Merge tag 'staging-4.1-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh...
[deliverable/linux.git] / drivers / mtd / mtdcore.c
1 /*
2 * Core registration and callback routines for MTD
3 * drivers and users.
4 *
5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6 * Copyright © 2006 Red Hat UK Limited
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
21 *
22 */
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/ptrace.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/major.h>
31 #include <linux/fs.h>
32 #include <linux/err.h>
33 #include <linux/ioctl.h>
34 #include <linux/init.h>
35 #include <linux/proc_fs.h>
36 #include <linux/idr.h>
37 #include <linux/backing-dev.h>
38 #include <linux/gfp.h>
39 #include <linux/slab.h>
40 #include <linux/reboot.h>
41 #include <linux/kconfig.h>
42
43 #include <linux/mtd/mtd.h>
44 #include <linux/mtd/partitions.h>
45
46 #include "mtdcore.h"
47
48 static struct backing_dev_info mtd_bdi = {
49 };
50
51 static int mtd_cls_suspend(struct device *dev, pm_message_t state);
52 static int mtd_cls_resume(struct device *dev);
53
54 static struct class mtd_class = {
55 .name = "mtd",
56 .owner = THIS_MODULE,
57 .suspend = mtd_cls_suspend,
58 .resume = mtd_cls_resume,
59 };
60
61 static DEFINE_IDR(mtd_idr);
62
63 /* These are exported solely for the purpose of mtd_blkdevs.c. You
64 should not use them for _anything_ else */
65 DEFINE_MUTEX(mtd_table_mutex);
66 EXPORT_SYMBOL_GPL(mtd_table_mutex);
67
68 struct mtd_info *__mtd_next_device(int i)
69 {
70 return idr_get_next(&mtd_idr, &i);
71 }
72 EXPORT_SYMBOL_GPL(__mtd_next_device);
73
74 static LIST_HEAD(mtd_notifiers);
75
76
77 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
78
79 /* REVISIT once MTD uses the driver model better, whoever allocates
80 * the mtd_info will probably want to use the release() hook...
81 */
82 static void mtd_release(struct device *dev)
83 {
84 struct mtd_info *mtd = dev_get_drvdata(dev);
85 dev_t index = MTD_DEVT(mtd->index);
86
87 /* remove /dev/mtdXro node */
88 device_destroy(&mtd_class, index + 1);
89 }
90
91 static int mtd_cls_suspend(struct device *dev, pm_message_t state)
92 {
93 struct mtd_info *mtd = dev_get_drvdata(dev);
94
95 return mtd ? mtd_suspend(mtd) : 0;
96 }
97
98 static int mtd_cls_resume(struct device *dev)
99 {
100 struct mtd_info *mtd = dev_get_drvdata(dev);
101
102 if (mtd)
103 mtd_resume(mtd);
104 return 0;
105 }
106
107 static ssize_t mtd_type_show(struct device *dev,
108 struct device_attribute *attr, char *buf)
109 {
110 struct mtd_info *mtd = dev_get_drvdata(dev);
111 char *type;
112
113 switch (mtd->type) {
114 case MTD_ABSENT:
115 type = "absent";
116 break;
117 case MTD_RAM:
118 type = "ram";
119 break;
120 case MTD_ROM:
121 type = "rom";
122 break;
123 case MTD_NORFLASH:
124 type = "nor";
125 break;
126 case MTD_NANDFLASH:
127 type = "nand";
128 break;
129 case MTD_DATAFLASH:
130 type = "dataflash";
131 break;
132 case MTD_UBIVOLUME:
133 type = "ubi";
134 break;
135 case MTD_MLCNANDFLASH:
136 type = "mlc-nand";
137 break;
138 default:
139 type = "unknown";
140 }
141
142 return snprintf(buf, PAGE_SIZE, "%s\n", type);
143 }
144 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
145
146 static ssize_t mtd_flags_show(struct device *dev,
147 struct device_attribute *attr, char *buf)
148 {
149 struct mtd_info *mtd = dev_get_drvdata(dev);
150
151 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
152
153 }
154 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
155
156 static ssize_t mtd_size_show(struct device *dev,
157 struct device_attribute *attr, char *buf)
158 {
159 struct mtd_info *mtd = dev_get_drvdata(dev);
160
161 return snprintf(buf, PAGE_SIZE, "%llu\n",
162 (unsigned long long)mtd->size);
163
164 }
165 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
166
167 static ssize_t mtd_erasesize_show(struct device *dev,
168 struct device_attribute *attr, char *buf)
169 {
170 struct mtd_info *mtd = dev_get_drvdata(dev);
171
172 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
173
174 }
175 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
176
177 static ssize_t mtd_writesize_show(struct device *dev,
178 struct device_attribute *attr, char *buf)
179 {
180 struct mtd_info *mtd = dev_get_drvdata(dev);
181
182 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
183
184 }
185 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
186
187 static ssize_t mtd_subpagesize_show(struct device *dev,
188 struct device_attribute *attr, char *buf)
189 {
190 struct mtd_info *mtd = dev_get_drvdata(dev);
191 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
192
193 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
194
195 }
196 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
197
198 static ssize_t mtd_oobsize_show(struct device *dev,
199 struct device_attribute *attr, char *buf)
200 {
201 struct mtd_info *mtd = dev_get_drvdata(dev);
202
203 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
204
205 }
206 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
207
208 static ssize_t mtd_numeraseregions_show(struct device *dev,
209 struct device_attribute *attr, char *buf)
210 {
211 struct mtd_info *mtd = dev_get_drvdata(dev);
212
213 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
214
215 }
216 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
217 NULL);
218
219 static ssize_t mtd_name_show(struct device *dev,
220 struct device_attribute *attr, char *buf)
221 {
222 struct mtd_info *mtd = dev_get_drvdata(dev);
223
224 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
225
226 }
227 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
228
229 static ssize_t mtd_ecc_strength_show(struct device *dev,
230 struct device_attribute *attr, char *buf)
231 {
232 struct mtd_info *mtd = dev_get_drvdata(dev);
233
234 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
235 }
236 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
237
238 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
239 struct device_attribute *attr,
240 char *buf)
241 {
242 struct mtd_info *mtd = dev_get_drvdata(dev);
243
244 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
245 }
246
247 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
248 struct device_attribute *attr,
249 const char *buf, size_t count)
250 {
251 struct mtd_info *mtd = dev_get_drvdata(dev);
252 unsigned int bitflip_threshold;
253 int retval;
254
255 retval = kstrtouint(buf, 0, &bitflip_threshold);
256 if (retval)
257 return retval;
258
259 mtd->bitflip_threshold = bitflip_threshold;
260 return count;
261 }
262 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
263 mtd_bitflip_threshold_show,
264 mtd_bitflip_threshold_store);
265
266 static ssize_t mtd_ecc_step_size_show(struct device *dev,
267 struct device_attribute *attr, char *buf)
268 {
269 struct mtd_info *mtd = dev_get_drvdata(dev);
270
271 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
272
273 }
274 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
275
276 static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
277 struct device_attribute *attr, char *buf)
278 {
279 struct mtd_info *mtd = dev_get_drvdata(dev);
280 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
281
282 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
283 }
284 static DEVICE_ATTR(corrected_bits, S_IRUGO,
285 mtd_ecc_stats_corrected_show, NULL);
286
287 static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
288 struct device_attribute *attr, char *buf)
289 {
290 struct mtd_info *mtd = dev_get_drvdata(dev);
291 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
292
293 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
294 }
295 static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);
296
297 static ssize_t mtd_badblocks_show(struct device *dev,
298 struct device_attribute *attr, char *buf)
299 {
300 struct mtd_info *mtd = dev_get_drvdata(dev);
301 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
302
303 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
304 }
305 static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);
306
307 static ssize_t mtd_bbtblocks_show(struct device *dev,
308 struct device_attribute *attr, char *buf)
309 {
310 struct mtd_info *mtd = dev_get_drvdata(dev);
311 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
312
313 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
314 }
315 static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);
316
317 static struct attribute *mtd_attrs[] = {
318 &dev_attr_type.attr,
319 &dev_attr_flags.attr,
320 &dev_attr_size.attr,
321 &dev_attr_erasesize.attr,
322 &dev_attr_writesize.attr,
323 &dev_attr_subpagesize.attr,
324 &dev_attr_oobsize.attr,
325 &dev_attr_numeraseregions.attr,
326 &dev_attr_name.attr,
327 &dev_attr_ecc_strength.attr,
328 &dev_attr_ecc_step_size.attr,
329 &dev_attr_corrected_bits.attr,
330 &dev_attr_ecc_failures.attr,
331 &dev_attr_bad_blocks.attr,
332 &dev_attr_bbt_blocks.attr,
333 &dev_attr_bitflip_threshold.attr,
334 NULL,
335 };
336 ATTRIBUTE_GROUPS(mtd);
337
338 static struct device_type mtd_devtype = {
339 .name = "mtd",
340 .groups = mtd_groups,
341 .release = mtd_release,
342 };
343
344 #ifndef CONFIG_MMU
345 unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
346 {
347 switch (mtd->type) {
348 case MTD_RAM:
349 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
350 NOMMU_MAP_READ | NOMMU_MAP_WRITE;
351 case MTD_ROM:
352 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
353 NOMMU_MAP_READ;
354 default:
355 return NOMMU_MAP_COPY;
356 }
357 }
358 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
359 #endif
360
361 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
362 void *cmd)
363 {
364 struct mtd_info *mtd;
365
366 mtd = container_of(n, struct mtd_info, reboot_notifier);
367 mtd->_reboot(mtd);
368
369 return NOTIFY_DONE;
370 }
371
372 /**
373 * add_mtd_device - register an MTD device
374 * @mtd: pointer to new MTD device info structure
375 *
376 * Add a device to the list of MTD devices present in the system, and
377 * notify each currently active MTD 'user' of its arrival. Returns
378 * zero on success or 1 on failure, which currently will only happen
379 * if there is insufficient memory or a sysfs error.
380 */
381
382 int add_mtd_device(struct mtd_info *mtd)
383 {
384 struct mtd_notifier *not;
385 int i, error;
386
387 mtd->backing_dev_info = &mtd_bdi;
388
389 BUG_ON(mtd->writesize == 0);
390 mutex_lock(&mtd_table_mutex);
391
392 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
393 if (i < 0)
394 goto fail_locked;
395
396 mtd->index = i;
397 mtd->usecount = 0;
398
399 /* default value if not set by driver */
400 if (mtd->bitflip_threshold == 0)
401 mtd->bitflip_threshold = mtd->ecc_strength;
402
403 if (is_power_of_2(mtd->erasesize))
404 mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
405 else
406 mtd->erasesize_shift = 0;
407
408 if (is_power_of_2(mtd->writesize))
409 mtd->writesize_shift = ffs(mtd->writesize) - 1;
410 else
411 mtd->writesize_shift = 0;
412
413 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
414 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
415
416 /* Some chips always power up locked. Unlock them now */
417 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
418 error = mtd_unlock(mtd, 0, mtd->size);
419 if (error && error != -EOPNOTSUPP)
420 printk(KERN_WARNING
421 "%s: unlock failed, writes may not work\n",
422 mtd->name);
423 }
424
425 /* Caller should have set dev.parent to match the
426 * physical device.
427 */
428 mtd->dev.type = &mtd_devtype;
429 mtd->dev.class = &mtd_class;
430 mtd->dev.devt = MTD_DEVT(i);
431 dev_set_name(&mtd->dev, "mtd%d", i);
432 dev_set_drvdata(&mtd->dev, mtd);
433 if (device_register(&mtd->dev) != 0)
434 goto fail_added;
435
436 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
437 "mtd%dro", i);
438
439 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
440 /* No need to get a refcount on the module containing
441 the notifier, since we hold the mtd_table_mutex */
442 list_for_each_entry(not, &mtd_notifiers, list)
443 not->add(mtd);
444
445 mutex_unlock(&mtd_table_mutex);
446 /* We _know_ we aren't being removed, because
447 our caller is still holding us here. So none
448 of this try_ nonsense, and no bitching about it
449 either. :) */
450 __module_get(THIS_MODULE);
451 return 0;
452
453 fail_added:
454 idr_remove(&mtd_idr, i);
455 fail_locked:
456 mutex_unlock(&mtd_table_mutex);
457 return 1;
458 }
459
460 /**
461 * del_mtd_device - unregister an MTD device
462 * @mtd: pointer to MTD device info structure
463 *
464 * Remove a device from the list of MTD devices present in the system,
465 * and notify each currently active MTD 'user' of its departure.
466 * Returns zero on success or 1 on failure, which currently will happen
467 * if the requested device does not appear to be present in the list.
468 */
469
470 int del_mtd_device(struct mtd_info *mtd)
471 {
472 int ret;
473 struct mtd_notifier *not;
474
475 mutex_lock(&mtd_table_mutex);
476
477 if (idr_find(&mtd_idr, mtd->index) != mtd) {
478 ret = -ENODEV;
479 goto out_error;
480 }
481
482 /* No need to get a refcount on the module containing
483 the notifier, since we hold the mtd_table_mutex */
484 list_for_each_entry(not, &mtd_notifiers, list)
485 not->remove(mtd);
486
487 if (mtd->usecount) {
488 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
489 mtd->index, mtd->name, mtd->usecount);
490 ret = -EBUSY;
491 } else {
492 device_unregister(&mtd->dev);
493
494 idr_remove(&mtd_idr, mtd->index);
495
496 module_put(THIS_MODULE);
497 ret = 0;
498 }
499
500 out_error:
501 mutex_unlock(&mtd_table_mutex);
502 return ret;
503 }
504
505 static int mtd_add_device_partitions(struct mtd_info *mtd,
506 struct mtd_partition *real_parts,
507 int nbparts)
508 {
509 int ret;
510
511 if (nbparts == 0 || IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
512 ret = add_mtd_device(mtd);
513 if (ret == 1)
514 return -ENODEV;
515 }
516
517 if (nbparts > 0) {
518 ret = add_mtd_partitions(mtd, real_parts, nbparts);
519 if (ret && IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
520 del_mtd_device(mtd);
521 return ret;
522 }
523
524 return 0;
525 }
526
527
528 /**
529 * mtd_device_parse_register - parse partitions and register an MTD device.
530 *
531 * @mtd: the MTD device to register
532 * @types: the list of MTD partition probes to try, see
533 * 'parse_mtd_partitions()' for more information
534 * @parser_data: MTD partition parser-specific data
535 * @parts: fallback partition information to register, if parsing fails;
536 * only valid if %nr_parts > %0
537 * @nr_parts: the number of partitions in parts, if zero then the full
538 * MTD device is registered if no partition info is found
539 *
540 * This function aggregates MTD partitions parsing (done by
541 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
542 * basically follows the most common pattern found in many MTD drivers:
543 *
544 * * It first tries to probe partitions on MTD device @mtd using parsers
545 * specified in @types (if @types is %NULL, then the default list of parsers
546 * is used, see 'parse_mtd_partitions()' for more information). If none are
547 * found this functions tries to fallback to information specified in
548 * @parts/@nr_parts.
549 * * If any partitioning info was found, this function registers the found
550 * partitions. If the MTD_PARTITIONED_MASTER option is set, then the device
551 * as a whole is registered first.
552 * * If no partitions were found this function just registers the MTD device
553 * @mtd and exits.
554 *
555 * Returns zero in case of success and a negative error code in case of failure.
556 */
557 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
558 struct mtd_part_parser_data *parser_data,
559 const struct mtd_partition *parts,
560 int nr_parts)
561 {
562 int ret;
563 struct mtd_partition *real_parts = NULL;
564
565 ret = parse_mtd_partitions(mtd, types, &real_parts, parser_data);
566 if (ret <= 0 && nr_parts && parts) {
567 real_parts = kmemdup(parts, sizeof(*parts) * nr_parts,
568 GFP_KERNEL);
569 if (!real_parts)
570 ret = -ENOMEM;
571 else
572 ret = nr_parts;
573 }
574
575 if (ret >= 0)
576 ret = mtd_add_device_partitions(mtd, real_parts, ret);
577
578 /*
579 * FIXME: some drivers unfortunately call this function more than once.
580 * So we have to check if we've already assigned the reboot notifier.
581 *
582 * Generally, we can make multiple calls work for most cases, but it
583 * does cause problems with parse_mtd_partitions() above (e.g.,
584 * cmdlineparts will register partitions more than once).
585 */
586 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
587 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
588 register_reboot_notifier(&mtd->reboot_notifier);
589 }
590
591 kfree(real_parts);
592 return ret;
593 }
594 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
595
596 /**
597 * mtd_device_unregister - unregister an existing MTD device.
598 *
599 * @master: the MTD device to unregister. This will unregister both the master
600 * and any partitions if registered.
601 */
602 int mtd_device_unregister(struct mtd_info *master)
603 {
604 int err;
605
606 if (master->_reboot)
607 unregister_reboot_notifier(&master->reboot_notifier);
608
609 err = del_mtd_partitions(master);
610 if (err)
611 return err;
612
613 if (!device_is_registered(&master->dev))
614 return 0;
615
616 return del_mtd_device(master);
617 }
618 EXPORT_SYMBOL_GPL(mtd_device_unregister);
619
620 /**
621 * register_mtd_user - register a 'user' of MTD devices.
622 * @new: pointer to notifier info structure
623 *
624 * Registers a pair of callbacks function to be called upon addition
625 * or removal of MTD devices. Causes the 'add' callback to be immediately
626 * invoked for each MTD device currently present in the system.
627 */
628 void register_mtd_user (struct mtd_notifier *new)
629 {
630 struct mtd_info *mtd;
631
632 mutex_lock(&mtd_table_mutex);
633
634 list_add(&new->list, &mtd_notifiers);
635
636 __module_get(THIS_MODULE);
637
638 mtd_for_each_device(mtd)
639 new->add(mtd);
640
641 mutex_unlock(&mtd_table_mutex);
642 }
643 EXPORT_SYMBOL_GPL(register_mtd_user);
644
645 /**
646 * unregister_mtd_user - unregister a 'user' of MTD devices.
647 * @old: pointer to notifier info structure
648 *
649 * Removes a callback function pair from the list of 'users' to be
650 * notified upon addition or removal of MTD devices. Causes the
651 * 'remove' callback to be immediately invoked for each MTD device
652 * currently present in the system.
653 */
654 int unregister_mtd_user (struct mtd_notifier *old)
655 {
656 struct mtd_info *mtd;
657
658 mutex_lock(&mtd_table_mutex);
659
660 module_put(THIS_MODULE);
661
662 mtd_for_each_device(mtd)
663 old->remove(mtd);
664
665 list_del(&old->list);
666 mutex_unlock(&mtd_table_mutex);
667 return 0;
668 }
669 EXPORT_SYMBOL_GPL(unregister_mtd_user);
670
671 /**
672 * get_mtd_device - obtain a validated handle for an MTD device
673 * @mtd: last known address of the required MTD device
674 * @num: internal device number of the required MTD device
675 *
676 * Given a number and NULL address, return the num'th entry in the device
677 * table, if any. Given an address and num == -1, search the device table
678 * for a device with that address and return if it's still present. Given
679 * both, return the num'th driver only if its address matches. Return
680 * error code if not.
681 */
682 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
683 {
684 struct mtd_info *ret = NULL, *other;
685 int err = -ENODEV;
686
687 mutex_lock(&mtd_table_mutex);
688
689 if (num == -1) {
690 mtd_for_each_device(other) {
691 if (other == mtd) {
692 ret = mtd;
693 break;
694 }
695 }
696 } else if (num >= 0) {
697 ret = idr_find(&mtd_idr, num);
698 if (mtd && mtd != ret)
699 ret = NULL;
700 }
701
702 if (!ret) {
703 ret = ERR_PTR(err);
704 goto out;
705 }
706
707 err = __get_mtd_device(ret);
708 if (err)
709 ret = ERR_PTR(err);
710 out:
711 mutex_unlock(&mtd_table_mutex);
712 return ret;
713 }
714 EXPORT_SYMBOL_GPL(get_mtd_device);
715
716
717 int __get_mtd_device(struct mtd_info *mtd)
718 {
719 int err;
720
721 if (!try_module_get(mtd->owner))
722 return -ENODEV;
723
724 if (mtd->_get_device) {
725 err = mtd->_get_device(mtd);
726
727 if (err) {
728 module_put(mtd->owner);
729 return err;
730 }
731 }
732 mtd->usecount++;
733 return 0;
734 }
735 EXPORT_SYMBOL_GPL(__get_mtd_device);
736
737 /**
738 * get_mtd_device_nm - obtain a validated handle for an MTD device by
739 * device name
740 * @name: MTD device name to open
741 *
742 * This function returns MTD device description structure in case of
743 * success and an error code in case of failure.
744 */
745 struct mtd_info *get_mtd_device_nm(const char *name)
746 {
747 int err = -ENODEV;
748 struct mtd_info *mtd = NULL, *other;
749
750 mutex_lock(&mtd_table_mutex);
751
752 mtd_for_each_device(other) {
753 if (!strcmp(name, other->name)) {
754 mtd = other;
755 break;
756 }
757 }
758
759 if (!mtd)
760 goto out_unlock;
761
762 err = __get_mtd_device(mtd);
763 if (err)
764 goto out_unlock;
765
766 mutex_unlock(&mtd_table_mutex);
767 return mtd;
768
769 out_unlock:
770 mutex_unlock(&mtd_table_mutex);
771 return ERR_PTR(err);
772 }
773 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
774
775 void put_mtd_device(struct mtd_info *mtd)
776 {
777 mutex_lock(&mtd_table_mutex);
778 __put_mtd_device(mtd);
779 mutex_unlock(&mtd_table_mutex);
780
781 }
782 EXPORT_SYMBOL_GPL(put_mtd_device);
783
784 void __put_mtd_device(struct mtd_info *mtd)
785 {
786 --mtd->usecount;
787 BUG_ON(mtd->usecount < 0);
788
789 if (mtd->_put_device)
790 mtd->_put_device(mtd);
791
792 module_put(mtd->owner);
793 }
794 EXPORT_SYMBOL_GPL(__put_mtd_device);
795
796 /*
797 * Erase is an asynchronous operation. Device drivers are supposed
798 * to call instr->callback() whenever the operation completes, even
799 * if it completes with a failure.
800 * Callers are supposed to pass a callback function and wait for it
801 * to be called before writing to the block.
802 */
803 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
804 {
805 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
806 return -EINVAL;
807 if (!(mtd->flags & MTD_WRITEABLE))
808 return -EROFS;
809 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
810 if (!instr->len) {
811 instr->state = MTD_ERASE_DONE;
812 mtd_erase_callback(instr);
813 return 0;
814 }
815 return mtd->_erase(mtd, instr);
816 }
817 EXPORT_SYMBOL_GPL(mtd_erase);
818
819 /*
820 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
821 */
822 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
823 void **virt, resource_size_t *phys)
824 {
825 *retlen = 0;
826 *virt = NULL;
827 if (phys)
828 *phys = 0;
829 if (!mtd->_point)
830 return -EOPNOTSUPP;
831 if (from < 0 || from >= mtd->size || len > mtd->size - from)
832 return -EINVAL;
833 if (!len)
834 return 0;
835 return mtd->_point(mtd, from, len, retlen, virt, phys);
836 }
837 EXPORT_SYMBOL_GPL(mtd_point);
838
839 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
840 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
841 {
842 if (!mtd->_point)
843 return -EOPNOTSUPP;
844 if (from < 0 || from >= mtd->size || len > mtd->size - from)
845 return -EINVAL;
846 if (!len)
847 return 0;
848 return mtd->_unpoint(mtd, from, len);
849 }
850 EXPORT_SYMBOL_GPL(mtd_unpoint);
851
852 /*
853 * Allow NOMMU mmap() to directly map the device (if not NULL)
854 * - return the address to which the offset maps
855 * - return -ENOSYS to indicate refusal to do the mapping
856 */
857 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
858 unsigned long offset, unsigned long flags)
859 {
860 if (!mtd->_get_unmapped_area)
861 return -EOPNOTSUPP;
862 if (offset >= mtd->size || len > mtd->size - offset)
863 return -EINVAL;
864 return mtd->_get_unmapped_area(mtd, len, offset, flags);
865 }
866 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
867
868 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
869 u_char *buf)
870 {
871 int ret_code;
872 *retlen = 0;
873 if (from < 0 || from >= mtd->size || len > mtd->size - from)
874 return -EINVAL;
875 if (!len)
876 return 0;
877
878 /*
879 * In the absence of an error, drivers return a non-negative integer
880 * representing the maximum number of bitflips that were corrected on
881 * any one ecc region (if applicable; zero otherwise).
882 */
883 ret_code = mtd->_read(mtd, from, len, retlen, buf);
884 if (unlikely(ret_code < 0))
885 return ret_code;
886 if (mtd->ecc_strength == 0)
887 return 0; /* device lacks ecc */
888 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
889 }
890 EXPORT_SYMBOL_GPL(mtd_read);
891
892 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
893 const u_char *buf)
894 {
895 *retlen = 0;
896 if (to < 0 || to >= mtd->size || len > mtd->size - to)
897 return -EINVAL;
898 if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE))
899 return -EROFS;
900 if (!len)
901 return 0;
902 return mtd->_write(mtd, to, len, retlen, buf);
903 }
904 EXPORT_SYMBOL_GPL(mtd_write);
905
906 /*
907 * In blackbox flight recorder like scenarios we want to make successful writes
908 * in interrupt context. panic_write() is only intended to be called when its
909 * known the kernel is about to panic and we need the write to succeed. Since
910 * the kernel is not going to be running for much longer, this function can
911 * break locks and delay to ensure the write succeeds (but not sleep).
912 */
913 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
914 const u_char *buf)
915 {
916 *retlen = 0;
917 if (!mtd->_panic_write)
918 return -EOPNOTSUPP;
919 if (to < 0 || to >= mtd->size || len > mtd->size - to)
920 return -EINVAL;
921 if (!(mtd->flags & MTD_WRITEABLE))
922 return -EROFS;
923 if (!len)
924 return 0;
925 return mtd->_panic_write(mtd, to, len, retlen, buf);
926 }
927 EXPORT_SYMBOL_GPL(mtd_panic_write);
928
929 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
930 {
931 int ret_code;
932 ops->retlen = ops->oobretlen = 0;
933 if (!mtd->_read_oob)
934 return -EOPNOTSUPP;
935 /*
936 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
937 * similar to mtd->_read(), returning a non-negative integer
938 * representing max bitflips. In other cases, mtd->_read_oob() may
939 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
940 */
941 ret_code = mtd->_read_oob(mtd, from, ops);
942 if (unlikely(ret_code < 0))
943 return ret_code;
944 if (mtd->ecc_strength == 0)
945 return 0; /* device lacks ecc */
946 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
947 }
948 EXPORT_SYMBOL_GPL(mtd_read_oob);
949
950 /*
951 * Method to access the protection register area, present in some flash
952 * devices. The user data is one time programmable but the factory data is read
953 * only.
954 */
955 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
956 struct otp_info *buf)
957 {
958 if (!mtd->_get_fact_prot_info)
959 return -EOPNOTSUPP;
960 if (!len)
961 return 0;
962 return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
963 }
964 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
965
966 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
967 size_t *retlen, u_char *buf)
968 {
969 *retlen = 0;
970 if (!mtd->_read_fact_prot_reg)
971 return -EOPNOTSUPP;
972 if (!len)
973 return 0;
974 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
975 }
976 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
977
978 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
979 struct otp_info *buf)
980 {
981 if (!mtd->_get_user_prot_info)
982 return -EOPNOTSUPP;
983 if (!len)
984 return 0;
985 return mtd->_get_user_prot_info(mtd, len, retlen, buf);
986 }
987 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
988
989 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
990 size_t *retlen, u_char *buf)
991 {
992 *retlen = 0;
993 if (!mtd->_read_user_prot_reg)
994 return -EOPNOTSUPP;
995 if (!len)
996 return 0;
997 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
998 }
999 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1000
1001 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1002 size_t *retlen, u_char *buf)
1003 {
1004 int ret;
1005
1006 *retlen = 0;
1007 if (!mtd->_write_user_prot_reg)
1008 return -EOPNOTSUPP;
1009 if (!len)
1010 return 0;
1011 ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
1012 if (ret)
1013 return ret;
1014
1015 /*
1016 * If no data could be written at all, we are out of memory and
1017 * must return -ENOSPC.
1018 */
1019 return (*retlen) ? 0 : -ENOSPC;
1020 }
1021 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1022
1023 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1024 {
1025 if (!mtd->_lock_user_prot_reg)
1026 return -EOPNOTSUPP;
1027 if (!len)
1028 return 0;
1029 return mtd->_lock_user_prot_reg(mtd, from, len);
1030 }
1031 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1032
1033 /* Chip-supported device locking */
1034 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1035 {
1036 if (!mtd->_lock)
1037 return -EOPNOTSUPP;
1038 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1039 return -EINVAL;
1040 if (!len)
1041 return 0;
1042 return mtd->_lock(mtd, ofs, len);
1043 }
1044 EXPORT_SYMBOL_GPL(mtd_lock);
1045
1046 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1047 {
1048 if (!mtd->_unlock)
1049 return -EOPNOTSUPP;
1050 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1051 return -EINVAL;
1052 if (!len)
1053 return 0;
1054 return mtd->_unlock(mtd, ofs, len);
1055 }
1056 EXPORT_SYMBOL_GPL(mtd_unlock);
1057
1058 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1059 {
1060 if (!mtd->_is_locked)
1061 return -EOPNOTSUPP;
1062 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1063 return -EINVAL;
1064 if (!len)
1065 return 0;
1066 return mtd->_is_locked(mtd, ofs, len);
1067 }
1068 EXPORT_SYMBOL_GPL(mtd_is_locked);
1069
1070 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1071 {
1072 if (ofs < 0 || ofs >= mtd->size)
1073 return -EINVAL;
1074 if (!mtd->_block_isreserved)
1075 return 0;
1076 return mtd->_block_isreserved(mtd, ofs);
1077 }
1078 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1079
1080 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1081 {
1082 if (ofs < 0 || ofs >= mtd->size)
1083 return -EINVAL;
1084 if (!mtd->_block_isbad)
1085 return 0;
1086 return mtd->_block_isbad(mtd, ofs);
1087 }
1088 EXPORT_SYMBOL_GPL(mtd_block_isbad);
1089
1090 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1091 {
1092 if (!mtd->_block_markbad)
1093 return -EOPNOTSUPP;
1094 if (ofs < 0 || ofs >= mtd->size)
1095 return -EINVAL;
1096 if (!(mtd->flags & MTD_WRITEABLE))
1097 return -EROFS;
1098 return mtd->_block_markbad(mtd, ofs);
1099 }
1100 EXPORT_SYMBOL_GPL(mtd_block_markbad);
1101
1102 /*
1103 * default_mtd_writev - the default writev method
1104 * @mtd: mtd device description object pointer
1105 * @vecs: the vectors to write
1106 * @count: count of vectors in @vecs
1107 * @to: the MTD device offset to write to
1108 * @retlen: on exit contains the count of bytes written to the MTD device.
1109 *
1110 * This function returns zero in case of success and a negative error code in
1111 * case of failure.
1112 */
1113 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1114 unsigned long count, loff_t to, size_t *retlen)
1115 {
1116 unsigned long i;
1117 size_t totlen = 0, thislen;
1118 int ret = 0;
1119
1120 for (i = 0; i < count; i++) {
1121 if (!vecs[i].iov_len)
1122 continue;
1123 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1124 vecs[i].iov_base);
1125 totlen += thislen;
1126 if (ret || thislen != vecs[i].iov_len)
1127 break;
1128 to += vecs[i].iov_len;
1129 }
1130 *retlen = totlen;
1131 return ret;
1132 }
1133
1134 /*
1135 * mtd_writev - the vector-based MTD write method
1136 * @mtd: mtd device description object pointer
1137 * @vecs: the vectors to write
1138 * @count: count of vectors in @vecs
1139 * @to: the MTD device offset to write to
1140 * @retlen: on exit contains the count of bytes written to the MTD device.
1141 *
1142 * This function returns zero in case of success and a negative error code in
1143 * case of failure.
1144 */
1145 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1146 unsigned long count, loff_t to, size_t *retlen)
1147 {
1148 *retlen = 0;
1149 if (!(mtd->flags & MTD_WRITEABLE))
1150 return -EROFS;
1151 if (!mtd->_writev)
1152 return default_mtd_writev(mtd, vecs, count, to, retlen);
1153 return mtd->_writev(mtd, vecs, count, to, retlen);
1154 }
1155 EXPORT_SYMBOL_GPL(mtd_writev);
1156
1157 /**
1158 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1159 * @mtd: mtd device description object pointer
1160 * @size: a pointer to the ideal or maximum size of the allocation, points
1161 * to the actual allocation size on success.
1162 *
1163 * This routine attempts to allocate a contiguous kernel buffer up to
1164 * the specified size, backing off the size of the request exponentially
1165 * until the request succeeds or until the allocation size falls below
1166 * the system page size. This attempts to make sure it does not adversely
1167 * impact system performance, so when allocating more than one page, we
1168 * ask the memory allocator to avoid re-trying, swapping, writing back
1169 * or performing I/O.
1170 *
1171 * Note, this function also makes sure that the allocated buffer is aligned to
1172 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1173 *
1174 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1175 * to handle smaller (i.e. degraded) buffer allocations under low- or
1176 * fragmented-memory situations where such reduced allocations, from a
1177 * requested ideal, are allowed.
1178 *
1179 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1180 */
1181 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1182 {
1183 gfp_t flags = __GFP_NOWARN | __GFP_WAIT |
1184 __GFP_NORETRY | __GFP_NO_KSWAPD;
1185 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1186 void *kbuf;
1187
1188 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1189
1190 while (*size > min_alloc) {
1191 kbuf = kmalloc(*size, flags);
1192 if (kbuf)
1193 return kbuf;
1194
1195 *size >>= 1;
1196 *size = ALIGN(*size, mtd->writesize);
1197 }
1198
1199 /*
1200 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1201 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1202 */
1203 return kmalloc(*size, GFP_KERNEL);
1204 }
1205 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1206
1207 #ifdef CONFIG_PROC_FS
1208
1209 /*====================================================================*/
1210 /* Support for /proc/mtd */
1211
1212 static int mtd_proc_show(struct seq_file *m, void *v)
1213 {
1214 struct mtd_info *mtd;
1215
1216 seq_puts(m, "dev: size erasesize name\n");
1217 mutex_lock(&mtd_table_mutex);
1218 mtd_for_each_device(mtd) {
1219 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1220 mtd->index, (unsigned long long)mtd->size,
1221 mtd->erasesize, mtd->name);
1222 }
1223 mutex_unlock(&mtd_table_mutex);
1224 return 0;
1225 }
1226
1227 static int mtd_proc_open(struct inode *inode, struct file *file)
1228 {
1229 return single_open(file, mtd_proc_show, NULL);
1230 }
1231
1232 static const struct file_operations mtd_proc_ops = {
1233 .open = mtd_proc_open,
1234 .read = seq_read,
1235 .llseek = seq_lseek,
1236 .release = single_release,
1237 };
1238 #endif /* CONFIG_PROC_FS */
1239
1240 /*====================================================================*/
1241 /* Init code */
1242
1243 static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name)
1244 {
1245 int ret;
1246
1247 ret = bdi_init(bdi);
1248 if (!ret)
1249 ret = bdi_register(bdi, NULL, "%s", name);
1250
1251 if (ret)
1252 bdi_destroy(bdi);
1253
1254 return ret;
1255 }
1256
1257 static struct proc_dir_entry *proc_mtd;
1258
1259 static int __init init_mtd(void)
1260 {
1261 int ret;
1262
1263 ret = class_register(&mtd_class);
1264 if (ret)
1265 goto err_reg;
1266
1267 ret = mtd_bdi_init(&mtd_bdi, "mtd");
1268 if (ret)
1269 goto err_bdi;
1270
1271 proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
1272
1273 ret = init_mtdchar();
1274 if (ret)
1275 goto out_procfs;
1276
1277 return 0;
1278
1279 out_procfs:
1280 if (proc_mtd)
1281 remove_proc_entry("mtd", NULL);
1282 err_bdi:
1283 class_unregister(&mtd_class);
1284 err_reg:
1285 pr_err("Error registering mtd class or bdi: %d\n", ret);
1286 return ret;
1287 }
1288
1289 static void __exit cleanup_mtd(void)
1290 {
1291 cleanup_mtdchar();
1292 if (proc_mtd)
1293 remove_proc_entry("mtd", NULL);
1294 class_unregister(&mtd_class);
1295 bdi_destroy(&mtd_bdi);
1296 }
1297
1298 module_init(init_mtd);
1299 module_exit(cleanup_mtd);
1300
1301 MODULE_LICENSE("GPL");
1302 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1303 MODULE_DESCRIPTION("Core MTD registration and access routines");
This page took 0.210078 seconds and 5 git commands to generate.