mtd: nand: drop unnecessary partition parser data
[deliverable/linux.git] / drivers / mtd / nand / atmel_nand.c
1 /*
2 * Copyright © 2003 Rick Bronson
3 *
4 * Derived from drivers/mtd/nand/autcpu12.c
5 * Copyright © 2001 Thomas Gleixner (gleixner@autronix.de)
6 *
7 * Derived from drivers/mtd/spia.c
8 * Copyright © 2000 Steven J. Hill (sjhill@cotw.com)
9 *
10 *
11 * Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
12 * Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright © 2007
13 *
14 * Derived from Das U-Boot source code
15 * (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
16 * © Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
17 *
18 * Add Programmable Multibit ECC support for various AT91 SoC
19 * © Copyright 2012 ATMEL, Hong Xu
20 *
21 * Add Nand Flash Controller support for SAMA5 SoC
22 * © Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com)
23 *
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License version 2 as
26 * published by the Free Software Foundation.
27 *
28 */
29
30 #include <linux/clk.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/slab.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/platform_device.h>
36 #include <linux/of.h>
37 #include <linux/of_device.h>
38 #include <linux/of_gpio.h>
39 #include <linux/of_mtd.h>
40 #include <linux/mtd/mtd.h>
41 #include <linux/mtd/nand.h>
42 #include <linux/mtd/partitions.h>
43
44 #include <linux/delay.h>
45 #include <linux/dmaengine.h>
46 #include <linux/gpio.h>
47 #include <linux/interrupt.h>
48 #include <linux/io.h>
49 #include <linux/platform_data/atmel.h>
50
51 static int use_dma = 1;
52 module_param(use_dma, int, 0);
53
54 static int on_flash_bbt = 0;
55 module_param(on_flash_bbt, int, 0);
56
57 /* Register access macros */
58 #define ecc_readl(add, reg) \
59 __raw_readl(add + ATMEL_ECC_##reg)
60 #define ecc_writel(add, reg, value) \
61 __raw_writel((value), add + ATMEL_ECC_##reg)
62
63 #include "atmel_nand_ecc.h" /* Hardware ECC registers */
64 #include "atmel_nand_nfc.h" /* Nand Flash Controller definition */
65
66 struct atmel_nand_caps {
67 bool pmecc_correct_erase_page;
68 };
69
70 /* oob layout for large page size
71 * bad block info is on bytes 0 and 1
72 * the bytes have to be consecutives to avoid
73 * several NAND_CMD_RNDOUT during read
74 */
75 static struct nand_ecclayout atmel_oobinfo_large = {
76 .eccbytes = 4,
77 .eccpos = {60, 61, 62, 63},
78 .oobfree = {
79 {2, 58}
80 },
81 };
82
83 /* oob layout for small page size
84 * bad block info is on bytes 4 and 5
85 * the bytes have to be consecutives to avoid
86 * several NAND_CMD_RNDOUT during read
87 */
88 static struct nand_ecclayout atmel_oobinfo_small = {
89 .eccbytes = 4,
90 .eccpos = {0, 1, 2, 3},
91 .oobfree = {
92 {6, 10}
93 },
94 };
95
96 struct atmel_nfc {
97 void __iomem *base_cmd_regs;
98 void __iomem *hsmc_regs;
99 void *sram_bank0;
100 dma_addr_t sram_bank0_phys;
101 bool use_nfc_sram;
102 bool write_by_sram;
103
104 struct clk *clk;
105
106 bool is_initialized;
107 struct completion comp_ready;
108 struct completion comp_cmd_done;
109 struct completion comp_xfer_done;
110
111 /* Point to the sram bank which include readed data via NFC */
112 void *data_in_sram;
113 bool will_write_sram;
114 };
115 static struct atmel_nfc nand_nfc;
116
117 struct atmel_nand_host {
118 struct nand_chip nand_chip;
119 struct mtd_info mtd;
120 void __iomem *io_base;
121 dma_addr_t io_phys;
122 struct atmel_nand_data board;
123 struct device *dev;
124 void __iomem *ecc;
125
126 struct completion comp;
127 struct dma_chan *dma_chan;
128
129 struct atmel_nfc *nfc;
130
131 struct atmel_nand_caps *caps;
132 bool has_pmecc;
133 u8 pmecc_corr_cap;
134 u16 pmecc_sector_size;
135 bool has_no_lookup_table;
136 u32 pmecc_lookup_table_offset;
137 u32 pmecc_lookup_table_offset_512;
138 u32 pmecc_lookup_table_offset_1024;
139
140 int pmecc_degree; /* Degree of remainders */
141 int pmecc_cw_len; /* Length of codeword */
142
143 void __iomem *pmerrloc_base;
144 void __iomem *pmecc_rom_base;
145
146 /* lookup table for alpha_to and index_of */
147 void __iomem *pmecc_alpha_to;
148 void __iomem *pmecc_index_of;
149
150 /* data for pmecc computation */
151 int16_t *pmecc_partial_syn;
152 int16_t *pmecc_si;
153 int16_t *pmecc_smu; /* Sigma table */
154 int16_t *pmecc_lmu; /* polynomal order */
155 int *pmecc_mu;
156 int *pmecc_dmu;
157 int *pmecc_delta;
158 };
159
160 static struct nand_ecclayout atmel_pmecc_oobinfo;
161
162 /*
163 * Enable NAND.
164 */
165 static void atmel_nand_enable(struct atmel_nand_host *host)
166 {
167 if (gpio_is_valid(host->board.enable_pin))
168 gpio_set_value(host->board.enable_pin, 0);
169 }
170
171 /*
172 * Disable NAND.
173 */
174 static void atmel_nand_disable(struct atmel_nand_host *host)
175 {
176 if (gpio_is_valid(host->board.enable_pin))
177 gpio_set_value(host->board.enable_pin, 1);
178 }
179
180 /*
181 * Hardware specific access to control-lines
182 */
183 static void atmel_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
184 {
185 struct nand_chip *nand_chip = mtd->priv;
186 struct atmel_nand_host *host = nand_chip->priv;
187
188 if (ctrl & NAND_CTRL_CHANGE) {
189 if (ctrl & NAND_NCE)
190 atmel_nand_enable(host);
191 else
192 atmel_nand_disable(host);
193 }
194 if (cmd == NAND_CMD_NONE)
195 return;
196
197 if (ctrl & NAND_CLE)
198 writeb(cmd, host->io_base + (1 << host->board.cle));
199 else
200 writeb(cmd, host->io_base + (1 << host->board.ale));
201 }
202
203 /*
204 * Read the Device Ready pin.
205 */
206 static int atmel_nand_device_ready(struct mtd_info *mtd)
207 {
208 struct nand_chip *nand_chip = mtd->priv;
209 struct atmel_nand_host *host = nand_chip->priv;
210
211 return gpio_get_value(host->board.rdy_pin) ^
212 !!host->board.rdy_pin_active_low;
213 }
214
215 /* Set up for hardware ready pin and enable pin. */
216 static int atmel_nand_set_enable_ready_pins(struct mtd_info *mtd)
217 {
218 struct nand_chip *chip = mtd->priv;
219 struct atmel_nand_host *host = chip->priv;
220 int res = 0;
221
222 if (gpio_is_valid(host->board.rdy_pin)) {
223 res = devm_gpio_request(host->dev,
224 host->board.rdy_pin, "nand_rdy");
225 if (res < 0) {
226 dev_err(host->dev,
227 "can't request rdy gpio %d\n",
228 host->board.rdy_pin);
229 return res;
230 }
231
232 res = gpio_direction_input(host->board.rdy_pin);
233 if (res < 0) {
234 dev_err(host->dev,
235 "can't request input direction rdy gpio %d\n",
236 host->board.rdy_pin);
237 return res;
238 }
239
240 chip->dev_ready = atmel_nand_device_ready;
241 }
242
243 if (gpio_is_valid(host->board.enable_pin)) {
244 res = devm_gpio_request(host->dev,
245 host->board.enable_pin, "nand_enable");
246 if (res < 0) {
247 dev_err(host->dev,
248 "can't request enable gpio %d\n",
249 host->board.enable_pin);
250 return res;
251 }
252
253 res = gpio_direction_output(host->board.enable_pin, 1);
254 if (res < 0) {
255 dev_err(host->dev,
256 "can't request output direction enable gpio %d\n",
257 host->board.enable_pin);
258 return res;
259 }
260 }
261
262 return res;
263 }
264
265 /*
266 * Minimal-overhead PIO for data access.
267 */
268 static void atmel_read_buf8(struct mtd_info *mtd, u8 *buf, int len)
269 {
270 struct nand_chip *nand_chip = mtd->priv;
271 struct atmel_nand_host *host = nand_chip->priv;
272
273 if (host->nfc && host->nfc->use_nfc_sram && host->nfc->data_in_sram) {
274 memcpy(buf, host->nfc->data_in_sram, len);
275 host->nfc->data_in_sram += len;
276 } else {
277 __raw_readsb(nand_chip->IO_ADDR_R, buf, len);
278 }
279 }
280
281 static void atmel_read_buf16(struct mtd_info *mtd, u8 *buf, int len)
282 {
283 struct nand_chip *nand_chip = mtd->priv;
284 struct atmel_nand_host *host = nand_chip->priv;
285
286 if (host->nfc && host->nfc->use_nfc_sram && host->nfc->data_in_sram) {
287 memcpy(buf, host->nfc->data_in_sram, len);
288 host->nfc->data_in_sram += len;
289 } else {
290 __raw_readsw(nand_chip->IO_ADDR_R, buf, len / 2);
291 }
292 }
293
294 static void atmel_write_buf8(struct mtd_info *mtd, const u8 *buf, int len)
295 {
296 struct nand_chip *nand_chip = mtd->priv;
297
298 __raw_writesb(nand_chip->IO_ADDR_W, buf, len);
299 }
300
301 static void atmel_write_buf16(struct mtd_info *mtd, const u8 *buf, int len)
302 {
303 struct nand_chip *nand_chip = mtd->priv;
304
305 __raw_writesw(nand_chip->IO_ADDR_W, buf, len / 2);
306 }
307
308 static void dma_complete_func(void *completion)
309 {
310 complete(completion);
311 }
312
313 static int nfc_set_sram_bank(struct atmel_nand_host *host, unsigned int bank)
314 {
315 /* NFC only has two banks. Must be 0 or 1 */
316 if (bank > 1)
317 return -EINVAL;
318
319 if (bank) {
320 /* Only for a 2k-page or lower flash, NFC can handle 2 banks */
321 if (host->mtd.writesize > 2048)
322 return -EINVAL;
323 nfc_writel(host->nfc->hsmc_regs, BANK, ATMEL_HSMC_NFC_BANK1);
324 } else {
325 nfc_writel(host->nfc->hsmc_regs, BANK, ATMEL_HSMC_NFC_BANK0);
326 }
327
328 return 0;
329 }
330
331 static uint nfc_get_sram_off(struct atmel_nand_host *host)
332 {
333 if (nfc_readl(host->nfc->hsmc_regs, BANK) & ATMEL_HSMC_NFC_BANK1)
334 return NFC_SRAM_BANK1_OFFSET;
335 else
336 return 0;
337 }
338
339 static dma_addr_t nfc_sram_phys(struct atmel_nand_host *host)
340 {
341 if (nfc_readl(host->nfc->hsmc_regs, BANK) & ATMEL_HSMC_NFC_BANK1)
342 return host->nfc->sram_bank0_phys + NFC_SRAM_BANK1_OFFSET;
343 else
344 return host->nfc->sram_bank0_phys;
345 }
346
347 static int atmel_nand_dma_op(struct mtd_info *mtd, void *buf, int len,
348 int is_read)
349 {
350 struct dma_device *dma_dev;
351 enum dma_ctrl_flags flags;
352 dma_addr_t dma_src_addr, dma_dst_addr, phys_addr;
353 struct dma_async_tx_descriptor *tx = NULL;
354 dma_cookie_t cookie;
355 struct nand_chip *chip = mtd->priv;
356 struct atmel_nand_host *host = chip->priv;
357 void *p = buf;
358 int err = -EIO;
359 enum dma_data_direction dir = is_read ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
360 struct atmel_nfc *nfc = host->nfc;
361
362 if (buf >= high_memory)
363 goto err_buf;
364
365 dma_dev = host->dma_chan->device;
366
367 flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
368
369 phys_addr = dma_map_single(dma_dev->dev, p, len, dir);
370 if (dma_mapping_error(dma_dev->dev, phys_addr)) {
371 dev_err(host->dev, "Failed to dma_map_single\n");
372 goto err_buf;
373 }
374
375 if (is_read) {
376 if (nfc && nfc->data_in_sram)
377 dma_src_addr = nfc_sram_phys(host) + (nfc->data_in_sram
378 - (nfc->sram_bank0 + nfc_get_sram_off(host)));
379 else
380 dma_src_addr = host->io_phys;
381
382 dma_dst_addr = phys_addr;
383 } else {
384 dma_src_addr = phys_addr;
385
386 if (nfc && nfc->write_by_sram)
387 dma_dst_addr = nfc_sram_phys(host);
388 else
389 dma_dst_addr = host->io_phys;
390 }
391
392 tx = dma_dev->device_prep_dma_memcpy(host->dma_chan, dma_dst_addr,
393 dma_src_addr, len, flags);
394 if (!tx) {
395 dev_err(host->dev, "Failed to prepare DMA memcpy\n");
396 goto err_dma;
397 }
398
399 init_completion(&host->comp);
400 tx->callback = dma_complete_func;
401 tx->callback_param = &host->comp;
402
403 cookie = tx->tx_submit(tx);
404 if (dma_submit_error(cookie)) {
405 dev_err(host->dev, "Failed to do DMA tx_submit\n");
406 goto err_dma;
407 }
408
409 dma_async_issue_pending(host->dma_chan);
410 wait_for_completion(&host->comp);
411
412 if (is_read && nfc && nfc->data_in_sram)
413 /* After read data from SRAM, need to increase the position */
414 nfc->data_in_sram += len;
415
416 err = 0;
417
418 err_dma:
419 dma_unmap_single(dma_dev->dev, phys_addr, len, dir);
420 err_buf:
421 if (err != 0)
422 dev_dbg(host->dev, "Fall back to CPU I/O\n");
423 return err;
424 }
425
426 static void atmel_read_buf(struct mtd_info *mtd, u8 *buf, int len)
427 {
428 struct nand_chip *chip = mtd->priv;
429 struct atmel_nand_host *host = chip->priv;
430
431 if (use_dma && len > mtd->oobsize)
432 /* only use DMA for bigger than oob size: better performances */
433 if (atmel_nand_dma_op(mtd, buf, len, 1) == 0)
434 return;
435
436 if (host->board.bus_width_16)
437 atmel_read_buf16(mtd, buf, len);
438 else
439 atmel_read_buf8(mtd, buf, len);
440 }
441
442 static void atmel_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
443 {
444 struct nand_chip *chip = mtd->priv;
445 struct atmel_nand_host *host = chip->priv;
446
447 if (use_dma && len > mtd->oobsize)
448 /* only use DMA for bigger than oob size: better performances */
449 if (atmel_nand_dma_op(mtd, (void *)buf, len, 0) == 0)
450 return;
451
452 if (host->board.bus_width_16)
453 atmel_write_buf16(mtd, buf, len);
454 else
455 atmel_write_buf8(mtd, buf, len);
456 }
457
458 /*
459 * Return number of ecc bytes per sector according to sector size and
460 * correction capability
461 *
462 * Following table shows what at91 PMECC supported:
463 * Correction Capability Sector_512_bytes Sector_1024_bytes
464 * ===================== ================ =================
465 * 2-bits 4-bytes 4-bytes
466 * 4-bits 7-bytes 7-bytes
467 * 8-bits 13-bytes 14-bytes
468 * 12-bits 20-bytes 21-bytes
469 * 24-bits 39-bytes 42-bytes
470 */
471 static int pmecc_get_ecc_bytes(int cap, int sector_size)
472 {
473 int m = 12 + sector_size / 512;
474 return (m * cap + 7) / 8;
475 }
476
477 static void pmecc_config_ecc_layout(struct nand_ecclayout *layout,
478 int oobsize, int ecc_len)
479 {
480 int i;
481
482 layout->eccbytes = ecc_len;
483
484 /* ECC will occupy the last ecc_len bytes continuously */
485 for (i = 0; i < ecc_len; i++)
486 layout->eccpos[i] = oobsize - ecc_len + i;
487
488 layout->oobfree[0].offset = PMECC_OOB_RESERVED_BYTES;
489 layout->oobfree[0].length =
490 oobsize - ecc_len - layout->oobfree[0].offset;
491 }
492
493 static void __iomem *pmecc_get_alpha_to(struct atmel_nand_host *host)
494 {
495 int table_size;
496
497 table_size = host->pmecc_sector_size == 512 ?
498 PMECC_LOOKUP_TABLE_SIZE_512 : PMECC_LOOKUP_TABLE_SIZE_1024;
499
500 return host->pmecc_rom_base + host->pmecc_lookup_table_offset +
501 table_size * sizeof(int16_t);
502 }
503
504 static int pmecc_data_alloc(struct atmel_nand_host *host)
505 {
506 const int cap = host->pmecc_corr_cap;
507 int size;
508
509 size = (2 * cap + 1) * sizeof(int16_t);
510 host->pmecc_partial_syn = devm_kzalloc(host->dev, size, GFP_KERNEL);
511 host->pmecc_si = devm_kzalloc(host->dev, size, GFP_KERNEL);
512 host->pmecc_lmu = devm_kzalloc(host->dev,
513 (cap + 1) * sizeof(int16_t), GFP_KERNEL);
514 host->pmecc_smu = devm_kzalloc(host->dev,
515 (cap + 2) * size, GFP_KERNEL);
516
517 size = (cap + 1) * sizeof(int);
518 host->pmecc_mu = devm_kzalloc(host->dev, size, GFP_KERNEL);
519 host->pmecc_dmu = devm_kzalloc(host->dev, size, GFP_KERNEL);
520 host->pmecc_delta = devm_kzalloc(host->dev, size, GFP_KERNEL);
521
522 if (!host->pmecc_partial_syn ||
523 !host->pmecc_si ||
524 !host->pmecc_lmu ||
525 !host->pmecc_smu ||
526 !host->pmecc_mu ||
527 !host->pmecc_dmu ||
528 !host->pmecc_delta)
529 return -ENOMEM;
530
531 return 0;
532 }
533
534 static void pmecc_gen_syndrome(struct mtd_info *mtd, int sector)
535 {
536 struct nand_chip *nand_chip = mtd->priv;
537 struct atmel_nand_host *host = nand_chip->priv;
538 int i;
539 uint32_t value;
540
541 /* Fill odd syndromes */
542 for (i = 0; i < host->pmecc_corr_cap; i++) {
543 value = pmecc_readl_rem_relaxed(host->ecc, sector, i / 2);
544 if (i & 1)
545 value >>= 16;
546 value &= 0xffff;
547 host->pmecc_partial_syn[(2 * i) + 1] = (int16_t)value;
548 }
549 }
550
551 static void pmecc_substitute(struct mtd_info *mtd)
552 {
553 struct nand_chip *nand_chip = mtd->priv;
554 struct atmel_nand_host *host = nand_chip->priv;
555 int16_t __iomem *alpha_to = host->pmecc_alpha_to;
556 int16_t __iomem *index_of = host->pmecc_index_of;
557 int16_t *partial_syn = host->pmecc_partial_syn;
558 const int cap = host->pmecc_corr_cap;
559 int16_t *si;
560 int i, j;
561
562 /* si[] is a table that holds the current syndrome value,
563 * an element of that table belongs to the field
564 */
565 si = host->pmecc_si;
566
567 memset(&si[1], 0, sizeof(int16_t) * (2 * cap - 1));
568
569 /* Computation 2t syndromes based on S(x) */
570 /* Odd syndromes */
571 for (i = 1; i < 2 * cap; i += 2) {
572 for (j = 0; j < host->pmecc_degree; j++) {
573 if (partial_syn[i] & ((unsigned short)0x1 << j))
574 si[i] = readw_relaxed(alpha_to + i * j) ^ si[i];
575 }
576 }
577 /* Even syndrome = (Odd syndrome) ** 2 */
578 for (i = 2, j = 1; j <= cap; i = ++j << 1) {
579 if (si[j] == 0) {
580 si[i] = 0;
581 } else {
582 int16_t tmp;
583
584 tmp = readw_relaxed(index_of + si[j]);
585 tmp = (tmp * 2) % host->pmecc_cw_len;
586 si[i] = readw_relaxed(alpha_to + tmp);
587 }
588 }
589
590 return;
591 }
592
593 static void pmecc_get_sigma(struct mtd_info *mtd)
594 {
595 struct nand_chip *nand_chip = mtd->priv;
596 struct atmel_nand_host *host = nand_chip->priv;
597
598 int16_t *lmu = host->pmecc_lmu;
599 int16_t *si = host->pmecc_si;
600 int *mu = host->pmecc_mu;
601 int *dmu = host->pmecc_dmu; /* Discrepancy */
602 int *delta = host->pmecc_delta; /* Delta order */
603 int cw_len = host->pmecc_cw_len;
604 const int16_t cap = host->pmecc_corr_cap;
605 const int num = 2 * cap + 1;
606 int16_t __iomem *index_of = host->pmecc_index_of;
607 int16_t __iomem *alpha_to = host->pmecc_alpha_to;
608 int i, j, k;
609 uint32_t dmu_0_count, tmp;
610 int16_t *smu = host->pmecc_smu;
611
612 /* index of largest delta */
613 int ro;
614 int largest;
615 int diff;
616
617 dmu_0_count = 0;
618
619 /* First Row */
620
621 /* Mu */
622 mu[0] = -1;
623
624 memset(smu, 0, sizeof(int16_t) * num);
625 smu[0] = 1;
626
627 /* discrepancy set to 1 */
628 dmu[0] = 1;
629 /* polynom order set to 0 */
630 lmu[0] = 0;
631 delta[0] = (mu[0] * 2 - lmu[0]) >> 1;
632
633 /* Second Row */
634
635 /* Mu */
636 mu[1] = 0;
637 /* Sigma(x) set to 1 */
638 memset(&smu[num], 0, sizeof(int16_t) * num);
639 smu[num] = 1;
640
641 /* discrepancy set to S1 */
642 dmu[1] = si[1];
643
644 /* polynom order set to 0 */
645 lmu[1] = 0;
646
647 delta[1] = (mu[1] * 2 - lmu[1]) >> 1;
648
649 /* Init the Sigma(x) last row */
650 memset(&smu[(cap + 1) * num], 0, sizeof(int16_t) * num);
651
652 for (i = 1; i <= cap; i++) {
653 mu[i + 1] = i << 1;
654 /* Begin Computing Sigma (Mu+1) and L(mu) */
655 /* check if discrepancy is set to 0 */
656 if (dmu[i] == 0) {
657 dmu_0_count++;
658
659 tmp = ((cap - (lmu[i] >> 1) - 1) / 2);
660 if ((cap - (lmu[i] >> 1) - 1) & 0x1)
661 tmp += 2;
662 else
663 tmp += 1;
664
665 if (dmu_0_count == tmp) {
666 for (j = 0; j <= (lmu[i] >> 1) + 1; j++)
667 smu[(cap + 1) * num + j] =
668 smu[i * num + j];
669
670 lmu[cap + 1] = lmu[i];
671 return;
672 }
673
674 /* copy polynom */
675 for (j = 0; j <= lmu[i] >> 1; j++)
676 smu[(i + 1) * num + j] = smu[i * num + j];
677
678 /* copy previous polynom order to the next */
679 lmu[i + 1] = lmu[i];
680 } else {
681 ro = 0;
682 largest = -1;
683 /* find largest delta with dmu != 0 */
684 for (j = 0; j < i; j++) {
685 if ((dmu[j]) && (delta[j] > largest)) {
686 largest = delta[j];
687 ro = j;
688 }
689 }
690
691 /* compute difference */
692 diff = (mu[i] - mu[ro]);
693
694 /* Compute degree of the new smu polynomial */
695 if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff))
696 lmu[i + 1] = lmu[i];
697 else
698 lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2;
699
700 /* Init smu[i+1] with 0 */
701 for (k = 0; k < num; k++)
702 smu[(i + 1) * num + k] = 0;
703
704 /* Compute smu[i+1] */
705 for (k = 0; k <= lmu[ro] >> 1; k++) {
706 int16_t a, b, c;
707
708 if (!(smu[ro * num + k] && dmu[i]))
709 continue;
710 a = readw_relaxed(index_of + dmu[i]);
711 b = readw_relaxed(index_of + dmu[ro]);
712 c = readw_relaxed(index_of + smu[ro * num + k]);
713 tmp = a + (cw_len - b) + c;
714 a = readw_relaxed(alpha_to + tmp % cw_len);
715 smu[(i + 1) * num + (k + diff)] = a;
716 }
717
718 for (k = 0; k <= lmu[i] >> 1; k++)
719 smu[(i + 1) * num + k] ^= smu[i * num + k];
720 }
721
722 /* End Computing Sigma (Mu+1) and L(mu) */
723 /* In either case compute delta */
724 delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1;
725
726 /* Do not compute discrepancy for the last iteration */
727 if (i >= cap)
728 continue;
729
730 for (k = 0; k <= (lmu[i + 1] >> 1); k++) {
731 tmp = 2 * (i - 1);
732 if (k == 0) {
733 dmu[i + 1] = si[tmp + 3];
734 } else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) {
735 int16_t a, b, c;
736 a = readw_relaxed(index_of +
737 smu[(i + 1) * num + k]);
738 b = si[2 * (i - 1) + 3 - k];
739 c = readw_relaxed(index_of + b);
740 tmp = a + c;
741 tmp %= cw_len;
742 dmu[i + 1] = readw_relaxed(alpha_to + tmp) ^
743 dmu[i + 1];
744 }
745 }
746 }
747
748 return;
749 }
750
751 static int pmecc_err_location(struct mtd_info *mtd)
752 {
753 struct nand_chip *nand_chip = mtd->priv;
754 struct atmel_nand_host *host = nand_chip->priv;
755 unsigned long end_time;
756 const int cap = host->pmecc_corr_cap;
757 const int num = 2 * cap + 1;
758 int sector_size = host->pmecc_sector_size;
759 int err_nbr = 0; /* number of error */
760 int roots_nbr; /* number of roots */
761 int i;
762 uint32_t val;
763 int16_t *smu = host->pmecc_smu;
764
765 pmerrloc_writel(host->pmerrloc_base, ELDIS, PMERRLOC_DISABLE);
766
767 for (i = 0; i <= host->pmecc_lmu[cap + 1] >> 1; i++) {
768 pmerrloc_writel_sigma_relaxed(host->pmerrloc_base, i,
769 smu[(cap + 1) * num + i]);
770 err_nbr++;
771 }
772
773 val = (err_nbr - 1) << 16;
774 if (sector_size == 1024)
775 val |= 1;
776
777 pmerrloc_writel(host->pmerrloc_base, ELCFG, val);
778 pmerrloc_writel(host->pmerrloc_base, ELEN,
779 sector_size * 8 + host->pmecc_degree * cap);
780
781 end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
782 while (!(pmerrloc_readl_relaxed(host->pmerrloc_base, ELISR)
783 & PMERRLOC_CALC_DONE)) {
784 if (unlikely(time_after(jiffies, end_time))) {
785 dev_err(host->dev, "PMECC: Timeout to calculate error location.\n");
786 return -1;
787 }
788 cpu_relax();
789 }
790
791 roots_nbr = (pmerrloc_readl_relaxed(host->pmerrloc_base, ELISR)
792 & PMERRLOC_ERR_NUM_MASK) >> 8;
793 /* Number of roots == degree of smu hence <= cap */
794 if (roots_nbr == host->pmecc_lmu[cap + 1] >> 1)
795 return err_nbr - 1;
796
797 /* Number of roots does not match the degree of smu
798 * unable to correct error */
799 return -1;
800 }
801
802 static void pmecc_correct_data(struct mtd_info *mtd, uint8_t *buf, uint8_t *ecc,
803 int sector_num, int extra_bytes, int err_nbr)
804 {
805 struct nand_chip *nand_chip = mtd->priv;
806 struct atmel_nand_host *host = nand_chip->priv;
807 int i = 0;
808 int byte_pos, bit_pos, sector_size, pos;
809 uint32_t tmp;
810 uint8_t err_byte;
811
812 sector_size = host->pmecc_sector_size;
813
814 while (err_nbr) {
815 tmp = pmerrloc_readl_el_relaxed(host->pmerrloc_base, i) - 1;
816 byte_pos = tmp / 8;
817 bit_pos = tmp % 8;
818
819 if (byte_pos >= (sector_size + extra_bytes))
820 BUG(); /* should never happen */
821
822 if (byte_pos < sector_size) {
823 err_byte = *(buf + byte_pos);
824 *(buf + byte_pos) ^= (1 << bit_pos);
825
826 pos = sector_num * host->pmecc_sector_size + byte_pos;
827 dev_info(host->dev, "Bit flip in data area, byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
828 pos, bit_pos, err_byte, *(buf + byte_pos));
829 } else {
830 /* Bit flip in OOB area */
831 tmp = sector_num * nand_chip->ecc.bytes
832 + (byte_pos - sector_size);
833 err_byte = ecc[tmp];
834 ecc[tmp] ^= (1 << bit_pos);
835
836 pos = tmp + nand_chip->ecc.layout->eccpos[0];
837 dev_info(host->dev, "Bit flip in OOB, oob_byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
838 pos, bit_pos, err_byte, ecc[tmp]);
839 }
840
841 i++;
842 err_nbr--;
843 }
844
845 return;
846 }
847
848 static int pmecc_correction(struct mtd_info *mtd, u32 pmecc_stat, uint8_t *buf,
849 u8 *ecc)
850 {
851 struct nand_chip *nand_chip = mtd->priv;
852 struct atmel_nand_host *host = nand_chip->priv;
853 int i, err_nbr;
854 uint8_t *buf_pos;
855 int max_bitflips = 0;
856
857 /* If can correct bitfilps from erased page, do the normal check */
858 if (host->caps->pmecc_correct_erase_page)
859 goto normal_check;
860
861 for (i = 0; i < nand_chip->ecc.total; i++)
862 if (ecc[i] != 0xff)
863 goto normal_check;
864 /* Erased page, return OK */
865 return 0;
866
867 normal_check:
868 for (i = 0; i < nand_chip->ecc.steps; i++) {
869 err_nbr = 0;
870 if (pmecc_stat & 0x1) {
871 buf_pos = buf + i * host->pmecc_sector_size;
872
873 pmecc_gen_syndrome(mtd, i);
874 pmecc_substitute(mtd);
875 pmecc_get_sigma(mtd);
876
877 err_nbr = pmecc_err_location(mtd);
878 if (err_nbr == -1) {
879 dev_err(host->dev, "PMECC: Too many errors\n");
880 mtd->ecc_stats.failed++;
881 return -EIO;
882 } else {
883 pmecc_correct_data(mtd, buf_pos, ecc, i,
884 nand_chip->ecc.bytes, err_nbr);
885 mtd->ecc_stats.corrected += err_nbr;
886 max_bitflips = max_t(int, max_bitflips, err_nbr);
887 }
888 }
889 pmecc_stat >>= 1;
890 }
891
892 return max_bitflips;
893 }
894
895 static void pmecc_enable(struct atmel_nand_host *host, int ecc_op)
896 {
897 u32 val;
898
899 if (ecc_op != NAND_ECC_READ && ecc_op != NAND_ECC_WRITE) {
900 dev_err(host->dev, "atmel_nand: wrong pmecc operation type!");
901 return;
902 }
903
904 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST);
905 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
906 val = pmecc_readl_relaxed(host->ecc, CFG);
907
908 if (ecc_op == NAND_ECC_READ)
909 pmecc_writel(host->ecc, CFG, (val & ~PMECC_CFG_WRITE_OP)
910 | PMECC_CFG_AUTO_ENABLE);
911 else
912 pmecc_writel(host->ecc, CFG, (val | PMECC_CFG_WRITE_OP)
913 & ~PMECC_CFG_AUTO_ENABLE);
914
915 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE);
916 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DATA);
917 }
918
919 static int atmel_nand_pmecc_read_page(struct mtd_info *mtd,
920 struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
921 {
922 struct atmel_nand_host *host = chip->priv;
923 int eccsize = chip->ecc.size * chip->ecc.steps;
924 uint8_t *oob = chip->oob_poi;
925 uint32_t *eccpos = chip->ecc.layout->eccpos;
926 uint32_t stat;
927 unsigned long end_time;
928 int bitflips = 0;
929
930 if (!host->nfc || !host->nfc->use_nfc_sram)
931 pmecc_enable(host, NAND_ECC_READ);
932
933 chip->read_buf(mtd, buf, eccsize);
934 chip->read_buf(mtd, oob, mtd->oobsize);
935
936 end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
937 while ((pmecc_readl_relaxed(host->ecc, SR) & PMECC_SR_BUSY)) {
938 if (unlikely(time_after(jiffies, end_time))) {
939 dev_err(host->dev, "PMECC: Timeout to get error status.\n");
940 return -EIO;
941 }
942 cpu_relax();
943 }
944
945 stat = pmecc_readl_relaxed(host->ecc, ISR);
946 if (stat != 0) {
947 bitflips = pmecc_correction(mtd, stat, buf, &oob[eccpos[0]]);
948 if (bitflips < 0)
949 /* uncorrectable errors */
950 return 0;
951 }
952
953 return bitflips;
954 }
955
956 static int atmel_nand_pmecc_write_page(struct mtd_info *mtd,
957 struct nand_chip *chip, const uint8_t *buf, int oob_required,
958 int page)
959 {
960 struct atmel_nand_host *host = chip->priv;
961 uint32_t *eccpos = chip->ecc.layout->eccpos;
962 int i, j;
963 unsigned long end_time;
964
965 if (!host->nfc || !host->nfc->write_by_sram) {
966 pmecc_enable(host, NAND_ECC_WRITE);
967 chip->write_buf(mtd, (u8 *)buf, mtd->writesize);
968 }
969
970 end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
971 while ((pmecc_readl_relaxed(host->ecc, SR) & PMECC_SR_BUSY)) {
972 if (unlikely(time_after(jiffies, end_time))) {
973 dev_err(host->dev, "PMECC: Timeout to get ECC value.\n");
974 return -EIO;
975 }
976 cpu_relax();
977 }
978
979 for (i = 0; i < chip->ecc.steps; i++) {
980 for (j = 0; j < chip->ecc.bytes; j++) {
981 int pos;
982
983 pos = i * chip->ecc.bytes + j;
984 chip->oob_poi[eccpos[pos]] =
985 pmecc_readb_ecc_relaxed(host->ecc, i, j);
986 }
987 }
988 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
989
990 return 0;
991 }
992
993 static void atmel_pmecc_core_init(struct mtd_info *mtd)
994 {
995 struct nand_chip *nand_chip = mtd->priv;
996 struct atmel_nand_host *host = nand_chip->priv;
997 uint32_t val = 0;
998 struct nand_ecclayout *ecc_layout;
999
1000 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST);
1001 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
1002
1003 switch (host->pmecc_corr_cap) {
1004 case 2:
1005 val = PMECC_CFG_BCH_ERR2;
1006 break;
1007 case 4:
1008 val = PMECC_CFG_BCH_ERR4;
1009 break;
1010 case 8:
1011 val = PMECC_CFG_BCH_ERR8;
1012 break;
1013 case 12:
1014 val = PMECC_CFG_BCH_ERR12;
1015 break;
1016 case 24:
1017 val = PMECC_CFG_BCH_ERR24;
1018 break;
1019 }
1020
1021 if (host->pmecc_sector_size == 512)
1022 val |= PMECC_CFG_SECTOR512;
1023 else if (host->pmecc_sector_size == 1024)
1024 val |= PMECC_CFG_SECTOR1024;
1025
1026 switch (nand_chip->ecc.steps) {
1027 case 1:
1028 val |= PMECC_CFG_PAGE_1SECTOR;
1029 break;
1030 case 2:
1031 val |= PMECC_CFG_PAGE_2SECTORS;
1032 break;
1033 case 4:
1034 val |= PMECC_CFG_PAGE_4SECTORS;
1035 break;
1036 case 8:
1037 val |= PMECC_CFG_PAGE_8SECTORS;
1038 break;
1039 }
1040
1041 val |= (PMECC_CFG_READ_OP | PMECC_CFG_SPARE_DISABLE
1042 | PMECC_CFG_AUTO_DISABLE);
1043 pmecc_writel(host->ecc, CFG, val);
1044
1045 ecc_layout = nand_chip->ecc.layout;
1046 pmecc_writel(host->ecc, SAREA, mtd->oobsize - 1);
1047 pmecc_writel(host->ecc, SADDR, ecc_layout->eccpos[0]);
1048 pmecc_writel(host->ecc, EADDR,
1049 ecc_layout->eccpos[ecc_layout->eccbytes - 1]);
1050 /* See datasheet about PMECC Clock Control Register */
1051 pmecc_writel(host->ecc, CLK, 2);
1052 pmecc_writel(host->ecc, IDR, 0xff);
1053 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE);
1054 }
1055
1056 /*
1057 * Get minimum ecc requirements from NAND.
1058 * If pmecc-cap, pmecc-sector-size in DTS are not specified, this function
1059 * will set them according to minimum ecc requirement. Otherwise, use the
1060 * value in DTS file.
1061 * return 0 if success. otherwise return error code.
1062 */
1063 static int pmecc_choose_ecc(struct atmel_nand_host *host,
1064 int *cap, int *sector_size)
1065 {
1066 /* Get minimum ECC requirements */
1067 if (host->nand_chip.ecc_strength_ds) {
1068 *cap = host->nand_chip.ecc_strength_ds;
1069 *sector_size = host->nand_chip.ecc_step_ds;
1070 dev_info(host->dev, "minimum ECC: %d bits in %d bytes\n",
1071 *cap, *sector_size);
1072 } else {
1073 *cap = 2;
1074 *sector_size = 512;
1075 dev_info(host->dev, "can't detect min. ECC, assume 2 bits in 512 bytes\n");
1076 }
1077
1078 /* If device tree doesn't specify, use NAND's minimum ECC parameters */
1079 if (host->pmecc_corr_cap == 0) {
1080 /* use the most fitable ecc bits (the near bigger one ) */
1081 if (*cap <= 2)
1082 host->pmecc_corr_cap = 2;
1083 else if (*cap <= 4)
1084 host->pmecc_corr_cap = 4;
1085 else if (*cap <= 8)
1086 host->pmecc_corr_cap = 8;
1087 else if (*cap <= 12)
1088 host->pmecc_corr_cap = 12;
1089 else if (*cap <= 24)
1090 host->pmecc_corr_cap = 24;
1091 else
1092 return -EINVAL;
1093 }
1094 if (host->pmecc_sector_size == 0) {
1095 /* use the most fitable sector size (the near smaller one ) */
1096 if (*sector_size >= 1024)
1097 host->pmecc_sector_size = 1024;
1098 else if (*sector_size >= 512)
1099 host->pmecc_sector_size = 512;
1100 else
1101 return -EINVAL;
1102 }
1103 return 0;
1104 }
1105
1106 static inline int deg(unsigned int poly)
1107 {
1108 /* polynomial degree is the most-significant bit index */
1109 return fls(poly) - 1;
1110 }
1111
1112 static int build_gf_tables(int mm, unsigned int poly,
1113 int16_t *index_of, int16_t *alpha_to)
1114 {
1115 unsigned int i, x = 1;
1116 const unsigned int k = 1 << deg(poly);
1117 unsigned int nn = (1 << mm) - 1;
1118
1119 /* primitive polynomial must be of degree m */
1120 if (k != (1u << mm))
1121 return -EINVAL;
1122
1123 for (i = 0; i < nn; i++) {
1124 alpha_to[i] = x;
1125 index_of[x] = i;
1126 if (i && (x == 1))
1127 /* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */
1128 return -EINVAL;
1129 x <<= 1;
1130 if (x & k)
1131 x ^= poly;
1132 }
1133 alpha_to[nn] = 1;
1134 index_of[0] = 0;
1135
1136 return 0;
1137 }
1138
1139 static uint16_t *create_lookup_table(struct device *dev, int sector_size)
1140 {
1141 int degree = (sector_size == 512) ?
1142 PMECC_GF_DIMENSION_13 :
1143 PMECC_GF_DIMENSION_14;
1144 unsigned int poly = (sector_size == 512) ?
1145 PMECC_GF_13_PRIMITIVE_POLY :
1146 PMECC_GF_14_PRIMITIVE_POLY;
1147 int table_size = (sector_size == 512) ?
1148 PMECC_LOOKUP_TABLE_SIZE_512 :
1149 PMECC_LOOKUP_TABLE_SIZE_1024;
1150
1151 int16_t *addr = devm_kzalloc(dev, 2 * table_size * sizeof(uint16_t),
1152 GFP_KERNEL);
1153 if (addr && build_gf_tables(degree, poly, addr, addr + table_size))
1154 return NULL;
1155
1156 return addr;
1157 }
1158
1159 static int atmel_pmecc_nand_init_params(struct platform_device *pdev,
1160 struct atmel_nand_host *host)
1161 {
1162 struct mtd_info *mtd = &host->mtd;
1163 struct nand_chip *nand_chip = &host->nand_chip;
1164 struct resource *regs, *regs_pmerr, *regs_rom;
1165 uint16_t *galois_table;
1166 int cap, sector_size, err_no;
1167
1168 err_no = pmecc_choose_ecc(host, &cap, &sector_size);
1169 if (err_no) {
1170 dev_err(host->dev, "The NAND flash's ECC requirement are not support!");
1171 return err_no;
1172 }
1173
1174 if (cap > host->pmecc_corr_cap ||
1175 sector_size != host->pmecc_sector_size)
1176 dev_info(host->dev, "WARNING: Be Caution! Using different PMECC parameters from Nand ONFI ECC reqirement.\n");
1177
1178 cap = host->pmecc_corr_cap;
1179 sector_size = host->pmecc_sector_size;
1180 host->pmecc_lookup_table_offset = (sector_size == 512) ?
1181 host->pmecc_lookup_table_offset_512 :
1182 host->pmecc_lookup_table_offset_1024;
1183
1184 dev_info(host->dev, "Initialize PMECC params, cap: %d, sector: %d\n",
1185 cap, sector_size);
1186
1187 regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1188 if (!regs) {
1189 dev_warn(host->dev,
1190 "Can't get I/O resource regs for PMECC controller, rolling back on software ECC\n");
1191 nand_chip->ecc.mode = NAND_ECC_SOFT;
1192 return 0;
1193 }
1194
1195 host->ecc = devm_ioremap_resource(&pdev->dev, regs);
1196 if (IS_ERR(host->ecc)) {
1197 err_no = PTR_ERR(host->ecc);
1198 goto err;
1199 }
1200
1201 regs_pmerr = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1202 host->pmerrloc_base = devm_ioremap_resource(&pdev->dev, regs_pmerr);
1203 if (IS_ERR(host->pmerrloc_base)) {
1204 err_no = PTR_ERR(host->pmerrloc_base);
1205 goto err;
1206 }
1207
1208 if (!host->has_no_lookup_table) {
1209 regs_rom = platform_get_resource(pdev, IORESOURCE_MEM, 3);
1210 host->pmecc_rom_base = devm_ioremap_resource(&pdev->dev,
1211 regs_rom);
1212 if (IS_ERR(host->pmecc_rom_base)) {
1213 dev_err(host->dev, "Can not get I/O resource for ROM, will build a lookup table in runtime!\n");
1214 host->has_no_lookup_table = true;
1215 }
1216 }
1217
1218 if (host->has_no_lookup_table) {
1219 /* Build the look-up table in runtime */
1220 galois_table = create_lookup_table(host->dev, sector_size);
1221 if (!galois_table) {
1222 dev_err(host->dev, "Failed to build a lookup table in runtime!\n");
1223 err_no = -EINVAL;
1224 goto err;
1225 }
1226
1227 host->pmecc_rom_base = (void __iomem *)galois_table;
1228 host->pmecc_lookup_table_offset = 0;
1229 }
1230
1231 nand_chip->ecc.size = sector_size;
1232
1233 /* set ECC page size and oob layout */
1234 switch (mtd->writesize) {
1235 case 512:
1236 case 1024:
1237 case 2048:
1238 case 4096:
1239 case 8192:
1240 if (sector_size > mtd->writesize) {
1241 dev_err(host->dev, "pmecc sector size is bigger than the page size!\n");
1242 err_no = -EINVAL;
1243 goto err;
1244 }
1245
1246 host->pmecc_degree = (sector_size == 512) ?
1247 PMECC_GF_DIMENSION_13 : PMECC_GF_DIMENSION_14;
1248 host->pmecc_cw_len = (1 << host->pmecc_degree) - 1;
1249 host->pmecc_alpha_to = pmecc_get_alpha_to(host);
1250 host->pmecc_index_of = host->pmecc_rom_base +
1251 host->pmecc_lookup_table_offset;
1252
1253 nand_chip->ecc.strength = cap;
1254 nand_chip->ecc.bytes = pmecc_get_ecc_bytes(cap, sector_size);
1255 nand_chip->ecc.steps = mtd->writesize / sector_size;
1256 nand_chip->ecc.total = nand_chip->ecc.bytes *
1257 nand_chip->ecc.steps;
1258 if (nand_chip->ecc.total >
1259 mtd->oobsize - PMECC_OOB_RESERVED_BYTES) {
1260 dev_err(host->dev, "No room for ECC bytes\n");
1261 err_no = -EINVAL;
1262 goto err;
1263 }
1264 pmecc_config_ecc_layout(&atmel_pmecc_oobinfo,
1265 mtd->oobsize,
1266 nand_chip->ecc.total);
1267
1268 nand_chip->ecc.layout = &atmel_pmecc_oobinfo;
1269 break;
1270 default:
1271 dev_warn(host->dev,
1272 "Unsupported page size for PMECC, use Software ECC\n");
1273 /* page size not handled by HW ECC */
1274 /* switching back to soft ECC */
1275 nand_chip->ecc.mode = NAND_ECC_SOFT;
1276 return 0;
1277 }
1278
1279 /* Allocate data for PMECC computation */
1280 err_no = pmecc_data_alloc(host);
1281 if (err_no) {
1282 dev_err(host->dev,
1283 "Cannot allocate memory for PMECC computation!\n");
1284 goto err;
1285 }
1286
1287 nand_chip->options |= NAND_NO_SUBPAGE_WRITE;
1288 nand_chip->ecc.read_page = atmel_nand_pmecc_read_page;
1289 nand_chip->ecc.write_page = atmel_nand_pmecc_write_page;
1290
1291 atmel_pmecc_core_init(mtd);
1292
1293 return 0;
1294
1295 err:
1296 return err_no;
1297 }
1298
1299 /*
1300 * Calculate HW ECC
1301 *
1302 * function called after a write
1303 *
1304 * mtd: MTD block structure
1305 * dat: raw data (unused)
1306 * ecc_code: buffer for ECC
1307 */
1308 static int atmel_nand_calculate(struct mtd_info *mtd,
1309 const u_char *dat, unsigned char *ecc_code)
1310 {
1311 struct nand_chip *nand_chip = mtd->priv;
1312 struct atmel_nand_host *host = nand_chip->priv;
1313 unsigned int ecc_value;
1314
1315 /* get the first 2 ECC bytes */
1316 ecc_value = ecc_readl(host->ecc, PR);
1317
1318 ecc_code[0] = ecc_value & 0xFF;
1319 ecc_code[1] = (ecc_value >> 8) & 0xFF;
1320
1321 /* get the last 2 ECC bytes */
1322 ecc_value = ecc_readl(host->ecc, NPR) & ATMEL_ECC_NPARITY;
1323
1324 ecc_code[2] = ecc_value & 0xFF;
1325 ecc_code[3] = (ecc_value >> 8) & 0xFF;
1326
1327 return 0;
1328 }
1329
1330 /*
1331 * HW ECC read page function
1332 *
1333 * mtd: mtd info structure
1334 * chip: nand chip info structure
1335 * buf: buffer to store read data
1336 * oob_required: caller expects OOB data read to chip->oob_poi
1337 */
1338 static int atmel_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1339 uint8_t *buf, int oob_required, int page)
1340 {
1341 int eccsize = chip->ecc.size;
1342 int eccbytes = chip->ecc.bytes;
1343 uint32_t *eccpos = chip->ecc.layout->eccpos;
1344 uint8_t *p = buf;
1345 uint8_t *oob = chip->oob_poi;
1346 uint8_t *ecc_pos;
1347 int stat;
1348 unsigned int max_bitflips = 0;
1349
1350 /*
1351 * Errata: ALE is incorrectly wired up to the ECC controller
1352 * on the AP7000, so it will include the address cycles in the
1353 * ECC calculation.
1354 *
1355 * Workaround: Reset the parity registers before reading the
1356 * actual data.
1357 */
1358 struct atmel_nand_host *host = chip->priv;
1359 if (host->board.need_reset_workaround)
1360 ecc_writel(host->ecc, CR, ATMEL_ECC_RST);
1361
1362 /* read the page */
1363 chip->read_buf(mtd, p, eccsize);
1364
1365 /* move to ECC position if needed */
1366 if (eccpos[0] != 0) {
1367 /* This only works on large pages
1368 * because the ECC controller waits for
1369 * NAND_CMD_RNDOUTSTART after the
1370 * NAND_CMD_RNDOUT.
1371 * anyway, for small pages, the eccpos[0] == 0
1372 */
1373 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1374 mtd->writesize + eccpos[0], -1);
1375 }
1376
1377 /* the ECC controller needs to read the ECC just after the data */
1378 ecc_pos = oob + eccpos[0];
1379 chip->read_buf(mtd, ecc_pos, eccbytes);
1380
1381 /* check if there's an error */
1382 stat = chip->ecc.correct(mtd, p, oob, NULL);
1383
1384 if (stat < 0) {
1385 mtd->ecc_stats.failed++;
1386 } else {
1387 mtd->ecc_stats.corrected += stat;
1388 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1389 }
1390
1391 /* get back to oob start (end of page) */
1392 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1393
1394 /* read the oob */
1395 chip->read_buf(mtd, oob, mtd->oobsize);
1396
1397 return max_bitflips;
1398 }
1399
1400 /*
1401 * HW ECC Correction
1402 *
1403 * function called after a read
1404 *
1405 * mtd: MTD block structure
1406 * dat: raw data read from the chip
1407 * read_ecc: ECC from the chip (unused)
1408 * isnull: unused
1409 *
1410 * Detect and correct a 1 bit error for a page
1411 */
1412 static int atmel_nand_correct(struct mtd_info *mtd, u_char *dat,
1413 u_char *read_ecc, u_char *isnull)
1414 {
1415 struct nand_chip *nand_chip = mtd->priv;
1416 struct atmel_nand_host *host = nand_chip->priv;
1417 unsigned int ecc_status;
1418 unsigned int ecc_word, ecc_bit;
1419
1420 /* get the status from the Status Register */
1421 ecc_status = ecc_readl(host->ecc, SR);
1422
1423 /* if there's no error */
1424 if (likely(!(ecc_status & ATMEL_ECC_RECERR)))
1425 return 0;
1426
1427 /* get error bit offset (4 bits) */
1428 ecc_bit = ecc_readl(host->ecc, PR) & ATMEL_ECC_BITADDR;
1429 /* get word address (12 bits) */
1430 ecc_word = ecc_readl(host->ecc, PR) & ATMEL_ECC_WORDADDR;
1431 ecc_word >>= 4;
1432
1433 /* if there are multiple errors */
1434 if (ecc_status & ATMEL_ECC_MULERR) {
1435 /* check if it is a freshly erased block
1436 * (filled with 0xff) */
1437 if ((ecc_bit == ATMEL_ECC_BITADDR)
1438 && (ecc_word == (ATMEL_ECC_WORDADDR >> 4))) {
1439 /* the block has just been erased, return OK */
1440 return 0;
1441 }
1442 /* it doesn't seems to be a freshly
1443 * erased block.
1444 * We can't correct so many errors */
1445 dev_dbg(host->dev, "atmel_nand : multiple errors detected."
1446 " Unable to correct.\n");
1447 return -EIO;
1448 }
1449
1450 /* if there's a single bit error : we can correct it */
1451 if (ecc_status & ATMEL_ECC_ECCERR) {
1452 /* there's nothing much to do here.
1453 * the bit error is on the ECC itself.
1454 */
1455 dev_dbg(host->dev, "atmel_nand : one bit error on ECC code."
1456 " Nothing to correct\n");
1457 return 0;
1458 }
1459
1460 dev_dbg(host->dev, "atmel_nand : one bit error on data."
1461 " (word offset in the page :"
1462 " 0x%x bit offset : 0x%x)\n",
1463 ecc_word, ecc_bit);
1464 /* correct the error */
1465 if (nand_chip->options & NAND_BUSWIDTH_16) {
1466 /* 16 bits words */
1467 ((unsigned short *) dat)[ecc_word] ^= (1 << ecc_bit);
1468 } else {
1469 /* 8 bits words */
1470 dat[ecc_word] ^= (1 << ecc_bit);
1471 }
1472 dev_dbg(host->dev, "atmel_nand : error corrected\n");
1473 return 1;
1474 }
1475
1476 /*
1477 * Enable HW ECC : unused on most chips
1478 */
1479 static void atmel_nand_hwctl(struct mtd_info *mtd, int mode)
1480 {
1481 struct nand_chip *nand_chip = mtd->priv;
1482 struct atmel_nand_host *host = nand_chip->priv;
1483
1484 if (host->board.need_reset_workaround)
1485 ecc_writel(host->ecc, CR, ATMEL_ECC_RST);
1486 }
1487
1488 static const struct of_device_id atmel_nand_dt_ids[];
1489
1490 static int atmel_of_init_port(struct atmel_nand_host *host,
1491 struct device_node *np)
1492 {
1493 u32 val;
1494 u32 offset[2];
1495 int ecc_mode;
1496 struct atmel_nand_data *board = &host->board;
1497 enum of_gpio_flags flags = 0;
1498
1499 host->caps = (struct atmel_nand_caps *)
1500 of_match_device(atmel_nand_dt_ids, host->dev)->data;
1501
1502 if (of_property_read_u32(np, "atmel,nand-addr-offset", &val) == 0) {
1503 if (val >= 32) {
1504 dev_err(host->dev, "invalid addr-offset %u\n", val);
1505 return -EINVAL;
1506 }
1507 board->ale = val;
1508 }
1509
1510 if (of_property_read_u32(np, "atmel,nand-cmd-offset", &val) == 0) {
1511 if (val >= 32) {
1512 dev_err(host->dev, "invalid cmd-offset %u\n", val);
1513 return -EINVAL;
1514 }
1515 board->cle = val;
1516 }
1517
1518 ecc_mode = of_get_nand_ecc_mode(np);
1519
1520 board->ecc_mode = ecc_mode < 0 ? NAND_ECC_SOFT : ecc_mode;
1521
1522 board->on_flash_bbt = of_get_nand_on_flash_bbt(np);
1523
1524 board->has_dma = of_property_read_bool(np, "atmel,nand-has-dma");
1525
1526 if (of_get_nand_bus_width(np) == 16)
1527 board->bus_width_16 = 1;
1528
1529 board->rdy_pin = of_get_gpio_flags(np, 0, &flags);
1530 board->rdy_pin_active_low = (flags == OF_GPIO_ACTIVE_LOW);
1531
1532 board->enable_pin = of_get_gpio(np, 1);
1533 board->det_pin = of_get_gpio(np, 2);
1534
1535 host->has_pmecc = of_property_read_bool(np, "atmel,has-pmecc");
1536
1537 /* load the nfc driver if there is */
1538 of_platform_populate(np, NULL, NULL, host->dev);
1539
1540 if (!(board->ecc_mode == NAND_ECC_HW) || !host->has_pmecc)
1541 return 0; /* Not using PMECC */
1542
1543 /* use PMECC, get correction capability, sector size and lookup
1544 * table offset.
1545 * If correction bits and sector size are not specified, then find
1546 * them from NAND ONFI parameters.
1547 */
1548 if (of_property_read_u32(np, "atmel,pmecc-cap", &val) == 0) {
1549 if ((val != 2) && (val != 4) && (val != 8) && (val != 12) &&
1550 (val != 24)) {
1551 dev_err(host->dev,
1552 "Unsupported PMECC correction capability: %d; should be 2, 4, 8, 12 or 24\n",
1553 val);
1554 return -EINVAL;
1555 }
1556 host->pmecc_corr_cap = (u8)val;
1557 }
1558
1559 if (of_property_read_u32(np, "atmel,pmecc-sector-size", &val) == 0) {
1560 if ((val != 512) && (val != 1024)) {
1561 dev_err(host->dev,
1562 "Unsupported PMECC sector size: %d; should be 512 or 1024 bytes\n",
1563 val);
1564 return -EINVAL;
1565 }
1566 host->pmecc_sector_size = (u16)val;
1567 }
1568
1569 if (of_property_read_u32_array(np, "atmel,pmecc-lookup-table-offset",
1570 offset, 2) != 0) {
1571 dev_err(host->dev, "Cannot get PMECC lookup table offset, will build a lookup table in runtime.\n");
1572 host->has_no_lookup_table = true;
1573 /* Will build a lookup table and initialize the offset later */
1574 return 0;
1575 }
1576 if (!offset[0] && !offset[1]) {
1577 dev_err(host->dev, "Invalid PMECC lookup table offset\n");
1578 return -EINVAL;
1579 }
1580 host->pmecc_lookup_table_offset_512 = offset[0];
1581 host->pmecc_lookup_table_offset_1024 = offset[1];
1582
1583 return 0;
1584 }
1585
1586 static int atmel_hw_nand_init_params(struct platform_device *pdev,
1587 struct atmel_nand_host *host)
1588 {
1589 struct mtd_info *mtd = &host->mtd;
1590 struct nand_chip *nand_chip = &host->nand_chip;
1591 struct resource *regs;
1592
1593 regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1594 if (!regs) {
1595 dev_err(host->dev,
1596 "Can't get I/O resource regs, use software ECC\n");
1597 nand_chip->ecc.mode = NAND_ECC_SOFT;
1598 return 0;
1599 }
1600
1601 host->ecc = devm_ioremap_resource(&pdev->dev, regs);
1602 if (IS_ERR(host->ecc))
1603 return PTR_ERR(host->ecc);
1604
1605 /* ECC is calculated for the whole page (1 step) */
1606 nand_chip->ecc.size = mtd->writesize;
1607
1608 /* set ECC page size and oob layout */
1609 switch (mtd->writesize) {
1610 case 512:
1611 nand_chip->ecc.layout = &atmel_oobinfo_small;
1612 ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_528);
1613 break;
1614 case 1024:
1615 nand_chip->ecc.layout = &atmel_oobinfo_large;
1616 ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_1056);
1617 break;
1618 case 2048:
1619 nand_chip->ecc.layout = &atmel_oobinfo_large;
1620 ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_2112);
1621 break;
1622 case 4096:
1623 nand_chip->ecc.layout = &atmel_oobinfo_large;
1624 ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_4224);
1625 break;
1626 default:
1627 /* page size not handled by HW ECC */
1628 /* switching back to soft ECC */
1629 nand_chip->ecc.mode = NAND_ECC_SOFT;
1630 return 0;
1631 }
1632
1633 /* set up for HW ECC */
1634 nand_chip->ecc.calculate = atmel_nand_calculate;
1635 nand_chip->ecc.correct = atmel_nand_correct;
1636 nand_chip->ecc.hwctl = atmel_nand_hwctl;
1637 nand_chip->ecc.read_page = atmel_nand_read_page;
1638 nand_chip->ecc.bytes = 4;
1639 nand_chip->ecc.strength = 1;
1640
1641 return 0;
1642 }
1643
1644 static inline u32 nfc_read_status(struct atmel_nand_host *host)
1645 {
1646 u32 err_flags = NFC_SR_DTOE | NFC_SR_UNDEF | NFC_SR_AWB | NFC_SR_ASE;
1647 u32 nfc_status = nfc_readl(host->nfc->hsmc_regs, SR);
1648
1649 if (unlikely(nfc_status & err_flags)) {
1650 if (nfc_status & NFC_SR_DTOE)
1651 dev_err(host->dev, "NFC: Waiting Nand R/B Timeout Error\n");
1652 else if (nfc_status & NFC_SR_UNDEF)
1653 dev_err(host->dev, "NFC: Access Undefined Area Error\n");
1654 else if (nfc_status & NFC_SR_AWB)
1655 dev_err(host->dev, "NFC: Access memory While NFC is busy\n");
1656 else if (nfc_status & NFC_SR_ASE)
1657 dev_err(host->dev, "NFC: Access memory Size Error\n");
1658 }
1659
1660 return nfc_status;
1661 }
1662
1663 /* SMC interrupt service routine */
1664 static irqreturn_t hsmc_interrupt(int irq, void *dev_id)
1665 {
1666 struct atmel_nand_host *host = dev_id;
1667 u32 status, mask, pending;
1668 irqreturn_t ret = IRQ_NONE;
1669
1670 status = nfc_read_status(host);
1671 mask = nfc_readl(host->nfc->hsmc_regs, IMR);
1672 pending = status & mask;
1673
1674 if (pending & NFC_SR_XFR_DONE) {
1675 complete(&host->nfc->comp_xfer_done);
1676 nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_XFR_DONE);
1677 ret = IRQ_HANDLED;
1678 }
1679 if (pending & NFC_SR_RB_EDGE) {
1680 complete(&host->nfc->comp_ready);
1681 nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_RB_EDGE);
1682 ret = IRQ_HANDLED;
1683 }
1684 if (pending & NFC_SR_CMD_DONE) {
1685 complete(&host->nfc->comp_cmd_done);
1686 nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_CMD_DONE);
1687 ret = IRQ_HANDLED;
1688 }
1689
1690 return ret;
1691 }
1692
1693 /* NFC(Nand Flash Controller) related functions */
1694 static void nfc_prepare_interrupt(struct atmel_nand_host *host, u32 flag)
1695 {
1696 if (flag & NFC_SR_XFR_DONE)
1697 init_completion(&host->nfc->comp_xfer_done);
1698
1699 if (flag & NFC_SR_RB_EDGE)
1700 init_completion(&host->nfc->comp_ready);
1701
1702 if (flag & NFC_SR_CMD_DONE)
1703 init_completion(&host->nfc->comp_cmd_done);
1704
1705 /* Enable interrupt that need to wait for */
1706 nfc_writel(host->nfc->hsmc_regs, IER, flag);
1707 }
1708
1709 static int nfc_wait_interrupt(struct atmel_nand_host *host, u32 flag)
1710 {
1711 int i, index = 0;
1712 struct completion *comp[3]; /* Support 3 interrupt completion */
1713
1714 if (flag & NFC_SR_XFR_DONE)
1715 comp[index++] = &host->nfc->comp_xfer_done;
1716
1717 if (flag & NFC_SR_RB_EDGE)
1718 comp[index++] = &host->nfc->comp_ready;
1719
1720 if (flag & NFC_SR_CMD_DONE)
1721 comp[index++] = &host->nfc->comp_cmd_done;
1722
1723 if (index == 0) {
1724 dev_err(host->dev, "Unknown interrupt flag: 0x%08x\n", flag);
1725 return -EINVAL;
1726 }
1727
1728 for (i = 0; i < index; i++) {
1729 if (wait_for_completion_timeout(comp[i],
1730 msecs_to_jiffies(NFC_TIME_OUT_MS)))
1731 continue; /* wait for next completion */
1732 else
1733 goto err_timeout;
1734 }
1735
1736 return 0;
1737
1738 err_timeout:
1739 dev_err(host->dev, "Time out to wait for interrupt: 0x%08x\n", flag);
1740 /* Disable the interrupt as it is not handled by interrupt handler */
1741 nfc_writel(host->nfc->hsmc_regs, IDR, flag);
1742 return -ETIMEDOUT;
1743 }
1744
1745 static int nfc_send_command(struct atmel_nand_host *host,
1746 unsigned int cmd, unsigned int addr, unsigned char cycle0)
1747 {
1748 unsigned long timeout;
1749 u32 flag = NFC_SR_CMD_DONE;
1750 flag |= cmd & NFCADDR_CMD_DATAEN ? NFC_SR_XFR_DONE : 0;
1751
1752 dev_dbg(host->dev,
1753 "nfc_cmd: 0x%08x, addr1234: 0x%08x, cycle0: 0x%02x\n",
1754 cmd, addr, cycle0);
1755
1756 timeout = jiffies + msecs_to_jiffies(NFC_TIME_OUT_MS);
1757 while (nfc_readl(host->nfc->hsmc_regs, SR) & NFC_SR_BUSY) {
1758 if (time_after(jiffies, timeout)) {
1759 dev_err(host->dev,
1760 "Time out to wait for NFC ready!\n");
1761 return -ETIMEDOUT;
1762 }
1763 }
1764
1765 nfc_prepare_interrupt(host, flag);
1766 nfc_writel(host->nfc->hsmc_regs, CYCLE0, cycle0);
1767 nfc_cmd_addr1234_writel(cmd, addr, host->nfc->base_cmd_regs);
1768 return nfc_wait_interrupt(host, flag);
1769 }
1770
1771 static int nfc_device_ready(struct mtd_info *mtd)
1772 {
1773 u32 status, mask;
1774 struct nand_chip *nand_chip = mtd->priv;
1775 struct atmel_nand_host *host = nand_chip->priv;
1776
1777 status = nfc_read_status(host);
1778 mask = nfc_readl(host->nfc->hsmc_regs, IMR);
1779
1780 /* The mask should be 0. If not we may lost interrupts */
1781 if (unlikely(mask & status))
1782 dev_err(host->dev, "Lost the interrupt flags: 0x%08x\n",
1783 mask & status);
1784
1785 return status & NFC_SR_RB_EDGE;
1786 }
1787
1788 static void nfc_select_chip(struct mtd_info *mtd, int chip)
1789 {
1790 struct nand_chip *nand_chip = mtd->priv;
1791 struct atmel_nand_host *host = nand_chip->priv;
1792
1793 if (chip == -1)
1794 nfc_writel(host->nfc->hsmc_regs, CTRL, NFC_CTRL_DISABLE);
1795 else
1796 nfc_writel(host->nfc->hsmc_regs, CTRL, NFC_CTRL_ENABLE);
1797 }
1798
1799 static int nfc_make_addr(struct mtd_info *mtd, int command, int column,
1800 int page_addr, unsigned int *addr1234, unsigned int *cycle0)
1801 {
1802 struct nand_chip *chip = mtd->priv;
1803
1804 int acycle = 0;
1805 unsigned char addr_bytes[8];
1806 int index = 0, bit_shift;
1807
1808 BUG_ON(addr1234 == NULL || cycle0 == NULL);
1809
1810 *cycle0 = 0;
1811 *addr1234 = 0;
1812
1813 if (column != -1) {
1814 if (chip->options & NAND_BUSWIDTH_16 &&
1815 !nand_opcode_8bits(command))
1816 column >>= 1;
1817 addr_bytes[acycle++] = column & 0xff;
1818 if (mtd->writesize > 512)
1819 addr_bytes[acycle++] = (column >> 8) & 0xff;
1820 }
1821
1822 if (page_addr != -1) {
1823 addr_bytes[acycle++] = page_addr & 0xff;
1824 addr_bytes[acycle++] = (page_addr >> 8) & 0xff;
1825 if (chip->chipsize > (128 << 20))
1826 addr_bytes[acycle++] = (page_addr >> 16) & 0xff;
1827 }
1828
1829 if (acycle > 4)
1830 *cycle0 = addr_bytes[index++];
1831
1832 for (bit_shift = 0; index < acycle; bit_shift += 8)
1833 *addr1234 += addr_bytes[index++] << bit_shift;
1834
1835 /* return acycle in cmd register */
1836 return acycle << NFCADDR_CMD_ACYCLE_BIT_POS;
1837 }
1838
1839 static void nfc_nand_command(struct mtd_info *mtd, unsigned int command,
1840 int column, int page_addr)
1841 {
1842 struct nand_chip *chip = mtd->priv;
1843 struct atmel_nand_host *host = chip->priv;
1844 unsigned long timeout;
1845 unsigned int nfc_addr_cmd = 0;
1846
1847 unsigned int cmd1 = command << NFCADDR_CMD_CMD1_BIT_POS;
1848
1849 /* Set default settings: no cmd2, no addr cycle. read from nand */
1850 unsigned int cmd2 = 0;
1851 unsigned int vcmd2 = 0;
1852 int acycle = NFCADDR_CMD_ACYCLE_NONE;
1853 int csid = NFCADDR_CMD_CSID_3;
1854 int dataen = NFCADDR_CMD_DATADIS;
1855 int nfcwr = NFCADDR_CMD_NFCRD;
1856 unsigned int addr1234 = 0;
1857 unsigned int cycle0 = 0;
1858 bool do_addr = true;
1859 host->nfc->data_in_sram = NULL;
1860
1861 dev_dbg(host->dev, "%s: cmd = 0x%02x, col = 0x%08x, page = 0x%08x\n",
1862 __func__, command, column, page_addr);
1863
1864 switch (command) {
1865 case NAND_CMD_RESET:
1866 nfc_addr_cmd = cmd1 | acycle | csid | dataen | nfcwr;
1867 nfc_send_command(host, nfc_addr_cmd, addr1234, cycle0);
1868 udelay(chip->chip_delay);
1869
1870 nfc_nand_command(mtd, NAND_CMD_STATUS, -1, -1);
1871 timeout = jiffies + msecs_to_jiffies(NFC_TIME_OUT_MS);
1872 while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) {
1873 if (time_after(jiffies, timeout)) {
1874 dev_err(host->dev,
1875 "Time out to wait status ready!\n");
1876 break;
1877 }
1878 }
1879 return;
1880 case NAND_CMD_STATUS:
1881 do_addr = false;
1882 break;
1883 case NAND_CMD_PARAM:
1884 case NAND_CMD_READID:
1885 do_addr = false;
1886 acycle = NFCADDR_CMD_ACYCLE_1;
1887 if (column != -1)
1888 addr1234 = column;
1889 break;
1890 case NAND_CMD_RNDOUT:
1891 cmd2 = NAND_CMD_RNDOUTSTART << NFCADDR_CMD_CMD2_BIT_POS;
1892 vcmd2 = NFCADDR_CMD_VCMD2;
1893 break;
1894 case NAND_CMD_READ0:
1895 case NAND_CMD_READOOB:
1896 if (command == NAND_CMD_READOOB) {
1897 column += mtd->writesize;
1898 command = NAND_CMD_READ0; /* only READ0 is valid */
1899 cmd1 = command << NFCADDR_CMD_CMD1_BIT_POS;
1900 }
1901 if (host->nfc->use_nfc_sram) {
1902 /* Enable Data transfer to sram */
1903 dataen = NFCADDR_CMD_DATAEN;
1904
1905 /* Need enable PMECC now, since NFC will transfer
1906 * data in bus after sending nfc read command.
1907 */
1908 if (chip->ecc.mode == NAND_ECC_HW && host->has_pmecc)
1909 pmecc_enable(host, NAND_ECC_READ);
1910 }
1911
1912 cmd2 = NAND_CMD_READSTART << NFCADDR_CMD_CMD2_BIT_POS;
1913 vcmd2 = NFCADDR_CMD_VCMD2;
1914 break;
1915 /* For prgramming command, the cmd need set to write enable */
1916 case NAND_CMD_PAGEPROG:
1917 case NAND_CMD_SEQIN:
1918 case NAND_CMD_RNDIN:
1919 nfcwr = NFCADDR_CMD_NFCWR;
1920 if (host->nfc->will_write_sram && command == NAND_CMD_SEQIN)
1921 dataen = NFCADDR_CMD_DATAEN;
1922 break;
1923 default:
1924 break;
1925 }
1926
1927 if (do_addr)
1928 acycle = nfc_make_addr(mtd, command, column, page_addr,
1929 &addr1234, &cycle0);
1930
1931 nfc_addr_cmd = cmd1 | cmd2 | vcmd2 | acycle | csid | dataen | nfcwr;
1932 nfc_send_command(host, nfc_addr_cmd, addr1234, cycle0);
1933
1934 /*
1935 * Program and erase have their own busy handlers status, sequential
1936 * in, and deplete1 need no delay.
1937 */
1938 switch (command) {
1939 case NAND_CMD_CACHEDPROG:
1940 case NAND_CMD_PAGEPROG:
1941 case NAND_CMD_ERASE1:
1942 case NAND_CMD_ERASE2:
1943 case NAND_CMD_RNDIN:
1944 case NAND_CMD_STATUS:
1945 case NAND_CMD_RNDOUT:
1946 case NAND_CMD_SEQIN:
1947 case NAND_CMD_READID:
1948 return;
1949
1950 case NAND_CMD_READ0:
1951 if (dataen == NFCADDR_CMD_DATAEN) {
1952 host->nfc->data_in_sram = host->nfc->sram_bank0 +
1953 nfc_get_sram_off(host);
1954 return;
1955 }
1956 /* fall through */
1957 default:
1958 nfc_prepare_interrupt(host, NFC_SR_RB_EDGE);
1959 nfc_wait_interrupt(host, NFC_SR_RB_EDGE);
1960 }
1961 }
1962
1963 static int nfc_sram_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1964 uint32_t offset, int data_len, const uint8_t *buf,
1965 int oob_required, int page, int cached, int raw)
1966 {
1967 int cfg, len;
1968 int status = 0;
1969 struct atmel_nand_host *host = chip->priv;
1970 void *sram = host->nfc->sram_bank0 + nfc_get_sram_off(host);
1971
1972 /* Subpage write is not supported */
1973 if (offset || (data_len < mtd->writesize))
1974 return -EINVAL;
1975
1976 len = mtd->writesize;
1977 /* Copy page data to sram that will write to nand via NFC */
1978 if (use_dma) {
1979 if (atmel_nand_dma_op(mtd, (void *)buf, len, 0) != 0)
1980 /* Fall back to use cpu copy */
1981 memcpy(sram, buf, len);
1982 } else {
1983 memcpy(sram, buf, len);
1984 }
1985
1986 cfg = nfc_readl(host->nfc->hsmc_regs, CFG);
1987 if (unlikely(raw) && oob_required) {
1988 memcpy(sram + len, chip->oob_poi, mtd->oobsize);
1989 len += mtd->oobsize;
1990 nfc_writel(host->nfc->hsmc_regs, CFG, cfg | NFC_CFG_WSPARE);
1991 } else {
1992 nfc_writel(host->nfc->hsmc_regs, CFG, cfg & ~NFC_CFG_WSPARE);
1993 }
1994
1995 if (chip->ecc.mode == NAND_ECC_HW && host->has_pmecc)
1996 /*
1997 * When use NFC sram, need set up PMECC before send
1998 * NAND_CMD_SEQIN command. Since when the nand command
1999 * is sent, nfc will do transfer from sram and nand.
2000 */
2001 pmecc_enable(host, NAND_ECC_WRITE);
2002
2003 host->nfc->will_write_sram = true;
2004 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2005 host->nfc->will_write_sram = false;
2006
2007 if (likely(!raw))
2008 /* Need to write ecc into oob */
2009 status = chip->ecc.write_page(mtd, chip, buf, oob_required,
2010 page);
2011
2012 if (status < 0)
2013 return status;
2014
2015 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2016 status = chip->waitfunc(mtd, chip);
2017
2018 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2019 status = chip->errstat(mtd, chip, FL_WRITING, status, page);
2020
2021 if (status & NAND_STATUS_FAIL)
2022 return -EIO;
2023
2024 return 0;
2025 }
2026
2027 static int nfc_sram_init(struct mtd_info *mtd)
2028 {
2029 struct nand_chip *chip = mtd->priv;
2030 struct atmel_nand_host *host = chip->priv;
2031 int res = 0;
2032
2033 /* Initialize the NFC CFG register */
2034 unsigned int cfg_nfc = 0;
2035
2036 /* set page size and oob layout */
2037 switch (mtd->writesize) {
2038 case 512:
2039 cfg_nfc = NFC_CFG_PAGESIZE_512;
2040 break;
2041 case 1024:
2042 cfg_nfc = NFC_CFG_PAGESIZE_1024;
2043 break;
2044 case 2048:
2045 cfg_nfc = NFC_CFG_PAGESIZE_2048;
2046 break;
2047 case 4096:
2048 cfg_nfc = NFC_CFG_PAGESIZE_4096;
2049 break;
2050 case 8192:
2051 cfg_nfc = NFC_CFG_PAGESIZE_8192;
2052 break;
2053 default:
2054 dev_err(host->dev, "Unsupported page size for NFC.\n");
2055 res = -ENXIO;
2056 return res;
2057 }
2058
2059 /* oob bytes size = (NFCSPARESIZE + 1) * 4
2060 * Max support spare size is 512 bytes. */
2061 cfg_nfc |= (((mtd->oobsize / 4) - 1) << NFC_CFG_NFC_SPARESIZE_BIT_POS
2062 & NFC_CFG_NFC_SPARESIZE);
2063 /* default set a max timeout */
2064 cfg_nfc |= NFC_CFG_RSPARE |
2065 NFC_CFG_NFC_DTOCYC | NFC_CFG_NFC_DTOMUL;
2066
2067 nfc_writel(host->nfc->hsmc_regs, CFG, cfg_nfc);
2068
2069 host->nfc->will_write_sram = false;
2070 nfc_set_sram_bank(host, 0);
2071
2072 /* Use Write page with NFC SRAM only for PMECC or ECC NONE. */
2073 if (host->nfc->write_by_sram) {
2074 if ((chip->ecc.mode == NAND_ECC_HW && host->has_pmecc) ||
2075 chip->ecc.mode == NAND_ECC_NONE)
2076 chip->write_page = nfc_sram_write_page;
2077 else
2078 host->nfc->write_by_sram = false;
2079 }
2080
2081 dev_info(host->dev, "Using NFC Sram read %s\n",
2082 host->nfc->write_by_sram ? "and write" : "");
2083 return 0;
2084 }
2085
2086 static struct platform_driver atmel_nand_nfc_driver;
2087 /*
2088 * Probe for the NAND device.
2089 */
2090 static int atmel_nand_probe(struct platform_device *pdev)
2091 {
2092 struct atmel_nand_host *host;
2093 struct mtd_info *mtd;
2094 struct nand_chip *nand_chip;
2095 struct resource *mem;
2096 int res, irq;
2097
2098 /* Allocate memory for the device structure (and zero it) */
2099 host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
2100 if (!host)
2101 return -ENOMEM;
2102
2103 res = platform_driver_register(&atmel_nand_nfc_driver);
2104 if (res)
2105 dev_err(&pdev->dev, "atmel_nand: can't register NFC driver\n");
2106
2107 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2108 host->io_base = devm_ioremap_resource(&pdev->dev, mem);
2109 if (IS_ERR(host->io_base)) {
2110 res = PTR_ERR(host->io_base);
2111 goto err_nand_ioremap;
2112 }
2113 host->io_phys = (dma_addr_t)mem->start;
2114
2115 mtd = &host->mtd;
2116 nand_chip = &host->nand_chip;
2117 host->dev = &pdev->dev;
2118 if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
2119 nand_set_flash_node(nand_chip, pdev->dev.of_node);
2120 /* Only when CONFIG_OF is enabled of_node can be parsed */
2121 res = atmel_of_init_port(host, pdev->dev.of_node);
2122 if (res)
2123 goto err_nand_ioremap;
2124 } else {
2125 memcpy(&host->board, dev_get_platdata(&pdev->dev),
2126 sizeof(struct atmel_nand_data));
2127 }
2128
2129 nand_chip->priv = host; /* link the private data structures */
2130 mtd->priv = nand_chip;
2131 mtd->dev.parent = &pdev->dev;
2132
2133 /* Set address of NAND IO lines */
2134 nand_chip->IO_ADDR_R = host->io_base;
2135 nand_chip->IO_ADDR_W = host->io_base;
2136
2137 if (nand_nfc.is_initialized) {
2138 /* NFC driver is probed and initialized */
2139 host->nfc = &nand_nfc;
2140
2141 nand_chip->select_chip = nfc_select_chip;
2142 nand_chip->dev_ready = nfc_device_ready;
2143 nand_chip->cmdfunc = nfc_nand_command;
2144
2145 /* Initialize the interrupt for NFC */
2146 irq = platform_get_irq(pdev, 0);
2147 if (irq < 0) {
2148 dev_err(host->dev, "Cannot get HSMC irq!\n");
2149 res = irq;
2150 goto err_nand_ioremap;
2151 }
2152
2153 res = devm_request_irq(&pdev->dev, irq, hsmc_interrupt,
2154 0, "hsmc", host);
2155 if (res) {
2156 dev_err(&pdev->dev, "Unable to request HSMC irq %d\n",
2157 irq);
2158 goto err_nand_ioremap;
2159 }
2160 } else {
2161 res = atmel_nand_set_enable_ready_pins(mtd);
2162 if (res)
2163 goto err_nand_ioremap;
2164
2165 nand_chip->cmd_ctrl = atmel_nand_cmd_ctrl;
2166 }
2167
2168 nand_chip->ecc.mode = host->board.ecc_mode;
2169 nand_chip->chip_delay = 40; /* 40us command delay time */
2170
2171 if (host->board.bus_width_16) /* 16-bit bus width */
2172 nand_chip->options |= NAND_BUSWIDTH_16;
2173
2174 nand_chip->read_buf = atmel_read_buf;
2175 nand_chip->write_buf = atmel_write_buf;
2176
2177 platform_set_drvdata(pdev, host);
2178 atmel_nand_enable(host);
2179
2180 if (gpio_is_valid(host->board.det_pin)) {
2181 res = devm_gpio_request(&pdev->dev,
2182 host->board.det_pin, "nand_det");
2183 if (res < 0) {
2184 dev_err(&pdev->dev,
2185 "can't request det gpio %d\n",
2186 host->board.det_pin);
2187 goto err_no_card;
2188 }
2189
2190 res = gpio_direction_input(host->board.det_pin);
2191 if (res < 0) {
2192 dev_err(&pdev->dev,
2193 "can't request input direction det gpio %d\n",
2194 host->board.det_pin);
2195 goto err_no_card;
2196 }
2197
2198 if (gpio_get_value(host->board.det_pin)) {
2199 dev_info(&pdev->dev, "No SmartMedia card inserted.\n");
2200 res = -ENXIO;
2201 goto err_no_card;
2202 }
2203 }
2204
2205 if (host->board.on_flash_bbt || on_flash_bbt) {
2206 dev_info(&pdev->dev, "Use On Flash BBT\n");
2207 nand_chip->bbt_options |= NAND_BBT_USE_FLASH;
2208 }
2209
2210 if (!host->board.has_dma)
2211 use_dma = 0;
2212
2213 if (use_dma) {
2214 dma_cap_mask_t mask;
2215
2216 dma_cap_zero(mask);
2217 dma_cap_set(DMA_MEMCPY, mask);
2218 host->dma_chan = dma_request_channel(mask, NULL, NULL);
2219 if (!host->dma_chan) {
2220 dev_err(host->dev, "Failed to request DMA channel\n");
2221 use_dma = 0;
2222 }
2223 }
2224 if (use_dma)
2225 dev_info(host->dev, "Using %s for DMA transfers.\n",
2226 dma_chan_name(host->dma_chan));
2227 else
2228 dev_info(host->dev, "No DMA support for NAND access.\n");
2229
2230 /* first scan to find the device and get the page size */
2231 if (nand_scan_ident(mtd, 1, NULL)) {
2232 res = -ENXIO;
2233 goto err_scan_ident;
2234 }
2235
2236 if (nand_chip->ecc.mode == NAND_ECC_HW) {
2237 if (host->has_pmecc)
2238 res = atmel_pmecc_nand_init_params(pdev, host);
2239 else
2240 res = atmel_hw_nand_init_params(pdev, host);
2241
2242 if (res != 0)
2243 goto err_hw_ecc;
2244 }
2245
2246 /* initialize the nfc configuration register */
2247 if (host->nfc && host->nfc->use_nfc_sram) {
2248 res = nfc_sram_init(mtd);
2249 if (res) {
2250 host->nfc->use_nfc_sram = false;
2251 dev_err(host->dev, "Disable use nfc sram for data transfer.\n");
2252 }
2253 }
2254
2255 /* second phase scan */
2256 if (nand_scan_tail(mtd)) {
2257 res = -ENXIO;
2258 goto err_scan_tail;
2259 }
2260
2261 mtd->name = "atmel_nand";
2262 res = mtd_device_register(mtd, host->board.parts,
2263 host->board.num_parts);
2264 if (!res)
2265 return res;
2266
2267 err_scan_tail:
2268 if (host->has_pmecc && host->nand_chip.ecc.mode == NAND_ECC_HW)
2269 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
2270 err_hw_ecc:
2271 err_scan_ident:
2272 err_no_card:
2273 atmel_nand_disable(host);
2274 if (host->dma_chan)
2275 dma_release_channel(host->dma_chan);
2276 err_nand_ioremap:
2277 return res;
2278 }
2279
2280 /*
2281 * Remove a NAND device.
2282 */
2283 static int atmel_nand_remove(struct platform_device *pdev)
2284 {
2285 struct atmel_nand_host *host = platform_get_drvdata(pdev);
2286 struct mtd_info *mtd = &host->mtd;
2287
2288 nand_release(mtd);
2289
2290 atmel_nand_disable(host);
2291
2292 if (host->has_pmecc && host->nand_chip.ecc.mode == NAND_ECC_HW) {
2293 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
2294 pmerrloc_writel(host->pmerrloc_base, ELDIS,
2295 PMERRLOC_DISABLE);
2296 }
2297
2298 if (host->dma_chan)
2299 dma_release_channel(host->dma_chan);
2300
2301 platform_driver_unregister(&atmel_nand_nfc_driver);
2302
2303 return 0;
2304 }
2305
2306 static struct atmel_nand_caps at91rm9200_caps = {
2307 .pmecc_correct_erase_page = false,
2308 };
2309
2310 static struct atmel_nand_caps sama5d4_caps = {
2311 .pmecc_correct_erase_page = true,
2312 };
2313
2314 static const struct of_device_id atmel_nand_dt_ids[] = {
2315 { .compatible = "atmel,at91rm9200-nand", .data = &at91rm9200_caps },
2316 { .compatible = "atmel,sama5d4-nand", .data = &sama5d4_caps },
2317 { /* sentinel */ }
2318 };
2319
2320 MODULE_DEVICE_TABLE(of, atmel_nand_dt_ids);
2321
2322 static int atmel_nand_nfc_probe(struct platform_device *pdev)
2323 {
2324 struct atmel_nfc *nfc = &nand_nfc;
2325 struct resource *nfc_cmd_regs, *nfc_hsmc_regs, *nfc_sram;
2326 int ret;
2327
2328 nfc_cmd_regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2329 nfc->base_cmd_regs = devm_ioremap_resource(&pdev->dev, nfc_cmd_regs);
2330 if (IS_ERR(nfc->base_cmd_regs))
2331 return PTR_ERR(nfc->base_cmd_regs);
2332
2333 nfc_hsmc_regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2334 nfc->hsmc_regs = devm_ioremap_resource(&pdev->dev, nfc_hsmc_regs);
2335 if (IS_ERR(nfc->hsmc_regs))
2336 return PTR_ERR(nfc->hsmc_regs);
2337
2338 nfc_sram = platform_get_resource(pdev, IORESOURCE_MEM, 2);
2339 if (nfc_sram) {
2340 nfc->sram_bank0 = (void * __force)
2341 devm_ioremap_resource(&pdev->dev, nfc_sram);
2342 if (IS_ERR(nfc->sram_bank0)) {
2343 dev_warn(&pdev->dev, "Fail to ioremap the NFC sram with error: %ld. So disable NFC sram.\n",
2344 PTR_ERR(nfc->sram_bank0));
2345 } else {
2346 nfc->use_nfc_sram = true;
2347 nfc->sram_bank0_phys = (dma_addr_t)nfc_sram->start;
2348
2349 if (pdev->dev.of_node)
2350 nfc->write_by_sram = of_property_read_bool(
2351 pdev->dev.of_node,
2352 "atmel,write-by-sram");
2353 }
2354 }
2355
2356 nfc_writel(nfc->hsmc_regs, IDR, 0xffffffff);
2357 nfc_readl(nfc->hsmc_regs, SR); /* clear the NFC_SR */
2358
2359 nfc->clk = devm_clk_get(&pdev->dev, NULL);
2360 if (!IS_ERR(nfc->clk)) {
2361 ret = clk_prepare_enable(nfc->clk);
2362 if (ret)
2363 return ret;
2364 } else {
2365 dev_warn(&pdev->dev, "NFC clock missing, update your Device Tree");
2366 }
2367
2368 nfc->is_initialized = true;
2369 dev_info(&pdev->dev, "NFC is probed.\n");
2370
2371 return 0;
2372 }
2373
2374 static int atmel_nand_nfc_remove(struct platform_device *pdev)
2375 {
2376 struct atmel_nfc *nfc = &nand_nfc;
2377
2378 if (!IS_ERR(nfc->clk))
2379 clk_disable_unprepare(nfc->clk);
2380
2381 return 0;
2382 }
2383
2384 static const struct of_device_id atmel_nand_nfc_match[] = {
2385 { .compatible = "atmel,sama5d3-nfc" },
2386 { /* sentinel */ }
2387 };
2388 MODULE_DEVICE_TABLE(of, atmel_nand_nfc_match);
2389
2390 static struct platform_driver atmel_nand_nfc_driver = {
2391 .driver = {
2392 .name = "atmel_nand_nfc",
2393 .of_match_table = of_match_ptr(atmel_nand_nfc_match),
2394 },
2395 .probe = atmel_nand_nfc_probe,
2396 .remove = atmel_nand_nfc_remove,
2397 };
2398
2399 static struct platform_driver atmel_nand_driver = {
2400 .probe = atmel_nand_probe,
2401 .remove = atmel_nand_remove,
2402 .driver = {
2403 .name = "atmel_nand",
2404 .of_match_table = of_match_ptr(atmel_nand_dt_ids),
2405 },
2406 };
2407
2408 module_platform_driver(atmel_nand_driver);
2409
2410 MODULE_LICENSE("GPL");
2411 MODULE_AUTHOR("Rick Bronson");
2412 MODULE_DESCRIPTION("NAND/SmartMedia driver for AT91 / AVR32");
2413 MODULE_ALIAS("platform:atmel_nand");
This page took 0.130683 seconds and 5 git commands to generate.