drm/nouveau: require reservations for nouveau_fence_sync and nouveau_bo_fence
[deliverable/linux.git] / drivers / mtd / mtdpart.c
1 /*
2 * Simple MTD partitioning layer
3 *
4 * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net>
5 * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de>
6 * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
21 *
22 */
23
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/list.h>
29 #include <linux/kmod.h>
30 #include <linux/mtd/mtd.h>
31 #include <linux/mtd/partitions.h>
32 #include <linux/err.h>
33
34 #include "mtdcore.h"
35
36 /* Our partition linked list */
37 static LIST_HEAD(mtd_partitions);
38 static DEFINE_MUTEX(mtd_partitions_mutex);
39
40 /* Our partition node structure */
41 struct mtd_part {
42 struct mtd_info mtd;
43 struct mtd_info *master;
44 uint64_t offset;
45 struct list_head list;
46 };
47
48 /*
49 * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
50 * the pointer to that structure with this macro.
51 */
52 #define PART(x) ((struct mtd_part *)(x))
53
54
55 /*
56 * MTD methods which simply translate the effective address and pass through
57 * to the _real_ device.
58 */
59
60 static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
61 size_t *retlen, u_char *buf)
62 {
63 struct mtd_part *part = PART(mtd);
64 struct mtd_ecc_stats stats;
65 int res;
66
67 stats = part->master->ecc_stats;
68 res = part->master->_read(part->master, from + part->offset, len,
69 retlen, buf);
70 if (unlikely(mtd_is_eccerr(res)))
71 mtd->ecc_stats.failed +=
72 part->master->ecc_stats.failed - stats.failed;
73 else
74 mtd->ecc_stats.corrected +=
75 part->master->ecc_stats.corrected - stats.corrected;
76 return res;
77 }
78
79 static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
80 size_t *retlen, void **virt, resource_size_t *phys)
81 {
82 struct mtd_part *part = PART(mtd);
83
84 return part->master->_point(part->master, from + part->offset, len,
85 retlen, virt, phys);
86 }
87
88 static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
89 {
90 struct mtd_part *part = PART(mtd);
91
92 return part->master->_unpoint(part->master, from + part->offset, len);
93 }
94
95 static unsigned long part_get_unmapped_area(struct mtd_info *mtd,
96 unsigned long len,
97 unsigned long offset,
98 unsigned long flags)
99 {
100 struct mtd_part *part = PART(mtd);
101
102 offset += part->offset;
103 return part->master->_get_unmapped_area(part->master, len, offset,
104 flags);
105 }
106
107 static int part_read_oob(struct mtd_info *mtd, loff_t from,
108 struct mtd_oob_ops *ops)
109 {
110 struct mtd_part *part = PART(mtd);
111 int res;
112
113 if (from >= mtd->size)
114 return -EINVAL;
115 if (ops->datbuf && from + ops->len > mtd->size)
116 return -EINVAL;
117
118 /*
119 * If OOB is also requested, make sure that we do not read past the end
120 * of this partition.
121 */
122 if (ops->oobbuf) {
123 size_t len, pages;
124
125 if (ops->mode == MTD_OPS_AUTO_OOB)
126 len = mtd->oobavail;
127 else
128 len = mtd->oobsize;
129 pages = mtd_div_by_ws(mtd->size, mtd);
130 pages -= mtd_div_by_ws(from, mtd);
131 if (ops->ooboffs + ops->ooblen > pages * len)
132 return -EINVAL;
133 }
134
135 res = part->master->_read_oob(part->master, from + part->offset, ops);
136 if (unlikely(res)) {
137 if (mtd_is_bitflip(res))
138 mtd->ecc_stats.corrected++;
139 if (mtd_is_eccerr(res))
140 mtd->ecc_stats.failed++;
141 }
142 return res;
143 }
144
145 static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
146 size_t len, size_t *retlen, u_char *buf)
147 {
148 struct mtd_part *part = PART(mtd);
149 return part->master->_read_user_prot_reg(part->master, from, len,
150 retlen, buf);
151 }
152
153 static int part_get_user_prot_info(struct mtd_info *mtd, size_t len,
154 size_t *retlen, struct otp_info *buf)
155 {
156 struct mtd_part *part = PART(mtd);
157 return part->master->_get_user_prot_info(part->master, len, retlen,
158 buf);
159 }
160
161 static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
162 size_t len, size_t *retlen, u_char *buf)
163 {
164 struct mtd_part *part = PART(mtd);
165 return part->master->_read_fact_prot_reg(part->master, from, len,
166 retlen, buf);
167 }
168
169 static int part_get_fact_prot_info(struct mtd_info *mtd, size_t len,
170 size_t *retlen, struct otp_info *buf)
171 {
172 struct mtd_part *part = PART(mtd);
173 return part->master->_get_fact_prot_info(part->master, len, retlen,
174 buf);
175 }
176
177 static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
178 size_t *retlen, const u_char *buf)
179 {
180 struct mtd_part *part = PART(mtd);
181 return part->master->_write(part->master, to + part->offset, len,
182 retlen, buf);
183 }
184
185 static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
186 size_t *retlen, const u_char *buf)
187 {
188 struct mtd_part *part = PART(mtd);
189 return part->master->_panic_write(part->master, to + part->offset, len,
190 retlen, buf);
191 }
192
193 static int part_write_oob(struct mtd_info *mtd, loff_t to,
194 struct mtd_oob_ops *ops)
195 {
196 struct mtd_part *part = PART(mtd);
197
198 if (to >= mtd->size)
199 return -EINVAL;
200 if (ops->datbuf && to + ops->len > mtd->size)
201 return -EINVAL;
202 return part->master->_write_oob(part->master, to + part->offset, ops);
203 }
204
205 static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
206 size_t len, size_t *retlen, u_char *buf)
207 {
208 struct mtd_part *part = PART(mtd);
209 return part->master->_write_user_prot_reg(part->master, from, len,
210 retlen, buf);
211 }
212
213 static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
214 size_t len)
215 {
216 struct mtd_part *part = PART(mtd);
217 return part->master->_lock_user_prot_reg(part->master, from, len);
218 }
219
220 static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
221 unsigned long count, loff_t to, size_t *retlen)
222 {
223 struct mtd_part *part = PART(mtd);
224 return part->master->_writev(part->master, vecs, count,
225 to + part->offset, retlen);
226 }
227
228 static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
229 {
230 struct mtd_part *part = PART(mtd);
231 int ret;
232
233 instr->addr += part->offset;
234 ret = part->master->_erase(part->master, instr);
235 if (ret) {
236 if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
237 instr->fail_addr -= part->offset;
238 instr->addr -= part->offset;
239 }
240 return ret;
241 }
242
243 void mtd_erase_callback(struct erase_info *instr)
244 {
245 if (instr->mtd->_erase == part_erase) {
246 struct mtd_part *part = PART(instr->mtd);
247
248 if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
249 instr->fail_addr -= part->offset;
250 instr->addr -= part->offset;
251 }
252 if (instr->callback)
253 instr->callback(instr);
254 }
255 EXPORT_SYMBOL_GPL(mtd_erase_callback);
256
257 static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
258 {
259 struct mtd_part *part = PART(mtd);
260 return part->master->_lock(part->master, ofs + part->offset, len);
261 }
262
263 static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
264 {
265 struct mtd_part *part = PART(mtd);
266 return part->master->_unlock(part->master, ofs + part->offset, len);
267 }
268
269 static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
270 {
271 struct mtd_part *part = PART(mtd);
272 return part->master->_is_locked(part->master, ofs + part->offset, len);
273 }
274
275 static void part_sync(struct mtd_info *mtd)
276 {
277 struct mtd_part *part = PART(mtd);
278 part->master->_sync(part->master);
279 }
280
281 static int part_suspend(struct mtd_info *mtd)
282 {
283 struct mtd_part *part = PART(mtd);
284 return part->master->_suspend(part->master);
285 }
286
287 static void part_resume(struct mtd_info *mtd)
288 {
289 struct mtd_part *part = PART(mtd);
290 part->master->_resume(part->master);
291 }
292
293 static int part_block_isreserved(struct mtd_info *mtd, loff_t ofs)
294 {
295 struct mtd_part *part = PART(mtd);
296 ofs += part->offset;
297 return part->master->_block_isreserved(part->master, ofs);
298 }
299
300 static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
301 {
302 struct mtd_part *part = PART(mtd);
303 ofs += part->offset;
304 return part->master->_block_isbad(part->master, ofs);
305 }
306
307 static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
308 {
309 struct mtd_part *part = PART(mtd);
310 int res;
311
312 ofs += part->offset;
313 res = part->master->_block_markbad(part->master, ofs);
314 if (!res)
315 mtd->ecc_stats.badblocks++;
316 return res;
317 }
318
319 static inline void free_partition(struct mtd_part *p)
320 {
321 kfree(p->mtd.name);
322 kfree(p);
323 }
324
325 /*
326 * This function unregisters and destroy all slave MTD objects which are
327 * attached to the given master MTD object.
328 */
329
330 int del_mtd_partitions(struct mtd_info *master)
331 {
332 struct mtd_part *slave, *next;
333 int ret, err = 0;
334
335 mutex_lock(&mtd_partitions_mutex);
336 list_for_each_entry_safe(slave, next, &mtd_partitions, list)
337 if (slave->master == master) {
338 ret = del_mtd_device(&slave->mtd);
339 if (ret < 0) {
340 err = ret;
341 continue;
342 }
343 list_del(&slave->list);
344 free_partition(slave);
345 }
346 mutex_unlock(&mtd_partitions_mutex);
347
348 return err;
349 }
350
351 static struct mtd_part *allocate_partition(struct mtd_info *master,
352 const struct mtd_partition *part, int partno,
353 uint64_t cur_offset)
354 {
355 struct mtd_part *slave;
356 char *name;
357
358 /* allocate the partition structure */
359 slave = kzalloc(sizeof(*slave), GFP_KERNEL);
360 name = kstrdup(part->name, GFP_KERNEL);
361 if (!name || !slave) {
362 printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
363 master->name);
364 kfree(name);
365 kfree(slave);
366 return ERR_PTR(-ENOMEM);
367 }
368
369 /* set up the MTD object for this partition */
370 slave->mtd.type = master->type;
371 slave->mtd.flags = master->flags & ~part->mask_flags;
372 slave->mtd.size = part->size;
373 slave->mtd.writesize = master->writesize;
374 slave->mtd.writebufsize = master->writebufsize;
375 slave->mtd.oobsize = master->oobsize;
376 slave->mtd.oobavail = master->oobavail;
377 slave->mtd.subpage_sft = master->subpage_sft;
378
379 slave->mtd.name = name;
380 slave->mtd.owner = master->owner;
381 slave->mtd.backing_dev_info = master->backing_dev_info;
382
383 /* NOTE: we don't arrange MTDs as a tree; it'd be error-prone
384 * to have the same data be in two different partitions.
385 */
386 slave->mtd.dev.parent = master->dev.parent;
387
388 slave->mtd._read = part_read;
389 slave->mtd._write = part_write;
390
391 if (master->_panic_write)
392 slave->mtd._panic_write = part_panic_write;
393
394 if (master->_point && master->_unpoint) {
395 slave->mtd._point = part_point;
396 slave->mtd._unpoint = part_unpoint;
397 }
398
399 if (master->_get_unmapped_area)
400 slave->mtd._get_unmapped_area = part_get_unmapped_area;
401 if (master->_read_oob)
402 slave->mtd._read_oob = part_read_oob;
403 if (master->_write_oob)
404 slave->mtd._write_oob = part_write_oob;
405 if (master->_read_user_prot_reg)
406 slave->mtd._read_user_prot_reg = part_read_user_prot_reg;
407 if (master->_read_fact_prot_reg)
408 slave->mtd._read_fact_prot_reg = part_read_fact_prot_reg;
409 if (master->_write_user_prot_reg)
410 slave->mtd._write_user_prot_reg = part_write_user_prot_reg;
411 if (master->_lock_user_prot_reg)
412 slave->mtd._lock_user_prot_reg = part_lock_user_prot_reg;
413 if (master->_get_user_prot_info)
414 slave->mtd._get_user_prot_info = part_get_user_prot_info;
415 if (master->_get_fact_prot_info)
416 slave->mtd._get_fact_prot_info = part_get_fact_prot_info;
417 if (master->_sync)
418 slave->mtd._sync = part_sync;
419 if (!partno && !master->dev.class && master->_suspend &&
420 master->_resume) {
421 slave->mtd._suspend = part_suspend;
422 slave->mtd._resume = part_resume;
423 }
424 if (master->_writev)
425 slave->mtd._writev = part_writev;
426 if (master->_lock)
427 slave->mtd._lock = part_lock;
428 if (master->_unlock)
429 slave->mtd._unlock = part_unlock;
430 if (master->_is_locked)
431 slave->mtd._is_locked = part_is_locked;
432 if (master->_block_isreserved)
433 slave->mtd._block_isreserved = part_block_isreserved;
434 if (master->_block_isbad)
435 slave->mtd._block_isbad = part_block_isbad;
436 if (master->_block_markbad)
437 slave->mtd._block_markbad = part_block_markbad;
438 slave->mtd._erase = part_erase;
439 slave->master = master;
440 slave->offset = part->offset;
441
442 if (slave->offset == MTDPART_OFS_APPEND)
443 slave->offset = cur_offset;
444 if (slave->offset == MTDPART_OFS_NXTBLK) {
445 slave->offset = cur_offset;
446 if (mtd_mod_by_eb(cur_offset, master) != 0) {
447 /* Round up to next erasesize */
448 slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize;
449 printk(KERN_NOTICE "Moving partition %d: "
450 "0x%012llx -> 0x%012llx\n", partno,
451 (unsigned long long)cur_offset, (unsigned long long)slave->offset);
452 }
453 }
454 if (slave->offset == MTDPART_OFS_RETAIN) {
455 slave->offset = cur_offset;
456 if (master->size - slave->offset >= slave->mtd.size) {
457 slave->mtd.size = master->size - slave->offset
458 - slave->mtd.size;
459 } else {
460 printk(KERN_ERR "mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n",
461 part->name, master->size - slave->offset,
462 slave->mtd.size);
463 /* register to preserve ordering */
464 goto out_register;
465 }
466 }
467 if (slave->mtd.size == MTDPART_SIZ_FULL)
468 slave->mtd.size = master->size - slave->offset;
469
470 printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
471 (unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name);
472
473 /* let's do some sanity checks */
474 if (slave->offset >= master->size) {
475 /* let's register it anyway to preserve ordering */
476 slave->offset = 0;
477 slave->mtd.size = 0;
478 printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
479 part->name);
480 goto out_register;
481 }
482 if (slave->offset + slave->mtd.size > master->size) {
483 slave->mtd.size = master->size - slave->offset;
484 printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
485 part->name, master->name, (unsigned long long)slave->mtd.size);
486 }
487 if (master->numeraseregions > 1) {
488 /* Deal with variable erase size stuff */
489 int i, max = master->numeraseregions;
490 u64 end = slave->offset + slave->mtd.size;
491 struct mtd_erase_region_info *regions = master->eraseregions;
492
493 /* Find the first erase regions which is part of this
494 * partition. */
495 for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
496 ;
497 /* The loop searched for the region _behind_ the first one */
498 if (i > 0)
499 i--;
500
501 /* Pick biggest erasesize */
502 for (; i < max && regions[i].offset < end; i++) {
503 if (slave->mtd.erasesize < regions[i].erasesize) {
504 slave->mtd.erasesize = regions[i].erasesize;
505 }
506 }
507 BUG_ON(slave->mtd.erasesize == 0);
508 } else {
509 /* Single erase size */
510 slave->mtd.erasesize = master->erasesize;
511 }
512
513 if ((slave->mtd.flags & MTD_WRITEABLE) &&
514 mtd_mod_by_eb(slave->offset, &slave->mtd)) {
515 /* Doesn't start on a boundary of major erase size */
516 /* FIXME: Let it be writable if it is on a boundary of
517 * _minor_ erase size though */
518 slave->mtd.flags &= ~MTD_WRITEABLE;
519 printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n",
520 part->name);
521 }
522 if ((slave->mtd.flags & MTD_WRITEABLE) &&
523 mtd_mod_by_eb(slave->mtd.size, &slave->mtd)) {
524 slave->mtd.flags &= ~MTD_WRITEABLE;
525 printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n",
526 part->name);
527 }
528
529 slave->mtd.ecclayout = master->ecclayout;
530 slave->mtd.ecc_step_size = master->ecc_step_size;
531 slave->mtd.ecc_strength = master->ecc_strength;
532 slave->mtd.bitflip_threshold = master->bitflip_threshold;
533
534 if (master->_block_isbad) {
535 uint64_t offs = 0;
536
537 while (offs < slave->mtd.size) {
538 if (mtd_block_isreserved(master, offs + slave->offset))
539 slave->mtd.ecc_stats.bbtblocks++;
540 else if (mtd_block_isbad(master, offs + slave->offset))
541 slave->mtd.ecc_stats.badblocks++;
542 offs += slave->mtd.erasesize;
543 }
544 }
545
546 out_register:
547 return slave;
548 }
549
550 int mtd_add_partition(struct mtd_info *master, const char *name,
551 long long offset, long long length)
552 {
553 struct mtd_partition part;
554 struct mtd_part *p, *new;
555 uint64_t start, end;
556 int ret = 0;
557
558 /* the direct offset is expected */
559 if (offset == MTDPART_OFS_APPEND ||
560 offset == MTDPART_OFS_NXTBLK)
561 return -EINVAL;
562
563 if (length == MTDPART_SIZ_FULL)
564 length = master->size - offset;
565
566 if (length <= 0)
567 return -EINVAL;
568
569 part.name = name;
570 part.size = length;
571 part.offset = offset;
572 part.mask_flags = 0;
573 part.ecclayout = NULL;
574
575 new = allocate_partition(master, &part, -1, offset);
576 if (IS_ERR(new))
577 return PTR_ERR(new);
578
579 start = offset;
580 end = offset + length;
581
582 mutex_lock(&mtd_partitions_mutex);
583 list_for_each_entry(p, &mtd_partitions, list)
584 if (p->master == master) {
585 if ((start >= p->offset) &&
586 (start < (p->offset + p->mtd.size)))
587 goto err_inv;
588
589 if ((end >= p->offset) &&
590 (end < (p->offset + p->mtd.size)))
591 goto err_inv;
592 }
593
594 list_add(&new->list, &mtd_partitions);
595 mutex_unlock(&mtd_partitions_mutex);
596
597 add_mtd_device(&new->mtd);
598
599 return ret;
600 err_inv:
601 mutex_unlock(&mtd_partitions_mutex);
602 free_partition(new);
603 return -EINVAL;
604 }
605 EXPORT_SYMBOL_GPL(mtd_add_partition);
606
607 int mtd_del_partition(struct mtd_info *master, int partno)
608 {
609 struct mtd_part *slave, *next;
610 int ret = -EINVAL;
611
612 mutex_lock(&mtd_partitions_mutex);
613 list_for_each_entry_safe(slave, next, &mtd_partitions, list)
614 if ((slave->master == master) &&
615 (slave->mtd.index == partno)) {
616 ret = del_mtd_device(&slave->mtd);
617 if (ret < 0)
618 break;
619
620 list_del(&slave->list);
621 free_partition(slave);
622 break;
623 }
624 mutex_unlock(&mtd_partitions_mutex);
625
626 return ret;
627 }
628 EXPORT_SYMBOL_GPL(mtd_del_partition);
629
630 /*
631 * This function, given a master MTD object and a partition table, creates
632 * and registers slave MTD objects which are bound to the master according to
633 * the partition definitions.
634 *
635 * We don't register the master, or expect the caller to have done so,
636 * for reasons of data integrity.
637 */
638
639 int add_mtd_partitions(struct mtd_info *master,
640 const struct mtd_partition *parts,
641 int nbparts)
642 {
643 struct mtd_part *slave;
644 uint64_t cur_offset = 0;
645 int i;
646
647 printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
648
649 for (i = 0; i < nbparts; i++) {
650 slave = allocate_partition(master, parts + i, i, cur_offset);
651 if (IS_ERR(slave))
652 return PTR_ERR(slave);
653
654 mutex_lock(&mtd_partitions_mutex);
655 list_add(&slave->list, &mtd_partitions);
656 mutex_unlock(&mtd_partitions_mutex);
657
658 add_mtd_device(&slave->mtd);
659
660 cur_offset = slave->offset + slave->mtd.size;
661 }
662
663 return 0;
664 }
665
666 static DEFINE_SPINLOCK(part_parser_lock);
667 static LIST_HEAD(part_parsers);
668
669 static struct mtd_part_parser *get_partition_parser(const char *name)
670 {
671 struct mtd_part_parser *p, *ret = NULL;
672
673 spin_lock(&part_parser_lock);
674
675 list_for_each_entry(p, &part_parsers, list)
676 if (!strcmp(p->name, name) && try_module_get(p->owner)) {
677 ret = p;
678 break;
679 }
680
681 spin_unlock(&part_parser_lock);
682
683 return ret;
684 }
685
686 #define put_partition_parser(p) do { module_put((p)->owner); } while (0)
687
688 void register_mtd_parser(struct mtd_part_parser *p)
689 {
690 spin_lock(&part_parser_lock);
691 list_add(&p->list, &part_parsers);
692 spin_unlock(&part_parser_lock);
693 }
694 EXPORT_SYMBOL_GPL(register_mtd_parser);
695
696 void deregister_mtd_parser(struct mtd_part_parser *p)
697 {
698 spin_lock(&part_parser_lock);
699 list_del(&p->list);
700 spin_unlock(&part_parser_lock);
701 }
702 EXPORT_SYMBOL_GPL(deregister_mtd_parser);
703
704 /*
705 * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you
706 * are changing this array!
707 */
708 static const char * const default_mtd_part_types[] = {
709 "cmdlinepart",
710 "ofpart",
711 NULL
712 };
713
714 /**
715 * parse_mtd_partitions - parse MTD partitions
716 * @master: the master partition (describes whole MTD device)
717 * @types: names of partition parsers to try or %NULL
718 * @pparts: array of partitions found is returned here
719 * @data: MTD partition parser-specific data
720 *
721 * This function tries to find partition on MTD device @master. It uses MTD
722 * partition parsers, specified in @types. However, if @types is %NULL, then
723 * the default list of parsers is used. The default list contains only the
724 * "cmdlinepart" and "ofpart" parsers ATM.
725 * Note: If there are more then one parser in @types, the kernel only takes the
726 * partitions parsed out by the first parser.
727 *
728 * This function may return:
729 * o a negative error code in case of failure
730 * o zero if no partitions were found
731 * o a positive number of found partitions, in which case on exit @pparts will
732 * point to an array containing this number of &struct mtd_info objects.
733 */
734 int parse_mtd_partitions(struct mtd_info *master, const char *const *types,
735 struct mtd_partition **pparts,
736 struct mtd_part_parser_data *data)
737 {
738 struct mtd_part_parser *parser;
739 int ret = 0;
740
741 if (!types)
742 types = default_mtd_part_types;
743
744 for ( ; ret <= 0 && *types; types++) {
745 parser = get_partition_parser(*types);
746 if (!parser && !request_module("%s", *types))
747 parser = get_partition_parser(*types);
748 if (!parser)
749 continue;
750 ret = (*parser->parse_fn)(master, pparts, data);
751 put_partition_parser(parser);
752 if (ret > 0) {
753 printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n",
754 ret, parser->name, master->name);
755 break;
756 }
757 }
758 return ret;
759 }
760
761 int mtd_is_partition(const struct mtd_info *mtd)
762 {
763 struct mtd_part *part;
764 int ispart = 0;
765
766 mutex_lock(&mtd_partitions_mutex);
767 list_for_each_entry(part, &mtd_partitions, list)
768 if (&part->mtd == mtd) {
769 ispart = 1;
770 break;
771 }
772 mutex_unlock(&mtd_partitions_mutex);
773
774 return ispart;
775 }
776 EXPORT_SYMBOL_GPL(mtd_is_partition);
777
778 /* Returns the size of the entire flash chip */
779 uint64_t mtd_get_device_size(const struct mtd_info *mtd)
780 {
781 if (!mtd_is_partition(mtd))
782 return mtd->size;
783
784 return PART(mtd)->master->size;
785 }
786 EXPORT_SYMBOL_GPL(mtd_get_device_size);
This page took 0.046895 seconds and 5 git commands to generate.