mtd: nand: kill NAND_NO_AUTOINCR option
[deliverable/linux.git] / drivers / mtd / nand / cafe_nand.c
1 /*
2 * Driver for One Laptop Per Child ‘CAFÉ’ controller, aka Marvell 88ALP01
3 *
4 * The data sheet for this device can be found at:
5 * http://wiki.laptop.org/go/Datasheets
6 *
7 * Copyright © 2006 Red Hat, Inc.
8 * Copyright © 2006 David Woodhouse <dwmw2@infradead.org>
9 */
10
11 #define DEBUG
12
13 #include <linux/device.h>
14 #undef DEBUG
15 #include <linux/mtd/mtd.h>
16 #include <linux/mtd/nand.h>
17 #include <linux/mtd/partitions.h>
18 #include <linux/rslib.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/slab.h>
24 #include <linux/module.h>
25 #include <asm/io.h>
26
27 #define CAFE_NAND_CTRL1 0x00
28 #define CAFE_NAND_CTRL2 0x04
29 #define CAFE_NAND_CTRL3 0x08
30 #define CAFE_NAND_STATUS 0x0c
31 #define CAFE_NAND_IRQ 0x10
32 #define CAFE_NAND_IRQ_MASK 0x14
33 #define CAFE_NAND_DATA_LEN 0x18
34 #define CAFE_NAND_ADDR1 0x1c
35 #define CAFE_NAND_ADDR2 0x20
36 #define CAFE_NAND_TIMING1 0x24
37 #define CAFE_NAND_TIMING2 0x28
38 #define CAFE_NAND_TIMING3 0x2c
39 #define CAFE_NAND_NONMEM 0x30
40 #define CAFE_NAND_ECC_RESULT 0x3C
41 #define CAFE_NAND_DMA_CTRL 0x40
42 #define CAFE_NAND_DMA_ADDR0 0x44
43 #define CAFE_NAND_DMA_ADDR1 0x48
44 #define CAFE_NAND_ECC_SYN01 0x50
45 #define CAFE_NAND_ECC_SYN23 0x54
46 #define CAFE_NAND_ECC_SYN45 0x58
47 #define CAFE_NAND_ECC_SYN67 0x5c
48 #define CAFE_NAND_READ_DATA 0x1000
49 #define CAFE_NAND_WRITE_DATA 0x2000
50
51 #define CAFE_GLOBAL_CTRL 0x3004
52 #define CAFE_GLOBAL_IRQ 0x3008
53 #define CAFE_GLOBAL_IRQ_MASK 0x300c
54 #define CAFE_NAND_RESET 0x3034
55
56 /* Missing from the datasheet: bit 19 of CTRL1 sets CE0 vs. CE1 */
57 #define CTRL1_CHIPSELECT (1<<19)
58
59 struct cafe_priv {
60 struct nand_chip nand;
61 struct pci_dev *pdev;
62 void __iomem *mmio;
63 struct rs_control *rs;
64 uint32_t ctl1;
65 uint32_t ctl2;
66 int datalen;
67 int nr_data;
68 int data_pos;
69 int page_addr;
70 dma_addr_t dmaaddr;
71 unsigned char *dmabuf;
72 };
73
74 static int usedma = 1;
75 module_param(usedma, int, 0644);
76
77 static int skipbbt = 0;
78 module_param(skipbbt, int, 0644);
79
80 static int debug = 0;
81 module_param(debug, int, 0644);
82
83 static int regdebug = 0;
84 module_param(regdebug, int, 0644);
85
86 static int checkecc = 1;
87 module_param(checkecc, int, 0644);
88
89 static unsigned int numtimings;
90 static int timing[3];
91 module_param_array(timing, int, &numtimings, 0644);
92
93 static const char *part_probes[] = { "cmdlinepart", "RedBoot", NULL };
94
95 /* Hrm. Why isn't this already conditional on something in the struct device? */
96 #define cafe_dev_dbg(dev, args...) do { if (debug) dev_dbg(dev, ##args); } while(0)
97
98 /* Make it easier to switch to PIO if we need to */
99 #define cafe_readl(cafe, addr) readl((cafe)->mmio + CAFE_##addr)
100 #define cafe_writel(cafe, datum, addr) writel(datum, (cafe)->mmio + CAFE_##addr)
101
102 static int cafe_device_ready(struct mtd_info *mtd)
103 {
104 struct cafe_priv *cafe = mtd->priv;
105 int result = !!(cafe_readl(cafe, NAND_STATUS) | 0x40000000);
106 uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
107
108 cafe_writel(cafe, irqs, NAND_IRQ);
109
110 cafe_dev_dbg(&cafe->pdev->dev, "NAND device is%s ready, IRQ %x (%x) (%x,%x)\n",
111 result?"":" not", irqs, cafe_readl(cafe, NAND_IRQ),
112 cafe_readl(cafe, GLOBAL_IRQ), cafe_readl(cafe, GLOBAL_IRQ_MASK));
113
114 return result;
115 }
116
117
118 static void cafe_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
119 {
120 struct cafe_priv *cafe = mtd->priv;
121
122 if (usedma)
123 memcpy(cafe->dmabuf + cafe->datalen, buf, len);
124 else
125 memcpy_toio(cafe->mmio + CAFE_NAND_WRITE_DATA + cafe->datalen, buf, len);
126
127 cafe->datalen += len;
128
129 cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes to write buffer. datalen 0x%x\n",
130 len, cafe->datalen);
131 }
132
133 static void cafe_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
134 {
135 struct cafe_priv *cafe = mtd->priv;
136
137 if (usedma)
138 memcpy(buf, cafe->dmabuf + cafe->datalen, len);
139 else
140 memcpy_fromio(buf, cafe->mmio + CAFE_NAND_READ_DATA + cafe->datalen, len);
141
142 cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes from position 0x%x in read buffer.\n",
143 len, cafe->datalen);
144 cafe->datalen += len;
145 }
146
147 static uint8_t cafe_read_byte(struct mtd_info *mtd)
148 {
149 struct cafe_priv *cafe = mtd->priv;
150 uint8_t d;
151
152 cafe_read_buf(mtd, &d, 1);
153 cafe_dev_dbg(&cafe->pdev->dev, "Read %02x\n", d);
154
155 return d;
156 }
157
158 static void cafe_nand_cmdfunc(struct mtd_info *mtd, unsigned command,
159 int column, int page_addr)
160 {
161 struct cafe_priv *cafe = mtd->priv;
162 int adrbytes = 0;
163 uint32_t ctl1;
164 uint32_t doneint = 0x80000000;
165
166 cafe_dev_dbg(&cafe->pdev->dev, "cmdfunc %02x, 0x%x, 0x%x\n",
167 command, column, page_addr);
168
169 if (command == NAND_CMD_ERASE2 || command == NAND_CMD_PAGEPROG) {
170 /* Second half of a command we already calculated */
171 cafe_writel(cafe, cafe->ctl2 | 0x100 | command, NAND_CTRL2);
172 ctl1 = cafe->ctl1;
173 cafe->ctl2 &= ~(1<<30);
174 cafe_dev_dbg(&cafe->pdev->dev, "Continue command, ctl1 %08x, #data %d\n",
175 cafe->ctl1, cafe->nr_data);
176 goto do_command;
177 }
178 /* Reset ECC engine */
179 cafe_writel(cafe, 0, NAND_CTRL2);
180
181 /* Emulate NAND_CMD_READOOB on large-page chips */
182 if (mtd->writesize > 512 &&
183 command == NAND_CMD_READOOB) {
184 column += mtd->writesize;
185 command = NAND_CMD_READ0;
186 }
187
188 /* FIXME: Do we need to send read command before sending data
189 for small-page chips, to position the buffer correctly? */
190
191 if (column != -1) {
192 cafe_writel(cafe, column, NAND_ADDR1);
193 adrbytes = 2;
194 if (page_addr != -1)
195 goto write_adr2;
196 } else if (page_addr != -1) {
197 cafe_writel(cafe, page_addr & 0xffff, NAND_ADDR1);
198 page_addr >>= 16;
199 write_adr2:
200 cafe_writel(cafe, page_addr, NAND_ADDR2);
201 adrbytes += 2;
202 if (mtd->size > mtd->writesize << 16)
203 adrbytes++;
204 }
205
206 cafe->data_pos = cafe->datalen = 0;
207
208 /* Set command valid bit, mask in the chip select bit */
209 ctl1 = 0x80000000 | command | (cafe->ctl1 & CTRL1_CHIPSELECT);
210
211 /* Set RD or WR bits as appropriate */
212 if (command == NAND_CMD_READID || command == NAND_CMD_STATUS) {
213 ctl1 |= (1<<26); /* rd */
214 /* Always 5 bytes, for now */
215 cafe->datalen = 4;
216 /* And one address cycle -- even for STATUS, since the controller doesn't work without */
217 adrbytes = 1;
218 } else if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
219 command == NAND_CMD_READOOB || command == NAND_CMD_RNDOUT) {
220 ctl1 |= 1<<26; /* rd */
221 /* For now, assume just read to end of page */
222 cafe->datalen = mtd->writesize + mtd->oobsize - column;
223 } else if (command == NAND_CMD_SEQIN)
224 ctl1 |= 1<<25; /* wr */
225
226 /* Set number of address bytes */
227 if (adrbytes)
228 ctl1 |= ((adrbytes-1)|8) << 27;
229
230 if (command == NAND_CMD_SEQIN || command == NAND_CMD_ERASE1) {
231 /* Ignore the first command of a pair; the hardware
232 deals with them both at once, later */
233 cafe->ctl1 = ctl1;
234 cafe_dev_dbg(&cafe->pdev->dev, "Setup for delayed command, ctl1 %08x, dlen %x\n",
235 cafe->ctl1, cafe->datalen);
236 return;
237 }
238 /* RNDOUT and READ0 commands need a following byte */
239 if (command == NAND_CMD_RNDOUT)
240 cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_RNDOUTSTART, NAND_CTRL2);
241 else if (command == NAND_CMD_READ0 && mtd->writesize > 512)
242 cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_READSTART, NAND_CTRL2);
243
244 do_command:
245 cafe_dev_dbg(&cafe->pdev->dev, "dlen %x, ctl1 %x, ctl2 %x\n",
246 cafe->datalen, ctl1, cafe_readl(cafe, NAND_CTRL2));
247
248 /* NB: The datasheet lies -- we really should be subtracting 1 here */
249 cafe_writel(cafe, cafe->datalen, NAND_DATA_LEN);
250 cafe_writel(cafe, 0x90000000, NAND_IRQ);
251 if (usedma && (ctl1 & (3<<25))) {
252 uint32_t dmactl = 0xc0000000 + cafe->datalen;
253 /* If WR or RD bits set, set up DMA */
254 if (ctl1 & (1<<26)) {
255 /* It's a read */
256 dmactl |= (1<<29);
257 /* ... so it's done when the DMA is done, not just
258 the command. */
259 doneint = 0x10000000;
260 }
261 cafe_writel(cafe, dmactl, NAND_DMA_CTRL);
262 }
263 cafe->datalen = 0;
264
265 if (unlikely(regdebug)) {
266 int i;
267 printk("About to write command %08x to register 0\n", ctl1);
268 for (i=4; i< 0x5c; i+=4)
269 printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
270 }
271
272 cafe_writel(cafe, ctl1, NAND_CTRL1);
273 /* Apply this short delay always to ensure that we do wait tWB in
274 * any case on any machine. */
275 ndelay(100);
276
277 if (1) {
278 int c;
279 uint32_t irqs;
280
281 for (c = 500000; c != 0; c--) {
282 irqs = cafe_readl(cafe, NAND_IRQ);
283 if (irqs & doneint)
284 break;
285 udelay(1);
286 if (!(c % 100000))
287 cafe_dev_dbg(&cafe->pdev->dev, "Wait for ready, IRQ %x\n", irqs);
288 cpu_relax();
289 }
290 cafe_writel(cafe, doneint, NAND_IRQ);
291 cafe_dev_dbg(&cafe->pdev->dev, "Command %x completed after %d usec, irqs %x (%x)\n",
292 command, 500000-c, irqs, cafe_readl(cafe, NAND_IRQ));
293 }
294
295 WARN_ON(cafe->ctl2 & (1<<30));
296
297 switch (command) {
298
299 case NAND_CMD_CACHEDPROG:
300 case NAND_CMD_PAGEPROG:
301 case NAND_CMD_ERASE1:
302 case NAND_CMD_ERASE2:
303 case NAND_CMD_SEQIN:
304 case NAND_CMD_RNDIN:
305 case NAND_CMD_STATUS:
306 case NAND_CMD_DEPLETE1:
307 case NAND_CMD_RNDOUT:
308 case NAND_CMD_STATUS_ERROR:
309 case NAND_CMD_STATUS_ERROR0:
310 case NAND_CMD_STATUS_ERROR1:
311 case NAND_CMD_STATUS_ERROR2:
312 case NAND_CMD_STATUS_ERROR3:
313 cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
314 return;
315 }
316 nand_wait_ready(mtd);
317 cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
318 }
319
320 static void cafe_select_chip(struct mtd_info *mtd, int chipnr)
321 {
322 struct cafe_priv *cafe = mtd->priv;
323
324 cafe_dev_dbg(&cafe->pdev->dev, "select_chip %d\n", chipnr);
325
326 /* Mask the appropriate bit into the stored value of ctl1
327 which will be used by cafe_nand_cmdfunc() */
328 if (chipnr)
329 cafe->ctl1 |= CTRL1_CHIPSELECT;
330 else
331 cafe->ctl1 &= ~CTRL1_CHIPSELECT;
332 }
333
334 static irqreturn_t cafe_nand_interrupt(int irq, void *id)
335 {
336 struct mtd_info *mtd = id;
337 struct cafe_priv *cafe = mtd->priv;
338 uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
339 cafe_writel(cafe, irqs & ~0x90000000, NAND_IRQ);
340 if (!irqs)
341 return IRQ_NONE;
342
343 cafe_dev_dbg(&cafe->pdev->dev, "irq, bits %x (%x)\n", irqs, cafe_readl(cafe, NAND_IRQ));
344 return IRQ_HANDLED;
345 }
346
347 static void cafe_nand_bug(struct mtd_info *mtd)
348 {
349 BUG();
350 }
351
352 static int cafe_nand_write_oob(struct mtd_info *mtd,
353 struct nand_chip *chip, int page)
354 {
355 int status = 0;
356
357 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
358 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
359 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
360 status = chip->waitfunc(mtd, chip);
361
362 return status & NAND_STATUS_FAIL ? -EIO : 0;
363 }
364
365 /* Don't use -- use nand_read_oob_std for now */
366 static int cafe_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
367 int page, int sndcmd)
368 {
369 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
370 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
371 return 1;
372 }
373 /**
374 * cafe_nand_read_page_syndrome - [REPLACEABLE] hardware ecc syndrome based page read
375 * @mtd: mtd info structure
376 * @chip: nand chip info structure
377 * @buf: buffer to store read data
378 *
379 * The hw generator calculates the error syndrome automatically. Therefor
380 * we need a special oob layout and handling.
381 */
382 static int cafe_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
383 uint8_t *buf, int page)
384 {
385 struct cafe_priv *cafe = mtd->priv;
386 unsigned int max_bitflips = 0;
387
388 cafe_dev_dbg(&cafe->pdev->dev, "ECC result %08x SYN1,2 %08x\n",
389 cafe_readl(cafe, NAND_ECC_RESULT),
390 cafe_readl(cafe, NAND_ECC_SYN01));
391
392 chip->read_buf(mtd, buf, mtd->writesize);
393 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
394
395 if (checkecc && cafe_readl(cafe, NAND_ECC_RESULT) & (1<<18)) {
396 unsigned short syn[8], pat[4];
397 int pos[4];
398 u8 *oob = chip->oob_poi;
399 int i, n;
400
401 for (i=0; i<8; i+=2) {
402 uint32_t tmp = cafe_readl(cafe, NAND_ECC_SYN01 + (i*2));
403 syn[i] = cafe->rs->index_of[tmp & 0xfff];
404 syn[i+1] = cafe->rs->index_of[(tmp >> 16) & 0xfff];
405 }
406
407 n = decode_rs16(cafe->rs, NULL, NULL, 1367, syn, 0, pos, 0,
408 pat);
409
410 for (i = 0; i < n; i++) {
411 int p = pos[i];
412
413 /* The 12-bit symbols are mapped to bytes here */
414
415 if (p > 1374) {
416 /* out of range */
417 n = -1374;
418 } else if (p == 0) {
419 /* high four bits do not correspond to data */
420 if (pat[i] > 0xff)
421 n = -2048;
422 else
423 buf[0] ^= pat[i];
424 } else if (p == 1365) {
425 buf[2047] ^= pat[i] >> 4;
426 oob[0] ^= pat[i] << 4;
427 } else if (p > 1365) {
428 if ((p & 1) == 1) {
429 oob[3*p/2 - 2048] ^= pat[i] >> 4;
430 oob[3*p/2 - 2047] ^= pat[i] << 4;
431 } else {
432 oob[3*p/2 - 2049] ^= pat[i] >> 8;
433 oob[3*p/2 - 2048] ^= pat[i];
434 }
435 } else if ((p & 1) == 1) {
436 buf[3*p/2] ^= pat[i] >> 4;
437 buf[3*p/2 + 1] ^= pat[i] << 4;
438 } else {
439 buf[3*p/2 - 1] ^= pat[i] >> 8;
440 buf[3*p/2] ^= pat[i];
441 }
442 }
443
444 if (n < 0) {
445 dev_dbg(&cafe->pdev->dev, "Failed to correct ECC at %08x\n",
446 cafe_readl(cafe, NAND_ADDR2) * 2048);
447 for (i = 0; i < 0x5c; i += 4)
448 printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
449 mtd->ecc_stats.failed++;
450 } else {
451 dev_dbg(&cafe->pdev->dev, "Corrected %d symbol errors\n", n);
452 mtd->ecc_stats.corrected += n;
453 max_bitflips = max_t(unsigned int, max_bitflips, n);
454 }
455 }
456
457 return max_bitflips;
458 }
459
460 static struct nand_ecclayout cafe_oobinfo_2048 = {
461 .eccbytes = 14,
462 .eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
463 .oobfree = {{14, 50}}
464 };
465
466 /* Ick. The BBT code really ought to be able to work this bit out
467 for itself from the above, at least for the 2KiB case */
468 static uint8_t cafe_bbt_pattern_2048[] = { 'B', 'b', 't', '0' };
469 static uint8_t cafe_mirror_pattern_2048[] = { '1', 't', 'b', 'B' };
470
471 static uint8_t cafe_bbt_pattern_512[] = { 0xBB };
472 static uint8_t cafe_mirror_pattern_512[] = { 0xBC };
473
474
475 static struct nand_bbt_descr cafe_bbt_main_descr_2048 = {
476 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
477 | NAND_BBT_2BIT | NAND_BBT_VERSION,
478 .offs = 14,
479 .len = 4,
480 .veroffs = 18,
481 .maxblocks = 4,
482 .pattern = cafe_bbt_pattern_2048
483 };
484
485 static struct nand_bbt_descr cafe_bbt_mirror_descr_2048 = {
486 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
487 | NAND_BBT_2BIT | NAND_BBT_VERSION,
488 .offs = 14,
489 .len = 4,
490 .veroffs = 18,
491 .maxblocks = 4,
492 .pattern = cafe_mirror_pattern_2048
493 };
494
495 static struct nand_ecclayout cafe_oobinfo_512 = {
496 .eccbytes = 14,
497 .eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
498 .oobfree = {{14, 2}}
499 };
500
501 static struct nand_bbt_descr cafe_bbt_main_descr_512 = {
502 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
503 | NAND_BBT_2BIT | NAND_BBT_VERSION,
504 .offs = 14,
505 .len = 1,
506 .veroffs = 15,
507 .maxblocks = 4,
508 .pattern = cafe_bbt_pattern_512
509 };
510
511 static struct nand_bbt_descr cafe_bbt_mirror_descr_512 = {
512 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
513 | NAND_BBT_2BIT | NAND_BBT_VERSION,
514 .offs = 14,
515 .len = 1,
516 .veroffs = 15,
517 .maxblocks = 4,
518 .pattern = cafe_mirror_pattern_512
519 };
520
521
522 static void cafe_nand_write_page_lowlevel(struct mtd_info *mtd,
523 struct nand_chip *chip, const uint8_t *buf)
524 {
525 struct cafe_priv *cafe = mtd->priv;
526
527 chip->write_buf(mtd, buf, mtd->writesize);
528 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
529
530 /* Set up ECC autogeneration */
531 cafe->ctl2 |= (1<<30);
532 }
533
534 static int cafe_nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
535 const uint8_t *buf, int page, int cached, int raw)
536 {
537 int status;
538
539 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
540
541 if (unlikely(raw))
542 chip->ecc.write_page_raw(mtd, chip, buf);
543 else
544 chip->ecc.write_page(mtd, chip, buf);
545
546 /*
547 * Cached progamming disabled for now, Not sure if its worth the
548 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
549 */
550 cached = 0;
551
552 if (!cached || !(chip->options & NAND_CACHEPRG)) {
553
554 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
555 status = chip->waitfunc(mtd, chip);
556 /*
557 * See if operation failed and additional status checks are
558 * available
559 */
560 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
561 status = chip->errstat(mtd, chip, FL_WRITING, status,
562 page);
563
564 if (status & NAND_STATUS_FAIL)
565 return -EIO;
566 } else {
567 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
568 status = chip->waitfunc(mtd, chip);
569 }
570
571 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
572 /* Send command to read back the data */
573 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
574
575 if (chip->verify_buf(mtd, buf, mtd->writesize))
576 return -EIO;
577 #endif
578 return 0;
579 }
580
581 static int cafe_nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
582 {
583 return 0;
584 }
585
586 /* F_2[X]/(X**6+X+1) */
587 static unsigned short __devinit gf64_mul(u8 a, u8 b)
588 {
589 u8 c;
590 unsigned int i;
591
592 c = 0;
593 for (i = 0; i < 6; i++) {
594 if (a & 1)
595 c ^= b;
596 a >>= 1;
597 b <<= 1;
598 if ((b & 0x40) != 0)
599 b ^= 0x43;
600 }
601
602 return c;
603 }
604
605 /* F_64[X]/(X**2+X+A**-1) with A the generator of F_64[X] */
606 static u16 __devinit gf4096_mul(u16 a, u16 b)
607 {
608 u8 ah, al, bh, bl, ch, cl;
609
610 ah = a >> 6;
611 al = a & 0x3f;
612 bh = b >> 6;
613 bl = b & 0x3f;
614
615 ch = gf64_mul(ah ^ al, bh ^ bl) ^ gf64_mul(al, bl);
616 cl = gf64_mul(gf64_mul(ah, bh), 0x21) ^ gf64_mul(al, bl);
617
618 return (ch << 6) ^ cl;
619 }
620
621 static int __devinit cafe_mul(int x)
622 {
623 if (x == 0)
624 return 1;
625 return gf4096_mul(x, 0xe01);
626 }
627
628 static int __devinit cafe_nand_probe(struct pci_dev *pdev,
629 const struct pci_device_id *ent)
630 {
631 struct mtd_info *mtd;
632 struct cafe_priv *cafe;
633 uint32_t ctrl;
634 int err = 0;
635
636 /* Very old versions shared the same PCI ident for all three
637 functions on the chip. Verify the class too... */
638 if ((pdev->class >> 8) != PCI_CLASS_MEMORY_FLASH)
639 return -ENODEV;
640
641 err = pci_enable_device(pdev);
642 if (err)
643 return err;
644
645 pci_set_master(pdev);
646
647 mtd = kzalloc(sizeof(*mtd) + sizeof(struct cafe_priv), GFP_KERNEL);
648 if (!mtd) {
649 dev_warn(&pdev->dev, "failed to alloc mtd_info\n");
650 return -ENOMEM;
651 }
652 cafe = (void *)(&mtd[1]);
653
654 mtd->dev.parent = &pdev->dev;
655 mtd->priv = cafe;
656 mtd->owner = THIS_MODULE;
657
658 cafe->pdev = pdev;
659 cafe->mmio = pci_iomap(pdev, 0, 0);
660 if (!cafe->mmio) {
661 dev_warn(&pdev->dev, "failed to iomap\n");
662 err = -ENOMEM;
663 goto out_free_mtd;
664 }
665 cafe->dmabuf = dma_alloc_coherent(&cafe->pdev->dev, 2112 + sizeof(struct nand_buffers),
666 &cafe->dmaaddr, GFP_KERNEL);
667 if (!cafe->dmabuf) {
668 err = -ENOMEM;
669 goto out_ior;
670 }
671 cafe->nand.buffers = (void *)cafe->dmabuf + 2112;
672
673 cafe->rs = init_rs_non_canonical(12, &cafe_mul, 0, 1, 8);
674 if (!cafe->rs) {
675 err = -ENOMEM;
676 goto out_ior;
677 }
678
679 cafe->nand.cmdfunc = cafe_nand_cmdfunc;
680 cafe->nand.dev_ready = cafe_device_ready;
681 cafe->nand.read_byte = cafe_read_byte;
682 cafe->nand.read_buf = cafe_read_buf;
683 cafe->nand.write_buf = cafe_write_buf;
684 cafe->nand.select_chip = cafe_select_chip;
685
686 cafe->nand.chip_delay = 0;
687
688 /* Enable the following for a flash based bad block table */
689 cafe->nand.bbt_options = NAND_BBT_USE_FLASH;
690 cafe->nand.options = NAND_OWN_BUFFERS;
691
692 if (skipbbt) {
693 cafe->nand.options |= NAND_SKIP_BBTSCAN;
694 cafe->nand.block_bad = cafe_nand_block_bad;
695 }
696
697 if (numtimings && numtimings != 3) {
698 dev_warn(&cafe->pdev->dev, "%d timing register values ignored; precisely three are required\n", numtimings);
699 }
700
701 if (numtimings == 3) {
702 cafe_dev_dbg(&cafe->pdev->dev, "Using provided timings (%08x %08x %08x)\n",
703 timing[0], timing[1], timing[2]);
704 } else {
705 timing[0] = cafe_readl(cafe, NAND_TIMING1);
706 timing[1] = cafe_readl(cafe, NAND_TIMING2);
707 timing[2] = cafe_readl(cafe, NAND_TIMING3);
708
709 if (timing[0] | timing[1] | timing[2]) {
710 cafe_dev_dbg(&cafe->pdev->dev, "Timing registers already set (%08x %08x %08x)\n",
711 timing[0], timing[1], timing[2]);
712 } else {
713 dev_warn(&cafe->pdev->dev, "Timing registers unset; using most conservative defaults\n");
714 timing[0] = timing[1] = timing[2] = 0xffffffff;
715 }
716 }
717
718 /* Start off by resetting the NAND controller completely */
719 cafe_writel(cafe, 1, NAND_RESET);
720 cafe_writel(cafe, 0, NAND_RESET);
721
722 cafe_writel(cafe, timing[0], NAND_TIMING1);
723 cafe_writel(cafe, timing[1], NAND_TIMING2);
724 cafe_writel(cafe, timing[2], NAND_TIMING3);
725
726 cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
727 err = request_irq(pdev->irq, &cafe_nand_interrupt, IRQF_SHARED,
728 "CAFE NAND", mtd);
729 if (err) {
730 dev_warn(&pdev->dev, "Could not register IRQ %d\n", pdev->irq);
731 goto out_free_dma;
732 }
733
734 /* Disable master reset, enable NAND clock */
735 ctrl = cafe_readl(cafe, GLOBAL_CTRL);
736 ctrl &= 0xffffeff0;
737 ctrl |= 0x00007000;
738 cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
739 cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
740 cafe_writel(cafe, 0, NAND_DMA_CTRL);
741
742 cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
743 cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
744
745 /* Set up DMA address */
746 cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
747 if (sizeof(cafe->dmaaddr) > 4)
748 /* Shift in two parts to shut the compiler up */
749 cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
750 else
751 cafe_writel(cafe, 0, NAND_DMA_ADDR1);
752
753 cafe_dev_dbg(&cafe->pdev->dev, "Set DMA address to %x (virt %p)\n",
754 cafe_readl(cafe, NAND_DMA_ADDR0), cafe->dmabuf);
755
756 /* Enable NAND IRQ in global IRQ mask register */
757 cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
758 cafe_dev_dbg(&cafe->pdev->dev, "Control %x, IRQ mask %x\n",
759 cafe_readl(cafe, GLOBAL_CTRL), cafe_readl(cafe, GLOBAL_IRQ_MASK));
760
761 /* Scan to find existence of the device */
762 if (nand_scan_ident(mtd, 2, NULL)) {
763 err = -ENXIO;
764 goto out_irq;
765 }
766
767 cafe->ctl2 = 1<<27; /* Reed-Solomon ECC */
768 if (mtd->writesize == 2048)
769 cafe->ctl2 |= 1<<29; /* 2KiB page size */
770
771 /* Set up ECC according to the type of chip we found */
772 if (mtd->writesize == 2048) {
773 cafe->nand.ecc.layout = &cafe_oobinfo_2048;
774 cafe->nand.bbt_td = &cafe_bbt_main_descr_2048;
775 cafe->nand.bbt_md = &cafe_bbt_mirror_descr_2048;
776 } else if (mtd->writesize == 512) {
777 cafe->nand.ecc.layout = &cafe_oobinfo_512;
778 cafe->nand.bbt_td = &cafe_bbt_main_descr_512;
779 cafe->nand.bbt_md = &cafe_bbt_mirror_descr_512;
780 } else {
781 printk(KERN_WARNING "Unexpected NAND flash writesize %d. Aborting\n",
782 mtd->writesize);
783 goto out_irq;
784 }
785 cafe->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
786 cafe->nand.ecc.size = mtd->writesize;
787 cafe->nand.ecc.bytes = 14;
788 cafe->nand.ecc.strength = 4;
789 cafe->nand.ecc.hwctl = (void *)cafe_nand_bug;
790 cafe->nand.ecc.calculate = (void *)cafe_nand_bug;
791 cafe->nand.ecc.correct = (void *)cafe_nand_bug;
792 cafe->nand.write_page = cafe_nand_write_page;
793 cafe->nand.ecc.write_page = cafe_nand_write_page_lowlevel;
794 cafe->nand.ecc.write_oob = cafe_nand_write_oob;
795 cafe->nand.ecc.read_page = cafe_nand_read_page;
796 cafe->nand.ecc.read_oob = cafe_nand_read_oob;
797
798 err = nand_scan_tail(mtd);
799 if (err)
800 goto out_irq;
801
802 pci_set_drvdata(pdev, mtd);
803
804 mtd->name = "cafe_nand";
805 mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0);
806
807 goto out;
808
809 out_irq:
810 /* Disable NAND IRQ in global IRQ mask register */
811 cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
812 free_irq(pdev->irq, mtd);
813 out_free_dma:
814 dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
815 out_ior:
816 pci_iounmap(pdev, cafe->mmio);
817 out_free_mtd:
818 kfree(mtd);
819 out:
820 return err;
821 }
822
823 static void __devexit cafe_nand_remove(struct pci_dev *pdev)
824 {
825 struct mtd_info *mtd = pci_get_drvdata(pdev);
826 struct cafe_priv *cafe = mtd->priv;
827
828 /* Disable NAND IRQ in global IRQ mask register */
829 cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
830 free_irq(pdev->irq, mtd);
831 nand_release(mtd);
832 free_rs(cafe->rs);
833 pci_iounmap(pdev, cafe->mmio);
834 dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
835 kfree(mtd);
836 }
837
838 static const struct pci_device_id cafe_nand_tbl[] = {
839 { PCI_VENDOR_ID_MARVELL, PCI_DEVICE_ID_MARVELL_88ALP01_NAND,
840 PCI_ANY_ID, PCI_ANY_ID },
841 { }
842 };
843
844 MODULE_DEVICE_TABLE(pci, cafe_nand_tbl);
845
846 static int cafe_nand_resume(struct pci_dev *pdev)
847 {
848 uint32_t ctrl;
849 struct mtd_info *mtd = pci_get_drvdata(pdev);
850 struct cafe_priv *cafe = mtd->priv;
851
852 /* Start off by resetting the NAND controller completely */
853 cafe_writel(cafe, 1, NAND_RESET);
854 cafe_writel(cafe, 0, NAND_RESET);
855 cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
856
857 /* Restore timing configuration */
858 cafe_writel(cafe, timing[0], NAND_TIMING1);
859 cafe_writel(cafe, timing[1], NAND_TIMING2);
860 cafe_writel(cafe, timing[2], NAND_TIMING3);
861
862 /* Disable master reset, enable NAND clock */
863 ctrl = cafe_readl(cafe, GLOBAL_CTRL);
864 ctrl &= 0xffffeff0;
865 ctrl |= 0x00007000;
866 cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
867 cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
868 cafe_writel(cafe, 0, NAND_DMA_CTRL);
869 cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
870 cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
871
872 /* Set up DMA address */
873 cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
874 if (sizeof(cafe->dmaaddr) > 4)
875 /* Shift in two parts to shut the compiler up */
876 cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
877 else
878 cafe_writel(cafe, 0, NAND_DMA_ADDR1);
879
880 /* Enable NAND IRQ in global IRQ mask register */
881 cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
882 return 0;
883 }
884
885 static struct pci_driver cafe_nand_pci_driver = {
886 .name = "CAFÉ NAND",
887 .id_table = cafe_nand_tbl,
888 .probe = cafe_nand_probe,
889 .remove = __devexit_p(cafe_nand_remove),
890 .resume = cafe_nand_resume,
891 };
892
893 module_pci_driver(cafe_nand_pci_driver);
894
895 MODULE_LICENSE("GPL");
896 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
897 MODULE_DESCRIPTION("NAND flash driver for OLPC CAFÉ chip");
This page took 0.052783 seconds and 5 git commands to generate.