mtd: introduce mtd_read_oob interface
[deliverable/linux.git] / drivers / mtd / mtdpart.c
1 /*
2 * Simple MTD partitioning layer
3 *
4 * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net>
5 * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de>
6 * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
21 *
22 */
23
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/list.h>
29 #include <linux/kmod.h>
30 #include <linux/mtd/mtd.h>
31 #include <linux/mtd/partitions.h>
32 #include <linux/err.h>
33
34 #include "mtdcore.h"
35
36 /* Our partition linked list */
37 static LIST_HEAD(mtd_partitions);
38 static DEFINE_MUTEX(mtd_partitions_mutex);
39
40 /* Our partition node structure */
41 struct mtd_part {
42 struct mtd_info mtd;
43 struct mtd_info *master;
44 uint64_t offset;
45 struct list_head list;
46 };
47
48 /*
49 * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
50 * the pointer to that structure with this macro.
51 */
52 #define PART(x) ((struct mtd_part *)(x))
53
54
55 /*
56 * MTD methods which simply translate the effective address and pass through
57 * to the _real_ device.
58 */
59
60 static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
61 size_t *retlen, u_char *buf)
62 {
63 struct mtd_part *part = PART(mtd);
64 struct mtd_ecc_stats stats;
65 int res;
66
67 stats = part->master->ecc_stats;
68
69 if (from >= mtd->size)
70 len = 0;
71 else if (from + len > mtd->size)
72 len = mtd->size - from;
73 res = mtd_read(part->master, from + part->offset, len, retlen, buf);
74 if (unlikely(res)) {
75 if (mtd_is_bitflip(res))
76 mtd->ecc_stats.corrected += part->master->ecc_stats.corrected - stats.corrected;
77 if (mtd_is_eccerr(res))
78 mtd->ecc_stats.failed += part->master->ecc_stats.failed - stats.failed;
79 }
80 return res;
81 }
82
83 static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
84 size_t *retlen, void **virt, resource_size_t *phys)
85 {
86 struct mtd_part *part = PART(mtd);
87 if (from >= mtd->size)
88 len = 0;
89 else if (from + len > mtd->size)
90 len = mtd->size - from;
91 return mtd_point(part->master, from + part->offset, len, retlen,
92 virt, phys);
93 }
94
95 static void part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
96 {
97 struct mtd_part *part = PART(mtd);
98
99 mtd_unpoint(part->master, from + part->offset, len);
100 }
101
102 static unsigned long part_get_unmapped_area(struct mtd_info *mtd,
103 unsigned long len,
104 unsigned long offset,
105 unsigned long flags)
106 {
107 struct mtd_part *part = PART(mtd);
108
109 offset += part->offset;
110 return mtd_get_unmapped_area(part->master, len, offset, flags);
111 }
112
113 static int part_read_oob(struct mtd_info *mtd, loff_t from,
114 struct mtd_oob_ops *ops)
115 {
116 struct mtd_part *part = PART(mtd);
117 int res;
118
119 if (from >= mtd->size)
120 return -EINVAL;
121 if (ops->datbuf && from + ops->len > mtd->size)
122 return -EINVAL;
123
124 /*
125 * If OOB is also requested, make sure that we do not read past the end
126 * of this partition.
127 */
128 if (ops->oobbuf) {
129 size_t len, pages;
130
131 if (ops->mode == MTD_OPS_AUTO_OOB)
132 len = mtd->oobavail;
133 else
134 len = mtd->oobsize;
135 pages = mtd_div_by_ws(mtd->size, mtd);
136 pages -= mtd_div_by_ws(from, mtd);
137 if (ops->ooboffs + ops->ooblen > pages * len)
138 return -EINVAL;
139 }
140
141 res = mtd_read_oob(part->master, from + part->offset, ops);
142 if (unlikely(res)) {
143 if (mtd_is_bitflip(res))
144 mtd->ecc_stats.corrected++;
145 if (mtd_is_eccerr(res))
146 mtd->ecc_stats.failed++;
147 }
148 return res;
149 }
150
151 static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
152 size_t len, size_t *retlen, u_char *buf)
153 {
154 struct mtd_part *part = PART(mtd);
155 return part->master->read_user_prot_reg(part->master, from,
156 len, retlen, buf);
157 }
158
159 static int part_get_user_prot_info(struct mtd_info *mtd,
160 struct otp_info *buf, size_t len)
161 {
162 struct mtd_part *part = PART(mtd);
163 return part->master->get_user_prot_info(part->master, buf, len);
164 }
165
166 static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
167 size_t len, size_t *retlen, u_char *buf)
168 {
169 struct mtd_part *part = PART(mtd);
170 return part->master->read_fact_prot_reg(part->master, from,
171 len, retlen, buf);
172 }
173
174 static int part_get_fact_prot_info(struct mtd_info *mtd, struct otp_info *buf,
175 size_t len)
176 {
177 struct mtd_part *part = PART(mtd);
178 return part->master->get_fact_prot_info(part->master, buf, len);
179 }
180
181 static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
182 size_t *retlen, const u_char *buf)
183 {
184 struct mtd_part *part = PART(mtd);
185 if (!(mtd->flags & MTD_WRITEABLE))
186 return -EROFS;
187 if (to >= mtd->size)
188 len = 0;
189 else if (to + len > mtd->size)
190 len = mtd->size - to;
191 return mtd_write(part->master, to + part->offset, len, retlen, buf);
192 }
193
194 static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
195 size_t *retlen, const u_char *buf)
196 {
197 struct mtd_part *part = PART(mtd);
198 if (!(mtd->flags & MTD_WRITEABLE))
199 return -EROFS;
200 if (to >= mtd->size)
201 len = 0;
202 else if (to + len > mtd->size)
203 len = mtd->size - to;
204 return mtd_panic_write(part->master, to + part->offset, len, retlen,
205 buf);
206 }
207
208 static int part_write_oob(struct mtd_info *mtd, loff_t to,
209 struct mtd_oob_ops *ops)
210 {
211 struct mtd_part *part = PART(mtd);
212
213 if (!(mtd->flags & MTD_WRITEABLE))
214 return -EROFS;
215
216 if (to >= mtd->size)
217 return -EINVAL;
218 if (ops->datbuf && to + ops->len > mtd->size)
219 return -EINVAL;
220 return part->master->write_oob(part->master, to + part->offset, ops);
221 }
222
223 static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
224 size_t len, size_t *retlen, u_char *buf)
225 {
226 struct mtd_part *part = PART(mtd);
227 return part->master->write_user_prot_reg(part->master, from,
228 len, retlen, buf);
229 }
230
231 static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
232 size_t len)
233 {
234 struct mtd_part *part = PART(mtd);
235 return part->master->lock_user_prot_reg(part->master, from, len);
236 }
237
238 static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
239 unsigned long count, loff_t to, size_t *retlen)
240 {
241 struct mtd_part *part = PART(mtd);
242 if (!(mtd->flags & MTD_WRITEABLE))
243 return -EROFS;
244 return part->master->writev(part->master, vecs, count,
245 to + part->offset, retlen);
246 }
247
248 static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
249 {
250 struct mtd_part *part = PART(mtd);
251 int ret;
252 if (!(mtd->flags & MTD_WRITEABLE))
253 return -EROFS;
254 if (instr->addr >= mtd->size)
255 return -EINVAL;
256 instr->addr += part->offset;
257 ret = mtd_erase(part->master, instr);
258 if (ret) {
259 if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
260 instr->fail_addr -= part->offset;
261 instr->addr -= part->offset;
262 }
263 return ret;
264 }
265
266 void mtd_erase_callback(struct erase_info *instr)
267 {
268 if (instr->mtd->erase == part_erase) {
269 struct mtd_part *part = PART(instr->mtd);
270
271 if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
272 instr->fail_addr -= part->offset;
273 instr->addr -= part->offset;
274 }
275 if (instr->callback)
276 instr->callback(instr);
277 }
278 EXPORT_SYMBOL_GPL(mtd_erase_callback);
279
280 static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
281 {
282 struct mtd_part *part = PART(mtd);
283 if ((len + ofs) > mtd->size)
284 return -EINVAL;
285 return part->master->lock(part->master, ofs + part->offset, len);
286 }
287
288 static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
289 {
290 struct mtd_part *part = PART(mtd);
291 if ((len + ofs) > mtd->size)
292 return -EINVAL;
293 return part->master->unlock(part->master, ofs + part->offset, len);
294 }
295
296 static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
297 {
298 struct mtd_part *part = PART(mtd);
299 if ((len + ofs) > mtd->size)
300 return -EINVAL;
301 return part->master->is_locked(part->master, ofs + part->offset, len);
302 }
303
304 static void part_sync(struct mtd_info *mtd)
305 {
306 struct mtd_part *part = PART(mtd);
307 part->master->sync(part->master);
308 }
309
310 static int part_suspend(struct mtd_info *mtd)
311 {
312 struct mtd_part *part = PART(mtd);
313 return part->master->suspend(part->master);
314 }
315
316 static void part_resume(struct mtd_info *mtd)
317 {
318 struct mtd_part *part = PART(mtd);
319 part->master->resume(part->master);
320 }
321
322 static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
323 {
324 struct mtd_part *part = PART(mtd);
325 if (ofs >= mtd->size)
326 return -EINVAL;
327 ofs += part->offset;
328 return part->master->block_isbad(part->master, ofs);
329 }
330
331 static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
332 {
333 struct mtd_part *part = PART(mtd);
334 int res;
335
336 if (!(mtd->flags & MTD_WRITEABLE))
337 return -EROFS;
338 if (ofs >= mtd->size)
339 return -EINVAL;
340 ofs += part->offset;
341 res = part->master->block_markbad(part->master, ofs);
342 if (!res)
343 mtd->ecc_stats.badblocks++;
344 return res;
345 }
346
347 static inline void free_partition(struct mtd_part *p)
348 {
349 kfree(p->mtd.name);
350 kfree(p);
351 }
352
353 /*
354 * This function unregisters and destroy all slave MTD objects which are
355 * attached to the given master MTD object.
356 */
357
358 int del_mtd_partitions(struct mtd_info *master)
359 {
360 struct mtd_part *slave, *next;
361 int ret, err = 0;
362
363 mutex_lock(&mtd_partitions_mutex);
364 list_for_each_entry_safe(slave, next, &mtd_partitions, list)
365 if (slave->master == master) {
366 ret = del_mtd_device(&slave->mtd);
367 if (ret < 0) {
368 err = ret;
369 continue;
370 }
371 list_del(&slave->list);
372 free_partition(slave);
373 }
374 mutex_unlock(&mtd_partitions_mutex);
375
376 return err;
377 }
378
379 static struct mtd_part *allocate_partition(struct mtd_info *master,
380 const struct mtd_partition *part, int partno,
381 uint64_t cur_offset)
382 {
383 struct mtd_part *slave;
384 char *name;
385
386 /* allocate the partition structure */
387 slave = kzalloc(sizeof(*slave), GFP_KERNEL);
388 name = kstrdup(part->name, GFP_KERNEL);
389 if (!name || !slave) {
390 printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
391 master->name);
392 kfree(name);
393 kfree(slave);
394 return ERR_PTR(-ENOMEM);
395 }
396
397 /* set up the MTD object for this partition */
398 slave->mtd.type = master->type;
399 slave->mtd.flags = master->flags & ~part->mask_flags;
400 slave->mtd.size = part->size;
401 slave->mtd.writesize = master->writesize;
402 slave->mtd.writebufsize = master->writebufsize;
403 slave->mtd.oobsize = master->oobsize;
404 slave->mtd.oobavail = master->oobavail;
405 slave->mtd.subpage_sft = master->subpage_sft;
406
407 slave->mtd.name = name;
408 slave->mtd.owner = master->owner;
409 slave->mtd.backing_dev_info = master->backing_dev_info;
410
411 /* NOTE: we don't arrange MTDs as a tree; it'd be error-prone
412 * to have the same data be in two different partitions.
413 */
414 slave->mtd.dev.parent = master->dev.parent;
415
416 slave->mtd.read = part_read;
417 slave->mtd.write = part_write;
418
419 if (master->panic_write)
420 slave->mtd.panic_write = part_panic_write;
421
422 if (master->point && master->unpoint) {
423 slave->mtd.point = part_point;
424 slave->mtd.unpoint = part_unpoint;
425 }
426
427 if (master->get_unmapped_area)
428 slave->mtd.get_unmapped_area = part_get_unmapped_area;
429 if (master->read_oob)
430 slave->mtd.read_oob = part_read_oob;
431 if (master->write_oob)
432 slave->mtd.write_oob = part_write_oob;
433 if (master->read_user_prot_reg)
434 slave->mtd.read_user_prot_reg = part_read_user_prot_reg;
435 if (master->read_fact_prot_reg)
436 slave->mtd.read_fact_prot_reg = part_read_fact_prot_reg;
437 if (master->write_user_prot_reg)
438 slave->mtd.write_user_prot_reg = part_write_user_prot_reg;
439 if (master->lock_user_prot_reg)
440 slave->mtd.lock_user_prot_reg = part_lock_user_prot_reg;
441 if (master->get_user_prot_info)
442 slave->mtd.get_user_prot_info = part_get_user_prot_info;
443 if (master->get_fact_prot_info)
444 slave->mtd.get_fact_prot_info = part_get_fact_prot_info;
445 if (master->sync)
446 slave->mtd.sync = part_sync;
447 if (!partno && !master->dev.class && master->suspend && master->resume) {
448 slave->mtd.suspend = part_suspend;
449 slave->mtd.resume = part_resume;
450 }
451 if (master->writev)
452 slave->mtd.writev = part_writev;
453 if (master->lock)
454 slave->mtd.lock = part_lock;
455 if (master->unlock)
456 slave->mtd.unlock = part_unlock;
457 if (master->is_locked)
458 slave->mtd.is_locked = part_is_locked;
459 if (master->block_isbad)
460 slave->mtd.block_isbad = part_block_isbad;
461 if (master->block_markbad)
462 slave->mtd.block_markbad = part_block_markbad;
463 slave->mtd.erase = part_erase;
464 slave->master = master;
465 slave->offset = part->offset;
466
467 if (slave->offset == MTDPART_OFS_APPEND)
468 slave->offset = cur_offset;
469 if (slave->offset == MTDPART_OFS_NXTBLK) {
470 slave->offset = cur_offset;
471 if (mtd_mod_by_eb(cur_offset, master) != 0) {
472 /* Round up to next erasesize */
473 slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize;
474 printk(KERN_NOTICE "Moving partition %d: "
475 "0x%012llx -> 0x%012llx\n", partno,
476 (unsigned long long)cur_offset, (unsigned long long)slave->offset);
477 }
478 }
479 if (slave->offset == MTDPART_OFS_RETAIN) {
480 slave->offset = cur_offset;
481 if (master->size - slave->offset >= slave->mtd.size) {
482 slave->mtd.size = master->size - slave->offset
483 - slave->mtd.size;
484 } else {
485 printk(KERN_ERR "mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n",
486 part->name, master->size - slave->offset,
487 slave->mtd.size);
488 /* register to preserve ordering */
489 goto out_register;
490 }
491 }
492 if (slave->mtd.size == MTDPART_SIZ_FULL)
493 slave->mtd.size = master->size - slave->offset;
494
495 printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
496 (unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name);
497
498 /* let's do some sanity checks */
499 if (slave->offset >= master->size) {
500 /* let's register it anyway to preserve ordering */
501 slave->offset = 0;
502 slave->mtd.size = 0;
503 printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
504 part->name);
505 goto out_register;
506 }
507 if (slave->offset + slave->mtd.size > master->size) {
508 slave->mtd.size = master->size - slave->offset;
509 printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
510 part->name, master->name, (unsigned long long)slave->mtd.size);
511 }
512 if (master->numeraseregions > 1) {
513 /* Deal with variable erase size stuff */
514 int i, max = master->numeraseregions;
515 u64 end = slave->offset + slave->mtd.size;
516 struct mtd_erase_region_info *regions = master->eraseregions;
517
518 /* Find the first erase regions which is part of this
519 * partition. */
520 for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
521 ;
522 /* The loop searched for the region _behind_ the first one */
523 if (i > 0)
524 i--;
525
526 /* Pick biggest erasesize */
527 for (; i < max && regions[i].offset < end; i++) {
528 if (slave->mtd.erasesize < regions[i].erasesize) {
529 slave->mtd.erasesize = regions[i].erasesize;
530 }
531 }
532 BUG_ON(slave->mtd.erasesize == 0);
533 } else {
534 /* Single erase size */
535 slave->mtd.erasesize = master->erasesize;
536 }
537
538 if ((slave->mtd.flags & MTD_WRITEABLE) &&
539 mtd_mod_by_eb(slave->offset, &slave->mtd)) {
540 /* Doesn't start on a boundary of major erase size */
541 /* FIXME: Let it be writable if it is on a boundary of
542 * _minor_ erase size though */
543 slave->mtd.flags &= ~MTD_WRITEABLE;
544 printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n",
545 part->name);
546 }
547 if ((slave->mtd.flags & MTD_WRITEABLE) &&
548 mtd_mod_by_eb(slave->mtd.size, &slave->mtd)) {
549 slave->mtd.flags &= ~MTD_WRITEABLE;
550 printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n",
551 part->name);
552 }
553
554 slave->mtd.ecclayout = master->ecclayout;
555 if (master->block_isbad) {
556 uint64_t offs = 0;
557
558 while (offs < slave->mtd.size) {
559 if (master->block_isbad(master,
560 offs + slave->offset))
561 slave->mtd.ecc_stats.badblocks++;
562 offs += slave->mtd.erasesize;
563 }
564 }
565
566 out_register:
567 return slave;
568 }
569
570 int mtd_add_partition(struct mtd_info *master, char *name,
571 long long offset, long long length)
572 {
573 struct mtd_partition part;
574 struct mtd_part *p, *new;
575 uint64_t start, end;
576 int ret = 0;
577
578 /* the direct offset is expected */
579 if (offset == MTDPART_OFS_APPEND ||
580 offset == MTDPART_OFS_NXTBLK)
581 return -EINVAL;
582
583 if (length == MTDPART_SIZ_FULL)
584 length = master->size - offset;
585
586 if (length <= 0)
587 return -EINVAL;
588
589 part.name = name;
590 part.size = length;
591 part.offset = offset;
592 part.mask_flags = 0;
593 part.ecclayout = NULL;
594
595 new = allocate_partition(master, &part, -1, offset);
596 if (IS_ERR(new))
597 return PTR_ERR(new);
598
599 start = offset;
600 end = offset + length;
601
602 mutex_lock(&mtd_partitions_mutex);
603 list_for_each_entry(p, &mtd_partitions, list)
604 if (p->master == master) {
605 if ((start >= p->offset) &&
606 (start < (p->offset + p->mtd.size)))
607 goto err_inv;
608
609 if ((end >= p->offset) &&
610 (end < (p->offset + p->mtd.size)))
611 goto err_inv;
612 }
613
614 list_add(&new->list, &mtd_partitions);
615 mutex_unlock(&mtd_partitions_mutex);
616
617 add_mtd_device(&new->mtd);
618
619 return ret;
620 err_inv:
621 mutex_unlock(&mtd_partitions_mutex);
622 free_partition(new);
623 return -EINVAL;
624 }
625 EXPORT_SYMBOL_GPL(mtd_add_partition);
626
627 int mtd_del_partition(struct mtd_info *master, int partno)
628 {
629 struct mtd_part *slave, *next;
630 int ret = -EINVAL;
631
632 mutex_lock(&mtd_partitions_mutex);
633 list_for_each_entry_safe(slave, next, &mtd_partitions, list)
634 if ((slave->master == master) &&
635 (slave->mtd.index == partno)) {
636 ret = del_mtd_device(&slave->mtd);
637 if (ret < 0)
638 break;
639
640 list_del(&slave->list);
641 free_partition(slave);
642 break;
643 }
644 mutex_unlock(&mtd_partitions_mutex);
645
646 return ret;
647 }
648 EXPORT_SYMBOL_GPL(mtd_del_partition);
649
650 /*
651 * This function, given a master MTD object and a partition table, creates
652 * and registers slave MTD objects which are bound to the master according to
653 * the partition definitions.
654 *
655 * We don't register the master, or expect the caller to have done so,
656 * for reasons of data integrity.
657 */
658
659 int add_mtd_partitions(struct mtd_info *master,
660 const struct mtd_partition *parts,
661 int nbparts)
662 {
663 struct mtd_part *slave;
664 uint64_t cur_offset = 0;
665 int i;
666
667 printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
668
669 for (i = 0; i < nbparts; i++) {
670 slave = allocate_partition(master, parts + i, i, cur_offset);
671 if (IS_ERR(slave))
672 return PTR_ERR(slave);
673
674 mutex_lock(&mtd_partitions_mutex);
675 list_add(&slave->list, &mtd_partitions);
676 mutex_unlock(&mtd_partitions_mutex);
677
678 add_mtd_device(&slave->mtd);
679
680 cur_offset = slave->offset + slave->mtd.size;
681 }
682
683 return 0;
684 }
685
686 static DEFINE_SPINLOCK(part_parser_lock);
687 static LIST_HEAD(part_parsers);
688
689 static struct mtd_part_parser *get_partition_parser(const char *name)
690 {
691 struct mtd_part_parser *p, *ret = NULL;
692
693 spin_lock(&part_parser_lock);
694
695 list_for_each_entry(p, &part_parsers, list)
696 if (!strcmp(p->name, name) && try_module_get(p->owner)) {
697 ret = p;
698 break;
699 }
700
701 spin_unlock(&part_parser_lock);
702
703 return ret;
704 }
705
706 #define put_partition_parser(p) do { module_put((p)->owner); } while (0)
707
708 int register_mtd_parser(struct mtd_part_parser *p)
709 {
710 spin_lock(&part_parser_lock);
711 list_add(&p->list, &part_parsers);
712 spin_unlock(&part_parser_lock);
713
714 return 0;
715 }
716 EXPORT_SYMBOL_GPL(register_mtd_parser);
717
718 int deregister_mtd_parser(struct mtd_part_parser *p)
719 {
720 spin_lock(&part_parser_lock);
721 list_del(&p->list);
722 spin_unlock(&part_parser_lock);
723 return 0;
724 }
725 EXPORT_SYMBOL_GPL(deregister_mtd_parser);
726
727 /*
728 * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you
729 * are changing this array!
730 */
731 static const char *default_mtd_part_types[] = {
732 "cmdlinepart",
733 "ofpart",
734 NULL
735 };
736
737 /**
738 * parse_mtd_partitions - parse MTD partitions
739 * @master: the master partition (describes whole MTD device)
740 * @types: names of partition parsers to try or %NULL
741 * @pparts: array of partitions found is returned here
742 * @data: MTD partition parser-specific data
743 *
744 * This function tries to find partition on MTD device @master. It uses MTD
745 * partition parsers, specified in @types. However, if @types is %NULL, then
746 * the default list of parsers is used. The default list contains only the
747 * "cmdlinepart" and "ofpart" parsers ATM.
748 *
749 * This function may return:
750 * o a negative error code in case of failure
751 * o zero if no partitions were found
752 * o a positive number of found partitions, in which case on exit @pparts will
753 * point to an array containing this number of &struct mtd_info objects.
754 */
755 int parse_mtd_partitions(struct mtd_info *master, const char **types,
756 struct mtd_partition **pparts,
757 struct mtd_part_parser_data *data)
758 {
759 struct mtd_part_parser *parser;
760 int ret = 0;
761
762 if (!types)
763 types = default_mtd_part_types;
764
765 for ( ; ret <= 0 && *types; types++) {
766 parser = get_partition_parser(*types);
767 if (!parser && !request_module("%s", *types))
768 parser = get_partition_parser(*types);
769 if (!parser)
770 continue;
771 ret = (*parser->parse_fn)(master, pparts, data);
772 if (ret > 0) {
773 printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n",
774 ret, parser->name, master->name);
775 }
776 put_partition_parser(parser);
777 }
778 return ret;
779 }
780
781 int mtd_is_partition(struct mtd_info *mtd)
782 {
783 struct mtd_part *part;
784 int ispart = 0;
785
786 mutex_lock(&mtd_partitions_mutex);
787 list_for_each_entry(part, &mtd_partitions, list)
788 if (&part->mtd == mtd) {
789 ispart = 1;
790 break;
791 }
792 mutex_unlock(&mtd_partitions_mutex);
793
794 return ispart;
795 }
796 EXPORT_SYMBOL_GPL(mtd_is_partition);
This page took 0.157507 seconds and 5 git commands to generate.