mtd-romap");
1179 if (ret)
1180 goto err_bdi2;
1181
1182 ret = mtd_bdi_init(&mtd_bdi_rw_mappable, "mtd-rwmap");
1183 if (ret)
1184 goto err_bdi3;
1185
1186 #ifdef CONFIG_PROC_FS
1187 proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
1188 #endif /* CONFIG_PROC_FS */
1189 return 0;
1190
1191 err_bdi3:
1192 bdi_destroy(&mtd_bdi_ro_mappable);
1193 err_bdi2:
1194 bdi_destroy(&mtd_bdi_unmappable);
1195 err_bdi1:
1196 class_unregister(&mtd_class);
1197 err_reg:
1198 pr_err("Error registering mtd class or bdi: %d\n", ret);
1199 return ret;
1200 }
1201
1202 static void __exit cleanup_mtd(void)
1203 {
1204 #ifdef CONFIG_PROC_FS
1205 if (proc_mtd)
1206 remove_proc_entry( "mtd", NULL);
1207 #endif /* CONFIG_PROC_FS */
1208 class_unregister(&mtd_class);
1209 bdi_destroy(&mtd_bdi_unmappable);
1210 bdi_destroy(&mtd_bdi_ro_mappable);
1211 bdi_destroy(&mtd_bdi_rw_mappable);
1212 }
1213
1214 module_init(init_mtd);
1215 module_exit(cleanup_mtd);
1216
1217 MODULE_LICENSE("GPL");
1218 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1219 MODULE_DESCRIPTION("Core MTD registration and access routines");
This page took 0.077308 seconds and 5 git commands to generate.