Merge branch 'idle-release' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb...
[deliverable/linux.git] / drivers / mtd / nand / atmel_nand.c
1 /*
2 * Copyright (C) 2003 Rick Bronson
3 *
4 * Derived from drivers/mtd/nand/autcpu12.c
5 * Copyright (c) 2001 Thomas Gleixner (gleixner@autronix.de)
6 *
7 * Derived from drivers/mtd/spia.c
8 * Copyright (C) 2000 Steven J. Hill (sjhill@cotw.com)
9 *
10 *
11 * Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
12 * Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright (C) 2007
13 *
14 * Derived from Das U-Boot source code
15 * (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
16 * (C) Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
17 *
18 *
19 * This program is free software; you can redistribute it and/or modify
20 * it under the terms of the GNU General Public License version 2 as
21 * published by the Free Software Foundation.
22 *
23 */
24
25 #include <linux/slab.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/platform_device.h>
29 #include <linux/mtd/mtd.h>
30 #include <linux/mtd/nand.h>
31 #include <linux/mtd/partitions.h>
32
33 #include <linux/dmaengine.h>
34 #include <linux/gpio.h>
35 #include <linux/io.h>
36
37 #include <mach/board.h>
38 #include <mach/cpu.h>
39
40 #ifdef CONFIG_MTD_NAND_ATMEL_ECC_HW
41 #define hard_ecc 1
42 #else
43 #define hard_ecc 0
44 #endif
45
46 #ifdef CONFIG_MTD_NAND_ATMEL_ECC_NONE
47 #define no_ecc 1
48 #else
49 #define no_ecc 0
50 #endif
51
52 static int use_dma = 1;
53 module_param(use_dma, int, 0);
54
55 static int on_flash_bbt = 0;
56 module_param(on_flash_bbt, int, 0);
57
58 /* Register access macros */
59 #define ecc_readl(add, reg) \
60 __raw_readl(add + ATMEL_ECC_##reg)
61 #define ecc_writel(add, reg, value) \
62 __raw_writel((value), add + ATMEL_ECC_##reg)
63
64 #include "atmel_nand_ecc.h" /* Hardware ECC registers */
65
66 /* oob layout for large page size
67 * bad block info is on bytes 0 and 1
68 * the bytes have to be consecutives to avoid
69 * several NAND_CMD_RNDOUT during read
70 */
71 static struct nand_ecclayout atmel_oobinfo_large = {
72 .eccbytes = 4,
73 .eccpos = {60, 61, 62, 63},
74 .oobfree = {
75 {2, 58}
76 },
77 };
78
79 /* oob layout for small page size
80 * bad block info is on bytes 4 and 5
81 * the bytes have to be consecutives to avoid
82 * several NAND_CMD_RNDOUT during read
83 */
84 static struct nand_ecclayout atmel_oobinfo_small = {
85 .eccbytes = 4,
86 .eccpos = {0, 1, 2, 3},
87 .oobfree = {
88 {6, 10}
89 },
90 };
91
92 struct atmel_nand_host {
93 struct nand_chip nand_chip;
94 struct mtd_info mtd;
95 void __iomem *io_base;
96 dma_addr_t io_phys;
97 struct atmel_nand_data *board;
98 struct device *dev;
99 void __iomem *ecc;
100
101 struct completion comp;
102 struct dma_chan *dma_chan;
103 };
104
105 static int cpu_has_dma(void)
106 {
107 return cpu_is_at91sam9rl() || cpu_is_at91sam9g45();
108 }
109
110 /*
111 * Enable NAND.
112 */
113 static void atmel_nand_enable(struct atmel_nand_host *host)
114 {
115 if (host->board->enable_pin)
116 gpio_set_value(host->board->enable_pin, 0);
117 }
118
119 /*
120 * Disable NAND.
121 */
122 static void atmel_nand_disable(struct atmel_nand_host *host)
123 {
124 if (host->board->enable_pin)
125 gpio_set_value(host->board->enable_pin, 1);
126 }
127
128 /*
129 * Hardware specific access to control-lines
130 */
131 static void atmel_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
132 {
133 struct nand_chip *nand_chip = mtd->priv;
134 struct atmel_nand_host *host = nand_chip->priv;
135
136 if (ctrl & NAND_CTRL_CHANGE) {
137 if (ctrl & NAND_NCE)
138 atmel_nand_enable(host);
139 else
140 atmel_nand_disable(host);
141 }
142 if (cmd == NAND_CMD_NONE)
143 return;
144
145 if (ctrl & NAND_CLE)
146 writeb(cmd, host->io_base + (1 << host->board->cle));
147 else
148 writeb(cmd, host->io_base + (1 << host->board->ale));
149 }
150
151 /*
152 * Read the Device Ready pin.
153 */
154 static int atmel_nand_device_ready(struct mtd_info *mtd)
155 {
156 struct nand_chip *nand_chip = mtd->priv;
157 struct atmel_nand_host *host = nand_chip->priv;
158
159 return gpio_get_value(host->board->rdy_pin) ^
160 !!host->board->rdy_pin_active_low;
161 }
162
163 /*
164 * Minimal-overhead PIO for data access.
165 */
166 static void atmel_read_buf8(struct mtd_info *mtd, u8 *buf, int len)
167 {
168 struct nand_chip *nand_chip = mtd->priv;
169
170 __raw_readsb(nand_chip->IO_ADDR_R, buf, len);
171 }
172
173 static void atmel_read_buf16(struct mtd_info *mtd, u8 *buf, int len)
174 {
175 struct nand_chip *nand_chip = mtd->priv;
176
177 __raw_readsw(nand_chip->IO_ADDR_R, buf, len / 2);
178 }
179
180 static void atmel_write_buf8(struct mtd_info *mtd, const u8 *buf, int len)
181 {
182 struct nand_chip *nand_chip = mtd->priv;
183
184 __raw_writesb(nand_chip->IO_ADDR_W, buf, len);
185 }
186
187 static void atmel_write_buf16(struct mtd_info *mtd, const u8 *buf, int len)
188 {
189 struct nand_chip *nand_chip = mtd->priv;
190
191 __raw_writesw(nand_chip->IO_ADDR_W, buf, len / 2);
192 }
193
194 static void dma_complete_func(void *completion)
195 {
196 complete(completion);
197 }
198
199 static int atmel_nand_dma_op(struct mtd_info *mtd, void *buf, int len,
200 int is_read)
201 {
202 struct dma_device *dma_dev;
203 enum dma_ctrl_flags flags;
204 dma_addr_t dma_src_addr, dma_dst_addr, phys_addr;
205 struct dma_async_tx_descriptor *tx = NULL;
206 dma_cookie_t cookie;
207 struct nand_chip *chip = mtd->priv;
208 struct atmel_nand_host *host = chip->priv;
209 void *p = buf;
210 int err = -EIO;
211 enum dma_data_direction dir = is_read ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
212
213 if (buf >= high_memory)
214 goto err_buf;
215
216 dma_dev = host->dma_chan->device;
217
218 flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT | DMA_COMPL_SKIP_SRC_UNMAP |
219 DMA_COMPL_SKIP_DEST_UNMAP;
220
221 phys_addr = dma_map_single(dma_dev->dev, p, len, dir);
222 if (dma_mapping_error(dma_dev->dev, phys_addr)) {
223 dev_err(host->dev, "Failed to dma_map_single\n");
224 goto err_buf;
225 }
226
227 if (is_read) {
228 dma_src_addr = host->io_phys;
229 dma_dst_addr = phys_addr;
230 } else {
231 dma_src_addr = phys_addr;
232 dma_dst_addr = host->io_phys;
233 }
234
235 tx = dma_dev->device_prep_dma_memcpy(host->dma_chan, dma_dst_addr,
236 dma_src_addr, len, flags);
237 if (!tx) {
238 dev_err(host->dev, "Failed to prepare DMA memcpy\n");
239 goto err_dma;
240 }
241
242 init_completion(&host->comp);
243 tx->callback = dma_complete_func;
244 tx->callback_param = &host->comp;
245
246 cookie = tx->tx_submit(tx);
247 if (dma_submit_error(cookie)) {
248 dev_err(host->dev, "Failed to do DMA tx_submit\n");
249 goto err_dma;
250 }
251
252 dma_async_issue_pending(host->dma_chan);
253 wait_for_completion(&host->comp);
254
255 err = 0;
256
257 err_dma:
258 dma_unmap_single(dma_dev->dev, phys_addr, len, dir);
259 err_buf:
260 if (err != 0)
261 dev_warn(host->dev, "Fall back to CPU I/O\n");
262 return err;
263 }
264
265 static void atmel_read_buf(struct mtd_info *mtd, u8 *buf, int len)
266 {
267 struct nand_chip *chip = mtd->priv;
268 struct atmel_nand_host *host = chip->priv;
269
270 if (use_dma && len > mtd->oobsize)
271 /* only use DMA for bigger than oob size: better performances */
272 if (atmel_nand_dma_op(mtd, buf, len, 1) == 0)
273 return;
274
275 if (host->board->bus_width_16)
276 atmel_read_buf16(mtd, buf, len);
277 else
278 atmel_read_buf8(mtd, buf, len);
279 }
280
281 static void atmel_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
282 {
283 struct nand_chip *chip = mtd->priv;
284 struct atmel_nand_host *host = chip->priv;
285
286 if (use_dma && len > mtd->oobsize)
287 /* only use DMA for bigger than oob size: better performances */
288 if (atmel_nand_dma_op(mtd, (void *)buf, len, 0) == 0)
289 return;
290
291 if (host->board->bus_width_16)
292 atmel_write_buf16(mtd, buf, len);
293 else
294 atmel_write_buf8(mtd, buf, len);
295 }
296
297 /*
298 * Calculate HW ECC
299 *
300 * function called after a write
301 *
302 * mtd: MTD block structure
303 * dat: raw data (unused)
304 * ecc_code: buffer for ECC
305 */
306 static int atmel_nand_calculate(struct mtd_info *mtd,
307 const u_char *dat, unsigned char *ecc_code)
308 {
309 struct nand_chip *nand_chip = mtd->priv;
310 struct atmel_nand_host *host = nand_chip->priv;
311 unsigned int ecc_value;
312
313 /* get the first 2 ECC bytes */
314 ecc_value = ecc_readl(host->ecc, PR);
315
316 ecc_code[0] = ecc_value & 0xFF;
317 ecc_code[1] = (ecc_value >> 8) & 0xFF;
318
319 /* get the last 2 ECC bytes */
320 ecc_value = ecc_readl(host->ecc, NPR) & ATMEL_ECC_NPARITY;
321
322 ecc_code[2] = ecc_value & 0xFF;
323 ecc_code[3] = (ecc_value >> 8) & 0xFF;
324
325 return 0;
326 }
327
328 /*
329 * HW ECC read page function
330 *
331 * mtd: mtd info structure
332 * chip: nand chip info structure
333 * buf: buffer to store read data
334 */
335 static int atmel_nand_read_page(struct mtd_info *mtd,
336 struct nand_chip *chip, uint8_t *buf, int page)
337 {
338 int eccsize = chip->ecc.size;
339 int eccbytes = chip->ecc.bytes;
340 uint32_t *eccpos = chip->ecc.layout->eccpos;
341 uint8_t *p = buf;
342 uint8_t *oob = chip->oob_poi;
343 uint8_t *ecc_pos;
344 int stat;
345
346 /*
347 * Errata: ALE is incorrectly wired up to the ECC controller
348 * on the AP7000, so it will include the address cycles in the
349 * ECC calculation.
350 *
351 * Workaround: Reset the parity registers before reading the
352 * actual data.
353 */
354 if (cpu_is_at32ap7000()) {
355 struct atmel_nand_host *host = chip->priv;
356 ecc_writel(host->ecc, CR, ATMEL_ECC_RST);
357 }
358
359 /* read the page */
360 chip->read_buf(mtd, p, eccsize);
361
362 /* move to ECC position if needed */
363 if (eccpos[0] != 0) {
364 /* This only works on large pages
365 * because the ECC controller waits for
366 * NAND_CMD_RNDOUTSTART after the
367 * NAND_CMD_RNDOUT.
368 * anyway, for small pages, the eccpos[0] == 0
369 */
370 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
371 mtd->writesize + eccpos[0], -1);
372 }
373
374 /* the ECC controller needs to read the ECC just after the data */
375 ecc_pos = oob + eccpos[0];
376 chip->read_buf(mtd, ecc_pos, eccbytes);
377
378 /* check if there's an error */
379 stat = chip->ecc.correct(mtd, p, oob, NULL);
380
381 if (stat < 0)
382 mtd->ecc_stats.failed++;
383 else
384 mtd->ecc_stats.corrected += stat;
385
386 /* get back to oob start (end of page) */
387 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
388
389 /* read the oob */
390 chip->read_buf(mtd, oob, mtd->oobsize);
391
392 return 0;
393 }
394
395 /*
396 * HW ECC Correction
397 *
398 * function called after a read
399 *
400 * mtd: MTD block structure
401 * dat: raw data read from the chip
402 * read_ecc: ECC from the chip (unused)
403 * isnull: unused
404 *
405 * Detect and correct a 1 bit error for a page
406 */
407 static int atmel_nand_correct(struct mtd_info *mtd, u_char *dat,
408 u_char *read_ecc, u_char *isnull)
409 {
410 struct nand_chip *nand_chip = mtd->priv;
411 struct atmel_nand_host *host = nand_chip->priv;
412 unsigned int ecc_status;
413 unsigned int ecc_word, ecc_bit;
414
415 /* get the status from the Status Register */
416 ecc_status = ecc_readl(host->ecc, SR);
417
418 /* if there's no error */
419 if (likely(!(ecc_status & ATMEL_ECC_RECERR)))
420 return 0;
421
422 /* get error bit offset (4 bits) */
423 ecc_bit = ecc_readl(host->ecc, PR) & ATMEL_ECC_BITADDR;
424 /* get word address (12 bits) */
425 ecc_word = ecc_readl(host->ecc, PR) & ATMEL_ECC_WORDADDR;
426 ecc_word >>= 4;
427
428 /* if there are multiple errors */
429 if (ecc_status & ATMEL_ECC_MULERR) {
430 /* check if it is a freshly erased block
431 * (filled with 0xff) */
432 if ((ecc_bit == ATMEL_ECC_BITADDR)
433 && (ecc_word == (ATMEL_ECC_WORDADDR >> 4))) {
434 /* the block has just been erased, return OK */
435 return 0;
436 }
437 /* it doesn't seems to be a freshly
438 * erased block.
439 * We can't correct so many errors */
440 dev_dbg(host->dev, "atmel_nand : multiple errors detected."
441 " Unable to correct.\n");
442 return -EIO;
443 }
444
445 /* if there's a single bit error : we can correct it */
446 if (ecc_status & ATMEL_ECC_ECCERR) {
447 /* there's nothing much to do here.
448 * the bit error is on the ECC itself.
449 */
450 dev_dbg(host->dev, "atmel_nand : one bit error on ECC code."
451 " Nothing to correct\n");
452 return 0;
453 }
454
455 dev_dbg(host->dev, "atmel_nand : one bit error on data."
456 " (word offset in the page :"
457 " 0x%x bit offset : 0x%x)\n",
458 ecc_word, ecc_bit);
459 /* correct the error */
460 if (nand_chip->options & NAND_BUSWIDTH_16) {
461 /* 16 bits words */
462 ((unsigned short *) dat)[ecc_word] ^= (1 << ecc_bit);
463 } else {
464 /* 8 bits words */
465 dat[ecc_word] ^= (1 << ecc_bit);
466 }
467 dev_dbg(host->dev, "atmel_nand : error corrected\n");
468 return 1;
469 }
470
471 /*
472 * Enable HW ECC : unused on most chips
473 */
474 static void atmel_nand_hwctl(struct mtd_info *mtd, int mode)
475 {
476 if (cpu_is_at32ap7000()) {
477 struct nand_chip *nand_chip = mtd->priv;
478 struct atmel_nand_host *host = nand_chip->priv;
479 ecc_writel(host->ecc, CR, ATMEL_ECC_RST);
480 }
481 }
482
483 #ifdef CONFIG_MTD_CMDLINE_PARTS
484 static const char *part_probes[] = { "cmdlinepart", NULL };
485 #endif
486
487 /*
488 * Probe for the NAND device.
489 */
490 static int __init atmel_nand_probe(struct platform_device *pdev)
491 {
492 struct atmel_nand_host *host;
493 struct mtd_info *mtd;
494 struct nand_chip *nand_chip;
495 struct resource *regs;
496 struct resource *mem;
497 int res;
498 struct mtd_partition *partitions = NULL;
499 int num_partitions = 0;
500
501 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
502 if (!mem) {
503 printk(KERN_ERR "atmel_nand: can't get I/O resource mem\n");
504 return -ENXIO;
505 }
506
507 /* Allocate memory for the device structure (and zero it) */
508 host = kzalloc(sizeof(struct atmel_nand_host), GFP_KERNEL);
509 if (!host) {
510 printk(KERN_ERR "atmel_nand: failed to allocate device structure.\n");
511 return -ENOMEM;
512 }
513
514 host->io_phys = (dma_addr_t)mem->start;
515
516 host->io_base = ioremap(mem->start, mem->end - mem->start + 1);
517 if (host->io_base == NULL) {
518 printk(KERN_ERR "atmel_nand: ioremap failed\n");
519 res = -EIO;
520 goto err_nand_ioremap;
521 }
522
523 mtd = &host->mtd;
524 nand_chip = &host->nand_chip;
525 host->board = pdev->dev.platform_data;
526 host->dev = &pdev->dev;
527
528 nand_chip->priv = host; /* link the private data structures */
529 mtd->priv = nand_chip;
530 mtd->owner = THIS_MODULE;
531
532 /* Set address of NAND IO lines */
533 nand_chip->IO_ADDR_R = host->io_base;
534 nand_chip->IO_ADDR_W = host->io_base;
535 nand_chip->cmd_ctrl = atmel_nand_cmd_ctrl;
536
537 if (host->board->rdy_pin)
538 nand_chip->dev_ready = atmel_nand_device_ready;
539
540 regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
541 if (!regs && hard_ecc) {
542 printk(KERN_ERR "atmel_nand: can't get I/O resource "
543 "regs\nFalling back on software ECC\n");
544 }
545
546 nand_chip->ecc.mode = NAND_ECC_SOFT; /* enable ECC */
547 if (no_ecc)
548 nand_chip->ecc.mode = NAND_ECC_NONE;
549 if (hard_ecc && regs) {
550 host->ecc = ioremap(regs->start, regs->end - regs->start + 1);
551 if (host->ecc == NULL) {
552 printk(KERN_ERR "atmel_nand: ioremap failed\n");
553 res = -EIO;
554 goto err_ecc_ioremap;
555 }
556 nand_chip->ecc.mode = NAND_ECC_HW;
557 nand_chip->ecc.calculate = atmel_nand_calculate;
558 nand_chip->ecc.correct = atmel_nand_correct;
559 nand_chip->ecc.hwctl = atmel_nand_hwctl;
560 nand_chip->ecc.read_page = atmel_nand_read_page;
561 nand_chip->ecc.bytes = 4;
562 }
563
564 nand_chip->chip_delay = 20; /* 20us command delay time */
565
566 if (host->board->bus_width_16) /* 16-bit bus width */
567 nand_chip->options |= NAND_BUSWIDTH_16;
568
569 nand_chip->read_buf = atmel_read_buf;
570 nand_chip->write_buf = atmel_write_buf;
571
572 platform_set_drvdata(pdev, host);
573 atmel_nand_enable(host);
574
575 if (host->board->det_pin) {
576 if (gpio_get_value(host->board->det_pin)) {
577 printk(KERN_INFO "No SmartMedia card inserted.\n");
578 res = -ENXIO;
579 goto err_no_card;
580 }
581 }
582
583 if (on_flash_bbt) {
584 printk(KERN_INFO "atmel_nand: Use On Flash BBT\n");
585 nand_chip->options |= NAND_USE_FLASH_BBT;
586 }
587
588 if (!cpu_has_dma())
589 use_dma = 0;
590
591 if (use_dma) {
592 dma_cap_mask_t mask;
593
594 dma_cap_zero(mask);
595 dma_cap_set(DMA_MEMCPY, mask);
596 host->dma_chan = dma_request_channel(mask, 0, NULL);
597 if (!host->dma_chan) {
598 dev_err(host->dev, "Failed to request DMA channel\n");
599 use_dma = 0;
600 }
601 }
602 if (use_dma)
603 dev_info(host->dev, "Using %s for DMA transfers.\n",
604 dma_chan_name(host->dma_chan));
605 else
606 dev_info(host->dev, "No DMA support for NAND access.\n");
607
608 /* first scan to find the device and get the page size */
609 if (nand_scan_ident(mtd, 1, NULL)) {
610 res = -ENXIO;
611 goto err_scan_ident;
612 }
613
614 if (nand_chip->ecc.mode == NAND_ECC_HW) {
615 /* ECC is calculated for the whole page (1 step) */
616 nand_chip->ecc.size = mtd->writesize;
617
618 /* set ECC page size and oob layout */
619 switch (mtd->writesize) {
620 case 512:
621 nand_chip->ecc.layout = &atmel_oobinfo_small;
622 ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_528);
623 break;
624 case 1024:
625 nand_chip->ecc.layout = &atmel_oobinfo_large;
626 ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_1056);
627 break;
628 case 2048:
629 nand_chip->ecc.layout = &atmel_oobinfo_large;
630 ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_2112);
631 break;
632 case 4096:
633 nand_chip->ecc.layout = &atmel_oobinfo_large;
634 ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_4224);
635 break;
636 default:
637 /* page size not handled by HW ECC */
638 /* switching back to soft ECC */
639 nand_chip->ecc.mode = NAND_ECC_SOFT;
640 nand_chip->ecc.calculate = NULL;
641 nand_chip->ecc.correct = NULL;
642 nand_chip->ecc.hwctl = NULL;
643 nand_chip->ecc.read_page = NULL;
644 nand_chip->ecc.postpad = 0;
645 nand_chip->ecc.prepad = 0;
646 nand_chip->ecc.bytes = 0;
647 break;
648 }
649 }
650
651 /* second phase scan */
652 if (nand_scan_tail(mtd)) {
653 res = -ENXIO;
654 goto err_scan_tail;
655 }
656
657 #ifdef CONFIG_MTD_CMDLINE_PARTS
658 mtd->name = "atmel_nand";
659 num_partitions = parse_mtd_partitions(mtd, part_probes,
660 &partitions, 0);
661 #endif
662 if (num_partitions <= 0 && host->board->partition_info)
663 partitions = host->board->partition_info(mtd->size,
664 &num_partitions);
665
666 if ((!partitions) || (num_partitions == 0)) {
667 printk(KERN_ERR "atmel_nand: No partitions defined, or unsupported device.\n");
668 res = -ENXIO;
669 goto err_no_partitions;
670 }
671
672 res = mtd_device_register(mtd, partitions, num_partitions);
673 if (!res)
674 return res;
675
676 err_no_partitions:
677 nand_release(mtd);
678 err_scan_tail:
679 err_scan_ident:
680 err_no_card:
681 atmel_nand_disable(host);
682 platform_set_drvdata(pdev, NULL);
683 if (host->dma_chan)
684 dma_release_channel(host->dma_chan);
685 if (host->ecc)
686 iounmap(host->ecc);
687 err_ecc_ioremap:
688 iounmap(host->io_base);
689 err_nand_ioremap:
690 kfree(host);
691 return res;
692 }
693
694 /*
695 * Remove a NAND device.
696 */
697 static int __exit atmel_nand_remove(struct platform_device *pdev)
698 {
699 struct atmel_nand_host *host = platform_get_drvdata(pdev);
700 struct mtd_info *mtd = &host->mtd;
701
702 nand_release(mtd);
703
704 atmel_nand_disable(host);
705
706 if (host->ecc)
707 iounmap(host->ecc);
708
709 if (host->dma_chan)
710 dma_release_channel(host->dma_chan);
711
712 iounmap(host->io_base);
713 kfree(host);
714
715 return 0;
716 }
717
718 static struct platform_driver atmel_nand_driver = {
719 .remove = __exit_p(atmel_nand_remove),
720 .driver = {
721 .name = "atmel_nand",
722 .owner = THIS_MODULE,
723 },
724 };
725
726 static int __init atmel_nand_init(void)
727 {
728 return platform_driver_probe(&atmel_nand_driver, atmel_nand_probe);
729 }
730
731
732 static void __exit atmel_nand_exit(void)
733 {
734 platform_driver_unregister(&atmel_nand_driver);
735 }
736
737
738 module_init(atmel_nand_init);
739 module_exit(atmel_nand_exit);
740
741 MODULE_LICENSE("GPL");
742 MODULE_AUTHOR("Rick Bronson");
743 MODULE_DESCRIPTION("NAND/SmartMedia driver for AT91 / AVR32");
744 MODULE_ALIAS("platform:atmel_nand");
This page took 0.048908 seconds and 5 git commands to generate.