[MTD] Remove read/write _ecc variants
[deliverable/linux.git] / drivers / mtd / mtdpart.c
1 /*
2 * Simple MTD partitioning layer
3 *
4 * (C) 2000 Nicolas Pitre <nico@cam.org>
5 *
6 * This code is GPL
7 *
8 * $Id: mtdpart.c,v 1.55 2005/11/07 11:14:20 gleixner Exp $
9 *
10 * 02-21-2002 Thomas Gleixner <gleixner@autronix.de>
11 * added support for read_oob, write_oob
12 */
13
14 #include <linux/module.h>
15 #include <linux/types.h>
16 #include <linux/kernel.h>
17 #include <linux/slab.h>
18 #include <linux/list.h>
19 #include <linux/config.h>
20 #include <linux/kmod.h>
21 #include <linux/mtd/mtd.h>
22 #include <linux/mtd/partitions.h>
23 #include <linux/mtd/compatmac.h>
24
25 /* Our partition linked list */
26 static LIST_HEAD(mtd_partitions);
27
28 /* Our partition node structure */
29 struct mtd_part {
30 struct mtd_info mtd;
31 struct mtd_info *master;
32 u_int32_t offset;
33 int index;
34 struct list_head list;
35 int registered;
36 };
37
38 /*
39 * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
40 * the pointer to that structure with this macro.
41 */
42 #define PART(x) ((struct mtd_part *)(x))
43
44
45 /*
46 * MTD methods which simply translate the effective address and pass through
47 * to the _real_ device.
48 */
49
50 static int part_read (struct mtd_info *mtd, loff_t from, size_t len,
51 size_t *retlen, u_char *buf)
52 {
53 struct mtd_part *part = PART(mtd);
54 if (from >= mtd->size)
55 len = 0;
56 else if (from + len > mtd->size)
57 len = mtd->size - from;
58 return part->master->read (part->master, from + part->offset,
59 len, retlen, buf);
60 }
61
62 static int part_point (struct mtd_info *mtd, loff_t from, size_t len,
63 size_t *retlen, u_char **buf)
64 {
65 struct mtd_part *part = PART(mtd);
66 if (from >= mtd->size)
67 len = 0;
68 else if (from + len > mtd->size)
69 len = mtd->size - from;
70 return part->master->point (part->master, from + part->offset,
71 len, retlen, buf);
72 }
73
74 static void part_unpoint (struct mtd_info *mtd, u_char *addr, loff_t from, size_t len)
75 {
76 struct mtd_part *part = PART(mtd);
77
78 part->master->unpoint (part->master, addr, from + part->offset, len);
79 }
80
81 static int part_read_oob (struct mtd_info *mtd, loff_t from, size_t len,
82 size_t *retlen, u_char *buf)
83 {
84 struct mtd_part *part = PART(mtd);
85 if (from >= mtd->size)
86 len = 0;
87 else if (from + len > mtd->size)
88 len = mtd->size - from;
89 return part->master->read_oob (part->master, from + part->offset,
90 len, retlen, buf);
91 }
92
93 static int part_read_user_prot_reg (struct mtd_info *mtd, loff_t from, size_t len,
94 size_t *retlen, u_char *buf)
95 {
96 struct mtd_part *part = PART(mtd);
97 return part->master->read_user_prot_reg (part->master, from,
98 len, retlen, buf);
99 }
100
101 static int part_get_user_prot_info (struct mtd_info *mtd,
102 struct otp_info *buf, size_t len)
103 {
104 struct mtd_part *part = PART(mtd);
105 return part->master->get_user_prot_info (part->master, buf, len);
106 }
107
108 static int part_read_fact_prot_reg (struct mtd_info *mtd, loff_t from, size_t len,
109 size_t *retlen, u_char *buf)
110 {
111 struct mtd_part *part = PART(mtd);
112 return part->master->read_fact_prot_reg (part->master, from,
113 len, retlen, buf);
114 }
115
116 static int part_get_fact_prot_info (struct mtd_info *mtd,
117 struct otp_info *buf, size_t len)
118 {
119 struct mtd_part *part = PART(mtd);
120 return part->master->get_fact_prot_info (part->master, buf, len);
121 }
122
123 static int part_write (struct mtd_info *mtd, loff_t to, size_t len,
124 size_t *retlen, const u_char *buf)
125 {
126 struct mtd_part *part = PART(mtd);
127 if (!(mtd->flags & MTD_WRITEABLE))
128 return -EROFS;
129 if (to >= mtd->size)
130 len = 0;
131 else if (to + len > mtd->size)
132 len = mtd->size - to;
133 return part->master->write (part->master, to + part->offset,
134 len, retlen, buf);
135 }
136
137 static int part_write_oob (struct mtd_info *mtd, loff_t to, size_t len,
138 size_t *retlen, const u_char *buf)
139 {
140 struct mtd_part *part = PART(mtd);
141 if (!(mtd->flags & MTD_WRITEABLE))
142 return -EROFS;
143 if (to >= mtd->size)
144 len = 0;
145 else if (to + len > mtd->size)
146 len = mtd->size - to;
147 return part->master->write_oob (part->master, to + part->offset,
148 len, retlen, buf);
149 }
150
151 static int part_write_user_prot_reg (struct mtd_info *mtd, loff_t from, size_t len,
152 size_t *retlen, u_char *buf)
153 {
154 struct mtd_part *part = PART(mtd);
155 return part->master->write_user_prot_reg (part->master, from,
156 len, retlen, buf);
157 }
158
159 static int part_lock_user_prot_reg (struct mtd_info *mtd, loff_t from, size_t len)
160 {
161 struct mtd_part *part = PART(mtd);
162 return part->master->lock_user_prot_reg (part->master, from, len);
163 }
164
165 static int part_writev (struct mtd_info *mtd, const struct kvec *vecs,
166 unsigned long count, loff_t to, size_t *retlen)
167 {
168 struct mtd_part *part = PART(mtd);
169 if (!(mtd->flags & MTD_WRITEABLE))
170 return -EROFS;
171 return part->master->writev (part->master, vecs, count,
172 to + part->offset, retlen);
173 }
174
175 static int part_erase (struct mtd_info *mtd, struct erase_info *instr)
176 {
177 struct mtd_part *part = PART(mtd);
178 int ret;
179 if (!(mtd->flags & MTD_WRITEABLE))
180 return -EROFS;
181 if (instr->addr >= mtd->size)
182 return -EINVAL;
183 instr->addr += part->offset;
184 ret = part->master->erase(part->master, instr);
185 return ret;
186 }
187
188 void mtd_erase_callback(struct erase_info *instr)
189 {
190 if (instr->mtd->erase == part_erase) {
191 struct mtd_part *part = PART(instr->mtd);
192
193 if (instr->fail_addr != 0xffffffff)
194 instr->fail_addr -= part->offset;
195 instr->addr -= part->offset;
196 }
197 if (instr->callback)
198 instr->callback(instr);
199 }
200 EXPORT_SYMBOL_GPL(mtd_erase_callback);
201
202 static int part_lock (struct mtd_info *mtd, loff_t ofs, size_t len)
203 {
204 struct mtd_part *part = PART(mtd);
205 if ((len + ofs) > mtd->size)
206 return -EINVAL;
207 return part->master->lock(part->master, ofs + part->offset, len);
208 }
209
210 static int part_unlock (struct mtd_info *mtd, loff_t ofs, size_t len)
211 {
212 struct mtd_part *part = PART(mtd);
213 if ((len + ofs) > mtd->size)
214 return -EINVAL;
215 return part->master->unlock(part->master, ofs + part->offset, len);
216 }
217
218 static void part_sync(struct mtd_info *mtd)
219 {
220 struct mtd_part *part = PART(mtd);
221 part->master->sync(part->master);
222 }
223
224 static int part_suspend(struct mtd_info *mtd)
225 {
226 struct mtd_part *part = PART(mtd);
227 return part->master->suspend(part->master);
228 }
229
230 static void part_resume(struct mtd_info *mtd)
231 {
232 struct mtd_part *part = PART(mtd);
233 part->master->resume(part->master);
234 }
235
236 static int part_block_isbad (struct mtd_info *mtd, loff_t ofs)
237 {
238 struct mtd_part *part = PART(mtd);
239 if (ofs >= mtd->size)
240 return -EINVAL;
241 ofs += part->offset;
242 return part->master->block_isbad(part->master, ofs);
243 }
244
245 static int part_block_markbad (struct mtd_info *mtd, loff_t ofs)
246 {
247 struct mtd_part *part = PART(mtd);
248 if (!(mtd->flags & MTD_WRITEABLE))
249 return -EROFS;
250 if (ofs >= mtd->size)
251 return -EINVAL;
252 ofs += part->offset;
253 return part->master->block_markbad(part->master, ofs);
254 }
255
256 /*
257 * This function unregisters and destroy all slave MTD objects which are
258 * attached to the given master MTD object.
259 */
260
261 int del_mtd_partitions(struct mtd_info *master)
262 {
263 struct list_head *node;
264 struct mtd_part *slave;
265
266 for (node = mtd_partitions.next;
267 node != &mtd_partitions;
268 node = node->next) {
269 slave = list_entry(node, struct mtd_part, list);
270 if (slave->master == master) {
271 struct list_head *prev = node->prev;
272 __list_del(prev, node->next);
273 if(slave->registered)
274 del_mtd_device(&slave->mtd);
275 kfree(slave);
276 node = prev;
277 }
278 }
279
280 return 0;
281 }
282
283 /*
284 * This function, given a master MTD object and a partition table, creates
285 * and registers slave MTD objects which are bound to the master according to
286 * the partition definitions.
287 * (Q: should we register the master MTD object as well?)
288 */
289
290 int add_mtd_partitions(struct mtd_info *master,
291 const struct mtd_partition *parts,
292 int nbparts)
293 {
294 struct mtd_part *slave;
295 u_int32_t cur_offset = 0;
296 int i;
297
298 printk (KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
299
300 for (i = 0; i < nbparts; i++) {
301
302 /* allocate the partition structure */
303 slave = kmalloc (sizeof(*slave), GFP_KERNEL);
304 if (!slave) {
305 printk ("memory allocation error while creating partitions for \"%s\"\n",
306 master->name);
307 del_mtd_partitions(master);
308 return -ENOMEM;
309 }
310 memset(slave, 0, sizeof(*slave));
311 list_add(&slave->list, &mtd_partitions);
312
313 /* set up the MTD object for this partition */
314 slave->mtd.type = master->type;
315 slave->mtd.flags = master->flags & ~parts[i].mask_flags;
316 slave->mtd.size = parts[i].size;
317 slave->mtd.writesize = master->writesize;
318 slave->mtd.oobsize = master->oobsize;
319 slave->mtd.oobavail = master->oobavail;
320 slave->mtd.ecctype = master->ecctype;
321 slave->mtd.eccsize = master->eccsize;
322
323 slave->mtd.name = parts[i].name;
324 slave->mtd.bank_size = master->bank_size;
325 slave->mtd.owner = master->owner;
326
327 slave->mtd.read = part_read;
328 slave->mtd.write = part_write;
329
330 if(master->point && master->unpoint){
331 slave->mtd.point = part_point;
332 slave->mtd.unpoint = part_unpoint;
333 }
334
335 if (master->read_oob)
336 slave->mtd.read_oob = part_read_oob;
337 if (master->write_oob)
338 slave->mtd.write_oob = part_write_oob;
339 if(master->read_user_prot_reg)
340 slave->mtd.read_user_prot_reg = part_read_user_prot_reg;
341 if(master->read_fact_prot_reg)
342 slave->mtd.read_fact_prot_reg = part_read_fact_prot_reg;
343 if(master->write_user_prot_reg)
344 slave->mtd.write_user_prot_reg = part_write_user_prot_reg;
345 if(master->lock_user_prot_reg)
346 slave->mtd.lock_user_prot_reg = part_lock_user_prot_reg;
347 if(master->get_user_prot_info)
348 slave->mtd.get_user_prot_info = part_get_user_prot_info;
349 if(master->get_fact_prot_info)
350 slave->mtd.get_fact_prot_info = part_get_fact_prot_info;
351 if (master->sync)
352 slave->mtd.sync = part_sync;
353 if (!i && master->suspend && master->resume) {
354 slave->mtd.suspend = part_suspend;
355 slave->mtd.resume = part_resume;
356 }
357 if (master->writev)
358 slave->mtd.writev = part_writev;
359 if (master->lock)
360 slave->mtd.lock = part_lock;
361 if (master->unlock)
362 slave->mtd.unlock = part_unlock;
363 if (master->block_isbad)
364 slave->mtd.block_isbad = part_block_isbad;
365 if (master->block_markbad)
366 slave->mtd.block_markbad = part_block_markbad;
367 slave->mtd.erase = part_erase;
368 slave->master = master;
369 slave->offset = parts[i].offset;
370 slave->index = i;
371
372 if (slave->offset == MTDPART_OFS_APPEND)
373 slave->offset = cur_offset;
374 if (slave->offset == MTDPART_OFS_NXTBLK) {
375 slave->offset = cur_offset;
376 if ((cur_offset % master->erasesize) != 0) {
377 /* Round up to next erasesize */
378 slave->offset = ((cur_offset / master->erasesize) + 1) * master->erasesize;
379 printk(KERN_NOTICE "Moving partition %d: "
380 "0x%08x -> 0x%08x\n", i,
381 cur_offset, slave->offset);
382 }
383 }
384 if (slave->mtd.size == MTDPART_SIZ_FULL)
385 slave->mtd.size = master->size - slave->offset;
386 cur_offset = slave->offset + slave->mtd.size;
387
388 printk (KERN_NOTICE "0x%08x-0x%08x : \"%s\"\n", slave->offset,
389 slave->offset + slave->mtd.size, slave->mtd.name);
390
391 /* let's do some sanity checks */
392 if (slave->offset >= master->size) {
393 /* let's register it anyway to preserve ordering */
394 slave->offset = 0;
395 slave->mtd.size = 0;
396 printk ("mtd: partition \"%s\" is out of reach -- disabled\n",
397 parts[i].name);
398 }
399 if (slave->offset + slave->mtd.size > master->size) {
400 slave->mtd.size = master->size - slave->offset;
401 printk ("mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#x\n",
402 parts[i].name, master->name, slave->mtd.size);
403 }
404 if (master->numeraseregions>1) {
405 /* Deal with variable erase size stuff */
406 int i;
407 struct mtd_erase_region_info *regions = master->eraseregions;
408
409 /* Find the first erase regions which is part of this partition. */
410 for (i=0; i < master->numeraseregions && slave->offset >= regions[i].offset; i++)
411 ;
412
413 for (i--; i < master->numeraseregions && slave->offset + slave->mtd.size > regions[i].offset; i++) {
414 if (slave->mtd.erasesize < regions[i].erasesize) {
415 slave->mtd.erasesize = regions[i].erasesize;
416 }
417 }
418 } else {
419 /* Single erase size */
420 slave->mtd.erasesize = master->erasesize;
421 }
422
423 if ((slave->mtd.flags & MTD_WRITEABLE) &&
424 (slave->offset % slave->mtd.erasesize)) {
425 /* Doesn't start on a boundary of major erase size */
426 /* FIXME: Let it be writable if it is on a boundary of _minor_ erase size though */
427 slave->mtd.flags &= ~MTD_WRITEABLE;
428 printk ("mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n",
429 parts[i].name);
430 }
431 if ((slave->mtd.flags & MTD_WRITEABLE) &&
432 (slave->mtd.size % slave->mtd.erasesize)) {
433 slave->mtd.flags &= ~MTD_WRITEABLE;
434 printk ("mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n",
435 parts[i].name);
436 }
437
438 /* copy oobinfo from master */
439 memcpy(&slave->mtd.oobinfo, &master->oobinfo, sizeof(slave->mtd.oobinfo));
440
441 if(parts[i].mtdp)
442 { /* store the object pointer (caller may or may not register it */
443 *parts[i].mtdp = &slave->mtd;
444 slave->registered = 0;
445 }
446 else
447 {
448 /* register our partition */
449 add_mtd_device(&slave->mtd);
450 slave->registered = 1;
451 }
452 }
453
454 return 0;
455 }
456
457 EXPORT_SYMBOL(add_mtd_partitions);
458 EXPORT_SYMBOL(del_mtd_partitions);
459
460 static DEFINE_SPINLOCK(part_parser_lock);
461 static LIST_HEAD(part_parsers);
462
463 static struct mtd_part_parser *get_partition_parser(const char *name)
464 {
465 struct list_head *this;
466 void *ret = NULL;
467 spin_lock(&part_parser_lock);
468
469 list_for_each(this, &part_parsers) {
470 struct mtd_part_parser *p = list_entry(this, struct mtd_part_parser, list);
471
472 if (!strcmp(p->name, name) && try_module_get(p->owner)) {
473 ret = p;
474 break;
475 }
476 }
477 spin_unlock(&part_parser_lock);
478
479 return ret;
480 }
481
482 int register_mtd_parser(struct mtd_part_parser *p)
483 {
484 spin_lock(&part_parser_lock);
485 list_add(&p->list, &part_parsers);
486 spin_unlock(&part_parser_lock);
487
488 return 0;
489 }
490
491 int deregister_mtd_parser(struct mtd_part_parser *p)
492 {
493 spin_lock(&part_parser_lock);
494 list_del(&p->list);
495 spin_unlock(&part_parser_lock);
496 return 0;
497 }
498
499 int parse_mtd_partitions(struct mtd_info *master, const char **types,
500 struct mtd_partition **pparts, unsigned long origin)
501 {
502 struct mtd_part_parser *parser;
503 int ret = 0;
504
505 for ( ; ret <= 0 && *types; types++) {
506 parser = get_partition_parser(*types);
507 #ifdef CONFIG_KMOD
508 if (!parser && !request_module("%s", *types))
509 parser = get_partition_parser(*types);
510 #endif
511 if (!parser) {
512 printk(KERN_NOTICE "%s partition parsing not available\n",
513 *types);
514 continue;
515 }
516 ret = (*parser->parse_fn)(master, pparts, origin);
517 if (ret > 0) {
518 printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n",
519 ret, parser->name, master->name);
520 }
521 put_partition_parser(parser);
522 }
523 return ret;
524 }
525
526 EXPORT_SYMBOL_GPL(parse_mtd_partitions);
527 EXPORT_SYMBOL_GPL(register_mtd_parser);
528 EXPORT_SYMBOL_GPL(deregister_mtd_parser);
529
530 MODULE_LICENSE("GPL");
531 MODULE_AUTHOR("Nicolas Pitre <nico@cam.org>");
532 MODULE_DESCRIPTION("Generic support for partitioning of MTD devices");
533
This page took 0.18766 seconds and 5 git commands to generate.