mtd: nand: pass page number to ecc->write_xxx() methods
[deliverable/linux.git] / drivers / mtd / nand / bf5xx_nand.c
1 /* linux/drivers/mtd/nand/bf5xx_nand.c
2 *
3 * Copyright 2006-2008 Analog Devices Inc.
4 * http://blackfin.uclinux.org/
5 * Bryan Wu <bryan.wu@analog.com>
6 *
7 * Blackfin BF5xx on-chip NAND flash controller driver
8 *
9 * Derived from drivers/mtd/nand/s3c2410.c
10 * Copyright (c) 2007 Ben Dooks <ben@simtec.co.uk>
11 *
12 * Derived from drivers/mtd/nand/cafe.c
13 * Copyright © 2006 Red Hat, Inc.
14 * Copyright © 2006 David Woodhouse <dwmw2@infradead.org>
15 *
16 * Changelog:
17 * 12-Jun-2007 Bryan Wu: Initial version
18 * 18-Jul-2007 Bryan Wu:
19 * - ECC_HW and ECC_SW supported
20 * - DMA supported in ECC_HW
21 * - YAFFS tested as rootfs in both ECC_HW and ECC_SW
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 *
33 * You should have received a copy of the GNU General Public License
34 * along with this program; if not, write to the Free Software
35 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
36 */
37
38 #include <linux/module.h>
39 #include <linux/types.h>
40 #include <linux/kernel.h>
41 #include <linux/string.h>
42 #include <linux/ioport.h>
43 #include <linux/platform_device.h>
44 #include <linux/delay.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/err.h>
47 #include <linux/slab.h>
48 #include <linux/io.h>
49 #include <linux/bitops.h>
50
51 #include <linux/mtd/mtd.h>
52 #include <linux/mtd/nand.h>
53 #include <linux/mtd/nand_ecc.h>
54 #include <linux/mtd/partitions.h>
55
56 #include <asm/blackfin.h>
57 #include <asm/dma.h>
58 #include <asm/cacheflush.h>
59 #include <asm/nand.h>
60 #include <asm/portmux.h>
61
62 #define DRV_NAME "bf5xx-nand"
63 #define DRV_VERSION "1.2"
64 #define DRV_AUTHOR "Bryan Wu <bryan.wu@analog.com>"
65 #define DRV_DESC "BF5xx on-chip NAND FLash Controller Driver"
66
67 /* NFC_STAT Masks */
68 #define NBUSY 0x01 /* Not Busy */
69 #define WB_FULL 0x02 /* Write Buffer Full */
70 #define PG_WR_STAT 0x04 /* Page Write Pending */
71 #define PG_RD_STAT 0x08 /* Page Read Pending */
72 #define WB_EMPTY 0x10 /* Write Buffer Empty */
73
74 /* NFC_IRQSTAT Masks */
75 #define NBUSYIRQ 0x01 /* Not Busy IRQ */
76 #define WB_OVF 0x02 /* Write Buffer Overflow */
77 #define WB_EDGE 0x04 /* Write Buffer Edge Detect */
78 #define RD_RDY 0x08 /* Read Data Ready */
79 #define WR_DONE 0x10 /* Page Write Done */
80
81 /* NFC_RST Masks */
82 #define ECC_RST 0x01 /* ECC (and NFC counters) Reset */
83
84 /* NFC_PGCTL Masks */
85 #define PG_RD_START 0x01 /* Page Read Start */
86 #define PG_WR_START 0x02 /* Page Write Start */
87
88 #ifdef CONFIG_MTD_NAND_BF5XX_HWECC
89 static int hardware_ecc = 1;
90 #else
91 static int hardware_ecc;
92 #endif
93
94 static const unsigned short bfin_nfc_pin_req[] =
95 {P_NAND_CE,
96 P_NAND_RB,
97 P_NAND_D0,
98 P_NAND_D1,
99 P_NAND_D2,
100 P_NAND_D3,
101 P_NAND_D4,
102 P_NAND_D5,
103 P_NAND_D6,
104 P_NAND_D7,
105 P_NAND_WE,
106 P_NAND_RE,
107 P_NAND_CLE,
108 P_NAND_ALE,
109 0};
110
111 #ifdef CONFIG_MTD_NAND_BF5XX_BOOTROM_ECC
112 static struct nand_ecclayout bootrom_ecclayout = {
113 .eccbytes = 24,
114 .eccpos = {
115 0x8 * 0, 0x8 * 0 + 1, 0x8 * 0 + 2,
116 0x8 * 1, 0x8 * 1 + 1, 0x8 * 1 + 2,
117 0x8 * 2, 0x8 * 2 + 1, 0x8 * 2 + 2,
118 0x8 * 3, 0x8 * 3 + 1, 0x8 * 3 + 2,
119 0x8 * 4, 0x8 * 4 + 1, 0x8 * 4 + 2,
120 0x8 * 5, 0x8 * 5 + 1, 0x8 * 5 + 2,
121 0x8 * 6, 0x8 * 6 + 1, 0x8 * 6 + 2,
122 0x8 * 7, 0x8 * 7 + 1, 0x8 * 7 + 2
123 },
124 .oobfree = {
125 { 0x8 * 0 + 3, 5 },
126 { 0x8 * 1 + 3, 5 },
127 { 0x8 * 2 + 3, 5 },
128 { 0x8 * 3 + 3, 5 },
129 { 0x8 * 4 + 3, 5 },
130 { 0x8 * 5 + 3, 5 },
131 { 0x8 * 6 + 3, 5 },
132 { 0x8 * 7 + 3, 5 },
133 }
134 };
135 #endif
136
137 /*
138 * Data structures for bf5xx nand flash controller driver
139 */
140
141 /* bf5xx nand info */
142 struct bf5xx_nand_info {
143 /* mtd info */
144 struct nand_hw_control controller;
145 struct mtd_info mtd;
146 struct nand_chip chip;
147
148 /* platform info */
149 struct bf5xx_nand_platform *platform;
150
151 /* device info */
152 struct device *device;
153
154 /* DMA stuff */
155 struct completion dma_completion;
156 };
157
158 /*
159 * Conversion functions
160 */
161 static struct bf5xx_nand_info *mtd_to_nand_info(struct mtd_info *mtd)
162 {
163 return container_of(mtd, struct bf5xx_nand_info, mtd);
164 }
165
166 static struct bf5xx_nand_info *to_nand_info(struct platform_device *pdev)
167 {
168 return platform_get_drvdata(pdev);
169 }
170
171 static struct bf5xx_nand_platform *to_nand_plat(struct platform_device *pdev)
172 {
173 return dev_get_platdata(&pdev->dev);
174 }
175
176 /*
177 * struct nand_chip interface function pointers
178 */
179
180 /*
181 * bf5xx_nand_hwcontrol
182 *
183 * Issue command and address cycles to the chip
184 */
185 static void bf5xx_nand_hwcontrol(struct mtd_info *mtd, int cmd,
186 unsigned int ctrl)
187 {
188 if (cmd == NAND_CMD_NONE)
189 return;
190
191 while (bfin_read_NFC_STAT() & WB_FULL)
192 cpu_relax();
193
194 if (ctrl & NAND_CLE)
195 bfin_write_NFC_CMD(cmd);
196 else if (ctrl & NAND_ALE)
197 bfin_write_NFC_ADDR(cmd);
198 SSYNC();
199 }
200
201 /*
202 * bf5xx_nand_devready()
203 *
204 * returns 0 if the nand is busy, 1 if it is ready
205 */
206 static int bf5xx_nand_devready(struct mtd_info *mtd)
207 {
208 unsigned short val = bfin_read_NFC_STAT();
209
210 if ((val & NBUSY) == NBUSY)
211 return 1;
212 else
213 return 0;
214 }
215
216 /*
217 * ECC functions
218 * These allow the bf5xx to use the controller's ECC
219 * generator block to ECC the data as it passes through
220 */
221
222 /*
223 * ECC error correction function
224 */
225 static int bf5xx_nand_correct_data_256(struct mtd_info *mtd, u_char *dat,
226 u_char *read_ecc, u_char *calc_ecc)
227 {
228 struct bf5xx_nand_info *info = mtd_to_nand_info(mtd);
229 u32 syndrome[5];
230 u32 calced, stored;
231 int i;
232 unsigned short failing_bit, failing_byte;
233 u_char data;
234
235 calced = calc_ecc[0] | (calc_ecc[1] << 8) | (calc_ecc[2] << 16);
236 stored = read_ecc[0] | (read_ecc[1] << 8) | (read_ecc[2] << 16);
237
238 syndrome[0] = (calced ^ stored);
239
240 /*
241 * syndrome 0: all zero
242 * No error in data
243 * No action
244 */
245 if (!syndrome[0] || !calced || !stored)
246 return 0;
247
248 /*
249 * sysdrome 0: only one bit is one
250 * ECC data was incorrect
251 * No action
252 */
253 if (hweight32(syndrome[0]) == 1) {
254 dev_err(info->device, "ECC data was incorrect!\n");
255 return 1;
256 }
257
258 syndrome[1] = (calced & 0x7FF) ^ (stored & 0x7FF);
259 syndrome[2] = (calced & 0x7FF) ^ ((calced >> 11) & 0x7FF);
260 syndrome[3] = (stored & 0x7FF) ^ ((stored >> 11) & 0x7FF);
261 syndrome[4] = syndrome[2] ^ syndrome[3];
262
263 for (i = 0; i < 5; i++)
264 dev_info(info->device, "syndrome[%d] 0x%08x\n", i, syndrome[i]);
265
266 dev_info(info->device,
267 "calced[0x%08x], stored[0x%08x]\n",
268 calced, stored);
269
270 /*
271 * sysdrome 0: exactly 11 bits are one, each parity
272 * and parity' pair is 1 & 0 or 0 & 1.
273 * 1-bit correctable error
274 * Correct the error
275 */
276 if (hweight32(syndrome[0]) == 11 && syndrome[4] == 0x7FF) {
277 dev_info(info->device,
278 "1-bit correctable error, correct it.\n");
279 dev_info(info->device,
280 "syndrome[1] 0x%08x\n", syndrome[1]);
281
282 failing_bit = syndrome[1] & 0x7;
283 failing_byte = syndrome[1] >> 0x3;
284 data = *(dat + failing_byte);
285 data = data ^ (0x1 << failing_bit);
286 *(dat + failing_byte) = data;
287
288 return 0;
289 }
290
291 /*
292 * sysdrome 0: random data
293 * More than 1-bit error, non-correctable error
294 * Discard data, mark bad block
295 */
296 dev_err(info->device,
297 "More than 1-bit error, non-correctable error.\n");
298 dev_err(info->device,
299 "Please discard data, mark bad block\n");
300
301 return 1;
302 }
303
304 static int bf5xx_nand_correct_data(struct mtd_info *mtd, u_char *dat,
305 u_char *read_ecc, u_char *calc_ecc)
306 {
307 struct nand_chip *chip = mtd->priv;
308 int ret;
309
310 ret = bf5xx_nand_correct_data_256(mtd, dat, read_ecc, calc_ecc);
311
312 /* If ecc size is 512, correct second 256 bytes */
313 if (chip->ecc.size == 512) {
314 dat += 256;
315 read_ecc += 3;
316 calc_ecc += 3;
317 ret |= bf5xx_nand_correct_data_256(mtd, dat, read_ecc, calc_ecc);
318 }
319
320 return ret;
321 }
322
323 static void bf5xx_nand_enable_hwecc(struct mtd_info *mtd, int mode)
324 {
325 return;
326 }
327
328 static int bf5xx_nand_calculate_ecc(struct mtd_info *mtd,
329 const u_char *dat, u_char *ecc_code)
330 {
331 struct bf5xx_nand_info *info = mtd_to_nand_info(mtd);
332 struct nand_chip *chip = mtd->priv;
333 u16 ecc0, ecc1;
334 u32 code[2];
335 u8 *p;
336
337 /* first 3 bytes ECC code for 256 page size */
338 ecc0 = bfin_read_NFC_ECC0();
339 ecc1 = bfin_read_NFC_ECC1();
340
341 code[0] = (ecc0 & 0x7ff) | ((ecc1 & 0x7ff) << 11);
342
343 dev_dbg(info->device, "returning ecc 0x%08x\n", code[0]);
344
345 p = (u8 *) code;
346 memcpy(ecc_code, p, 3);
347
348 /* second 3 bytes ECC code for 512 ecc size */
349 if (chip->ecc.size == 512) {
350 ecc0 = bfin_read_NFC_ECC2();
351 ecc1 = bfin_read_NFC_ECC3();
352 code[1] = (ecc0 & 0x7ff) | ((ecc1 & 0x7ff) << 11);
353
354 /* second 3 bytes in ecc_code for second 256
355 * bytes of 512 page size
356 */
357 p = (u8 *) (code + 1);
358 memcpy((ecc_code + 3), p, 3);
359 dev_dbg(info->device, "returning ecc 0x%08x\n", code[1]);
360 }
361
362 return 0;
363 }
364
365 /*
366 * PIO mode for buffer writing and reading
367 */
368 static void bf5xx_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
369 {
370 int i;
371 unsigned short val;
372
373 /*
374 * Data reads are requested by first writing to NFC_DATA_RD
375 * and then reading back from NFC_READ.
376 */
377 for (i = 0; i < len; i++) {
378 while (bfin_read_NFC_STAT() & WB_FULL)
379 cpu_relax();
380
381 /* Contents do not matter */
382 bfin_write_NFC_DATA_RD(0x0000);
383 SSYNC();
384
385 while ((bfin_read_NFC_IRQSTAT() & RD_RDY) != RD_RDY)
386 cpu_relax();
387
388 buf[i] = bfin_read_NFC_READ();
389
390 val = bfin_read_NFC_IRQSTAT();
391 val |= RD_RDY;
392 bfin_write_NFC_IRQSTAT(val);
393 SSYNC();
394 }
395 }
396
397 static uint8_t bf5xx_nand_read_byte(struct mtd_info *mtd)
398 {
399 uint8_t val;
400
401 bf5xx_nand_read_buf(mtd, &val, 1);
402
403 return val;
404 }
405
406 static void bf5xx_nand_write_buf(struct mtd_info *mtd,
407 const uint8_t *buf, int len)
408 {
409 int i;
410
411 for (i = 0; i < len; i++) {
412 while (bfin_read_NFC_STAT() & WB_FULL)
413 cpu_relax();
414
415 bfin_write_NFC_DATA_WR(buf[i]);
416 SSYNC();
417 }
418 }
419
420 static void bf5xx_nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
421 {
422 int i;
423 u16 *p = (u16 *) buf;
424 len >>= 1;
425
426 /*
427 * Data reads are requested by first writing to NFC_DATA_RD
428 * and then reading back from NFC_READ.
429 */
430 bfin_write_NFC_DATA_RD(0x5555);
431
432 SSYNC();
433
434 for (i = 0; i < len; i++)
435 p[i] = bfin_read_NFC_READ();
436 }
437
438 static void bf5xx_nand_write_buf16(struct mtd_info *mtd,
439 const uint8_t *buf, int len)
440 {
441 int i;
442 u16 *p = (u16 *) buf;
443 len >>= 1;
444
445 for (i = 0; i < len; i++)
446 bfin_write_NFC_DATA_WR(p[i]);
447
448 SSYNC();
449 }
450
451 /*
452 * DMA functions for buffer writing and reading
453 */
454 static irqreturn_t bf5xx_nand_dma_irq(int irq, void *dev_id)
455 {
456 struct bf5xx_nand_info *info = dev_id;
457
458 clear_dma_irqstat(CH_NFC);
459 disable_dma(CH_NFC);
460 complete(&info->dma_completion);
461
462 return IRQ_HANDLED;
463 }
464
465 static void bf5xx_nand_dma_rw(struct mtd_info *mtd,
466 uint8_t *buf, int is_read)
467 {
468 struct bf5xx_nand_info *info = mtd_to_nand_info(mtd);
469 struct nand_chip *chip = mtd->priv;
470 unsigned short val;
471
472 dev_dbg(info->device, " mtd->%p, buf->%p, is_read %d\n",
473 mtd, buf, is_read);
474
475 /*
476 * Before starting a dma transfer, be sure to invalidate/flush
477 * the cache over the address range of your DMA buffer to
478 * prevent cache coherency problems. Otherwise very subtle bugs
479 * can be introduced to your driver.
480 */
481 if (is_read)
482 invalidate_dcache_range((unsigned int)buf,
483 (unsigned int)(buf + chip->ecc.size));
484 else
485 flush_dcache_range((unsigned int)buf,
486 (unsigned int)(buf + chip->ecc.size));
487
488 /*
489 * This register must be written before each page is
490 * transferred to generate the correct ECC register
491 * values.
492 */
493 bfin_write_NFC_RST(ECC_RST);
494 SSYNC();
495 while (bfin_read_NFC_RST() & ECC_RST)
496 cpu_relax();
497
498 disable_dma(CH_NFC);
499 clear_dma_irqstat(CH_NFC);
500
501 /* setup DMA register with Blackfin DMA API */
502 set_dma_config(CH_NFC, 0x0);
503 set_dma_start_addr(CH_NFC, (unsigned long) buf);
504
505 /* The DMAs have different size on BF52x and BF54x */
506 #ifdef CONFIG_BF52x
507 set_dma_x_count(CH_NFC, (chip->ecc.size >> 1));
508 set_dma_x_modify(CH_NFC, 2);
509 val = DI_EN | WDSIZE_16;
510 #endif
511
512 #ifdef CONFIG_BF54x
513 set_dma_x_count(CH_NFC, (chip->ecc.size >> 2));
514 set_dma_x_modify(CH_NFC, 4);
515 val = DI_EN | WDSIZE_32;
516 #endif
517 /* setup write or read operation */
518 if (is_read)
519 val |= WNR;
520 set_dma_config(CH_NFC, val);
521 enable_dma(CH_NFC);
522
523 /* Start PAGE read/write operation */
524 if (is_read)
525 bfin_write_NFC_PGCTL(PG_RD_START);
526 else
527 bfin_write_NFC_PGCTL(PG_WR_START);
528 wait_for_completion(&info->dma_completion);
529 }
530
531 static void bf5xx_nand_dma_read_buf(struct mtd_info *mtd,
532 uint8_t *buf, int len)
533 {
534 struct bf5xx_nand_info *info = mtd_to_nand_info(mtd);
535 struct nand_chip *chip = mtd->priv;
536
537 dev_dbg(info->device, "mtd->%p, buf->%p, int %d\n", mtd, buf, len);
538
539 if (len == chip->ecc.size)
540 bf5xx_nand_dma_rw(mtd, buf, 1);
541 else
542 bf5xx_nand_read_buf(mtd, buf, len);
543 }
544
545 static void bf5xx_nand_dma_write_buf(struct mtd_info *mtd,
546 const uint8_t *buf, int len)
547 {
548 struct bf5xx_nand_info *info = mtd_to_nand_info(mtd);
549 struct nand_chip *chip = mtd->priv;
550
551 dev_dbg(info->device, "mtd->%p, buf->%p, len %d\n", mtd, buf, len);
552
553 if (len == chip->ecc.size)
554 bf5xx_nand_dma_rw(mtd, (uint8_t *)buf, 0);
555 else
556 bf5xx_nand_write_buf(mtd, buf, len);
557 }
558
559 static int bf5xx_nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
560 uint8_t *buf, int oob_required, int page)
561 {
562 bf5xx_nand_read_buf(mtd, buf, mtd->writesize);
563 bf5xx_nand_read_buf(mtd, chip->oob_poi, mtd->oobsize);
564
565 return 0;
566 }
567
568 static int bf5xx_nand_write_page_raw(struct mtd_info *mtd,
569 struct nand_chip *chip, const uint8_t *buf, int oob_required,
570 int page)
571 {
572 bf5xx_nand_write_buf(mtd, buf, mtd->writesize);
573 bf5xx_nand_write_buf(mtd, chip->oob_poi, mtd->oobsize);
574
575 return 0;
576 }
577
578 /*
579 * System initialization functions
580 */
581 static int bf5xx_nand_dma_init(struct bf5xx_nand_info *info)
582 {
583 int ret;
584
585 /* Do not use dma */
586 if (!hardware_ecc)
587 return 0;
588
589 init_completion(&info->dma_completion);
590
591 /* Request NFC DMA channel */
592 ret = request_dma(CH_NFC, "BF5XX NFC driver");
593 if (ret < 0) {
594 dev_err(info->device, " unable to get DMA channel\n");
595 return ret;
596 }
597
598 #ifdef CONFIG_BF54x
599 /* Setup DMAC1 channel mux for NFC which shared with SDH */
600 bfin_write_DMAC1_PERIMUX(bfin_read_DMAC1_PERIMUX() & ~1);
601 SSYNC();
602 #endif
603
604 set_dma_callback(CH_NFC, bf5xx_nand_dma_irq, info);
605
606 /* Turn off the DMA channel first */
607 disable_dma(CH_NFC);
608 return 0;
609 }
610
611 static void bf5xx_nand_dma_remove(struct bf5xx_nand_info *info)
612 {
613 /* Free NFC DMA channel */
614 if (hardware_ecc)
615 free_dma(CH_NFC);
616 }
617
618 /*
619 * BF5XX NFC hardware initialization
620 * - pin mux setup
621 * - clear interrupt status
622 */
623 static int bf5xx_nand_hw_init(struct bf5xx_nand_info *info)
624 {
625 int err = 0;
626 unsigned short val;
627 struct bf5xx_nand_platform *plat = info->platform;
628
629 /* setup NFC_CTL register */
630 dev_info(info->device,
631 "data_width=%d, wr_dly=%d, rd_dly=%d\n",
632 (plat->data_width ? 16 : 8),
633 plat->wr_dly, plat->rd_dly);
634
635 val = (1 << NFC_PG_SIZE_OFFSET) |
636 (plat->data_width << NFC_NWIDTH_OFFSET) |
637 (plat->rd_dly << NFC_RDDLY_OFFSET) |
638 (plat->wr_dly << NFC_WRDLY_OFFSET);
639 dev_dbg(info->device, "NFC_CTL is 0x%04x\n", val);
640
641 bfin_write_NFC_CTL(val);
642 SSYNC();
643
644 /* clear interrupt status */
645 bfin_write_NFC_IRQMASK(0x0);
646 SSYNC();
647 val = bfin_read_NFC_IRQSTAT();
648 bfin_write_NFC_IRQSTAT(val);
649 SSYNC();
650
651 /* DMA initialization */
652 if (bf5xx_nand_dma_init(info))
653 err = -ENXIO;
654
655 return err;
656 }
657
658 /*
659 * Device management interface
660 */
661 static int bf5xx_nand_add_partition(struct bf5xx_nand_info *info)
662 {
663 struct mtd_info *mtd = &info->mtd;
664 struct mtd_partition *parts = info->platform->partitions;
665 int nr = info->platform->nr_partitions;
666
667 return mtd_device_register(mtd, parts, nr);
668 }
669
670 static int bf5xx_nand_remove(struct platform_device *pdev)
671 {
672 struct bf5xx_nand_info *info = to_nand_info(pdev);
673
674 /* first thing we need to do is release all our mtds
675 * and their partitions, then go through freeing the
676 * resources used
677 */
678 nand_release(&info->mtd);
679
680 peripheral_free_list(bfin_nfc_pin_req);
681 bf5xx_nand_dma_remove(info);
682
683 return 0;
684 }
685
686 static int bf5xx_nand_scan(struct mtd_info *mtd)
687 {
688 struct nand_chip *chip = mtd->priv;
689 int ret;
690
691 ret = nand_scan_ident(mtd, 1, NULL);
692 if (ret)
693 return ret;
694
695 if (hardware_ecc) {
696 /*
697 * for nand with page size > 512B, think it as several sections with 512B
698 */
699 if (likely(mtd->writesize >= 512)) {
700 chip->ecc.size = 512;
701 chip->ecc.bytes = 6;
702 chip->ecc.strength = 2;
703 } else {
704 chip->ecc.size = 256;
705 chip->ecc.bytes = 3;
706 chip->ecc.strength = 1;
707 bfin_write_NFC_CTL(bfin_read_NFC_CTL() & ~(1 << NFC_PG_SIZE_OFFSET));
708 SSYNC();
709 }
710 }
711
712 return nand_scan_tail(mtd);
713 }
714
715 /*
716 * bf5xx_nand_probe
717 *
718 * called by device layer when it finds a device matching
719 * one our driver can handled. This code checks to see if
720 * it can allocate all necessary resources then calls the
721 * nand layer to look for devices
722 */
723 static int bf5xx_nand_probe(struct platform_device *pdev)
724 {
725 struct bf5xx_nand_platform *plat = to_nand_plat(pdev);
726 struct bf5xx_nand_info *info = NULL;
727 struct nand_chip *chip = NULL;
728 struct mtd_info *mtd = NULL;
729 int err = 0;
730
731 dev_dbg(&pdev->dev, "(%p)\n", pdev);
732
733 if (!plat) {
734 dev_err(&pdev->dev, "no platform specific information\n");
735 return -EINVAL;
736 }
737
738 if (peripheral_request_list(bfin_nfc_pin_req, DRV_NAME)) {
739 dev_err(&pdev->dev, "requesting Peripherals failed\n");
740 return -EFAULT;
741 }
742
743 info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
744 if (info == NULL) {
745 err = -ENOMEM;
746 goto out_err;
747 }
748
749 platform_set_drvdata(pdev, info);
750
751 spin_lock_init(&info->controller.lock);
752 init_waitqueue_head(&info->controller.wq);
753
754 info->device = &pdev->dev;
755 info->platform = plat;
756
757 /* initialise chip data struct */
758 chip = &info->chip;
759
760 if (plat->data_width)
761 chip->options |= NAND_BUSWIDTH_16;
762
763 chip->options |= NAND_CACHEPRG | NAND_SKIP_BBTSCAN;
764
765 chip->read_buf = (plat->data_width) ?
766 bf5xx_nand_read_buf16 : bf5xx_nand_read_buf;
767 chip->write_buf = (plat->data_width) ?
768 bf5xx_nand_write_buf16 : bf5xx_nand_write_buf;
769
770 chip->read_byte = bf5xx_nand_read_byte;
771
772 chip->cmd_ctrl = bf5xx_nand_hwcontrol;
773 chip->dev_ready = bf5xx_nand_devready;
774
775 chip->priv = &info->mtd;
776 chip->controller = &info->controller;
777
778 chip->IO_ADDR_R = (void __iomem *) NFC_READ;
779 chip->IO_ADDR_W = (void __iomem *) NFC_DATA_WR;
780
781 chip->chip_delay = 0;
782
783 /* initialise mtd info data struct */
784 mtd = &info->mtd;
785 mtd->priv = chip;
786 mtd->dev.parent = &pdev->dev;
787
788 /* initialise the hardware */
789 err = bf5xx_nand_hw_init(info);
790 if (err)
791 goto out_err;
792
793 /* setup hardware ECC data struct */
794 if (hardware_ecc) {
795 #ifdef CONFIG_MTD_NAND_BF5XX_BOOTROM_ECC
796 chip->ecc.layout = &bootrom_ecclayout;
797 #endif
798 chip->read_buf = bf5xx_nand_dma_read_buf;
799 chip->write_buf = bf5xx_nand_dma_write_buf;
800 chip->ecc.calculate = bf5xx_nand_calculate_ecc;
801 chip->ecc.correct = bf5xx_nand_correct_data;
802 chip->ecc.mode = NAND_ECC_HW;
803 chip->ecc.hwctl = bf5xx_nand_enable_hwecc;
804 chip->ecc.read_page_raw = bf5xx_nand_read_page_raw;
805 chip->ecc.write_page_raw = bf5xx_nand_write_page_raw;
806 } else {
807 chip->ecc.mode = NAND_ECC_SOFT;
808 }
809
810 /* scan hardware nand chip and setup mtd info data struct */
811 if (bf5xx_nand_scan(mtd)) {
812 err = -ENXIO;
813 goto out_err_nand_scan;
814 }
815
816 #ifdef CONFIG_MTD_NAND_BF5XX_BOOTROM_ECC
817 chip->badblockpos = 63;
818 #endif
819
820 /* add NAND partition */
821 bf5xx_nand_add_partition(info);
822
823 dev_dbg(&pdev->dev, "initialised ok\n");
824 return 0;
825
826 out_err_nand_scan:
827 bf5xx_nand_dma_remove(info);
828 out_err:
829 peripheral_free_list(bfin_nfc_pin_req);
830
831 return err;
832 }
833
834 /* driver device registration */
835 static struct platform_driver bf5xx_nand_driver = {
836 .probe = bf5xx_nand_probe,
837 .remove = bf5xx_nand_remove,
838 .driver = {
839 .name = DRV_NAME,
840 },
841 };
842
843 module_platform_driver(bf5xx_nand_driver);
844
845 MODULE_LICENSE("GPL");
846 MODULE_AUTHOR(DRV_AUTHOR);
847 MODULE_DESCRIPTION(DRV_DESC);
848 MODULE_ALIAS("platform:" DRV_NAME);
This page took 0.061158 seconds and 5 git commands to generate.